Science.gov

Sample records for rotor ring defines

  1. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2014-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  2. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  3. Spiral and Rotor Patterns Produced by Fairy Ring Fungi.

    PubMed

    Karst, Nathaniel; Dralle, David; Thompson, Sally

    2016-01-01

    A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.

  4. Spiral and Rotor Patterns Produced by Fairy Ring Fungi.

    PubMed

    Karst, Nathaniel; Dralle, David; Thompson, Sally

    2016-01-01

    A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns. PMID:26934477

  5. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    PubMed Central

    2016-01-01

    A broad class of soil fungi form the annular patterns known as ‘fairy rings’ and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns. PMID:26934477

  6. Stability Analysis of a Turbocharger Rotor System Supported on Floating Ring Bearings

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Shi, Z. Q.; Zhen, D.; Gu, F. S.; Ball, A. D.

    2012-05-01

    The stability of a turbocharger rotor is governed by the coupling of rotor dynamics and fluid dynamics because the high speed rotor system is supported on a pair of hydrodynamic floating ring bearings which comprise of inner and outer fluid films in series. In order to investigate the stability, this paper has developed a finite element model of the rotor system with consideration of such exciting forces as rotor imbalance, hydrodynamic fluid forces, lubricant feed pressure and dead weight. The dimensionless analytical expression of nonlinear oil film forces in floating ring bearings have been derived on the basis of short bearing theory. Based on numerical simulation, the effects of rotor imbalance, lubricant viscosity, lubricant feed pressure and bearing clearances on the stability of turbocharger rotor system have been studied. The disciplines of the stability of two films and dynamic performances of rotor system have been provided.

  7. Rotor burst protection program: Experimentation to provide guidelines for the design of turbine rotor burst fragment containment rings

    NASA Technical Reports Server (NTRS)

    Mangano, G. J.; Salvino, J. T.; Delucia, R. A.

    1977-01-01

    Empirical guidelines for the design of minimum weight turbine rotor disk fragment containment rings made from a monolithic metal were generated by experimentally establishing the relationship between a variable that provides a measure of containment ring capability and several other variables that both characterized the configurational aspects of the rotor fragments and containment ring, and had been found from exploratory testing to have had significant influence on the containment process. Test methodology and data analysis techniques are described. Results are presented in graphs and tables.

  8. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  9. Structure of the c14 Rotor Ring of the Proton Translocating Chloroplast ATP Synthase*

    PubMed Central

    Vollmar, Melanie; Schlieper, Daniel; Winn, Martyn; Büchner, Claudia; Groth, Georg

    2009-01-01

    The structure of the membrane integral rotor ring of the proton translocating F1F0 ATP synthase from spinach chloroplasts was determined to 3.8 Å resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c11 rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6–10.8 Å apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu61 in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu61 is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu61 by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation. PMID:19423706

  10. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor

    NASA Astrophysics Data System (ADS)

    Han, F. T.; Liu, Y. F.; Wang, L.; Ma, G. Y.

    2012-10-01

    A micromachined electrostatically suspended gyroscope is described in this paper, in which a spinning ring-shaped rotor is suspended by an electric bearing in five degrees of freedom and driven by a three-phase variable-capacitance motor. The electric bearing provides contactless suspension of the spinning rotor, allowing the rotor through a torque-rebalance loop to precess about two input axes that are orthogonal to the spin axis. In this way, the micromachined spinning-rotor gyroscope can be used as a two-degree-of-freedom angular rate sensor by detecting the precession-induced torque. Design and simulation of the dual-axis torque-rebalance loop, by considering actual negative spring effect in rotor dynamics, are presented to investigate the loop stability and explain the experimental measurement. The prototype device has been fabricated by bulk micromachining technique and tested successfully with a suspended rotor spinning at a speed of 10 085 rpm. Initial measurements of the rate gyroscope shows that an input range of ±100° s-1, a noise floor of 0.015° s-1 Hz-1/2, and a bias stability of 50.95° h-1 have been achieved. The detailed results of the prototype device, electric bearing and motor spin-up are also described.

  11. Effects of semi-floating ring bearing outer clearance on the subsynchronous oscillation of turbocharger rotor

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Zhou, Ming; Xu, Quanyong

    2016-06-01

    Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors of rotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two bearings respectively are discovered. As the outer clearance of SFRB increases from 24 μm to 60 μm, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.

  12. Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2011-09-01

    The rotor dynamic behaviour of turbochargers (TC) has been paid significant attention because of its importance in their healthy operation. Commonly, the TC is firmly mounted on engines and they will definitely suffer from the vibrations originated from engines in operation. However, only a limited number of papers have been published with consideration of this phenomenon. In this paper, a finite element model of a TC rotor supported by nonlinear floating ring bearings has been established. The nonlinear bearing forces have been calculated by a newly proposed analytical method. An efficient numerical integration approach has been employed to conduct the investigation including the traditional unbalance and the considered engine excitation effects in question. The results show that the unbalance will place considerable influence on the rotor response at a low working speed. At high speeds, the effect will be prevented by the dominant sub-synchronous vibrations, which also prohibit the appearance of a chaotic state. The novel investigation with the proposed model considering engine excitation reveals that the engine induced vibration will greatly affect the TC rotor response at relatively lower rotor speeds as well. At higher speed range, the dominant effect of sub-synchronous vibrations is still capable of keeping the same orbit shapes as that without engine excitation from a relative viewpoint.

  13. Nonlinear effects of unbalance in the rotor-floating ring bearing system of turbochargers

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2013-01-01

    Turbocharger (TC) rotor-floating ring bearing (FRB) system is characterised by high speed as well as high non-linearity. Using the run-up and run-down simulation method, this paper systematically investigates the influence of unbalance on the rotordynamic characteristics of a real TC-FRB system over the speed range from 0 Hz to 3500 Hz. The rotor is discretized by the finite element method, and the desired oil film forces at each simulation step are calculated by an efficient analytical method. The imposed unbalance amount and distribution are the variables considered in the performed non-stationary simulations. The newly obtained results evidently show the distinct phenomena brought about by the variations of the unbalance offset, which confirms that the unbalance level is a critical parameter for the system response. In the meantime, the variations of unbalance distribution, i.e. out-of-phase and in-phase unbalance, can lead to entirely different simulation results as well, which proves the distribution of unbalance is not negligible during the dynamic analysis of the rotor-FRB system. Additionally, considerable effort has been placed on the description as well as discussion of a unique phenomenon termed Critical Limit Cycle Oscillation (CLC Oscillation), which is of great importance and interest to the TC research and development.

  14. Separators for flywheel rotors

    DOEpatents

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  15. Separators for flywheel rotors

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  16. Intact Flagellar Motor of Borrelia burgdorferi Revealed by Cryo-Electron Tomography: Evidence for Stator Ring Curvature and Rotor/C-Ring Assembly Flexion▿ †

    PubMed Central

    Liu, Jun; Lin, Tao; Botkin, Douglas J.; McCrum, Erin; Winkler, Hanspeter; Norris, Steven J.

    2009-01-01

    The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation. PMID:19429612

  17. Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2013-01-01

    Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.

  18. A Simple Molecular Rotor for Defining Nucleoside Environment within a DNA Aptamer-Protein Complex.

    PubMed

    Cservenyi, Thomas Z; Van Riesen, Abigail J; Berger, Florence D; Desoky, Ahmed; Manderville, Richard A

    2016-09-16

    The simple 5-furyl-2'-deoxyuridine ((Fur)dU) nucleobase exhibits dual probing characteristics displaying emissive sensitivity to changes in microenvironment polarity and to changes in solvent rigidity due to its molecular rotor character. Here, we demonstrate its ability to define the microenvironment of the various thymidine (T) loop residues within the thrombin binding aptamer (TBA) upon antiparallel G-quadruplex (GQ) folding and thrombin binding. The emissive sensitivity of the (Fur)dU probe to microenvironment polarity provides a diagnostic handle to distinguish T bases that are solvent-exposed within the GQ structure compared with probe location in the apolar duplex. Its molecular rotor properties then provide a turn-on fluorescent switch to identify which T residues within the GQ bind specifically to the protein target (thrombin). The fluorescence sensing characteristics of (Fur)dU make it an attractive tool for mapping aptamer-protein interactions at the nucleoside level for further development of modified aptamers for a wide range of diagnostic and therapeutic applications. PMID:27447371

  19. A Simple Molecular Rotor for Defining Nucleoside Environment within a DNA Aptamer-Protein Complex.

    PubMed

    Cservenyi, Thomas Z; Van Riesen, Abigail J; Berger, Florence D; Desoky, Ahmed; Manderville, Richard A

    2016-09-16

    The simple 5-furyl-2'-deoxyuridine ((Fur)dU) nucleobase exhibits dual probing characteristics displaying emissive sensitivity to changes in microenvironment polarity and to changes in solvent rigidity due to its molecular rotor character. Here, we demonstrate its ability to define the microenvironment of the various thymidine (T) loop residues within the thrombin binding aptamer (TBA) upon antiparallel G-quadruplex (GQ) folding and thrombin binding. The emissive sensitivity of the (Fur)dU probe to microenvironment polarity provides a diagnostic handle to distinguish T bases that are solvent-exposed within the GQ structure compared with probe location in the apolar duplex. Its molecular rotor properties then provide a turn-on fluorescent switch to identify which T residues within the GQ bind specifically to the protein target (thrombin). The fluorescence sensing characteristics of (Fur)dU make it an attractive tool for mapping aptamer-protein interactions at the nucleoside level for further development of modified aptamers for a wide range of diagnostic and therapeutic applications.

  20. Computation of potential flows with embedded vortex rings and applications to helicopter rotor wakes

    NASA Technical Reports Server (NTRS)

    Roberts, T. W.

    1983-01-01

    A finite difference scheme for solving the motion of a number of vortex rings is developed. The method is an adaptation of the 'cloud-in-cell' technique to axisymmetric flows, and is thus a combined Eulerian-Lagrangian technique. A straightforward adaptation of the cloud-in-cell scheme to an axisymmetric flow field is shown to introduce a grid dependent self-induced velocity to each vortex ring. To correct this behavior the potential is considered to consist of two parts, a local and a global field. An improved difference formula is derived, allowing the accurate calculation of the potential at points near vortex locations. The local potential is then subtracted before calculating the velocity, leaving only the influences of the remaining vortices. The correct self-induced velocity is then explicitly added to the vortex velocity. Calculations of the motion of one and two vortex rings are performed, demonstrating the ability of the new method to eliminate the grid dependence of the self-induced velocity. The application of the method to the calculation of helicopter rotor flows in hover is attempted.

  1. Effects of bearing outer clearance on the dynamic behaviours of the full floating ring bearing supported turbocharger rotor

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2012-08-01

    As a high speed rotating device, the modern turbocharger rotor is commonly supported by floating ring bearings (FRBs). The high nonlinearity there can always lead to quite complex and interesting phenomena rarely observed in other rotating applications. Using the run-up and run-down simulation method, this paper originally and systematically discusses the effect of bearing outer clearance on the rotordynamic characteristics of a realistic turbocharger rotor over the speed range up to 3000 Hz. The rotor is discretized by the Finite Element Method and supported by analytically calculated bearing forces. The linear analysis is proved to be effective in predicting the first two nonlinear jumps but inadequate to study the rotordynamic characteristics at higher rotor speeds. The nonlinearly simulated results show the appearances of distinct and interesting phenomena within the considered range of FRB outer clearance, which can be further divided into four groups. Within the same group, the simulation results are qualitatively similar to each other but quite dissimilar from the results from different groups. Moreover, the unwelcome Critical Limit Cycle Oscillation can be avoided by increasing the outer clearance size. Additionally, in some cases, the run-down simulations reveal distinct frequency maps as compared to the corresponding run-ups. Furthermore, it is seen that ring speed ratios can be considerably affected by the nonlinear jumps. Therefore, FRB outer clearance should be thoroughly examined to achieve the best rotordynamic performance.

  2. Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments

    NASA Technical Reports Server (NTRS)

    Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.

    1979-01-01

    Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.

  3. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  4. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  5. Experimental and data analysis techniques for deducing collision-induced forces from photographic histories of engine rotor fragment impact/interaction with a containment ring

    NASA Technical Reports Server (NTRS)

    Yeghiayan, R. P.; Leech, J. W.; Witmer, E. A.

    1973-01-01

    An analysis method termed TEJ-JET is described whereby measured transient elastic and inelastic deformations of an engine-rotor fragment-impacted structural ring are analyzed to deduce the transient external forces experienced by that ring as a result of fragment impact and interaction with the ring. Although the theoretical feasibility of the TEJ-JET concept was established, its practical feasibility when utilizing experimental measurements of limited precision and accuracy remains to be established. The experimental equipment and the techniques (high-speed motion photography) employed to measure the transient deformations of fragment-impacted rings are described. Sources of error and data uncertainties are identified. Techniques employed to reduce data reading uncertainties and to correct the data for optical-distortion effects are discussed. These procedures, including spatial smoothing of the deformed ring shape by Fourier series and timewise smoothing by Gram polynomials, are applied illustratively to recent measurements involving the impact of a single T58 turbine rotor blade against an aluminum containment ring. Plausible predictions of the fragment-ring impact/interaction forces are obtained by one branch of this TEJ-JET method; however, a second branch of this method, which provides an independent estimate of these forces, remains to be evaluated.

  6. Windmill rotor

    SciTech Connect

    Lange, H.

    1985-09-24

    A windmill rotor of the vertical axis type having at least three main blades mounted symmetrically around a shaft and bowing outwardly to define a generally sphere-like chamber. Each main blade has a secondary blade mounted on its inner surface, and the secondary blade is movable under centrifugal force as the rotor turns. An auxiliary blade is provided adjacent to and ahead of the secondary blade to act as a scoop for the wind to provide the rotor with additional thrust at low speed. The auxiliary blade is positioned so that, as the speed of the rotor increases and the secondary blade moves outwardly, the scoop formed by the auxiliary blade is shielded from the wind, thus reducing or eliminating the additional thrust at high rotational speeds. The avoids damage to the rotor in high winds.

  7. Fabrication of a normally-closed microvalve utilizing lithographically defined silicone micro O-rings

    NASA Astrophysics Data System (ADS)

    Lemke, T.; Kloeker, J.; Biancuzzi, G.; Huesgen, T.; Goldschmidtboeing, F.; Woias, P.

    2011-02-01

    The focus of this work is on the development of a simple and variable process chain for the integration of flexible silicone material into silicon-based microfluidic devices. A normally-closed microvalve is chosen as a demonstrator device, as it combines features that are not easily obtained from silicon devices alone, especially, a high leak tightness of up to 1 bar pressure difference in the closed state and a high forward flow of several mL min^{-1} in the open state. For this purpose, a photopatternable silicone is used as a deformable circular valve lip between a piezoelectrically actuated membrane and a valve seat, similar to a micro O-ring with a width of 50 µm. The microvalve is piezo actuated by monolayer piezo actuators with a peak-to-peak driving voltage of V_{p{--p}} = 200 V. The micro O-ring is pre-deformed by 2.8 µm during the valve fabrication process to yield the normally-closed behavior. A dry film resist lamination technology is developed for this critical process step to mate the two silicon wafers with the actuation membrane, the valve seat and the silicone O-ring in between at a well-defined distance. The dry film resist is used in a multifunctional way, not only to pre-deform the valve lip, but also to define the geometry of the valve chamber and to ensure a leak-tight connection of both wafers. Altogether, a peak value for the on- to off-ratio of the normally-closed microvalve higher than 30 000 is measured. This opens a wide range of potential applications, e.g. in micro-dosing, drug delivery, μ-TAS and microfluidics for biological or chemical applications in general.

  8. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases.

    PubMed

    Walpole, Thomas B; Palmer, David N; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2015-04-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria.

  9. Conservation of Complete Trimethylation of Lysine-43 in the Rotor Ring of c-Subunits of Metazoan Adenosine Triphosphate (ATP) Synthases*

    PubMed Central

    Walpole, Thomas B.; Palmer, David N.; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9–15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria. PMID:25608518

  10. High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase

    PubMed Central

    Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas

    2014-01-01

    All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992

  11. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-01

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  12. Smart machines with flexible rotors

    NASA Astrophysics Data System (ADS)

    Lees, A. W.

    2011-01-01

    The concept of smart machinery is of current interest. Several technologies are relevant in this quest including magnetic bearings, shape memory alloys (SMA) and piezo-electric activation. Recently, a smart bearing pedestal was proposed based on SMAs and elastomeric O-rings. However, such a device is clearly relevant only for the control of rigid rotors, for flexible rotors there is a need for some modification on the rotor itself. In this paper, rotor actuation by piezo-electric patches on the rotor is studied. A methodology is presented for the calculation of rotor behaviour and appropriate control strategies are discussed.

  13. Smart machines with flexible rotors

    NASA Astrophysics Data System (ADS)

    Lees, A. W.

    2009-08-01

    The concept of smart machinery is of significant current interest. Several technologies are relevant in this quest including magnetic bearings, shape memory alloys (SMA) and piezo-electric activation. Recently a smart bearing pedestal was proposed based on SMAs and elastomeric O-rings. However, such a device is clearly relevant only for the control of rigid rotors, for flexible rotors there is a need for some modification on the rotor itself. In this paper, rotor actuation by piezo-electric patches on the rotor is studied. A methodology is presented for the calculation of rotor behaviour and an appropriate control strategy is developed.

  14. Defining geologic Hazards for natural resources management using tree-ring analysis

    USGS Publications Warehouse

    DeGraff, J.V.; Agard, S.S.

    1984-01-01

    Landslides, avalanches, floods, and other geologic hazards impair natural resources management by jeopardizing public safety, damaging or restricting resource utilization, and necessitating expenditures for corrective measures The negative impact of geologic hazard events can be reduced by tailoring resources management to hazard potential of an area This requires assessment of where and how frequently the events occur National forests and other managed wildlands often lack monitoring or historical records to compute frequency of hazard occurrence Tree-ring analysis, based on internal growth response to external events such as tilting and abrasion, can provide frequency data Two examples of the use of tree-ring analysis to date landslide activity illustrate advantages and limitations of the technique An example from the Fishlake National Forest in central Utah illustrates assessment for planning purposes An example from the Sierra National Forest in east-central California shows assessment applied to project design Many geologic hazards in addition to landslides are suited to tree-ring analysis to establish frequency of occurrence Hazard reduction efforts in natural resources management could be enhanced by careful application of tree-ring analysis ?? 1984 Springer-Verlag New York Inc.

  15. Beryllium derivatives of a phenyl-substituted β-diketiminate: a well-defined ring opening reaction of tetrahydrofuran.

    PubMed

    Arrowsmith, Merle; Crimmin, Mark R; Hill, Michael S; Kociok-Köhn, Gabriele

    2013-07-14

    The phenyl-substituted β-diketiminate ligand precursor (Ph)LH, [(Dipp)NC(Ph)CHC(Ph)NH(Dipp)] (Dipp = 2,6-di-isopropylphenyl) and its lithium and beryllium halide derivatives [(Ph)LLi(OEt2)], [(Ph)LBeCl] and [(Ph)LBeI] have been synthesised and characterised by NMR and X-ray structural analysis. The iodoberyllium complex [(Ph)LBeI] reacts with THF in a well-defined ring-opening insertion reaction to form the 4-iodo-n-butoxide complex [(Ph)LBeO(CH2)4I].

  16. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao

    2016-08-01

    Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner. PMID:27420373

  17. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao

    2016-08-01

    Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner.

  18. Ring-Opening Polymerization of Prodrugs: A Versatile Approach to Prepare Well-Defined Drug Loaded Nanoparticles**

    PubMed Central

    Liu, Jinyao; Liu, Wenge; Weitzhandler, Isaac; Bhattacharyya, Jayanta; Li, Xinghai; Wang, Jing; Qi, Yizhi; Bhattacharjee, Somnath; Chilkoti, Ashutosh

    2014-01-01

    We report a new methodology for the synthesis of polymer-drug conjugates from “compound”—all in one—prodrug monomers that consist of a cyclic polymerizable group that is appended to a drug through a cleavable linker. We show that organocatalyzed ring-opening polymerization can polymerize these monomers into well-defined polymer prodrugs that are designed to self-assemble into nanoparticles and release drug in response to a physiologically relevant stimulus. This method is compatible with structurally diverse drugs and allows different drugs to be copolymerized with quantitative conversion of the monomers. The drug loading can be controlled by adjusting the monomer(s) to initiator feed ratio and drug release can be encoded into the polymer by the choice of linker. Initiating these monomers from a polyethylene glycol macroinitiator yields amphiphilic diblock copolymers that spontaneously self-assemble into micelles with a long plasma circulation, which is useful for systemic therapy. PMID:25427831

  19. Effect of seals on rotor systems

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1982-01-01

    Seals can exert large forces on rotors. As an example, in turbopump ring seals film stiffness as high as 90 MN/m (500,000 lb/in) have been calculated. This stiffness is comparable to the stiffness of rotor support bearings; thus seals can play an important part in supporting and stabilizing rotor systems. The work done to determine forces generated in ring seals is reviewed. Working formulas are presented for seal stiffness and damping, and geometries to maximize stiffness are discussed. An example is described where a change in seal design stabilized a previously unstable rotor.

  20. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  1. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  2. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  3. Smart Machines with Flexible Rotors

    NASA Astrophysics Data System (ADS)

    Lees, Arthur W.

    The concept of smart machinery is of significant current interest. Several technologies are relevant in this quest including magnetic bearings, shape memory alloys (SMA) and piezo-electric activation. Recently a smart bearing pedestal was proposed based on SMAs and elastomeric O-rings. However, such a device is clearly relevant only for the control of rigid rotors, for flexible rotors there is a need for some modification on the rotor itself. In this paper, rotor actuation by piezo-electric patches on the rotor is studied. A methodology is presented for the calculation of rotor behaviour and appropriate control strategies are discussed. It is shown how this form of control is a viable option and an estimate of system requirements is given. It is shown that the most promising option for the control of rotor imbalance is the imposition of a counteracting bend. However, because the bend can be controlled as a function of speed, the usual restrictions in comparing a rotor bend and unbalance do not apply. After outlining the methodology of the calculation, a series of transient simulations are presented. Finally, difficulties and options in the construction of a real machine are discussed.

  4. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2004-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  5. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2005-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  6. Research on silicon rotor turned gyroscope

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Li, Hongsheng; Yang, Bo; Wang, Shourong; Li, Kunyu

    2013-03-01

    This paper introduces a novel thin silicon rotor turned gyroscope (SRTG). With a micro motor driving the rotor and two pairs of torsion bars and a gimbal ring realizing dynamical tuning, this gyroscope inherits the structure and working principle of the dynamically tuned gyroscope (DTG). The torsion bars, gimbal ring, rotor, annunciator and torquer are processed by micro-mechanical technology. The declination of rotor is sensed by differential capacitances. The rotor is rebalanced by electrostatic forces. In this paper, the details about the structure and working principle of SRTG is presented, the block diagram of the circuit in SRTG is discussed. Experiments are done on one sensitive direction of SRTG, and the curve is given, proved the feasibility.

  7. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    NASA Astrophysics Data System (ADS)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  8. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  9. Electrofriction method of manufacturing squirrel cage rotors

    DOEpatents

    Hsu, John S.

    2005-04-12

    A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings to improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.

  10. Multiple piece turbine rotor blade

    SciTech Connect

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  11. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  12. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  13. Variable camber rotor study

    NASA Technical Reports Server (NTRS)

    Dadone, L.; Cowan, J.; Mchugh, F. J.

    1982-01-01

    Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.

  14. A permanent-magnet rotor for a high-temperature superconducting bearing

    SciTech Connect

    Mulcahy, T.M.; Hull, J.R.; Uherka, K.L.; Abboud, R.G.; Wise, J.H.; Carnegie, D.W.

    1995-07-01

    Design, fabrication, and performance, of a 1/3-m dia., 10-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor`s segmented-ring permanent-magnet (PM) is optimized for levitation and circumferential homogeneity. The magnet`s carbon composite bands enable practical energy storage.

  15. Rotor noise

    NASA Astrophysics Data System (ADS)

    Schmitz, F. H.

    1991-08-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  16. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  17. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  18. A permanent-magnet rotor for a high-temperature superconducting bearing

    SciTech Connect

    Mulcahy, T.M.; Hull, J.R.; Uherka, K.L.; Abboud, R.G.; Wise, J.H.; Carnegie, D.W.; Bakis, C.E.; Gabrys, C.W.

    1996-07-01

    Design, fabrication, and performance of a 0.39-m diam., 6.8-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor`s segmented-ring permanent magnet (PM) is optimized for levitation and circumferential homogeneity. A PM figure of merit is proposed that appears to correlate with loss data. Pre compression of the PM with fiber-composite banding is necessary for practical rotor speeds.

  19. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  20. Tailored Precone Rotor

    NASA Technical Reports Server (NTRS)

    Mantay, Wayne R.; Farley, Gary L.

    1995-01-01

    Concept of tailored precone rotor (TPR) provides for changes in precone deflection in helicopter rotor blade when such changes needed for enhancement of stability and loads. Involves use of device described in "Structurally-Tailorable, Nonlinear Snap-Through Spring," (LAR-13729). Satifies requirements in both rotor states in tailored, passive manner. Also applicable to complex blades of high-speed fans or turbines.

  1. A review of research in rotor loads

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Mantay, Wayne R.

    1988-01-01

    The research accomplished in the area of rotor loads over the last 13 to 14 years is reviewed. The start of the period examined is defined by the 1973 AGARD Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of the review is research performed by the U.S. Army and NASA at their laboratories and/or by the industry under government contract. For the purpose of this review, two main topics are addressed: rotor loads prediction and means of rotor loads reduction. A limited discussion of research in gust loads and maneuver loads is included. In the area of rotor loads predictions, the major problem areas are reviewed including dynamic stall, wake induced flows, blade tip effects, fuselage induced effects, blade structural modeling, hub impedance, and solution methods. It is concluded that the capability to predict rotor loads has not significantly improved in this time frame. Future progress will require more extensive correlation of measurements and predictions to better understand the causes of the problems, and a recognition that differences between theory and measurement have multiple sources, yet must be treated as a whole. There is a need for high-quality data to support future research in rotor loads, but the resulting data base must not be seen as an end in itself. It will be useful only if it is integrated into firm long-range plans for the use of the data.

  2. Rotor support for the STME oxygen turbopump

    NASA Astrophysics Data System (ADS)

    Haluck, David; Bursey, Roger, Jr.; Ferlita, Frank

    1992-07-01

    The rotor support for the NLS Space Transportation Main Engine (STME) oxygen turbopump is discussed. The rotor is supported by two large angular contact split inner ring ball bearings which are cooled with liquid oxygen. Lubrication is provided by the sacrificial wear of Salox-M self-lubricating composite cage material and the subsequent transfer from the rolling element to the raceway surfaces. The bearings are designed to carry both radial and axial loads. The two-ball-bearing rotor support allows startup and shutdown related transient axial loads to be handled in either direction. The paper presents diagrams of the STME oxygen turbopump, showing ball bearings, and results of ball bearing tests.

  3. Analysis and correlation with theory of rotor lift-limit test data

    NASA Technical Reports Server (NTRS)

    Sheffler, M.

    1979-01-01

    A wind tunnel test program to define the cruise performance and determine any limitations to lift and propulsive force of a conventional helicopter rotor is described. A 2.96 foot radius model rotor was used. The maximum lift and propulsive force obtainable from an articulated rotor for advance ratios of 0.4 to 0.67, and the blade load growth as the lift approaches the limit are determined. Cruise rotor performance for advance ratios of 0.4 to 0.67 and the sensitivity of the rotor forces and moments to rotor control inputs as the lift limit is approached are established.

  4. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  5. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  6. Vibration analysis of rotor blades with an attached concentrated mass

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Barna, P. S.

    1977-01-01

    The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.

  7. Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis

    NASA Technical Reports Server (NTRS)

    Mchugh, F.; Clark, R.; Soloman, M.

    1977-01-01

    The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

  8. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  9. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    NASA Technical Reports Server (NTRS)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  10. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  11. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  12. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  13. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  14. Reducing rotor weight

    SciTech Connect

    Cheney, M.C.

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  15. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  16. Open Rotor Spin Test

    NASA Video Gallery

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  17. Using a collision model to design safer wind turbine rotors for birds

    SciTech Connect

    Tucker, V.A.

    1996-11-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

  18. An Integrated NDE and FEM Characterization of Composite Rotors

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  19. User's guide to computer program CIVM-JET 4B to calculate the transient structural responses of partial and/or complete structural rings to engine-rotor-fragment impact

    NASA Technical Reports Server (NTRS)

    Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.

    1976-01-01

    A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.

  20. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  1. Rotor balancing apparatus and system

    NASA Technical Reports Server (NTRS)

    Lyman, Frank (Inventor); Lyman, Joseph (Inventor)

    1976-01-01

    Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.

  2. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime (second wind tunnel test)

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1975-01-01

    A test was conducted in the NASA-Ames 7 x 10 ft low speed wind tunnel on a seven-foot diameter model of a teetering rotor. The objectives of the test were: (1) acquire pressure data for correlation with laser and flow visualization measurements; (2) explore rotor propulsive force limits by varying the advance ratio at constant lift and propulsive force coefficients; (3) obtain additional data to define the differences between teetering and articulated rotors; and (4) verify the acceleration sensitivity of experimental transducers. Results are presented.

  3. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  4. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  5. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  6. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  7. Transonic rotor noise: Theoretical and experimental comparisons

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1980-01-01

    Two complementary methods of describing the high speed rotor noise problem are discussed. The first method uses the second order transonic potential equation to define and characterize the nature of the aerodynamic and acoustic fields and to explain the appearance of radiating shock waves. The second employs the Ffowcs Williams and Hawkings equation to successfully calculate the acoustic far field. Good agreement between theoretical and experimental waveforms is shown for transonic hover tip Mach numbers from 0.8 to 0.9.

  8. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  9. Rotor blade construction for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Carter, Sr., Donald R. (Inventor); Krauss, Timothy A. (Inventor); Sedlak, Matthew (Inventor)

    1986-01-01

    A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.

  10. A Model Rotor in Axial Flight

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Huang, S. S.; Abrego, A. I.

    2001-01-01

    A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.

  11. Eigenvalue assignment strategies in rotor systems

    NASA Technical Reports Server (NTRS)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  12. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.

    1973-01-01

    A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.

  13. Rotor system having alternating length rotor blades for reducing blade-vortex interaction (BVI) noise

    NASA Technical Reports Server (NTRS)

    Moffitt, Robert C. (Inventor); Visintainer, Joseph A. (Inventor)

    1997-01-01

    A rotor system (4) having odd and even blade assemblies (O.sub.b, E.sub.b) mounting to and rotating with a rotor hub assembly (6) wherein the odd blade assemblies (O.sub.b) define a radial length R.sub.O, and the even blade assemblies (E.sub.b) define a radial length R.sub.E and wherein the radial length R.sub.E is between about 70% to about 95% of the radial length R.sub.O. Other embodiments of the invention are directed to a Variable Diameter Rotor system (4) which may be configured for operating in various operating modes for optimizing aerodynamic and acoustic performance. The Variable Diameter Rotor system (4) includes odd and even blade assemblies (O.sub.b, E.sub.b) having inboard and outboard blade sections (10, 12) wherein the outboard blade sections (12) telescopically mount to the inboard blade sections (10). The outboard blade sections (12) are positioned with respect to the inboard blade sections (10 such that the radial length R.sub.E of the even blade assemblies (E.sub.b) is equal to the radial length R.sub.O of the odd blade assemblies (O.sub.b) in a first operating mode, and such that the radial length R.sub.E is between about 70% to about 95% of the length R.sub.O in a second operating mode.

  14. Critical behavior of the XY-rotor model on regular and small-world networks.

    PubMed

    De Nigris, Sarah; Leoncini, Xavier

    2013-07-01

    We study the XY rotors model on small networks whose number of links scales with the system size N(links)~N(γ), where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ<1.5 the model behaves like a short-range one and no phase transition occurs. For γ>1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ε=E/N,ε(c)=0.75. Moreover, for γ(c)~/=1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as p(SW)[proportionality]1/N(γ). Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ε(c) which logarithmically depends on the topological parameters p and γ. We also define a critical probability p(MF), corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.

  15. ROTOR END CAP

    DOEpatents

    Rushing, F.C.

    1959-02-01

    An improved end cap is described for the cylindrical rotor or bowl of a high-speed centrifugal separator adapted to permit free and efficient continuous counter current flow of gas therethrough for isotope separation. The end cap design provides for securely mounting the same to the hollow central shaft and external wall of the centrifuge. Passageways are incorporated and so arranged as to provide for continuous counter current flow of the light and heavy portions of the gas fed to the centrifuge.

  16. Polygonal shaft hole rotor

    DOEpatents

    Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee

    2001-01-23

    A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

  17. Rotor with Flattened Exit Pressure Profile

    NASA Technical Reports Server (NTRS)

    Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)

    2015-01-01

    A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.

  18. New twist to steering. [Magnus effect rotors

    SciTech Connect

    Borg, J.L.

    1980-06-01

    The new vessel steering system is based on The Magnus Effect which is defined in simplified terms; if a vertical cylinder immersed in water is rotated, it produces a force at right angles to the direction of the water flowing past it. The Magnus Effect rotor needs only sufficient torque to overcome bearing and surface friction forces, so that the power requirements are very low. Further energy savings are realized because the rotor can develop maximum turning force or can return to zero in a few seconds. Tests with these cylindrical rudders have been conducted to verify the hydrodynamic theory. This concept is in the preliminary stages of development. Results are expected soon from field testing on an 1800-hp pushboat working four barges on the Warrior and Tombigbee Rivers in Alabama and Mississippi.

  19. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  20. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  1. Planetary rings

    NASA Technical Reports Server (NTRS)

    Cook, A. F.

    1980-01-01

    Observations of the Rings of Saturn from the Pioneer spacecraft, discovery of the Ring of Jupiter, ground based polarimetry of the Rings of Saturn and some theoretical studies may be combined to markedly advance our understanding of the Rings of Jupiter, Saturn and Uranus. In particular, narrow rings can be self-gravitatingly stable inside Roche's limit and outside another closer limit. They can be created from a satellite which evolves across its Roche limit either by inward tidal drift or by growth of the planet by accretion. These considerations suggest that Neptune may well be surrounded by one or more narrow rings like those of Uranus.

  2. Bushing retention system for thermal medium cooling delivery tubes in a gas turbine rotor

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    Bushings are provided in counterbores for wheels and spacers for supporting thermal medium cooling tubes extending axially adjacent the rim of the gas turbine rotor. The retention system includes a retaining ring disposed in a groove adjacent an end face of the bushing and which retaining ring projects radially inwardly to prevent axial movement of the bushing in one direction. The retention ring has a plurality of circumferentially spaced tabs along its inner diameter whereby the ring is supported by the lands of the tube maintaining its bushing retention function, notwithstanding operation in high centrifugal fields and rotation of the ring in the groove into other circular orientations.

  3. Jupiter's Rings: Sharpest View

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  4. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  5. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  6. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1983-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  7. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  8. Development of flexible rotor balancing criteria

    NASA Technical Reports Server (NTRS)

    Walter, W. W.; Rieger, N. F.

    1979-01-01

    Several studies in which analytical procedures were used to obtain balancing criteria for flexible rotors are described. General response data for a uniform rotor in damped flexible supports were first obtained for plain cylindrical bearings, tilting pad bearings, axial groove bearings, and partial arc bearings. These data formed the basis for the flexible rotor balance criteria presented. A procedure by which a practical rotor in bearings could be reduced to an equivalent uniform rotor was developed and tested. It was found that the equivalent rotor response always exceeded to practical rotor response by more than sixty percent for the cases tested. The equivalent rotor procedure was then tested against six practical rotor configurations for which data was available. It was found that the equivalent rotor method offered a procedure by which balance criteria could be selected for practical flexible rotors, using the charts given for the uniform rotor.

  9. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  10. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  11. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  12. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  13. Integrated technology rotor/flight research rotor concept definition study

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  14. Method for Providing a Jewel Bearing for Supporting a Pump Rotor Shaft

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2001-01-01

    Methods for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  15. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  16. Open Rotor Test Status

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2010-01-01

    Testing of low noise, counter-rotating open rotor propulsion concepts has been ongoing at Glenn Research Center in collaboration with General Electric Company. The presentation is an overview of the testing that has been completed to date and previews the upcoming test entries. The NASA Environmentally Responsible Aviation Project Diagnostics entry is the most recent to finish. That test entry included acoustic phased array, pressure sensitive paint, particle image velocimetry, pylon installed measurements and acoustic shielding measurements. A preview of the data to be acquired in the 8x6 high-speed wind tunnel is also included.

  17. Turbomachinery rotor forces

    NASA Technical Reports Server (NTRS)

    Arndt, Norbert

    1988-01-01

    The fluid-induced forces, both steady and unsteady, acting upon an impeller of a centrifugal pump, and impeller blade-diffuser vane interaction in centrifugal pumps with vaned radial diffusers were evaluated experimentally and theoretically. Knowledge of the steady and unsteady forces, and the associated rotordynamic coefficients are required to effectively model the rotor dynamics of the High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). These forces and rotordynamic coefficients were investigated using different impellers in combination with volutes and vaned diffusers, and axial inducers. These rotor forces are global. Local forces and pressures are also important in impeller-diffuser interaction, for they may cause cavitation damage and even vane failures. Thus, in a separate investigation, impeller wake, and impeller blade and diffuser vane pressure measurements were made. The nature of the rotordynamic forces is discussed, the experimental facility is described, and the measurements of unsteady forces and pressure are reported together with a brief and incomplete attempt to calculate these flows.

  18. Blade lock for a rotor disk and rotor blade assembly

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  19. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  20. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  1. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  2. Study Of Helicopter-Tail-Rotor Noise

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Beranek, Bolt

    1988-01-01

    Report describes findings of experiment in generation of impulsive noise and fluctuating blade loads by helicopter tail rotor interacting with vortexes from main rotor. Experiment used model rotor and isolated vortex and designed to isolate blade/vortex interaction noise from other types of rotor noise.

  3. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  4. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  5. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  6. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  7. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  8. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  9. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  10. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  11. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  12. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  13. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  14. Ullmann coupling mediated assembly of an electrically driven altitudinal molecular rotor.

    PubMed

    Murphy, Colin J; Smith, Zachary C; Pronschinski, Alex; Lewis, Emily A; Liriano, Melissa L; Wong, Chloe; Ivimey, Christopher J; Duffy, Mitchell; Musial, Wojciech; Therrien, Andrew J; Thomas, Samuel W; Sykes, E Charles H

    2015-12-21

    Surface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator. All steps in the reaction on a Cu(111) surface are visualized by low-temperature scanning tunneling microscopy. The intermediate stage of the coupling reaction is a metal-organic complex consisting of two aryl groups attached to a single copper atom with the aryl rings angled away from the surface. This conformation leads to nearly unhindered rotational motion of ethyl groups at the para positions of the aryl rings. Rotational events of the ethyl group are both induced and quantified by electron tunneling current versus time measurements and are only observed for the intermediate structure of the Ullmann coupling reaction, not the starting material or finished product in which the ethyl groups are static. We perform an extensive set of inelastic electron tunneling driven rotation experiments that reveal that torsional motion around the ethyl group is stimulated by tunneling electrons in a one-electron process with an excitation energy threshold of 45 meV. This chemically tunable system offers an ideal platform for examining many fundamental aspects of the dynamics of chemically tunable molecular rotor and motors. PMID:26567846

  15. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  16. Wind turbine rotor aileron

    DOEpatents

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  17. Extension-twist coupling optimization in composite rotor blades

    NASA Astrophysics Data System (ADS)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  18. Defining "Development".

    PubMed

    Pradeu, Thomas; Laplane, Lucie; Prévot, Karine; Hoquet, Thierry; Reynaud, Valentine; Fusco, Giuseppe; Minelli, Alessandro; Orgogozo, Virginie; Vervoort, Michel

    2016-01-01

    Is it possible, and in the first place is it even desirable, to define what "development" means and to determine the scope of the field called "developmental biology"? Though these questions appeared crucial for the founders of "developmental biology" in the 1950s, there seems to be no consensus today about the need to address them. Here, in a combined biological, philosophical, and historical approach, we ask whether it is possible and useful to define biological development, and, if such a definition is indeed possible and useful, which definition(s) can be considered as the most satisfactory.

  19. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  20. Rotor and stator assembly configured as an aspirating face seal

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)

    1999-01-01

    A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.

  1. Cooled variable nozzle radial turbine for rotor craft applications

    NASA Technical Reports Server (NTRS)

    Rogo, C.

    1981-01-01

    An advanced, small 2.27 kb/sec (5 lbs/sec), high temperature, variable area radial turbine was studied for a rotor craft application. Variable capacity cycles including single-shaft and free-turbine engine configurations were analyzed to define an optimum engine design configuration. Parametric optimizations were made on cooled and uncooled rotor configurations. A detailed structural and heat transfer analysis was conducted to provide a 4000-hour life HP turbine with material properties of the 1988 time frame. A pivoted vane and a moveable sidewall geometry were analyzed. Cooling and variable geometry penalties were included in the cycle analysis. A variable geometry free-turbine engine configuration with a design 1477K (2200 F) inlet temperature and a compressor pressure ratio of 16:1 was selected. An uncooled HP radial turbine rotor with a moveable sidewall nozzle showed the highest performance potential for a time weighted duty cycle.

  2. Defining Infertility

    MedlinePlus

    ... of the American Society for Reproductive Medicine Defining infertility What is infertility? Infertility is “the inability to conceive after 12 months ... to conceive after 6 months is generally considered infertility. How common is it? Infertility affects 10%-15% ...

  3. Aggregation-induced emission rotors: rational design and tunable stimuli response.

    PubMed

    Li, Jie; Zhang, Yang; Mei, Ju; Lam, Jacky W Y; Hao, Jianhua; Tang, Ben Zhong

    2015-01-01

    A novel molecular design strategy is provided to rationally tune the stimuli response of luminescent materials with aggregation-induced emission (AIE) characteristics. A series of new AIE-active molecules (AIE rotors) are prepared by covalently linking different numbers of tetraphenylethene moieties together. Upon gradually increasing the number of rotatable phenyl rings, the sensitivity of the response of the AIE rotors to viscosity and temperature is significantly enhanced. Although the molecular size is further enlarged, the performance is only slightly improved due to slightly increased effective rotors, but with largely increased rotational barriers. Such molecular engineering and experimental results offer more in-depth insight into the AIE mechanism, namely, restriction of intramolecular rotations. Notably, through this rational design, the AIE rotor with the largest molecular size turns out to be the most viscosensitive luminogen with a viscosity factor of up to 0.98.

  4. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  5. Soft hub for bearingless rotors

    NASA Technical Reports Server (NTRS)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  6. Rotor Broadband Noise Prediction with Comparison to Model Data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Burley, Casey L.

    2001-01-01

    This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.

  7. Rotor noise in maneuvering flight

    NASA Astrophysics Data System (ADS)

    Chen, Hsuan-Nien

    The objective of this research is to understand the physics of rotor noise in the maneuvering flight. To achieve this objective, an integrated noise prediction system is constructed, namely GenHel-MFW-PSU-WOPWOP. This noise prediction system includes a flight simulation code, a high fidelity free vortex-wake code, and a rotor acoustic prediction code. By using this noise prediction system, rotor maneuver noise characteristics are identified. Unlike periodic rotor noise, a longer duration is required to describe rotor maneuver noise. The variation of helicopter motion, blade motion and blade airloads are all influencing the noise prediction results in both noise level and directivity in the maneuvering flight. In this research, two types of rotor maneuver noise are identified, steady maneuver noise and transient maneuver noise. In the steady maneuver, rotor noise corresponds to a steady maneuver condition, which has nearly steady properties in flight dynamics and aerodynamics. Transient maneuver noise is the result of the transition between two steady maneuvers. In a transient maneuver, the helicopter experiences fluctuations in airload and helicopter angular rates, which lead to excess rotor noise. Even though the transient maneuver only exists for a fairly short period of time, the corresponding transient maneuver noise could be significant when compared to steady maneuver noise. The blade tip vortices also present complex behaviors in the transient maneuver condition. With stronger vortex circulation strength and the potential for vortex bundling, blade vortex-interaction (BVI) noise may increase significantly during a transient maneuver. In this research, it is shown that even with small pilot controls, significant BVI noise can be generated during a transient flight condition. Finally, through this research, the importance of transient maneuver noise is demonstrated and recognized.

  8. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  9. Relation between Water Vapor Adsorption Isotherms and Dynamic Dehumidification Performances of Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Matsuguma, Shingo; Jin, Wei-Li; Okano, Hiroshi; Teraoka, Yasutake; Hirose, Tsutomu

    Desiccant rotors with different water vapor adsorption properties were fabricated by the synthesis of silica gels inside the honeycomb matrices. Dynamic dehumidification performances of the rotors were measured under different conditions and they were discussed in relation to water vapor adsorption isotherms. At the reactivation air temperatures of 80 and 140 oC, the best dynamic performance was observed with the rotor on which the adsorbed amount of water vapor at lower relative humidity was highest. When the reactivation air temperature was 50 oC, on the other hand, the rotor of which the isotherm exhibited monotonic and nearly linear increase up to higher relative humidity was the most suitable. The normalized changes of absolute humidity and adsorbed amount were defined, and these phenomena were analyzed. When the dependences of both parameters against the relative humidity were similar, the rotor showed the best dehumidification performance.

  10. Defining cure.

    PubMed

    Hilton, Paul; Robinson, Dudley

    2011-06-01

    This paper is a summary of the presentations made as Proposal 2-"Defining cure" to the 2nd Annual meeting of the ICI-Research Society, in Bristol, 16th June 2010. It reviews definitions of 'cure' and 'outcome', and considers the impact that varying definition may have on prevalence studies and cure rates. The difference between subjective and objective outcomes is considered, and the significance that these different outcomes may have for different stakeholders (e.g. clinicians, patients, carers, industry etc.) is discussed. The development of patient reported outcome measures and patient defined goals is reviewed, and consideration given to the use of composite end-points. A series of proposals are made by authors and discussants as to how currently validated outcomes should be applied, and where our future research activity in this area might be directed.

  11. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  12. Jupiter's ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  13. Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters. [momentum, vortices, and potential theory

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1979-01-01

    The concept of rotary-wing aircraft in general is defined. The energy effectiveness of helicopters is compared with that of other static thrust generators in hover, as well as with various air and ground vehicles in forward translation. The most important aspects of rotor-blade dynamics and rotor control are reviewed. The simple physicomathematical model of the rotor offered by the momentum theory is introduced and its usefulness and limitations are assessed. The combined blade-element and momentum theory approach, which provides greater accuracy in performance predictions, is described as well as the vortex theory which models a rotor blade by means of a vortex filament or vorticity surface. The application of the velocity and acceleration potential theory to the determination of flow fields around three dimensional, non-rotating bodies as well as to rotor aerodynamic problems is described. Airfoil sections suitable for rotors are also considered.

  14. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  15. Defining chaos

    SciTech Connect

    Hunt, Brian R.; Ott, Edward

    2015-09-15

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  16. Rotor assembly and assay method

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  17. Rotor assembly and assay method

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  18. An assessment of the capability to calculate tilting prop-rotor aircraft performance, loads and stability

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1984-01-01

    Calculated performance, loads, and stability of the XV-15 tilt rotor research aircraft are compared with wind tunnel and flight measurements, to define the level of the current analytical capability for tilting prop rotor aircraft, and to define the requirements for additional experimental data and further analysis development. The correlation between calculated and measured behavior is generally good, although there are some significant discrepancies. Based on this correlation, the analysis is assessed overall as being adequate for the design, evaluation, and testing of tilting prop rotor aircraft. A general assessment of the state of the art of tilt rotor predictive capability is given. Specific areas are identified where improvements in the capability to calculate performance, loads, and stability are desirable. Requirements for more accurate and detailed data which support the development of improved analytical models are identified as well.

  19. Rotor-to-stator Partial Rubbing and Its Effects on Rotor Dynamic Response

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Franklin, Wesley D.; Hayashida, Robert D.

    1991-01-01

    Results from experimental and analytical studies on rotor to stationary element partial rubbings at several locations and their effects on rotor dynamic responses are presented. The mathematical model of a rubbing rotor is given. The computer program provides numerical results which agree with experimentally obtained rotor responses.

  20. Open Rotor: New Option for Jet Engines

    NASA Video Gallery

    NASA's Dale Van Zante describes how the open rotor propulsion system will be tested in a wind tunnel at NASA's Glenn Research Center. Open rotor aircraft engines use high-speed propellers and are c...

  1. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  2. Eddy current inspection of axial cooling holes in generator rotor teeth

    SciTech Connect

    Gomien, D.A.; Leath, J.P.

    1996-12-31

    During the rewind of a 43 inch generator rotor, cracks were detected in the axial cooling holes used to vent hydrogen from below the retaining rings. The holes are located in each tooth directly below the shrink fit area of the rings. TVA has a fleet of twelve units and one spare with this rotor design. To understand the root cause of the cracking, finite element stress analysis and fracture mechanics critical flaw size/crack growth models were built. To confirm the structural models and support decisions on run/repair/replace for these rotors. TVA needed to establish the presence of cracks, the crack lengths, and their propagation with time. Crack detection and sizing using non-destructive testing is necessary to ensure safe operation and prevent unnecessary or premature rotor replacement. A semi-automated eddy current technique was developed to meet this requirement. This paper describes the process used to select the NDE technique, develop the equipment to perform the examinations, and the calibration and examination procedure. The detection capabilities and the method of crack sizing are presented. The paper concludes with a summary of findings from the examination of fifteen rotors and the plans for future monitoring of crack growth.

  3. Bistable mechanisms for morphing rotors

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence; Gandhi, Farhan; Frecker, Mary

    2008-03-01

    In this paper we explore the use of bistable mechanisms for rotor morphing, specifically, blade tip twist. The optimal blade twist distributions for hover and high-speed forward flight are very different, and the ability of the rotor to change effective twist is expected to be advantageous. Bistable or "snap-through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). In this work, the performance of a bistable twisting device is evaluated under an aerodynamic lift load. The device is analyzed using finite element analysis to predict the device's load carrying capability and bistable behavior.

  4. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  5. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  6. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  7. Ghostly Ring

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for poster version

    This image shows a ghostly ring extending seven light-years across around the corpse of a massive star. The collapsed star, called a magnetar, is located at the exact center of this image. NASA's Spitzer Space Telescope imaged the mysterious ring around magnetar SGR 1900+14 in infrared light. The magnetar itself is not visible in this image, as it has not been detected at infrared wavelengths (it has been seen in X-ray light).

    Magnetars are formed when a massive giant star ends its life in a supernova explosion, leaving behind a super dense neutron star with an incredibly strong magnetic field. The ring seen by Spitzer could not have formed during the original explosion, as any material as close to the star as the ring would have been disrupted by the supernova shock wave. Scientists suspect that the ring my actually be the edges of a bubble that was hollowed out by an explosive burst from the magnetar in 1998. The very bright region near the center of the image is a cluster of young stars, which may be illuminating the inner edge of the bubble, making it look like a ring in projection.

    This composite image was taken using all three of Spitzer's science instruments. The blue color represents 8-micron infrared light taken by the infrared array camera, green is 16-micron light from the infrared spectograph, and red is 24-micron radiation from the multiband imaging photometer.

  8. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    PubMed

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  9. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  10. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  11. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  12. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  13. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  14. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  15. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  16. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  17. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  18. Common Evolutionary Origin for the Rotor Domain of Rotary Atpases and Flagellar Protein Export Apparatus

    PubMed Central

    Kishikawa, Jun-ichi; Ibuki, Tatsuya; Nakamura, Shuichi; Nakanishi, Astuko; Minamino, Tohru; Miyata, Tomoko; Namba, Keiichi; Konno, Hiroki; Ueno, Hiroshi; Imada, Katsumi; Yokoyama, Ken

    2013-01-01

    The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin. PMID:23724081

  19. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases.

    PubMed

    Duncan, Anna L; Robinson, Alan J; Walker, John E

    2016-08-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  20. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases

    PubMed Central

    Duncan, Anna L.

    2016-01-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  1. Bucket rotor wind-driven generator

    NASA Technical Reports Server (NTRS)

    Chang, H. H.; Mccracken, H.

    1973-01-01

    As compared with the ordinary propeller type rotor, the bucket rotor is limited in rotational speed since the tip rotor speed can never exceed the wind speed. However, it does not present the blade fatigue problem that the ordinary rotor has, and it perhaps causes less sight pollution. The deflector vanes also provide a venturi passage to capture greater wind flow. The bucket rotors can be strung together end-to-end up to thousands of feet long to produce large amounts of power.

  2. Previous Open Rotor Research in the US

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2011-01-01

    Previous Open Rotor noise experience in the United States, current Open Rotor noise research in the United States and current NASA prediction methods activities were presented at a European Union (EU) X-Noise seminar. The invited attendees from EU industries, research establishments and universities discussed prospects for reducing Open Rotor noise and reviewed all technology programs, past and present, dedicated to Open Rotor engine concepts. This workshop was particularly timely because the Committee on Aviation Environmental Protection (CAEP) plans to involve Independent Experts in late 2011 in assessing the noise of future low-carbon technologies including the open rotor.

  3. Rotor instrumentation study for high-temperature superconducting generators

    SciTech Connect

    Schwenterly, S.W.; Wilson, C.T.

    1996-06-01

    In FY 9195, ORNL carried out work on rotor instrumentation systems in support of the General Electric (GE) Superconductivity Partnership Initiative (SPI) on Superconducting Generator Development. The objective was to develop a system for tramsitting data from sensors in the spinning rotor to a stationary data acquisition system. Previous work at ORNL had investigated an optical method of cryogenic temperature measurement using laser-induced fluorescence in certain phosphors. Later follow-up discussions with experts in the ORNL Engineering Technology Division indicated that this method could also be extended to measure strain and magnetic field. Another optical alternative using standard fiber optic transmission modules was also investigated. The equipment is very inexpensive, but needs to be adapted for operation in a high-g-force rotating environment. An optical analog of a commutator or slip ring also needs to be developed to couple the light signals from the rotor to the stationary frame. Sealed mercury-film rotary contacts are manufactured by Meridian Laboratory. Unlike conventional slipring assemblies, these offer low noise and long lifetime, with low costs per channel. Standard units may need some upgrading for 3600-rpm or high-voltage operation. A commercial electronic telemetry system offered by Wireless Data Corporation (WDC) was identified as a viable candidate, and information on this system was presented to GE. GE has since ordered two of these systems from WDC for temperature measurements in their rotating test cryostat.

  4. Positioning Rotors In Turbine Flowmeters

    NASA Technical Reports Server (NTRS)

    Lynch, Edward D.; Chan, Daniel C.; Sindir, Munir M.

    1988-01-01

    Lengths of wakes roughly proportional to thickness of vanes. Mathematical model simplifies analysis of effects of flow-straightening vanes in turbine flowmeter. Yields numerical solution of differential equations of flow for quick examination of efforts of thicknesses of vanes and rate of flow on extent of wake behind vanes. From examination, minimum distance at which flowmeter rotor placed behind vanes determined.

  5. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  6. Assembly for facilitating inservice inspection of a reactor coolant pump rotor

    DOEpatents

    Veronesi, Luciano

    1990-01-01

    A reactor coolant pump has an outer casing with an internal cavity holding a coolant and a rotor rotatably mounted in the cavity within the coolant. An assembly for permitting inservice inspection of the pump rotor without first draining the coolant from the casing cavity is attached to an end of the pump. A cylindrical bore is defined through the casing in axial alignment with an end of pump rotor and opening into the internal cavity. An extension attached on the rotor end and rotatable therewith has a cylindrical coupler member extending into the bore. An outer end of the coupler member has an element configured to receive a tool for performance of inservice rotor inspection. A hollow cylindrical member is disposed in the bore and surrounds the coupler member. The cylindrical member is slidably movable relative to the coupler member along the bore between a retracted position wherein the cylindrical member is stored for normal pump operation and an extended position wherein the cylindrical member is extended for permitting inservice rotor inspection. A cover member is detachably and sealably attached to the casing across the bore for closing the bore and retaining the cylindrical member at its retracted position for normal pump operation. Upon detachment of the cover member, the cylindrical member can be extended to permit inservice rotor inspection.

  7. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  8. Advances in tilt rotor noise prediction

    NASA Astrophysics Data System (ADS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  9. Fuselage upwash effects on RSRA rotor systems

    NASA Technical Reports Server (NTRS)

    Cowan, J.; Dadone, L.

    1985-01-01

    The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis. Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were: (1) fuselage alone (conventional helicopter); (2) fuselage with auxiliary propulsion; (3) fuselage with wings (auxiliary lift); and (4) fuselage with both auxiliary lift propulsion. The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects. The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented.

  10. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  11. A comparison of theory and experiment for coupled rotor body stability of a bearingless rotor model in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.

    1988-01-01

    Seven cases were selected for correlation from a 1/5.86 Froude-scale experiment that examined several rotor designs which were being considered for full-scale flight testing as part of the Bearingless Main Rotor (BMR) program. The model rotor hub used in these tests consisted of back-to-back C-beams as flexbeam elements with a torque tube for pitch control. The first four cases selected from the experiment were hover tests which examined the effects on rotor stability of variations in hub-to-flexbeam coning, hub-to-flexbeam pitch, flexbeam-to-blade coning, and flexbeam-to-blade pitch. The final three cases were selected from the forward flight tests of optimum rotor configuration as defined during the hover test. The selected cases examined the effects of variations in forward speed, rotor speed, and shaft angle. Analytical results from Bell Helicopter Textron, Boeing Vertol, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor-to-fair to fair-to-good.

  12. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  13. Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA). [integrating the YAH-64 main rotor

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.; Logan, A. H.

    1981-01-01

    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included.

  14. Rotor wake mixing effects downstream of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1981-01-01

    An experimental study of rotor wake was conducted in the trailing-edge and near-wake regions of a moderately loaded compressor rotor blade using a rotating triaxial hot-wire probe in a rotating frame of reference. The flow-field was surveyed very close to the trailing-edge as well as inside the annulus- and hub-wall boundary layers. The large amount of data acquired during this program has been analyzed to discern the decay effects as well as the spanwise variation of three components of velocity, three components of intensities and three components of shear stresses. The data set also include extensive information on the variation of the flow properties downstream. The other derived quantities include wake momentum thickness and deviation angles at various spanwise and downstream locations. These data are presented and interpreted, with emphasis on the downstream mixing as well as endwall-wake interaction effects.

  15. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  16. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  17. Stall induced instability of a teetered rotor

    NASA Astrophysics Data System (ADS)

    Glasgow, J. C.; Corrigan, R. D.

    Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.

  18. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  19. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  20. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  1. Rubbing Between Rotors And Stators

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1990-01-01

    Report describes experimental and numerical-simulation studies of dynamical effects of rubbing between rotors and stators in turbomachinery. Purpose of study to gain improved understanding of such rubbing phenomena, with view toward: contributing to techniques for diagnosis of rubbing (e.g., via analysis of vibrations); predicting more accurately limiting operating conditions; and improving design criteria to prevent rubbing damage in high-performance rotating machinery.

  2. Rotor blades for turbine engines

    DOEpatents

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  3. Transient Wave Rotor Performance Investigated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.

  4. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  5. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  6. Adaptor assembly for coupling turbine blades to rotor disks

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  7. Parametric tip effects for conformable rotor applications

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1983-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on aeroelasticity conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and three tip designs were tested on the torsionally soft blades. The designs incorporated a systematic variation in three geometric parameters: sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. Based on the test results, tip parameter variations generated significant rotor performance and loads difference for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not correlate.

  8. Design of plywood and paper flywheel rotors

    NASA Astrophysics Data System (ADS)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  9. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  10. Flywheel Rotor Safe-Life Technology

    NASA Technical Reports Server (NTRS)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  11. Strong, Ductile Rotor For Cryogenic Flowmeters

    NASA Technical Reports Server (NTRS)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  12. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  13. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  14. Design of helicopter rotors to noise constraints

    NASA Technical Reports Server (NTRS)

    Schaeffer, E. G.; Sternfeld, H., Jr.

    1978-01-01

    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.

  15. Method for manufacturing a rotor having superconducting coils

    DOEpatents

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  16. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.

    PubMed

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may

  17. Model updating of rotor systems by using Nonlinear least square optimization

    NASA Astrophysics Data System (ADS)

    Jha, A. K.; Dewangan, P.; Sarangi, M.

    2016-07-01

    Mathematical models of structure or machineries are always different from the existing physical system, because the approach of numerical predictions to the behavior of a physical system is limited by the assumptions used in the development of the mathematical model. Model updating is, therefore necessary so that updated model should replicate the physical system. This work focuses on the model updating of rotor systems at various speeds as well as at different modes of vibration. Support bearing characteristics severely influence the dynamics of rotor systems like turbines, compressors, pumps, electrical machines, machine tool spindles etc. Therefore bearing parameters (stiffness and damping) are considered to be updating parameters. A finite element model of rotor systems is developed using Timoshenko beam element. Unbalance response in time domain and frequency response function have been calculated by numerical techniques, and compared with the experimental data to update the FE-model of rotor systems. An algorithm, based on unbalance response in time domain is proposed for updating the rotor systems at different running speeds of rotor. An attempt has been made to define Unbalance response assurance criterion (URAC) to check the degree of correlation between updated FE model and physical model.

  18. Recent developments in the dynamics of advanced rotor systems

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  19. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  20. Growth Rings.

    ERIC Educational Resources Information Center

    Garmston, Robert J.

    1999-01-01

    In adaptive schools, working groups grow, develop, and learn from experience, becoming more effective as they go. Three premises about group development include the following: each group is unique, some groups mature, and attrition need not block development. Four guidelines for successful group meetings include decide who decides, define the…

  1. Quasi-static rotor morphing concepts for rotorcraft performance improvements

    NASA Astrophysics Data System (ADS)

    Mistry, Mihir

    The current research is focused on two separate quasi-static rotor morphing concepts: Variable span and variable camber. Both concepts were analyzed from the perspective of the performance improvements they allow for, as well as their design requirements. The goal of this body of work is to develop a comprehensive understanding of the benefits and implementation challenges of both systems. For the case of the variable span rotor concept, the effects on aircraft performance were evaluated for a UH-60A type aircraft. The parametric analysis included the performance effects of the rotor span and rotor speed variation, both individually as well as in combination. The design space considered the effect of three different gross weights (16000 lbs, 18300 lbs and 24000 lbs), for a window of +/-11% variation of the rotor speed and a range between +17% to --16% of radius variation (about the baseline) for a range of altitudes. The results of the analysis showed that variable span rotors by themselves are capable of reducing the power requirement of the helicopter by up to 20% for high altitude and gross weight conditions. However, when combined with rotor speed variation, it was possible to reduce the overall power required by the aircraft by up to 30%. Complimentary to the performance analysis, an analytical study of actuation concepts for a variable span rotor was also conducted. This study considered the design of two active actuation systems: Hydraulic pistons and threaded rods (jackscrews), and two passive systems which employed the use of an internal spring type restraining device. For all the configurations considered, it was determined that the design requirements could not be satisfied when considering the constraints defined. The performance improvements due to a variable camber system were evaluated for a BO-105 type rotor in hover. The design space considered included three different thrust levels (4800 lbs, 5500 lbs and 6400 lbs) for a range of altitudes and

  2. Shadowgraphs Of Helicopter-Rotor-Tip Vortexes

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai P.; Cho, Young I.; Back, Lloyd H.

    1988-01-01

    Optical apparatus produces full-scale or larger shadowgraph of tip vortexes of helicopter rotor. Stroboscope projects shadow image of helicopter rotor on large, square screen. Commercial, highly reflecting projection screen used; simply projecting image on white wall does not yield enough light for photographing vortexes with standard 35-mm camera. Apparatus adapts to use in large wind tunnels.

  3. An unsteady helicopter rotor: Fuselage interaction analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Egolf, T. Alan

    1988-01-01

    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.

  4. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  5. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  6. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  7. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  8. Pneumatic boot for helicopter rotor deicing

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  9. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  10. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  11. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  12. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  13. Vibratory hub load data reduction and analysis from the reverse velocity rotor wind tunnel test, phase 2B

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1976-01-01

    The vibratory hub loads data analysis from the reverse velocity rotor wind tunnel test is reported. Vibratory loads were obtained from the rotating hub balance and also by synthesis of generalized coordinates from the blade flap bending moments. Load trends were defined as a function of speed, rotor thrust and 2 per rev cyclic from each of the data methods. These trends were compared to determine the degree of agreement between each method and provide substantiation for the generalized coordinate approach.

  14. Preliminary Study of a Model Rotor in Descent

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Tung, C.; Sharpe, D. L.; Huang, S.; Hendley, E. M.

    2000-01-01

    Within a program designed to develop experimental techniques for measuring the trajectory and structure of vortices trailing from the tips of rotor blades, the present preliminary study focuses on a method for quantifying the trajectory of the trailing vortex during descent flight conditions. This study also presents rotor loads and blade surface pressures for a range of tip-path plane angles and Mach numbers. Blade pressures near the leading edge and along the outer radius are compared with data obtained on the same model rotor, but in open jet facilities. A triangulation procedure based on two directable laser-light sheets, each containing an embedded reference, proved effective in defining the spatial coordinates of the trailing vortex. When interrogating a cross section of the flow that contains several trailing vortices, the greatest clarity was found to result when the flow is uniformly seeded. Surface pressure responses during blade-vortex interactions appeared equally sensitive near the leading edge and along the outer portion of the blade, but diminished rapidly as the distance along the blade chord increased. The pressure response was virtually independent of whether the tip-path plane angle was obtained through shaft tilt or cyclic pitch. Although the shape and frequency of the pressure perturbations on the advancing blade during blade-vortex interaction are similar to those obtained in open-jet facilities, the angle of the tip-path plane may need to be lower than the range covered in this study.

  15. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  16. Open Rotor - Analysis of Diagnostic Data

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  17. Substantially parallel flux uncluttered rotor machines

    DOEpatents

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  18. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  19. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  20. Design and analytical study of a rotor airfoil

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.

    1978-01-01

    An airfoil section for use on helicopter rotor blades was defined and analyzed by means of potential flow/boundary layer interaction and viscous transonic flow methods to meet as closely as possible a set of advanced airfoil design objectives. The design efforts showed that the first priority objectives, including selected low speed pitching moment, maximum lift and drag divergence requirements can be met, though marginally. The maximum lift requirement at M = 0.5 and most of the profile drag objectives cannot be met without some compromise of at least one of the higher order priorities.

  1. Cooling system for three hook ring segment

    SciTech Connect

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  2. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following...

  3. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following...

  4. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following...

  5. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  6. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  7. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  8. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  9. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  10. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  11. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  12. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  13. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  14. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  15. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  17. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  18. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  19. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  20. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  1. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  2. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  3. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  4. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  5. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  6. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  7. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  8. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  9. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  10. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  11. Vacuum coupling of rotating superconducting rotor

    DOEpatents

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  12. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  13. Smart helicopter rotor with active blade tips

    NASA Astrophysics Data System (ADS)

    Bernhard, Andreas Paul Friedrich

    2000-10-01

    The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based

  14. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  15. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  16. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  17. Full Scale Rotor Aeroacoustic Predictions and the Link to Model Scale Rotor Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2004-01-01

    The NASA Aeroacoustic Prediction System (NAPS) is used to establish a link between model-scale and full-scale rotor predictions and is partially validated against measured wind tunnel and flight aeroacoustic data. The prediction approach of NAPS couples a comprehensive rotorcraft analysis with acoustic source noise and propagation codes. The comprehensive analysis selected for this study is CAMRAD-II, which provides the performance/trim/wake solution for a given rotor or flight condition. The post-trim capabilities of CAMRAD-II are used to compute high-resolution sectional airloads for the acoustic tone noise analysis, WOPMOD. The tone noise is propagated to observers on the ground with the propagation code, RNM (Rotor Noise Model). Aeroacoustic predictions are made with NAPS for an isolated rotor and compared to results of the second Harmonic Aeroacoustic Rotor Test (HART-II) program, which tested a 40% dynamically and Mach-scaled BO-105 main rotor at the DNW. The NAPS is validated with comparisons for three rotor conditions: a baseline condition and two Higher Harmonic Control (HHC) conditions. To establish a link between model and full-scale rotor predictions, a full-scale BO-105 main rotor input deck for NAPS is created from the 40% scale rotor input deck. The full-scale isolated rotor predictions are then compared to the model predictions. The comparisons include aerodynamic loading, acoustic levels, and acoustic pressure time histories for each of the three conditions. With this link established, full-scale predictions are made for a range of descent flight conditions and compared with measured trends from the recent Rotorcraft Operational Noise Abatement Procedures (RONAP) flight test conducted by DLR and ONERA. Additionally, the effectiveness of two HHC conditions from the HART-II program is demonstrated for the full-scale rotor in flight.

  18. Application of dynamic inflow theory to wind turbine rotors

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro

    2000-10-01

    Dynamic inflow models originally developed for rotorcraft applications were modified for calculation of the aerodynamic loads on wind turbine rotors. The dynamic inflow models used in this study include the simple Pitt and Peters model, the generalized dynamic wake (GDW) model and a newly developed annular section version of Pitt and Peters (P&P) model. The annular section model divides the rotor plane into ring-shaped sections and applies the Pitt and Peters model to each section separately. The dynamic inflow models were compared with the blade element and momentum (BEM) model and field measurement data from the Tjaereborg Turbine in Denmark that were published by The Netherlands Energy Research Foundation. It was shown that the computer models predicted similar results in the calculation of rotor power. The wake skew angle of the GDW model was modified to add directional sensitivity to the model in both the vertical and horizontal directions. This enabled the model to perform correctly with any wake skew angle. The time constant for the changes of induced velocity was reviewed for wind turbine rotor application. The time constant was estimated from the measurement data on the Tjaereborg Turbine. However, the field measurement data could not conclusively support the prediction on the time constant, because only an insufficient number of reliable field measurement data were available. The dynamic inflow models predicted the blade loads far better than the BEM model during yawed operations. Even when the wind condition was steady, the yaw error induced dynamic effects on the blade load and significant dynamic inflow effects. Both the annular section model and the original P&P model predicted the variation of the blade load well. However, only the GDW model predicted the 3P components of the variation in the blade flap bending moment. The dynamic stall effect was found to have limited influence in the tested cases, because of the large size of the test turbine and

  19. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  20. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  1. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  2. The rings of Saturn

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1978-01-01

    Consideration is given to the development of theories concerning the rings of Saturn. Particular attention is given to ring structure, noting its thinness, the separations between rings, and observed variations in brightness. Data gathered via infrared, radio and radar techniques are described in terms of ring particle composition and size. Hypotheses about ring origin and evolution are outlined, including the tidal disruption model, calculations of Saturn's gravitational contraction history, grazing, and meteoroid bombardment. Prospects for future observations of Saturn's rings are reviewed, such as the variation in their radar reflectivity as a function of the tilt of the ring plane.

  3. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  4. Non-Synchronous Whirling Due to Fluid-Dynamic Forces in Axial Turbo-Machinery Rotors

    NASA Technical Reports Server (NTRS)

    Shen, S. F.; Mengle, V. G.

    1980-01-01

    The role of fluid forces acting on the blades of an axial turborotor with regards to whirling was analyzed. The dynamic equations were formulated for the coning mode of an overhung rotor. The exciting forces due to the motion were defined through a set of rotor stability derivatives, and analytical expressions of the aerodynamic contributions were found for the case of small mean stream deflection, high solidity and equivalent flat plate cascade. For a typical case, only backward whirl was indicated when the phase shifting of the rotor wake effect was ignored. A parametric study of the dynamic stability boundary reveals that a reduction in blade stagger angle, mass flow rate, fluid density and an increase in stiffness and external damping are all inductive for improved stability.

  5. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    NASA Technical Reports Server (NTRS)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  6. Performance and rotor loads measurements of the Lynx XZ170 helicopter with rectangular blades

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Louie, Alexander W.; Griffiths, Nicholas; Sotiriou, Costantinos P.

    1993-01-01

    This report presents the results of a series of flight tests on the Lynx XZ170 helicopter with rectangular blades. The test objectives were to explore the flight envelope and to measure the performance and structural loads of the Lynx main-rotor system. The tests were conducted as part of the British Experimental Rotor Program (BERP) under a contract with the Ministry of Defense in England. Data were acquired for steady-level flights at five weight coefficients. Some flight conditions were tested at beyond the retreating-blade stall boundary, which was defined by a predetermined limit on the pitchlink vibratory load. In addition to documenting the flight conditions and data, this report describes the aircraft, particularly the rotor system, in detail.

  7. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    NASA Astrophysics Data System (ADS)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  8. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  9. Transonic aeroelasticity analysis for rotor blades

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Chang, I-Chung; Gea, Lie-Mine

    1989-01-01

    A numerical method is presented for calculating the unsteady transonic rotor flow with aeroelasticity effects. The blade structural dynamic equations based on beam theory were formulated by FEM and were solved in the time domain, instead of the frequency domain. For different combinations of precone, droop, and pitch, the correlations are very good in the first three flapping modes and the first twisting mode. However, the predicted frequencies are too high for the first lagging mode at high rotational speeds. This new structure code has been coupled into a transonic rotor flow code, TFAR2, to demonstrate the capability of treating elastic blades in transonic rotor flow calculations. The flow fields for a model-scale rotor in both hover and forward flight are calculated. Results show that the blade elasticity significantly affects the flow characteristics in forward flight.

  10. Prop Rotor Acoustics for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    The report describes a methodology for the simple prediction of noise generated by a tilt-rotor aircraft in hover and forward flight. In order to avoid the computational penalties associated with exact noise calculations, simplifications to the loading noise calculation and the blade-vortex interaction noise calculation have been introduced. The loading noise computation utilizes a constant chordwise loading assumption, while the BVI noise level is estimated through use of a dimensionless parameter, here termed 'BVI number.' The acoustic computation code, designed as a module for use with VASCOMP, has two modes of operation, one as a quick estimator of acoustic amplitude produced by a tilt rotor with a typical rotor design and the other as a tool for rotor parametric design studies.

  11. Helicopter tail rotor orthogonal blade vortex interaction

    NASA Astrophysics Data System (ADS)

    Coton, F. N.; Marshall, J. S.; Galbraith, R. A. McD.; Green, R. B.

    2004-10-01

    The aerodynamic operating environment of the helicopter is particularly complex and, to some extent, dominated by the vortices trailed from the main and tail rotors. These vortices not only determine the form of the induced flow field but also interact with each other and with elements of the physical structure of the flight vehicle. Such interactions can have implications in terms of structural vibration, noise generation and flight performance. In this paper, the interaction of main rotor vortices with the helicopter tail rotor is considered and, in particular, the limiting case of the orthogonal interaction. The significance of the topic is introduced by highlighting the operational issues for helicopters arising from tail rotor interactions. The basic phenomenon is then described before experimental studies of the interaction are presented. Progress in numerical modelling is then considered and, finally, the prospects for future research in the area are discussed.

  12. Potential acoustic benefits of circulation control rotors

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Cheeseman, I. C.

    1978-01-01

    The fundamental aeroacoustic mechanisms responsible for noise generation on a rotating blade are theoretically examined. Their contribution to the overall rotor sound pressure level is predicted. Results from a theory for airfoil trailing edge noise are presented. Modifications and extensions to other source theories are described where it is necessary to account for unique aspects of circulation control (CC) aerodynamics. The circulation control rotor (CCR), as embodied on an X-wing vertical takeoff and landing (VTOL) aircraft, is used as an example for computational purposes, although many of the theoretical results presented are generally applicable to other CC applications (such as low speed rotors, propellers, compressors, and fixed wing aircraft). Using the analytical models, it is shown that the utilization CC aerodynamics theoretically makes possible unprecedented advances in rotor noise reduction. For the X-wing VTOL these reductions appear to be feasible without incurring significant attendant performance and weight penalties.

  13. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  14. Wind turbine rotor hub and teeter joint

    DOEpatents

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  15. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  16. A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1990-01-01

    A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.

  17. The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium

    PubMed Central

    Thomas, Dennis R.; Francis, Noreen R.; Xu, Chen; DeRosier, David J.

    2006-01-01

    Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM. PMID:17015643

  18. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  19. Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.

  20. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  1. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  2. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  3. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  4. Induced Power of the Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.

    2004-01-01

    A simplified rotor model was used to explore fundamental behavior of lifting rotor induced power at moderate and high advance ratios. Several rotor inflow theories, including dynamic inflow theory and prescribed-wake vortex theory, together with idealized notional airfoil stall models were employed. A number of unusual results were encountered at high advance ratios including trim control reversal and multiple trim solutions. Significant increases in rotor induced power (torque) above the ideal minimum were observed for moderately high advance ratio. Very high induced power was observed near and above unity advance ratio. The results were sensitive to the stall characteristics of the airfoil models used. An equivalent wing analysis was developed to determine induced power from Prandtl lifting line theory and help interpret the rotor induced power behavior in terms of the spanwise airload distribution. The equivalent wing approach was successful in capturing the principal variations of induced power for different configurations and operating conditions. The effects blade root cutout were found to have a significant effect on rotor trim and induced power at high advance ratios.

  5. Rotors and the Dynamics of Cardiac Fibrillation

    PubMed Central

    Pandit, Sandeep V.; Jalife, José

    2013-01-01

    The objective of this article is to present a broad review on the role of cardiac electrical rotors and their accompanying spiral waves in the mechanism of cardiac fibrillation. At the outset, we present a brief historical overview regarding reentry, and then discuss the basic concepts and terminologies pertaining to rotors and their initiation. Thereafter, the intrinsic properties of rotors and spiral waves, including phase singularities, wavefront curvature and dominant frequency maps are discussed. The implications of rotor dynamics for the spatio-temporal organization of fibrillation, independent of the species being studied are touched upon next. The knowledge gained regarding the role of cardiac structure in the initiation and/or maintenance of rotors and the ionic bases of spiral waves in the last two decades, and its significance for drug therapy is reviewed subsequently. We conclude by looking at recent evidence suggesting that rotors are critical in sustaining both atrial and ventricular fibrillation (AF, VF) in the human heart, and its implications for treatment with radio-frequency ablation. PMID:23449547

  6. Simulation of Rings about Ellipsoidal Bodies

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan

    2016-10-01

    Recent discovery of rings around Chariklo, a centaur orbiting the Sun (F. Braga-Ribas et al., 2014) and speculations of rings around minor planet, Chiron (Ortiz et al., 2015), Saturn's satellites, Rhea (Jones et al., 2008; Schenk et al., 2011), Iapetus (Ip, 2006) or exoplanets, suggest that rings about non-spherical bodies is perhaps a more general phenomenon than anticipated. As a first step towards understanding such systems, we examine the dynamical behavior of rings around similar bodies using N-body simulations. Our code employs the `local simulation method' (Wisdom & Tremaine, 1988; Salo, 1995) and accounts for particle interactions via collisions using Discrete Element Method (Cundall & Strack, 1978; Bhateja et al., 2016) and mutual gravitation. The central body has been modeled as an axisymmetric ellipsoid characterized by its axis ratio, or defined via characteristic frequencies (circular, vertical and epicyclic frequency) representing the gravitational field of an axisymmetric body. We vary the central body's characterizing parameter and observe the change in various ring properties like the granular temperature, impact frequency, radial width and vertical thickness. We also look into the effect on ring properties upon variation in the size of the central body-ring system. Further, we investigate the role of characteristic frequencies in dictating the ring dynamics, and how this could help in qualitatively estimating the ring dynamics about any arbitrary central body with symmetry about the equatorial plane and the axis normal to it.

  7. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  8. Optimizing Thomson's jumping ring

    NASA Astrophysics Data System (ADS)

    Tjossem, Paul J. H.; Brost, Elizabeth C.

    2011-04-01

    The height to which rings will jump in a Thomson jumping ring apparatus is the central question posed by this popular lecture demonstration. We develop a simple time-averaged inductive-phase-lag model for the dependence of the jump height on the ring material, its mass, and temperature and apply it to measurements of the jump height for a set of rings made by slicing copper and aluminum alloy pipe into varying lengths. The data confirm a peak jump height that grows, narrows, and shifts to smaller optimal mass when the rings are cooled to 77 K. The model explains the ratio of the cooled/warm jump heights for a given ring, the reduction in optimal mass as the ring is cooled, and the shape of the mass resonance. The ring that jumps the highest is found to have a characteristic resistance equal to the inductive reactance of the set of rings.

  9. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  10. Vibration isolating properties of uncentralized squeeze-film damper bearings supporting a flexible rotor

    SciTech Connect

    Cookson, R.A.; Kossa, S.S.

    1981-10-01

    An analytic approach to the study of uncentralized squeeze-film damper bearings in terms of nondimensional system parameters is presented. A theoretical analysis and experimental results demonstrate the ability of the bearing to reduce vibration amplitude and transmitted force produced by simple unbalance in the rotor or nearness to a critical speed. Four simultaneous nonlinear differential equations are developed to reach a steady state solution from a nondimensional form of the equations of motion. Predictions are made and compared with results from tests with a flexible rotor using various journals and outer squeeze-film rings during rotational speeds up to 17,000 rpm. Results are diagrammed and photographs of the orbits are presented. The close match between the predicted orbits of the disk and journal centers with the experimental data indicates that the theoretical method employed yields an accurate description of the true situation.

  11. Aeroelastic optimization of a composite tilt rotor

    NASA Astrophysics Data System (ADS)

    Soykasap, Omer

    Composite tilt rotor aeroelastic optimization is performed by using a published formulation of mixed variational exact intrinsic equations of motion for dynamics of beams along with a finite-state dynamic inflow theory for rotors. A composite box beam model is used to represent the principal load carrying member of the rotor blade. The blade is discretized using finite elements. Each wall used to model the box beam is made of laminated composite plies. For the optimization, design variables are blade twist, box width and height, horizontal and vertical wall thicknesses, the ply angles of the laminated walls and nonstructural masses. The rotor is optimized for the figure of merit in hover and the axial efficiency in forward flight while keeping the same thrust levels in both flight modes. Blade weight, autorotational inertia, geometry, and aeroelastic stability are considered as constraints. The feasible direction technique is used for optimization. The results are validated by earlier test results. A trim calculation procedure is added to the analysis to keep the desired values of the thrust. Sensitivities of the rotor performance to design variables are studied. The effect of structural couplings on rotor performance is studied. Of all the couplings extension-torsion is found to be the most effective parameter to improve the performance. The ply angles of the laminates are assumed to be the same over the span and through the thickness of walls. Such a model can be built by the filament winding technique and offers manufacturing ease. Isolated rotor stability is investigated for both flight regimes. Some values of elastic coupling result in isolated rotor instability. However, the optimized configuration was free of instability. Optimization results are presented for effects such as extension-torsion coupling, choice of layups, twist distribution, and cross-sectional geometry of the blade. Optimum designs are compared with XV-15 tilt rotor performance, which is

  12. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  13. The rings of Uranus - Nature and origin

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Gold, T.; Sinclair, A. T.

    1979-01-01

    Effects of a resonance between a set of ring particles and individual satellites are considered. It is suggested that the resonances are 1:1 for the rings of Uranus and that each ring must contain an as-yet unseen satellite. A model is proposed in which the rings of Uranus were caused by small satellites that entered the Roche zone due to tidal drag. According to this model, the satellites gradually lost material from their surfaces in this zone, the particles left a satellite with relatively low speeds and must have entered orbits similar to that of the satellite, and the gravitational force of the satellite compelled these particles to remain in a narrow sharply defined ring.

  14. Important Scaling Parameters for Testing Model-Scale Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Singleton, Jeffrey D.; Yeager, William T., Jr.

    1998-01-01

    An investigation into the effects of aerodynamic and aeroelastic scaling parameters on model scale helicopter rotors has been conducted in the NASA Langley Transonic Dynamics Tunnel. The effect of varying Reynolds number, blade Lock number, and structural elasticity on rotor performance has been studied and the performance results are discussed herein for two different rotor blade sets at two rotor advance ratios. One set of rotor blades were rigid and the other set of blades were dynamically scaled to be representative of a main rotor design for a utility class helicopter. The investigation was con-densities permits the acquisition of data for several Reynolds and Lock number combinations.

  15. Lifting surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Tai, H.; Runyan, H. L.

    1984-01-01

    A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  16. Lifting surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Tai, H.; Runyan, H. L.

    1985-01-01

    A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  17. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  18. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  19. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  20. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  1. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  2. The effect of inertia and angular momentum of a fluid annulus on lateral transversal rotor vibrations

    NASA Astrophysics Data System (ADS)

    Jansson, Ida; Åkerstedt, Hans O.; Aidanpää, Jan-Olov; Lundström, T. Staffan

    2012-01-01

    An extensive amount of work exists on experimental and theoretical analysis of unsteady flow phenomena in hydraulic turbines. Still, resonance phenomena and self-excited vibrations of the rotor of hydropower machines are not considered as a major problem during normal operation conditions. Nevertheless, in development and research it is not sufficient to rely on earlier experience. An accurate predictive rotor model is crucial in risk assessment of rotor vibrations of hydraulic generator units. This paper discusses the effects of inertia and the rotational energy of the fluid in the turbine on lateral transversal shaft vibrations of hydraulic generator units. There is a lack of agreement among engineers upon how fluid inertia of the turbine should be included in rotor models. The rotational energy of the fluid has a potential risk of feeding self-excited vibrations. A fluid-rotor model is presented that captures the effect of inertia and angular momentum of a fluid annulus on vibrations of an inner rigid cylinder. The purpose of the model is to gain physical understanding of the phenomena at work and it is not applicable to specific turbines. The linearized equation of motion of the cylinder surrounded by a fluid annulus is solved for by one single complex equation. The constrained cylinder has two degrees of freedom in the plane perpendicular to its axis. By the assumption of irrotational cyclic flow, the fluid motion is described by a complex potential function. The motion of the cylinder is described by three parameters. Two surfaces are defined that splits the parameter space into regions with different qualitative behaviour. One surface defines the limit of stability whereas the other defines a limit when the eigenvalues have opposite signs or are both positive. The response to an external periodic rotating force is visualized by the magnitude of the inverse of the complex dynamic stiffness.

  3. Vascular ring (image)

    MedlinePlus

    Vascular ring is a term used to describe a number of abnormal formations of the aorta, the large artery ... the pulmonary artery. The abnormal vessel(s) forms a ring, which encircles and may press down on the ...

  4. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-01

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings. PMID:16601188

  5. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-01

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  6. Slowing down of ring polymer diffusion caused by inter-ring threading.

    PubMed

    Lee, Eunsang; Kim, Soree; Jung, YounJoon

    2015-06-01

    Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion.

  7. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  8. Dynamics and efficiency of Brownian rotors.

    PubMed

    Bauer, Wolfgang R; Nadler, Walter

    2008-12-14

    Brownian rotors play an important role in biological systems and in future nanotechnological applications. However the mechanisms determining their dynamics, efficiency, and performance remain to be characterized. Here the F0 portion of the F-ATP synthase is considered as a paradigm of the Brownian rotor. In a generic analytical model we analyze the stochastic rotation of F0-like motors as a function of the driving free energy difference and of the free energy profile the rotor is subjected to. The latter is composed of the rotor interaction with its surroundings, of the free energy of chemical transitions, and of the workload. The dynamics and mechanical efficiency of the rotor depend on the magnitude of its stochastic motion driven by the free energy difference and its rectification on the reaction-diffusion path. We analyze which free energy profiles provide maximum flow and how their arrangement on the underlying reaction-diffusion path affects rectification and--by this--the efficiency.

  9. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  10. A rotor optimization using regression analysis

    NASA Technical Reports Server (NTRS)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  11. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  12. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  13. Ring Network with VLAN Tag

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiroshi

    The proposed Ring Network with VLAN Tag offers the features of wrapping/steering control functions and 1+1 path protection function, keeping the compatibility with Ethernet media access control scheme. The key technology for “Path concept” is VLAN tag swapping operation. A set of primary and back-up paths is defined between ring nodes, which are distinguished by a flag bit in VLAN tag field. On failure detection, the path is switched within the path set by the tag swapping. Tag swapping at the failure detection node, while tag swapping at the source node achieves staring operation, achieves Wrapping operation. The restoration behavior is almost the same as that of Resilient Packet Ring (RPR). Since the tag swapping control is based on hardware processing, high-speed operation is also expected. Furthermore, because the paths are independently designed from the physical topology, the scheme can be applied to other networks than physical ring networks. The proposed scheme will fit to the path control for next generation Ethernet over WDM system.

  14. Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surface.

    PubMed

    Horinek, Dominik; Michl, Josef

    2003-10-01

    Molecular dynamics simulations of the response of a dipolar azimuthal 3-chloroprop-1-ynyl rotor mounted on the surface of quartz glass to a rotating electric field were performed. The rotor motion was classified as synchronous, asynchronous, random, or hindered, based on the value of the average lag of the rotor behind the field and a comparison of the intrinsic rotational barrier V(b) with kT. A phase diagram of rotor behavior was deduced at 10, 300, and 500 K as a function of field strength and frequency. A simple model for the rotor motion was developed, containing the driving force, the temperature, the height of the torsional barrier, and the friction constant of the rotor. Defining E(bo) to be the electric field strength necessary to get rotational response from the rotor ("breakoff field") and mu to be the rotor dipole moment component in the plane of rotation, we find that E(bo) is frequency independent when 2 microE(bo) is less than either V(b) or kT (the driving force needs to overcome the more important of the two, the intrinsic barrier or random thermal motion). At higher frequencies, E(bo) is a quadratic function of the frequency and the driving force fights friction, which is dictated by intramolecular vibrational redistribution (IVR) from the pumped rotational mode to all others. Fitting the simple model to simulation data, we derived a friction constant of 0.26 ps eV x (nu - 0.5)/THz between 500 and 1000 GHz.

  15. Electrophysiological Rotor Ablation in In-Silico Modeling of Atrial Fibrillation: Comparisons with Dominant Frequency, Shannon Entropy, and Phase Singularity

    PubMed Central

    Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Li, Changyong; Shim, Eun Bo; Pak, Hui-Nam

    2016-01-01

    Background Although rotors have been considered among the drivers of atrial fibrillation (AF), the rotor definition is inconsistent. We evaluated the nature of rotors in 2D and 3D in- silico models of persistent AF (PeAF) by analyzing phase singularity (PS), dominant frequency (DF), Shannon entropy (ShEn), and complex fractionated atrial electrogram cycle length (CFAE-CL) and their ablation. Methods Mother rotor was spatiotemporally defined as stationary reentries with a meandering tip remaining within half the wavelength and lasting longer than 5 s. We generated 2D- and 3D-maps of the PS, DF, ShEn, and CFAE-CL during AF. The spatial correlations and ablation outcomes targeting each parameter were analyzed. Results 1. In the 2D PeAF model, we observed a mother rotor that matched relatively well with DF (>9 Hz, 71.0%, p<0.001), ShEn (upper 2.5%, 33.2%, p<0.001), and CFAE-CL (lower 2.5%, 23.7%, p<0.001). 2. The 3D-PeAF model also showed mother rotors that had spatial correlations with DF (>5.5 Hz, 39.7%, p<0.001), ShEn (upper 8.5%, 15.1%, p <0.001), and CFAE (lower 8.5%, 8.0%, p = 0.002). 3. In both the 2D and 3D models, virtual ablation targeting the upper 5% of the DF terminated AF within 20 s, but not the ablations based on long-lasting PS, high ShEn area, or lower CFAE-CL area. Conclusion Mother rotors were observed in both 2D and 3D human AF models. Rotor locations were well represented by DF, and their virtual ablation altered wave dynamics and terminated AF. PMID:26909492

  16. Application of the Collision-Imparted Velocity Method for Analyzing the Responses of Containment and Deflector Structures to Engine Rotor Fragment Impact

    NASA Technical Reports Server (NTRS)

    Collins, T. P.; Witmer, E. A.

    1973-01-01

    An approximate analysis, termed the Collision Imparted Velocity Method (CIVM), was employed for predicting the transient structural responses of containment rings or deflector rings which are subjected to impact from turbojet-engine rotor burst fragments. These 2-d structural rings may be initially circular or arbitrarily curved and may have either uniform or variable thickness; elastic, strain hardening, and strain rate material properties are accommodated. This approximate analysis utilizes kinetic energy and momentum conservation relations in order to predict the after-impact velocities of the fragment and the impacted ring segment. This information is then used in conjunction with a finite element structural response computation code to predict the transient, large deflection responses of the ring. Similarly, the equations of motion for each fragment are solved in small steps in time. Also, some comparisons of predictions with experimental data for fragment-impacted free containment rings are presented.

  17. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  18. Laser balancing demonstration on a high-speed flexible rotor

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.; Rio, R. A.; Fleming, D. P.

    1979-01-01

    This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  19. Aeroelastic model helicopter rotor testing in the Langley TDT

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.; Hamouda, M. N.; Cramer, R. G., Jr.; Langston, C. W.

    1985-01-01

    Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated.

  20. Measurements of atmospheric turbulence effects on tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne

    1994-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.

  1. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  2. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  3. Prediction of helicopter rotor noise in hover

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2015-05-01

    Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  4. Backward whirl in a simple rotor supported on hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Subbiah, R.; Rhat, R. B.; Sankar, T. S.; Rao, J. S.

    1985-01-01

    The asymmetric nature of the fluid film stiffness and damping properties in rotors supported on fluid film bearings causes a forward or a backward whirl depending on the bearing parameters and the speed of the rotor. A rotor was designed to exhibit backward synchronous whirl. The rotor-bearing system exhibited split criticals, and a backward whirl was observed between the split criticals. The orbital diagrams show the whirl pattern.

  5. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  6. Concepts for the development of light-weight composite structures for rotor burst containment

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1977-01-01

    Published results on rotor burst containment with single materials, and on body armor using composite materials were used to establish a set of hypotheses about what variables might control the design of a weight-efficient protective device. Based on modern concepts for the design and analysis of small optimum seeking experiments, a particular experiment for evaluating the hypotheses and materials was designed. The design and methods for the analysis of results are described. The consequence of such hypotheses is that the device should consist of as many as four concentric rings, each to consist of a material uniquely chosen for its position in the penetration sequence.

  7. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  8. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  9. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  10. 14 CFR 33.92 - Rotor locking tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  11. Dovetail Rotor Construction For Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  12. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  13. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  14. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  15. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  16. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  17. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  18. Encoding many qubits in a rotor

    SciTech Connect

    Raynal, Philippe; Kalev, Amir; Suzuki, Jun; Englert, Berthold-Georg

    2010-05-15

    We propose a scheme for encoding many qubits in a single rotor, that is, a continuous and periodic degree of freedom. A key feature of this scheme is its ability to manipulate and entangle the encoded qubits with a single operation on the system. We also show, using quantum error-correcting codes, how to protect the qubits against small errors in angular position and momentum which may affect the rotor. We then discuss the feasibility of this scheme and suggest several candidates for its implementation. The proposed scheme is immediately generalizable to qudits of any finite dimension.

  19. Simple theoretical models for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  20. Fan and Open-Rotor Noise

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2010-01-01

    This presentation is a technical progress report and near term outlook for work on fan (in-duct) and open-rotor (high speed propeller) noise funded by NASA's Fundamental Aeronautics Program, Subsonic Fixed Wing (SFW) Project and the Integrated Systems Research Program, Environmentally Responsible Aircraft Project. Sections of the presentation cover: the system level metrics are outlined for the SFW timeframes (2015, 2020 1 2025); the Ultra-High Bypass ratio technology development roadmap; a feasibility study for a low technology readiness level fan test rig; the development plan for a turbomachinery oriented computational aero-acoustics code; and systems analysis work on open-rotor modeling.

  1. Higher harmonic rotor blade pitch control

    NASA Technical Reports Server (NTRS)

    Ewans, J. R.

    1976-01-01

    Tests of a model 'Reverse Velocity Rotor' system at high advance ratios and with twice-per-revolution cyclic pitch control were made under joint Navy-NASA sponsorship in the NASA, Ames 12 ft. pressure tunnel. The results showed significant gains in rotor performance at all advance ratios by using twice-per-revolution control. Detailed design studies have been made of alternative methods of providing higher harmonic motion including four types of mechanical systems and an electro-hydraulic system. The relative advantages and disadvantages are evaluated on the basis of stiffness, weight, volume, reliability and maintainability.

  2. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  3. Superballistic wavepacket spreading in double kicked rotors

    NASA Astrophysics Data System (ADS)

    Fang, Ping; Wang, Jiao

    2016-08-01

    We investigate possible ways in which a quantum wavepacket spreads. We show that in a general class of double kicked rotor system, a wavepacket may undergo superballistic spreading; i.e., its variance increases as the cubic of time. The conditions for the observed superballistic spreading and two related characteristic time scales are studied. Our results suggest that the symmetry of the studied model and whether it is a Kolmogorov-Arnold-Moser system are crucial to its wavepacket spreading behavior. Our study also sheds new light on the exponential wavepacket spreading phenomenon previously observed in the double kicked rotor system.

  4. Edge states of periodically kicked quantum rotors.

    PubMed

    Floss, Johannes; Averbukh, Ilya Sh

    2015-05-01

    We present a quantum localization phenomenon that exists in periodically kicked three-dimensional rotors, but is absent in the commonly studied two-dimensional ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at J=0. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  5. The polysiloxane cyclization equilibrium constant: a theoretical focus on small and intermediate size rings.

    PubMed

    Madeleine-Perdrillat, Claire; Delor-Jestin, Florence; de Sainte Claire, Pascal

    2014-01-01

    The nonlinear dependence of polysiloxane cyclization constants (log(K(x))) with ring size (log(x)) is explained by a thermodynamic model that treats specific torsional modes of the macromolecular chains with a classical coupled hindered rotor model. Several parameters such as the dependence of the internal rotation kinetic energy matrix with geometry, the effect of potential energy hindrance, anharmonicity, and the couplings between internal rotors were investigated. This behavior arises from the competing effects of local molecular entropy that is mainly driven by the intrinsic transformation of vibrations in small cycles into hindered rotations in larger cycles and configurational entropy.

  6. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    SciTech Connect

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings

  7. Spin test of turbine rotor

    NASA Technical Reports Server (NTRS)

    Vavra, M. H.; Hammer, J. E.; Bell, L. E.

    1972-01-01

    Experimental data are presented for the tangential and radial stresses in the disks of the 36,000 horsepower, 4000 rpm turbine for the M-1 engine oxidizer turbopump. The two-stage Curtis turbine is a special light-weight design utilizing thin conical disks with hollow sheet metal blades attached by electron-beam welding techniques. The turbine was fabricated from Inconel 718, a nickel-chromium alloy. The stresses were obtained by strain-gage measurements using a slip-ring assembly to transmit the electrical signals. Measurements were made at different rotative speeds and different thermal loads. In addition to presenting test data, the report describes test equipment, design of associated hardware, test procedures, instrumentation, and tests for the selection and calibration of strain gages.

  8. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  9. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  10. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOEpatents

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  11. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    NASA Astrophysics Data System (ADS)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  12. Definition of Forces on Turbomachinery Rotors. Task B Report: Dynamic Analysis of Rotors

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    The rotordynamic characteristics of turbomachinery are known to depend on the forces developed due to relative motion between the rotor and the housing. For example, the critical speed locations generally depend on the bearing stiffnesses, seal dampling influences rotor stability and bearing reaction amplitudes near critical speeds, etc. A systematic examination of the influence of changes in the forces acting on rotors is studied. More specifically, the sensitivity of the rotordynamic characteristics to changes in rotor forces is analyzed. Rotordynamic characteristics of the HPOTP (High Pressure Oxygen Turbopump) and HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine) are investigated. Because of their markedly different rotordynamic characteristics, these units are considered to be representative of a range of possible future liquid rocket engine turbomachinery.

  13. Computational Study of Flow Interactions in Coaxial Rotors

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  14. Application of numerical optimization to rotor aerodynamic design

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A., III; Wiggins, T. J.

    1984-01-01

    Based on initial results obtained from the performance optimization code, a number of observations can be made regarding the utility of optimization codes in supporting design of rotors for improved performance. (1) The primary objective of improving the productivity and responsiveness of current design methods can be met. (2) The use of optimization allows the designer to consider a wider range of design variables in a greatly compressed time period. (3) Optimization requires the user to carefully define his problem to avoid unproductive use of computer resources. (4) Optimization will increase the burden on the analyst to validate designs and to improve the accuracy of analysis methods. (5) Direct calculation of finite difference derivatives by the optimizer was not prohibitive for this application but was expensive. Approximate analysis in some form would be considered to improve program response time. (6) Program developement is not complete and will continue to evolve to integrate new analysis methods, design problems, and alternate optimizer options.

  15. Downwind rotor horizontal axis wind turbine noise prediction

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Klatte, R. J.

    1981-01-01

    NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.

  16. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; reis, Deane G.; Mace, W. Derry

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  17. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges.

    PubMed

    Fedchak, James A; Scherschligt, Julia; Sefa, Makfir

    2016-01-01

    The spinning rotor gauge (SRG) is a high-vacuum gauge often used as a secondary or transfer standard for vacuum pressures in the range of 1.0 x 10(-4) Pa to 1.0 Pa. In this application, the SRGs are frequently transported to laboratories for calibration. Events can occur during transportation that change the rotor surface conditions, thus changing the calibration factor. To assure calibration stability, a spring-transport mechanism is often used to immobilize the rotor and keep it under vacuum during transport. It is also important to transport the spring-transport mechanism using packaging designed to minimize the risk of damage during shipping. In this manuscript, a detailed description is given on how to build a robust spring-transport mechanism and shipping container. Together these form a spring-transport package. The spring-transport package design was tested using drop-tests and the performance was found to be excellent. The present spring-transport mechanism design keeps the rotor immobilized when experiencing shocks of several hundred g (g = 9.8 m/sec(2) and is the acceleration due to gravity), while the shipping container assures that the mechanism will not experience shocks greater than about 100 g during common shipping mishaps (as defined by industry standards). PMID:27078575

  18. T700 power turbine rotor multiplane/multispeed balancing demonstration

    NASA Technical Reports Server (NTRS)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  19. Analysis and Design of Rotors at Ultra-Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Kunz, Peter J.; Strawn, Roger C.

    2003-01-01

    Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.

  20. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34...

  1. Angular correlation between proton and neutron rotors

    NASA Astrophysics Data System (ADS)

    Tajima, N.

    2013-07-01

    A brief review is given on the controversy and its solution about the fact that the angular momentum vector of protons and that of neutrons in well-deformed nuclei at low total angular momenta have a strong correlation that they are oriented in opposite directions. In a simple two-rotor model in 2-dimensional space, this fact is explained as originating from the quantum mechanical uncertainty relation between the angle and the angular momentum for the relative rotation of the two rotors. As the second topic, a more realistic model consisting of two triaxial rotors in 3-dimensional space coupled with a QQ interaction is employed to investigate a possible shears-band-like collective rotation predicted by T. Otsuka, in which the angle at which the angular momentum of protons and that of neutrons intersect changes continuously from 180° at spin zero toward 0° at high spins within the same rotational band. The probability distributions of the angle between the two angular momenta and the angle between the longest principal axes of two rotors are calculated to examine the participation of the scissors mode in the evolution of the ground rotational band versus spin.

  2. Total main rotor isolation system analysis

    NASA Technical Reports Server (NTRS)

    Halwes, D. R.

    1981-01-01

    The requirements for a preliminary design study and verification procedure for a total main rotor isolation system at n/rev are established. The system is developed and analyzed, and predesign drawings are created for an isolation system that achieves over 95 percent isolation of all six degrees of freedom.

  3. Modeling Aerodynamically Generated Sound of Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    2002-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.

  4. Field Theory of the Quantum Kicked Rotor

    SciTech Connect

    Altland, A.; Zirnbauer, M.R.

    1996-11-01

    The quantum kicked rotor is investigated by field theoretical methods. It is shown that the effective theory describing the long wavelength physics of the system is precisely the supersymmetric nonlinear {sigma} model for quasi-one-dimensional metallic wires. This proves that the analogy between chaotic systems with dynamical localization and disordered metals can indeed be exact. The role of symmetries is discussed.

  5. Flywheel system using wire-wound rotor

    DOEpatents

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  6. On multiple Einstein rings

    NASA Astrophysics Data System (ADS)

    Werner, M. C.; An, J.; Evans, N. W.

    2008-12-01

    A number of recent surveys for gravitational lenses have found examples of double Einstein rings. Here, we analytically investigate the occurrence of multiple Einstein rings. We prove, under very general assumptions, that at the most one Einstein ring can arise from a mass distribution in a single plane lensing a single background source. Two or more Einstein rings can therefore only occur in multiplane lensing. Surprisingly, we show that it is possible for a single source to produce more than one Einstein ring. If two point masses, or two isothermal spheres, in different planes are aligned with observer and source on the optical axis, we show that there are up to three Einstein rings. We also discuss the image morphologies for these two models if axisymmetry is broken, and give the first instances of magnification invariants in the case of two-lens planes.

  7. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGESBeta

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ringmore » motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics

  8. The rotor systems research aircraft - A flying wind tunnel

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  9. Predesign study for a modern 4-bladed rotor for RSRA

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1981-01-01

    The feasibility of providing a modern four-bladed rotor for flight research testing on a rotor system aircraft was evaluated. The capabilities of a state of the art rotor system and the contributions of key design parameters to these capabilities were investigated. Three candidate rotors were examined: the UH-60A BLACK HAWK rotor with and without root extenders and the H-3 composite blade rotor. It was concluded that the technical/cost objectives could best be accomplished using the basic BLACK HAWK rotor (i.e. without root extenders). Further, the availability of three existing sets of blade tip of varying design, together with a demonstrated capability for altering airfoil geometry should provide early research information on important design variables at reduced cost.

  10. Effects of ingested atmospheric turbulence on measured tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Signor, David B.; Yamauchi, Gloria K.; Mosher, Marianne; Hagen, Martin J.; George, Albert R.

    1992-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of turbulence ingestion on rotor noise are quantified. Turbulence ingestion noise is found to be the dominant noise mechanism at locations near the rotor axis. At these locations, the sound radiated by the hovering rotor increases with both increasing atmospheric wind speed and ingested rms turbulent velocity.

  11. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOEpatents

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  12. Development of ceramic turbocharger rotors for high-temperature use

    SciTech Connect

    Kawase, H.; Kato, K.; Matsuhisa, T.; Mizuno, T. )

    1993-01-01

    A ceramic turbocharger rotor (CTR) for high-temperature use has been developed. The features of this rotor are the use of silicon nitride, which maintains high mechanical strength up to 1,200C, and a new joining technique between the ceramic rotor and its metal shaft. The CTR is expected to cope with stoichiometric mixture burning engines, which produce a higher exhaust gas temperature for fuel economy, and the impact resistance of the rotor against foreign object damage (FOD) has been markedly increased, over that of earlier rotors, resulting in higher reliability. This paper describes the development of ceramic turbocharger rotors for high-temperature use, focusing on the mechanical strength of silicon nitride and the joining of the ceramic rotor and its metal shaft.

  13. Speed benefits of tilt-rotor designs for LHX

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. L.; Adams, J. V.; Balberde, A.; Dereska, S. P.; Gearin, C. J.; Shaw, D. E.

    1983-01-01

    The merits of an advanced helicopter and a tilt rotor aircraft for light utility, scout, and attack roles in combat missions envisioned for the year 2000 and beyond were compared. It is demonstrated that speed has increasing value for 11 different mission classes broadly encompassing the intended LHX roles. Helicopter speeds beyond 250 knots are judged to have lower military worth. Since the tilt rotor concept offers a different cost speed relationship than that of helicopters, assessment of a tilt rotor LHX variant was warranted. The technical parameters of an advanced tilt rotor are stablished. Parameters of representative missions are identified, computed relative value of the tilt rotor LHX are compared to the baseline helicopter, a first-order life cycle estimate for the tilt rotor LHX is established, military worth of the alternative design is computed and the results are evaluated. It is suggested that the tilt rotor is the solution with the greatest capability for meeting the uncertainties of future needs.

  14. Longitudinal dynamics in storage rings

    SciTech Connect

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.

  15. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  16. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  17. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  18. Simulation of rotor blade element turbulence

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.; Duisenberg, Ken

    1995-01-01

    A piloted, motion-based simulation of Sikorsky's Black Hawk helicopter was used as a platform for the investigation of rotorcraft responses to vertical turbulence. By using an innovative temporal and geometrical distribution algorithm that preserved the statistical characteristics of the turbulence over the rotor disc, stochastic velocity components were applied at each of twenty blade-element stations. This model was implemented on NASA Ames' Vertical Motion Simulator (VMS), and ten test pilots were used to establish that the model created realistic cues. The objectives of this research included the establishment of a simulation-technology basis for future investigation into real-time turbulence modeling. This goal was achieved; our extensive additions to the rotor model added less than a 10 percent computational overhead. Using a VAX 9000 computer the entire simulation required a cycle time of less than 12 msec. Pilot opinion during this simulation was generally quite favorable. For low speed flight the consensus was that SORBET (acronym for title) was better than the conventional body-fixed model, which was used for comparison purposes, and was determined to be too violent (like a washboard). For high speed flight the pilots could not identify differences between these models. These opinions were something of a surprise because only the vertical turbulence component on the rotor system was implemented in SORBET. Because of the finite-element distribution of the inputs, induced outputs were observed in all translational and rotational axes. Extensive post-simulation spectral analyses of the SORBET model suggest that proper rotorcraft turbulence modeling requires that vertical atmospheric disturbances not be superimposed at the vehicle center of gravity but, rather, be input into the rotor system, where the rotor-to-body transfer function severely attenuates high frequency rotorcraft responses.

  19. Temperatures of Saturn's rings.

    NASA Technical Reports Server (NTRS)

    Murphy, R. E.

    1973-01-01

    The 20-micron brightness temperatures of the rings were determined using the 224-cm telescope of the Mauna Kea Observatory, and the standard University of Hawaii radiometer with a 17- to 25-micron filter. The observations were made on the nights of Aug. 20 and 21, and Sept. 26 and 27, 1972. The brightness temperatures of the A, B, and C rings are, respectively, 89 plus or minus 3 K, 94 plus or minus 2 K, and 89 plus or minus 4 K. A possible explanation of the relatively high temperature of the C ring is that Saturn has radiation belts and the inner ring is heated by particle bombardment.

  20. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    PubMed

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC.

  1. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    PubMed

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. PMID:25213313

  2. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  3. Defining Early Adolescent Childbearing.

    ERIC Educational Resources Information Center

    Phipps, Maureen G.; Sowers, MaryFran

    2002-01-01

    Determined the age group for defining early adolescent childbearing based on rates of adverse clinical outcomes. Data on infant mortality, very low birth weight, and very pre-term delivery per 1,000 live births for women age 12-23 years in the 1995 U.S. birth cohort indicate that early adolescent childbearing is best defined as giving birth at age…

  4. Ring Around a Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  5. Cyclopenta[b]naphthalene cyanoacrylate dyes: Synthesis and evaluation as fluorescent molecular rotors

    PubMed Central

    Kocsis, Laura S.; Elbel, Kristyna M.; Hardigree, Billie A.

    2015-01-01

    We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure. PMID:25614187

  6. Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors.

    PubMed

    Kocsis, Laura S; Elbel, Kristyna M; Hardigree, Billie A; Brummond, Kay M; Haidekker, Mark A; Theodorakis, Emmanuel A

    2015-03-14

    We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure.

  7. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. Ph.D. Thesis - Toledo Univ., OH

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1991-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  8. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  9. Lower esophageal ring (Schatzki)

    MedlinePlus

    ... narrowed area to stretch the ring. Sometimes, a balloon is placed in the area and inflated, to help widen the ring. Outlook (Prognosis) Swallowing problems may return. You may need repeat treatment. When to Contact a Medical Professional Call your health care provider if you ...

  10. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  11. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  12. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  13. Gravity Signature of the Teague Ring Impact Structure, Western Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1998-01-01

    As part of a multidisciplinary effort to better define the nature of the Teague Ring structure and to understand specifics about the crustal structure, a GPS controlled gravity survey of the feature was undertaken in the austral winter of 1996.

  14. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  15. Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.

  16. Rotor-Fuselage Interaction: Analysis and Validation with Experiment

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Bettschart, Nicolas

    1997-01-01

    The problem of rotor-fuselage aerodynamic interaction has to be considered in industry applications from various aspects. First, in order to increase helicopter speed and reduce operational costs, rotorcraft tend to be more and more compact, with a main rotor closer to the fuselage surface. This creates significant perturbations both on the main rotor and on the fuselage, including steady and unsteady effects due to blade and wake passage and perturbed inflow at the rotor disk. Furthermore,the main rotor wake affects the tail boom, empennage and anti-torque system. This has important consequences for helicopter control and vibrations at low speeds and also on tail rotor acoustics (main rotor wake-tail rotor interactions). This report describes the US Army-France MOD cooperative work on this problem from both the theoretical and experimental aspects. Using experimental 3D velocity field and fuselage surface pressure measurements, three codes that model the interactions of a helicopter rotor with a fuselage are compared. These comparisons demonstrate some of the strengths and weaknesses of current models for the combined rotor-fuselage analysis.

  17. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  18. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  19. Defining Overweight and Obesity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Defining Adult Overweight and ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  20. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.

    1984-01-01

    The chopping of helicopter main rotor tip vortices by the tail rotor was experimentally investigated. This is a problem of blade vortex interaction (BVI) at normal incidence where the vortex is generally parallel to the rotor axis. The experiment used a model rotor and an isolated vortex and was designed to isolate BVI noise from other types of rotor noise. Tip Mach number, radical BVI station, and free stream velocity were varied. Fluctuating blade pressures, farfield sound pressure level and directivity, velocity field of the incident vortex, and blade vortex interaction angles were measured. Blade vortex interaction was found to produce impulsive noise which radiates primarily ahead of the blade. For interaction away from the blade tip, the results demonstrate the dipole character of BVI radiation. For BVI close to the tip, three dimensional relief effect reduces the intensity of the interaction, despite larger BVI angle and higher local Mach number. Furthermore, in this case, the radiation patern is more complex due to diffraction at and pressure communication around the tip.

  1. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  2. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  3. Design of rotors for improved structural life

    NASA Technical Reports Server (NTRS)

    Hill, J. T.

    1977-01-01

    Major rotor design criteria are discussed with particular emphasis on those aspects of rotor design that ensure long life component integrity. Dynamic considerations, that necessitate tuning of bladed disk and seal assemblies to avoid excessive vibratory stress at both design and off-design conditions are reviewed as well as low cycle fatigue considerations, which have resulted in detailed analysis procedures to establish part temperature and stress variation throughout an operating cycle and extensive specimen and component fatigue testing to establish safe cyclic operating limits. The frequency, size, and behavior of intrinsic material defects were investigated. Manufacturing process improvements, including the application of increasingly sophisticated inspection techniques and quality control procedures are reviewed in light of their impact on component durability.

  4. Radionuclide cholescintigraphy in genetically confirmed Rotor syndrome.

    PubMed

    Sirucek, Pavel; Sulakova, Astrida; Jirsa, Milan; Mrhac, Lubomir; Havel, Martin; Kraft, Otakar

    2015-10-01

    A 7-year-old girl had been followed up for persistent conjugated hyperbilirubinemia since birth. Alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase activity was within the normal range, and liver protein synthesis had always been normal. Infectious etiology of jaundice, autoimmune diseases, drug-induced liver injury, hemolytic anemia, α-1 anti-trypsin deficiency, Wilson disease and Gilbert syndrome were ruled out. At the age of 8 years the patient underwent radionuclide dynamic cholescintigraphy, indicating poor accumulation of the radiotracer in the liver on one hand, and severe retention of the radiopharmaceutical in the blood pool (including the heart) on the other hand. Rotor syndrome was suspected and finally confirmed on molecular analysis. This case represents the first cholescintigraphy report in a pediatric patient with genetically proven Rotor syndrome. PMID:26508179

  5. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  6. Ice Shapes on a Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.

  7. Dark rotors in the late universe.

    PubMed

    Mayer, Frederick J

    2015-11-01

    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.

  8. Dark rotors in the late universe.

    PubMed

    Mayer, Frederick J

    2015-11-01

    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture. PMID:27441225

  9. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  10. Hot piston ring tests

    NASA Astrophysics Data System (ADS)

    Allen, David J.; Tomazic, William A.

    1987-12-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  11. Dynamics of narrow rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    The ring models described here were developed to account for the dynamical problems posed by the narrow rings of Uranus. Some of these rings are now known to be eccentric, inclined, nonuniform in width, optically thick, and narrow, with very sharp edges. The eccentric rings have common pericenters and large, positive eccentricity gradients. The theory of shepherding satellites successfully accounts for most of these features and can also account for some features of the narrow Saturnian rings, in particular, waves, kinks, and periodic variations in brightness. Outstanding problems include the putative relation between eccentricity and inclination displayed by eight of the nine Uranian rings, and the magnitudes of the tidal torques acting on the shepherding satellites. The horseshoe-orbit model, although viable, probably has more application to the narrow rings from which the Saturnian coorbital satellites formed. The angular momentum flow rate due to particle collisions is a minimum at the Lagrangian equilibrium points L(4) and L(5), and one can expect accretion to be rapid at these points.

  12. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  13. Stopped-Rotor Cyclocopter for Venus Exploration

    NASA Technical Reports Server (NTRS)

    Husseyin, Sema; Warmbrodt, William G.

    2016-01-01

    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  14. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  15. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOEpatents

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  16. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  17. Spectral analysis of two coupled diatomic rotor molecules.

    PubMed

    Crogman, Horace T; Harter, William G

    2014-01-01

    In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA) states and Lab Weakly Coupled states (LWC) was developed to investigate simple rotor-rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor-rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well.

  18. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  19. Rotor acoustic monitoring system (RAMS): a fatigue crack detection system

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1996-05-01

    The Rotor Acoustic Monitoring System (RAMS) is an embedded structural health monitoring system to demonstrate the ability to detect rotor head fatigue cracks and provide early warning of propagating fatigue cracks in rotor components of Navy helicopters. The concept definition effort was performed to assess the feasibility of detecting rotor head fatigue cracks using bulk- wave wide-bandwidth acoustic emission technology. A wireless piezo-based transducer system is being designed to capture rotor fatigue data in real time and perform acoustic emission (AE) event detection, feature extraction, and classification. A flight test effort will be performed to characterize rotor acoustic background noise and flight environment characteristics. The long- term payoff of the RAMS technology includes structural integrity verification and leak detection for large industrial tanks, and nuclear plant cooling towers could be performed using the RAMS AE technology. A summary of the RAMS concept, bench-level AE fatigue testing, and results are presented.

  20. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, P.B.; Myers, W.B.

    1995-02-28

    A ceramic helical rotor expander is disclosed using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1,100 C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals. 3 figs.

  1. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  2. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1992-01-01

    A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.

  3. Method and device for spin-testing of turbocharger rotor

    SciTech Connect

    Kawasaki, K.

    1987-09-22

    This patent describes a method for spin-testing a turbocharger rotor. The rotor includes a shaft portion which is fixed to an assembly of component parts which include a thrust bearing, a spacer, at least one of a sleeve portion and compressor rotor portion, and a lock nut. The improvement comprises: preparing an integral composite member consisting of at least two of the component parts; dynamically balancing the turbocharger rotor, without the shaft portion fixed to the assembly; placing the turbocharger rotor and the integral composite member in a testing device, such that the shaft portion and the assembly are fixed to each other by the lock nut, and are rotatable as a unit; and rotating the turbocharger rotor and the assembly in the testing device, to effect the spin-testing.

  4. HPOTP low-speed flexible rotor balancing, phase 1

    NASA Technical Reports Server (NTRS)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  5. NDE of titanium alloy MMC rings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Percival, Larry D.; Yancey, Robert N.; Kautz, Harold E.

    1993-01-01

    Progress in the processing and fabrication of metal matrix composites (MMC's) requires appropriate mechanical and nondestructive testing methods. These methods are needed to characterize properties, assess integrity, and predict the life of engine components such as compressor rotors, blades, and vanes. Capabilities and limitations of several state-of-the-art nondestructive evaluation (NDE) technologies are investigated for characterizing titanium MMC rings for gas turbine engines. The use of NDE technologies such as x-ray computed tomography, radiography, and ultrasonics in identifying fabrication-related problems that caused defects in components is examined. Acousto-ultrasonics was explored to assess degradation of material mechanical properties by using stress wave factor and ultrasonic velocity measurements before and after the burst testing of the rings.

  6. NDE of titanium alloy MMC rings for gas turbine engines

    SciTech Connect

    Baaklini, G.Y.; Percival, L.D.; Yancey, R.N.; Kautz, H.E.

    1993-09-01

    Progress in the processing and fabrication of metal matrix composites (MMC's) requires appropriate mechanical and nondestructive testing methods. These methods are needed to characterize properties, assess integrity, and predict the life of engine components such as compressor rotors, blades, and vanes. Capabilities and limitations of several state-of-the-art nondestructive evaluation (NDE) technologies are investigated for characterizing titanium MMC rings for gas turbine engines. The use of NDE technologies such as x-ray computed tomography, radiography, and ultrasonics in identifying fabrication-related problems that caused defects in components is examined. Acousto-ultrasonics was explored to assess degradation of material mechanical properties by using stress wave factor and ultrasonic velocity measurements before and after the burst testing of the rings.

  7. Design and evaluation of a crystalline hybrid of molecular conductors and molecular rotors.

    PubMed

    Lemouchi, Cyprien; Mézière, Cécile; Zorina, Leokadiya; Simonov, Sergey; Rodríguez-Fortea, Antonio; Canadell, Enric; Wzietek, Pawel; Auban-Senzier, Pascale; Pasquier, Claude; Giamarchi, Thierry; Garcia-Garibay, Miguel A; Batail, Patrick

    2012-05-01

    Combining recent concepts from the fields of molecular conductivity and molecular machinery we set out to design a crystalline molecular conductor that also possesses a molecular rotor. We report on the structures, electronic and physical properties, and dynamics of two solids with a common 1,4-bis(carboxyethynyl)bicyclo[2.2.2]octane (BABCO) functional rotor. One, [nBu(4)N(+)](2)[BABCO][BABCO(-)](2), is a colorless insulator where the dicarboxylic acid cocrystallizes with two of its monoanionic conjugated bases. The other is self-assembled by electrocrystallization in the form of black, shiny needles, with highly conducting molecular slabs of (EDT-TTF-CONH(2))(2)(+) (EDT-TTF = ethylenedithiotetrathiafulvalene) and anionic [BABCO(-)] rotors. Using variable-temperature (5-300 K) proton spin-lattice relaxation, (1)H T(1)(-1), we were able to assign two types of Brownian rotators in [nBu(4)N(+)](2)[BABCO][BABCO(-)](2). We showed that neutral BABCO groups have a rotational frequency of 120 GHz at 300 K with a rotational barrier of 2.03 kcal mol(-1). Rotors on the BABCO(-) sites experience stochastic 32 GHz jumps at the same temperature over a rotational barrier of 2.72 kcal mol(-1). In contrast, the BABCO(-) rotors within the highly conducting crystals of (EDT-TTF-CONH(2))(2)(+)[BABCO(-)] are essentially "braked" at room temperature. Notably, these crystals possess a conductivity of 5 S cm(-1) at 1 bar, which increases rapidly with pressure up to 50 S cm(-1) at 11.5 kbar. Two regimes with different activation energies E(a) for the resistivity (180 K above 50 and 400 K below) are observed at ambient pressure; a metallic state is stabilized at ca. 8 kbar, and an insulating ground state remains below 50 K at all pressures. We discuss two likely channels by which the motion of the rotors might become slowed down in the highly conducting solid. One is defined as a low-velocity viscous regime inherent to a noncovalent, physical coupling induced by the cooperativity between

  8. Design and evaluation of a crystalline hybrid of molecular conductors and molecular rotors.

    PubMed

    Lemouchi, Cyprien; Mézière, Cécile; Zorina, Leokadiya; Simonov, Sergey; Rodríguez-Fortea, Antonio; Canadell, Enric; Wzietek, Pawel; Auban-Senzier, Pascale; Pasquier, Claude; Giamarchi, Thierry; Garcia-Garibay, Miguel A; Batail, Patrick

    2012-05-01

    Combining recent concepts from the fields of molecular conductivity and molecular machinery we set out to design a crystalline molecular conductor that also possesses a molecular rotor. We report on the structures, electronic and physical properties, and dynamics of two solids with a common 1,4-bis(carboxyethynyl)bicyclo[2.2.2]octane (BABCO) functional rotor. One, [nBu(4)N(+)](2)[BABCO][BABCO(-)](2), is a colorless insulator where the dicarboxylic acid cocrystallizes with two of its monoanionic conjugated bases. The other is self-assembled by electrocrystallization in the form of black, shiny needles, with highly conducting molecular slabs of (EDT-TTF-CONH(2))(2)(+) (EDT-TTF = ethylenedithiotetrathiafulvalene) and anionic [BABCO(-)] rotors. Using variable-temperature (5-300 K) proton spin-lattice relaxation, (1)H T(1)(-1), we were able to assign two types of Brownian rotators in [nBu(4)N(+)](2)[BABCO][BABCO(-)](2). We showed that neutral BABCO groups have a rotational frequency of 120 GHz at 300 K with a rotational barrier of 2.03 kcal mol(-1). Rotors on the BABCO(-) sites experience stochastic 32 GHz jumps at the same temperature over a rotational barrier of 2.72 kcal mol(-1). In contrast, the BABCO(-) rotors within the highly conducting crystals of (EDT-TTF-CONH(2))(2)(+)[BABCO(-)] are essentially "braked" at room temperature. Notably, these crystals possess a conductivity of 5 S cm(-1) at 1 bar, which increases rapidly with pressure up to 50 S cm(-1) at 11.5 kbar. Two regimes with different activation energies E(a) for the resistivity (180 K above 50 and 400 K below) are observed at ambient pressure; a metallic state is stabilized at ca. 8 kbar, and an insulating ground state remains below 50 K at all pressures. We discuss two likely channels by which the motion of the rotors might become slowed down in the highly conducting solid. One is defined as a low-velocity viscous regime inherent to a noncovalent, physical coupling induced by the cooperativity between

  9. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  10. Theodolite Ring Lights

    NASA Technical Reports Server (NTRS)

    Clark, David

    2006-01-01

    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  11. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  12. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    PubMed

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer. PMID:26185967

  13. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    PubMed

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  14. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, Wayne F.; Burtis, Carl A.; Walker, William A.

    1989-05-30

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  15. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, Wayne F.; Burtis, Carl A.; Walker, William A.

    1989-01-01

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  16. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, W.F.; Burtis, C.A.; Walker, W.A.

    1987-07-17

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

  17. State Estimation of Main Rotor Flap and Lead-Lag Using Accelerometers and Laser Transducers on the RASCAL UH-60 Helicopter

    NASA Technical Reports Server (NTRS)

    Fletcher, Jay W.; Chen, Robert T. N.; Strasilla, Eric; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Modern rotorcraft flight control system designs which promise to yield high vehicle response bandwidth and good gust rejection can benefit from the use of rotor-state feedbacks. The measurement of main rotor blade motions is also desirable to validate and improve rotorcraft simulation models, to identify high-order linear flight dynamics models, to provide rotor system health monitoring; during flight test, and to provide for correlation with acoustic measurements from wind tunnel and flight tests. However, few attempts have been made to instrument a flight vehicle in this manner, and no previous system has had the robustness and accuracy required for these diverse applications. A rotor blade motion measurement and estimation system has been developed by NASA and the U.S. Army for use on the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) helicopter. RASCAL is a UH-60 Blackhawk which is being modified at Ames Research Center in a phased development program for use in flight dynamics and controls, navigation, airspace management, and rotorcraft human factors research. The aircraft will feature a full-authority, digital, fly-by-wire research flight control system; a coupled ring laser gyro, differential GPS based navigation system; a stereoscopic color wide field of view helmet, mounted display; programmable panel mounted displays; and advanced navigation sensors. The rotor blade motion system is currently installed for data acquisition only, but will be integrated with the research flight control system when it is installed later this year.

  18. Defining departmental mission.

    PubMed

    Hartman, M D; Barrow, J A; Sawyer, W R

    1990-02-01

    Mission statements have long been recognized by corporate America as a way to define an enterprise. The necessary business orientation of the health care industry requires that hospitals and hospital departments define their scope of services and reason for existence. The accelerating reprofessionalization affecting departments of pharmacy requires the same. "Improving the quality of patient care" can no longer represent a euphemism for simply reacting to external factors or acting on a whim without clear meaningful intent. Professional departments and hospitals must demonstrate a sense of direction and purpose and be able to justify costs to a budget-conscious management and skeptical public. Mission statements are not substitutes for a clearly defined sense of professional mission. However, well-constructed mission statements contribute to clarity of departmental and professional purpose and effective achievement of goals. PMID:10128549

  19. Defining Risk Drinking

    PubMed Central

    Dawson, Deborah A.

    2011-01-01

    Many efforts to prevent alcohol-related harm are aimed at reducing risk drinking. This article outlines the many conceptual and methodological challenges to defining risk drinking. It summarizes recent evidence regarding associations of various aspects of alcohol consumption with chronic and acute alcohol-related harms, including mortality, morbidity, injury, and alcohol use disorders, and summarizes the study designs most appropriate to defining risk thresholds for these types of harm. In addition, it presents an international overview of low-risk drinking guidelines from more than 20 countries, illustrating the wide range of interpretations of the scientific evidence related to risk drinking. This article also explores the impact of drink size on defining risk drinking and describes variation in what is considered to be a standard drink across populations. Actual and standard drink sizes differ in the United States, and this discrepancy affects definitions of risk drinking and prevention efforts. PMID:22330212

  20. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  1. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  2. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  3. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  4. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  5. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  6. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  7. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  8. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  9. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and... contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  10. The computation and validation of hovering rotor performance

    NASA Technical Reports Server (NTRS)

    Mba, M. N.; Ramachandran, K.; Caradonna, F. X.

    1991-01-01

    Recent experience with the HELIX-I code is presented, and its ability to predict the flow and performance of both conventional rotors and the unconventional anhedral parabolic tip rotor utilized on the Super Puma MK2 is described. HELIX-I is a standard full-potential rotor code having the ability to efficiently predict the detailed flow on a rotor blade, including 3D, transonic, and weak viscous effects (using appropriate boundary layer analyses). The resulting code is the first full-potential CFD code with the ability to model free wake convection and the first CFD code of any type to predict hover performance.

  11. Results of a sub-scale model rotor icing test

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.; Bond, Thomas H.; Britton, Randall K.

    1991-01-01

    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.

  12. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  13. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  14. Position Sensing for Rotor in Hybrid Stepper Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  15. Quantum rotor theory of spinor condensates in tight traps

    SciTech Connect

    Barnett, Ryan; Hui, Hoi-Yin; Lin, Chien-Hung; Sau, Jay D.; Das Sarma, S.

    2011-02-15

    In this work, we theoretically construct exact mappings of many-particle bosonic systems onto quantum rotor models. In particular, we analyze the rotor representation of spinor Bose-Einstein condensates. In a previous work [R. Barnett et al., Phys. Rev. A 82, 031602(R) (2010)] it was shown that there is an exact mapping of a spin-one condensate of fixed particle number with quadratic Zeeman interaction onto a quantum rotor model. Since the rotor model has an unbounded spectrum from above, it has many more eigenstates than the original bosonic model. Here we show that for each subset of states with fixed spin F{sub z}, the physical rotor eigenstates are always those with the lowest energy. We classify three distinct physical limits of the rotor model: the Rabi, Josephson, and Fock regimes. The last regime corresponds to a fragmented condensate and is thus not captured by the Bogoliubov theory. We next consider the semiclassical limit of the rotor problem and make connections with the quantum wave functions through the use of the Husimi distribution function. Finally, we describe how to extend the analysis to higher-spin systems and derive a rotor model for the spin-two condensate. Theoretical details of the rotor mapping are also provided here.

  16. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  17. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  18. Wind-tunnel Tests of a Cyclogiro Rotor

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Windler, Ray

    1935-01-01

    During an extensive study of all types of rotating wings, the NACA examined the cyclogiro rotor and made an aerodynamic analysis of that system (reference 1). The examination disclosed that such a machine had sufficient promise to justify an experimental investigation; a model with a diameter and span of 8 feet was therefore constructed and tested in the 20-foot wind tunnel during 1934. The experimental work included tests of the effect of the motion upon the rotor forces during the static-lift and forward-flight conditions at several rotor speeds and the determination of the relations between the forces generated by the rotor and the power required by it.

  19. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  20. Interface structure for hub and mass attachment in flywheel rotors

    DOEpatents

    Deteresa, S.J.; Groves, S.E.

    1998-06-02

    An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

  1. Interface structure for hub and mass attachment in flywheel rotors

    DOEpatents

    Deteresa, Steven J.; Groves, Scott E.

    1998-06-02

    An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

  2. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  3. Affect of Brush Seals on Wave Rotor Performance Assessed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate

  4. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOEpatents

    Shi, Jun; Bombara, David; Green, Kevin E.; Bird, Connic; Holowczak, John

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  5. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  6. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  7. Influence of rubbing on rotor dynamics, part 2

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.

  8. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  9. Rotor aeroelastic stability coupled with helicopter body motion

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Huber, H. B.

    1974-01-01

    A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested.

  10. Instability thresholds for flexible rotors in hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Flack, R. D.

    1980-01-01

    Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well.

  11. RWF rotor-wake-fuselage code software reference guide

    NASA Technical Reports Server (NTRS)

    Berry, John D.

    1991-01-01

    The RWF (Rotor-Wake-Fuselage) code was developed from first principles to compute the aerodynamics associated with the complex flow field of helicopter configurations. The code is sized for a single, multi-bladed main rotor and any configuration of non-lifting fuselage. The mathematical model for the RWF code is based on the integration of the momentum equations and Green's theorem. The unknowns in the problem are the strengths of prescribed singularity distributions on the boundaries of the flow. For the body (fuselage) a surface of constant strength source panels is used. For the rotor blades and rotor wake a surface of constant strength doublet panels is used. The mean camber line of the rotor airfoil is partitioned into surface panels. The no-flow boundary condition at the panel centroids is modified at each azimuthal step to account for rotor blade cyclic pitch variation. The geometry of the rotor wake is computers at each time step of the solution. The code produces rotor and fuselage surface pressures, as well as the complex geometry of the evolving rotor wake.

  12. Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Saccullo, A.; Sheehy, T. W.

    1983-01-01

    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.

  13. Defining the Human Microbiome

    PubMed Central

    Ursell, Luke K; Metcalf, Jessica L; Parfrey, Laura Wegener; Knight, Rob

    2012-01-01

    Rapidly developing sequencing methods and analytical techniques are enhancing our ability to understand the human microbiome, and, indeed, how we define the microbiome and its constituents. In this review we highlight recent research that expands our ability to understand the human microbiome on different spatial and temporal scales, including daily timeseries datasets spanning months. Furthermore, we discuss emerging concepts related to defining operational taxonomic units, diversity indices, core versus transient microbiomes and the possibility of enterotypes. Additional advances in sequencing technology and in our understanding of the microbiome will provide exciting prospects for exploiting the microbiota for personalized medicine. PMID:22861806

  14. Storage Ring EDM Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-04-01

    Dedicated storage ring electric dipole moment (EDM) methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  15. Highlights in planetary rings

    NASA Astrophysics Data System (ADS)

    Porco, Carolyn C.

    1995-07-01

    There is a rich phenomenology within the planetary rings surrounding the giant planets, most of it discovered by the Voyagers during their historic tours of t he outer solar system in the 1980s. In the last decade, there have been two detailed IUGG reviews of planetary rings. Cuzzi [1983] covered the time period from 1979-1983 which included the Pioneer 11 encounter with Saturn (1979), the Voyager 1 and 2 encounters with Jupiter (1979) and with Saturn (1980 and 1981). Nicholson and Dones [1991] reviewed the developments in the field between 1984 and 1991, a period of time which included the Voyager 2 Uranus (1986) and Neptune (1989) encounters. (References t o additional reviews of planetary rings and related fields can be found in Nicholson and Dones [1991].) Rather than being comprehensive in nature, this review will concentrate on only those areas of ring research in which particularly promising developments have occurred in the last half decade.

  16. Heating Saturn's Clumpy Rings

    NASA Astrophysics Data System (ADS)

    Turner, Neal J.; Morishima, Ryuji; Spilker, Linda J.

    2015-11-01

    We model Cassini CIRS data using a Monte Carlo radiative transfer -- thermal balance technique first developed for protostellar disks, with the goals of:1. Exploring whether the A- and B-ring temperatures' variation with viewing angle is consistent with the wake structures suggested by the observed azimuthal asymmetry in optical depth, by analytic arguments, and by numerical N-body modeling.2. Better constraining the shape, size, spacing and optical depths of substructure in the A-ring, using the unexpectedly high temperatures observed at equinox. If the wake features have high enough contrast, Saturn-shine may penetrate the gaps between the wakes and heat thering particles both top and bottom.3. Determining how much of the heating of the A- and B-rings' unlit sides is due to radiative transport and how much is due to particle motions, especially vertical motions. This will help in constraining the rings' surface densities and masses.

  17. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  18. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds.

    PubMed

    Ertl, Peter; Jelfs, Stephen; Mühlbacher, Jörg; Schuffenhauer, Ansgar; Selzer, Paul

    2006-07-27

    Bioactive molecules only contain a relatively limited number of unique ring types. To identify those ring properties and structural characteristics that are necessary for biological activity, a large virtual library of nearly 600 000 heteroaromatic scaffolds was created and characterized by calculated properties, including structural features, bioavailability descriptors, and quantum chemical parameters. A self-organizing neural network was used to cluster these scaffolds and to identify properties that best characterize bioactive ring systems. The analysis shows that bioactivity is very sparsely distributed within the scaffold property and structural space, forming only several relatively small, well-defined "bioactivity islands". Various possible applications of a large database of rings with calculated properties and bioactivity scores in the drug design and discovery process are discussed, including virtual screening, support for the design of combinatorial libraries, bioisosteric design, and scaffold hopping. PMID:16854061

  19. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  20. Wind tunnel test on a 1/4.622 Froude scale, hingeless rotor, tilt rotor model, volume 1

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1976-01-01

    Wing tunnel test data on a 1/4.622 Froude scale, hingeless rotor, tilt rotor mode are reported for all potential flight conditions through hover and a wide envelope of transitions. A mathematical model was used to describe the rotor system in real time simulation by means of regression analyses. Details of the model, test program and data system are provided together with four data files for hover and transition.