Sample records for rotors

  1. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  2. Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.; Elliott, J. W.

    1989-01-01

    Acoustic data from a model scale main rotor and tail rotor experiment in the NASA Langley 14 by 22 Foot Subsonic Tunnel are presented for the main rotor and trail rotor in isolation and for the two rotors operating together. Results for the isolated main rotor show the importance of the rotor flapping conditions on mid-frequency noise content. High levels of main rotor retreating side blade-vortex interaction noise are shown to radiate downstream of the model. The isolated tail rotor noise results show the dominance of harmonic noise in the thrusting direction. The occurrence of tail rotor broadband noise is seen by the broadening of the tail rotor harmonics and is attributed to fuselage wake turbulence. The combined main and tail rotor data are presented to show the dominance of each rotor's different noise sources at different directivity locations.

  3. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  4. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    NASA Technical Reports Server (NTRS)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  5. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  6. Development of flexible rotor balancing criteria

    NASA Technical Reports Server (NTRS)

    Walter, W. W.; Rieger, N. F.

    1979-01-01

    Several studies in which analytical procedures were used to obtain balancing criteria for flexible rotors are described. General response data for a uniform rotor in damped flexible supports were first obtained for plain cylindrical bearings, tilting pad bearings, axial groove bearings, and partial arc bearings. These data formed the basis for the flexible rotor balance criteria presented. A procedure by which a practical rotor in bearings could be reduced to an equivalent uniform rotor was developed and tested. It was found that the equivalent rotor response always exceeded to practical rotor response by more than sixty percent for the cases tested. The equivalent rotor procedure was then tested against six practical rotor configurations for which data was available. It was found that the equivalent rotor method offered a procedure by which balance criteria could be selected for practical flexible rotors, using the charts given for the uniform rotor.

  7. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  8. Effects of a Rotating Aerodynamic Probe on the Flow Field of a Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of distortions of the rotor exit flow field caused by an aerodynamic probe mounted in the rotor is described in this paper. A rotor total pressure Kiel probe, mounted on the rotor hub and extending up to the mid-span radius of a rotor blade channel, generates a wake that forms additional flow blockage. Three types of high-response aerodynamic probes were used to investigate the distorted flow field behind the rotor. These probes were: a split-fiber thermo-anemometric probe to measure velocity and flow direction, a total pressure probe, and a disk probe for in-flow static pressure measurement. The signals acquired from these high-response probes were reduced using an ensemble averaging method based on a once per rotor revolution signal. The rotor ensemble averages were combined to construct contour plots for each rotor channel of the rotor tested. In order to quantify the rotor probe effects, the contour plots for each individual rotor blade passage were averaged into a single value. The distribution of these average values along the rotor circumference is a measure of changes in the rotor exit flow field due to the presence of a probe in the rotor. These distributions were generated for axial flow velocity and for static pressure.

  9. Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA). [integrating the YAH-64 main rotor

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.; Logan, A. H.

    1981-01-01

    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included.

  10. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  11. Rotor blade assembly having internal loading features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloway, Daniel David

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movementmore » of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.« less

  12. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  13. Fabrication and Testing of High-Speed-Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-05-04

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  14. Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-04-05

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  15. Method and system for controlling a permanent magnet machine

    DOEpatents

    Walters, James E.

    2003-05-20

    Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.

  16. Numerical analysis of a variable camber rotor blade as a lift control device

    NASA Technical Reports Server (NTRS)

    Awani, A. O.; Stroub, R. H.

    1984-01-01

    A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.

  17. Effect of blade planform variation on the forward-flight performance of small-scale rotors

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Althoff, Susan L.; Samak, Dhananjay K.; Green, Michael D.

    1992-01-01

    An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients.

  18. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  19. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  20. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  1. Cooled High-temperature Radial Turbine Program 2

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1991-01-01

    The objective of this program was the design and fabrication of a air-cooled high-temperature radial turbine (HTRT) intended for experimental evaluation in a warm turbine test facility at the LeRC. The rotor and vane were designed to be tested as a scaled version (rotor diameter of 14.4 inches diameter) of a 8.021 inch diameter rotor designed to be capable of operating with a rotor inlet temperature (RIT) of 2300 F, a nominal mass flow of 4.56 lbm/sec, a work level of equal or greater than 187 Btu/lbm, and efficiency of 86 percent or greater. The rotor was also evaluated to determine it's feasibility to operate at 2500 F RIT. The rotor design conformed to the rotor blade flow path specified by NASA for compatibility with their test equipment. Fabrication was accomplished on three rotors, a bladeless rotor, a solid rotor, and an air-cooled rotor.

  2. System and method for smoothing a salient rotor in electrical machines

    DOEpatents

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  3. Rotor-to-stator Partial Rubbing and Its Effects on Rotor Dynamic Response

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Franklin, Wesley D.; Hayashida, Robert D.

    1991-01-01

    Results from experimental and analytical studies on rotor to stationary element partial rubbings at several locations and their effects on rotor dynamic responses are presented. The mathematical model of a rubbing rotor is given. The computer program provides numerical results which agree with experimentally obtained rotor responses.

  4. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  5. Apparatus and method for magnetically unloading a rotor bearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Seth Robert

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  6. Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis

    NASA Technical Reports Server (NTRS)

    Mchugh, F.; Clark, R.; Soloman, M.

    1977-01-01

    The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

  7. Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor

    NASA Astrophysics Data System (ADS)

    Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun

    2018-05-01

    Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.

  8. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  9. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  10. Design of plywood and paper flywheel rotors

    NASA Astrophysics Data System (ADS)

    Erdman, A. G.; Hagen, D. L.; Gaff, S. A.

    1982-05-01

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.

  11. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  12. Method for manufacturing a rotor having superconducting coils

    DOEpatents

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  13. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  14. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  15. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  16. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  17. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    NASA Astrophysics Data System (ADS)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  18. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  19. An investigation of rotor harmonic noise by the use of small scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaffer, E. G.

    1982-01-01

    Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.

  20. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  1. Measurements of atmospheric turbulence effects on tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne

    1994-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.

  2. Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.

    1986-01-01

    The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.

  3. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  4. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  5. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  6. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  7. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  8. Rotor burst protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1975

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1977-01-01

    Statistics on gas turbine rotor failures that have occurred in U.S. commercial aviation during 1975 are presented. The compiled data were analyzed to establish: (1) The incidence of rotor failures and the number of contained and uncontained rotor bursts; (2) The distribution of rotor bursts with respect to engine rotor component; i.e., fan, compressor or turbine; (3) The type of rotor fragment (disk, rim or blade) typically generated at burst; (4) The cause of failure; (5) The type of engines involved; and (6) The flight condition at the time of failure.

  9. Comparison of upwind and downwind rotor operation of the DOE/NASA 100-kW MOD-0 wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Miller, D. R.; Corrigan, R. D.

    1981-01-01

    Tests were conducted on a 38m diameter horizontal axis wind turbine, which had first a rotor downwind of the supporting truss tower and then upwind of the tower. Aside from the placement of the rotor and the direction of rotation of the drive train, the wind turbine was identical for both tests. Three aspects of the test results are compared: rotor blade bending loads, rotor teeter response, and nacelle yaw moments. As a result of the tests, it is shown that while mean flatwise bending moments were unaffected by the placement of the rotor, cyclic flatwise bending tended to increase with wind speed for the downwind rotor while remaining somewhat uniform with wind speed for the upwind rotor, reflecting the effects of increased flow disturbance for downwind rotor. Rotor teeter response was not significantly affected by the rotor location relative to the tower, but appears to reflect reduced teeter stability near rated wind speed for both configurations. Teeter stability appears to return above rated wind speed, however. Nacelle yaw moments are higher for the upwind rotor but do not indicate significant design problems for either configuration.

  10. Computational Study of Flow Interactions in Coaxial Rotors

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to account for multiple real-world constraints up front in design nor possible to know what performance is possible with a given design. Since unmanned vehicles are sized and optimized for the particular mission, a modern low-fidelity conceptual design and sizing tool that has been used for the design of large helicopters can be used for design of small coaxial rotorcraft. However, unlike most helicopters with single main rotor, the interactions between the upper and lower rotors emerge as an important factor to consider in design because an increase in performance of a multi-rotor system is not proportional to the number of rotors. Interference losses and differences in thrusts between the upper and lower rotors were investigated by theoretical methods as well as a computational fluid dynamics (CFD) method using the Reynolds-Averaged Navier-Stokes (RANS) equations. In this work, hybrid turbulence models are used to investigate the physics of interactions between coaxial rotors and a fuselage that are not well understood. Present study covers not only small-scale drones but also large-scale coaxial rotors for heavy-lifting missions. Considering the recently proposed FAA drone rules that require the flight only in visual line-of-sight, a large multirotor might be used as an airborne carrier for launch and recovery of unmanned aircraft systems with a human operator onboard. For applications to civil operations, their aerodynamic performance and noise levels need to be assessed. Noise is one of the largest limiting factors to rotorcraft operations in urban area. Since the high-frequency noise of multi-rotors may increase the annoyance, noise may turn out to be a key issue that must be addressed for market acceptability. One of the objectives of the present work is to study the effects of inter-rotor spacing and collectives on the performance, efficiency, and acoustics of coaxial rotor systems.

  11. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  12. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  13. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  14. Stall induced instability of a teetered rotor

    NASA Astrophysics Data System (ADS)

    Glasgow, J. C.; Corrigan, R. D.

    Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.

  15. Rotor-Fuselage Interaction: Analysis and Validation with Experiment

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Bettschart, Nicolas

    1997-01-01

    The problem of rotor-fuselage aerodynamic interaction has to be considered in industry applications from various aspects. First, in order to increase helicopter speed and reduce operational costs, rotorcraft tend to be more and more compact, with a main rotor closer to the fuselage surface. This creates significant perturbations both on the main rotor and on the fuselage, including steady and unsteady effects due to blade and wake passage and perturbed inflow at the rotor disk. Furthermore,the main rotor wake affects the tail boom, empennage and anti-torque system. This has important consequences for helicopter control and vibrations at low speeds and also on tail rotor acoustics (main rotor wake-tail rotor interactions). This report describes the US Army-France MOD cooperative work on this problem from both the theoretical and experimental aspects. Using experimental 3D velocity field and fuselage surface pressure measurements, three codes that model the interactions of a helicopter rotor with a fuselage are compared. These comparisons demonstrate some of the strengths and weaknesses of current models for the combined rotor-fuselage analysis.

  16. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  17. Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.

  18. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  19. Rotor performance characteristics from an aeroacoustic helicopter wind-tunnel test program

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Elliott, J. W.; Orie, N. M.

    1986-01-01

    An investigation of helicopter rotor noise at model scale was conducted in the Langley 4 by 7 meter tunnel. The program described was the first of a planned three-phase project whose purpose was to examine the characteristic noise mechanism involved in main rotor/tail rotor interaction noise. This first phase was conducted with a main rotor only, in order to identify the characteristic noise generated by only the main rotor. The aerodynamic operating conditions of the rotor system were defined during the test. The acoustic data were properly referenced.

  20. The response of turbine engine rotors to interference rubs

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1980-01-01

    A method was developed for the direct integration of a rotor dynamics system experiencing a blade loss induced rotor rub. Both blade loss and rotor rub were simulated on a rotor typical of a small gas turbine. A small change in the coefficient of friction (from 0.1 to 0.2) caused the rotor to change from forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to study the susceptibility of rotors to rub induced backward whirl problems.

  1. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  2. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  3. Software for System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2004-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.

  4. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  5. Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization☆,☆☆

    PubMed Central

    Aronis, Konstantinos N.; Ashikaga, Hiroshi

    2018-01-01

    Background Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9–11 mm) inter-electrode distance (IED) of the multi-electrode basket catheter. Methods and results We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2–30 mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED = 1 mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10 mm, the error is 3.8 mm (phase singularity), 3.7 mm (dominant frequency), and 11.8 mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10 mm ranges from 30.0 mm (two rotors) to 96.1 mm (five rotors). Conclusions The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. PMID:28988690

  6. Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization.

    PubMed

    Aronis, Konstantinos N; Ashikaga, Hiroshi

    Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9-11mm) inter-electrode distance (IED) of the multi-electrode basket catheter. We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2-30mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED=1mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10mm, the error is 3.8mm (phase singularity), 3.7mm (dominant frequency), and 11.8mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10mm ranges from 30.0mm (two rotors) to 96.1mm (five rotors). The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  8. Aeromechanics of a High Speed Coaxial Helicopter Rotor

    NASA Astrophysics Data System (ADS)

    Schmaus, Joseph Henry

    The current work seeks to understand the aeromechanics of lift offset coaxial rotors in high speeds. Future rotorcraft will need to travel significantly faster that modern rotorcraft do while maintaining hovering efficiency and low speed maneuverability. The lift offset coaxial rotor has been shown to have those capabilities. A majority of existing coaxial research is focused on hovering performance, and few studies examine the forward flight performance of a coaxial rotor with lift offset. There are even fewer studies of a single rotor with lift offset. The current study used comprehensive analysis and a new set of wind tunnel experiments to explore the aeromechanics of a lift offset coaxial rotor in high speed forward flight. The simulation was expanded from UMARC to simultaneously solve multiple rotors with coupled aerodynamics. It also had several modifications to improve the aerodynamics of the near-wake model in reverse flow and improve the modeling of blade passages. Existing coaxial hovering tests and flight test data from the XH-59A were used to validate the steady performance and blade loads of the comprehensive analysis. It was used to design the structural layout of the blades used in the wind tunnel experiment as well as the test envelope and testing procedure. The wind tunnel test of a model rotor developed by the University of Texas at Austin and the University of Maryland was performed in the Glenn L Martin Wind Tunnel. The test envelope included advance ratios 0.21-0.53, collectives 4°- 8°, and lift offsets 0%-20% for both rotors tested in isolation and as a coaxial system operating at 900 RPM. Rotating frame hub loads, pushrod loads, and pitch angle were recorded independently for each rotor. Additional studies were performed at 1200 RPM to isolate Reynold effects and with varying rotor-to-rotor phase to help quantify aerodynamic interactions. Lift offset fundamentally changes the lift distribution around the rotor disk, doing so increases the maximum thrust of the rotor at a given speed while at the same time increasing the rotor efficiency. The cost of lift offset is increased blade loads. While this can be seen in the experimental data, it was taken at constant collective and as lift offset increased so did the thrust. The simulation is used to provide performance and loads sweeps at constant thrust to help provide a more basic understanding of how the rotor performance is changing. Additionally, rotor thrust and drag distributions provide a physical insight on how the distribution of lift changes cause the resulting trends that have been observed. Coaxial rotors have been shown to have significant rotor-to-rotor interactions in hover, but the magnitude of those interactions at high speed are studied here in detail. Generally, the aerodynamic interactions decrease significantly with increasing speed, and finally the lower rotor wake convects off the upper rotor. A comparison between the single rotor and coaxial rotor performance shows a newly observed trend of thrust inversion, where the more efficient rotor changes from the top in hover to the bottom in forward flight. The vibratory loads show limited evident of direct coaxial interference, although it is shown that the relative phase of the two rotors significantly alters the resultant total loads.

  9. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  10. A full-scale wind tunnel investigation of a helicopter bearingless main rotor. [Ames 40 by 80 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Mccloud, J. L., II

    1981-01-01

    A helicopter bearingless main rotor was tested. Areas of investigation included aeroelastic stability, aerodynamic performance, and rotor loads as a function of collective pitch setting, RPM, airspeed and shaft angle. The rotor/support system was tested with the wind tunnel balance dampers installed and, subsequently, removed. Modifications to the rotor hub were tested. These included a reduction in the rotor control system stiffness and increased flexbeam structural damping. The primary objective of the test was to determine aeroelastic stability of the fundamental flexbeam/blade chordwise bending mode. The rotor was stable for all conditions. Damping of the rotor chordwise bending mode increases with increased collective pitch angle at constant operating conditions. No significant decrease in rotor damping occured due to frequency coalescence between the blade chordwise fundamental bending mode and the support system.

  11. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  12. The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Stallone, M. J.

    1984-01-01

    This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.

  13. The investigation of a variable camber blade lift control for helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Awani, A. O.

    1982-01-01

    A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.

  14. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  15. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  16. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  17. Turbine and method for reducing shock losses in a turbine

    DOEpatents

    Ristau, Neil

    2015-09-01

    A turbine includes a rotor and a casing that circumferentially surrounds at least a portion of the rotor. The rotor and the casing at least partially define a gas path through the turbine. A last stage of rotating blades is circumferentially arranged around the rotor and includes a downstream swept portion radially outward from the rotor. A method for reducing shock losses in a turbine includes removing a last stage of rotating blades circumferentially arranged around a rotor and replacing the last stage of rotating blades with rotating blades having a downstream swept portion radially outward from the rotor.

  18. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  19. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  20. Predesign study for a modern 4-bladed rotor for RSRA

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1981-01-01

    The feasibility of providing a modern four-bladed rotor for flight research testing on a rotor system aircraft was evaluated. The capabilities of a state of the art rotor system and the contributions of key design parameters to these capabilities were investigated. Three candidate rotors were examined: the UH-60A BLACK HAWK rotor with and without root extenders and the H-3 composite blade rotor. It was concluded that the technical/cost objectives could best be accomplished using the basic BLACK HAWK rotor (i.e. without root extenders). Further, the availability of three existing sets of blade tip of varying design, together with a demonstrated capability for altering airfoil geometry should provide early research information on important design variables at reduced cost.

  1. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  2. Impact of Aerodynamics and Structures Technology on Heavy Lift Tiltrotors

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2006-01-01

    Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.

  3. Study for prediction of rotor/wake/fuselage interference, part 1

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Maskew, B.

    1985-01-01

    A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.

  4. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  5. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  6. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  7. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.

    PubMed

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H

    2017-04-18

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude-especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  8. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  9. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.

    2017-04-01

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  10. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  11. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) [Reserved] (c) The main rotor structure must be designed to withstand the following...

  12. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  13. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  14. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  15. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  16. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to withstand...

  17. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to withstand...

  18. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  19. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  20. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  1. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to withstand...

  2. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  3. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to withstand...

  4. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  5. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to withstand...

  6. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be...

  7. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  8. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  9. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  10. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  11. Tuned mass damper for integrally bladed turbine rotor

    NASA Technical Reports Server (NTRS)

    Marra, John J. (Inventor)

    1994-01-01

    The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.

  12. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  13. Vibration detecting apparatus for multi-rotor rotary piston engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Y.; Sasaki, H.; Karimata, Y.

    1987-04-28

    A multi-rotor rotary piston engine is described comprising rotor housings each having an inner wall surface of a two-lobe trochoidal form, an intermediate housing having opposite side surfaces and located between two adjacent ones of the rotor housings, a pair of side housings attached to outer surfaces of outermost rotor housings, rotors which are disposed in respective ones of the rotor housings and carried by an eccentric shaft, adjacent rotors each having a side surface adapted for sliding engagement with the side surfaces of the intermediate housing, vibration detecting means mounted on the intermediate housing for detecting engine vibrations, themore » vibration detecting means being oriented so that it has a sensitivity in the direction substantially perpendicular to the side surface of the intermediate housing.« less

  14. Rotor for a line start permanent magnet machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distancemore » that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.« less

  15. Design of a squeeze-film damper for a multi-mass flexible rotor

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Fleming, D. P.; Gunter, E. J.

    1975-01-01

    A single mass flexible rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible support attenuates the rotor motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze-film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor on rigid bearing supports.

  16. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 1: Analysis and design of stages A, B, and C

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Cheatham, J. G.; Nilsen, A. W.

    1972-01-01

    A conventional rotor and stator, two dual-airfoil tandem rotors, and one dual-airfoil tandem stator were designed. The two tandem rotors were each designed with different percentages of the overall lift produced by the front airfoil. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. Rotor inlet hub/tip ratio was 0.8. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.30, respectively.

  17. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  18. Analysis and correlation with theory of rotor lift-limit test data

    NASA Technical Reports Server (NTRS)

    Sheffler, M.

    1979-01-01

    A wind tunnel test program to define the cruise performance and determine any limitations to lift and propulsive force of a conventional helicopter rotor is described. A 2.96 foot radius model rotor was used. The maximum lift and propulsive force obtainable from an articulated rotor for advance ratios of 0.4 to 0.67, and the blade load growth as the lift approaches the limit are determined. Cruise rotor performance for advance ratios of 0.4 to 0.67 and the sensitivity of the rotor forces and moments to rotor control inputs as the lift limit is approached are established.

  19. Compressible, unsteady lifting-surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Runyan, H. L.; Tai, H.

    1985-01-01

    A lifting-surface theory has been developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the doublet lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a one-bladed rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. Also, the lift on a rotor vibrating in a pitching mode at 4 per revolution is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  20. Stator for a rotating electrical machine having multiple control windings

    DOEpatents

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  1. Redesigned rotor for a highly loaded, 1800 ft/sec tip speed compressor fan stage 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Ruschak, J. T.

    1975-01-01

    A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.

  2. Rotary sequencing valve with flexible port plate

    DOEpatents

    Wagner, Glenn Paul

    2005-05-10

    Rotary sequencing valve comprising a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, wherein the rotor face has a plurality of openings, one or more of which are disposed at a selected radial distance from the axis, and wherein the rotor includes at least one passage connecting at least one pair of the plurality of openings. The valve includes a flexible port plate having a first side and a second side, wherein the first side faces the rotor and engages the rotor such that the flexible port plate can be rotated coaxially by the rotor and can move axially with respect to the rotor, wherein the flexible port plate has a plurality of ports between the first and second sides, which ports are aligned with the openings in the rotor face. The valve also includes a stator having a stator face disposed coaxially with the rotor and the flexible port plate, wherein the second side of the flexible port plate is in sealable, slidable rotary contact with the stator face, wherein the stator face has a plurality of openings, some of which are disposed at the selected radial distance from the axis, and wherein the plurality of openings extend as passages through the stator. The valve may be used in pressure or temperature swing adsorption systems.

  3. Development of a Rotor-Body Coupled Analysis for an Active Mount Aeroelastic Rotor Testbed. Degree awarded by George Washington Univ., May 1996

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.

    1998-01-01

    At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.

  4. Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.

  5. Nonlinear transient analysis of multi-mass flexible rotors - theory and applications

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1973-01-01

    The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.

  6. Patterns of the Rotor-over-Stator Rolling under Change in the Damping Components

    NASA Astrophysics Data System (ADS)

    Shatokhin, V. F.

    2018-03-01

    As experimental studies show, the rubbing of the rotor against the structure usually excites harmonics of different frequencies. In high-frequency regions, the power of the vibration signal appears to be considerable. The rotor—supports—stator system is in an unstable equilibrium state during the contact interaction between the rotor and the stator. The forces exerted on the rotor facilitate the excitation of the asynchronous rolling and its damping. The forces have been determined that facilitate the excitation of the progressive and retrograde rotor precession. The consideration of these forces in the algorithm for modeling the rotor-over-stator rolling development allows investigation of the impact of the components of the above forces on the behavior of the rotor system. The initial excitation—disturbance of the normal operation—of the rotor and subsequent unsteady oscillations of it result from sudden imbalance in the second span. The results of numerical modeling of the rubbing in the second span and the rotor-over-stator rolling upon change in the damping components of secondary (gyroscopic) components b ij ( i ≠ j) of the damping matrix are presented for the rotor on three bearing-supports considering the synergetic effect of the forces of various types exerted on the rotor. It is shown that change in one of the parameters of the excitation forces leads to ambiguity of the pattern (manifestation form) of the asynchronous rotor-over-stator rolling and proves the existence of more than one states towards which the rotor—supports—stator system tends. In addition to the rolling with a constant rotor—stator contact, oscillations of the rotor develop in the direction perpendicular to the common trajectory of the precession motion of the rotor's center with transition to the vibro-impact motion mode. The oscillations of the rotor tend towards the symmetry center of the system (the stator bore center). The reason is the components of the stiffness and damping forces that act in the direction transverse to the rotor's motion trajectory. Recommendations are given for eliminating dangerous consequences of the development of the asynchronous rolling fraught with great financial losses.

  7. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  8. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor speed and pitch limits. 27.33... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  9. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main rotor speed and pitch limits. 29.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  10. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor speed and pitch limits. 29.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  11. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main rotor speed and pitch limits. 27.33... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  12. Performance Benefits for Wave Rotor-Topped Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Welch, Gerard E.

    1996-01-01

    The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.

  13. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  14. A two dimensional study of rotor/airfoil interaction in hover

    NASA Technical Reports Server (NTRS)

    Lee, Chyang S.

    1988-01-01

    A two dimensional model for the chordwise flow near the wing tip of the tilt rotor in hover is presented. The airfoil is represented by vortex panels and the rotor is modeled by doublet panels. The rotor slipstream and the airfoil wake are simulated by free point vortices. Calculations on a 20 percent thick elliptical airfoil under a uniform rotor inflow are performed. Variations on rotor size, spacing between the rotor and the airfoil, ground effect, and the influence upper surface blowing in download reduction are analyzed. Rotor size has only a minor influence on download when it is small. Increase of the rotor/airfoil spacing causes a gradual decrease on download. Proximity to the ground effectively reduces the download and makes the wake unsteady. The surface blowing changes the whole flow structure and significantly reduces the download within the assumption of a potential solution. Improvement on the present model is recommended to estimate the wall jets induced suction on the airfoil lower surface.

  15. Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Maskew, B.

    1985-01-01

    A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.

  16. Influence of rubbing on rotor dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    The results of analytical and experimental research on rotor-to-stationary element rubbing in rotating machines are presented. A characterization of physical phenomena associated with rubbing, as well as a literature survey on the subject of rub is given. The experimental results were obtained from two rubbing rotor rigs: one, which dynamically simulates the space shuttle main engine high pressure fuel turbopump (HPFTP), and the second one, much simpler, a two-mode rotor rig, designed for more generic studies on rotor-to-stator rubbing. Two areas were studied: generic rotor-to-stator rub-related dynamic phenomena affecting rotating machine behavior and applications to the space shuttle HPFTP. An outline of application of dynamic stiffness methodology for identification of rotor/bearing system modal parameters is given. The mathematical model of rotor/bearing/seal system under rub condition is given. The computer program was developed to calculate rotor responses. Compared with experimental results the computed results prove an adequacy of the model.

  17. Affect of Brush Seals on Wave Rotor Performance Assessed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.

  18. A theoretical study of the application of jet flap circulation control for reduction of rotor vibratory forces

    NASA Technical Reports Server (NTRS)

    Piziali, R. A.; Trenka, A. R.

    1974-01-01

    The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.

  19. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    NASA Technical Reports Server (NTRS)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  20. Multicyclic control for helicopters - Research in progress at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mccloud, J. L., III

    1980-01-01

    The term multicyclic control describes a blade pitch control technique used by helicopter designers to alleviate vibration in rotorcraft. Because rotor-induced vibrations are periodic, a multicyclic system, synchronized to the main rotor's azimuth position, is suitable. Many types of rotors - ranging from the jet-flap and circulation-control rotors to the conventional full-blade feathering rotors - have utilized multicyclic control. Multicyclic control systems may be designed to reduce blade-bending stresses, to reduce rotor-induced vibration, and to improve rotor performance. Rotor types are reviewed, primarily to highlight their differences. The increased use of composites in blade construction is seen to indicate that vibration alleviation will be the prime focus of multicyclic control. Adaptive feedback control systems, which also incorporate gust alleviation, are considered to be the ultimate application of multicyclic control.

  1. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  2. DESIGN ANALYSIS OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.

  3. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  4. Performance and loads data from an outdoor hover test of a Lynx tail rotor

    NASA Technical Reports Server (NTRS)

    Signor, David B.; Yamauchi, Gloria K.; Smith, Charles A.; Hagen, Martin J.

    1989-01-01

    A Lynx tail rotor was tested in hover at the Outdoor Aerodynamic Research Facility at NASA Ames Research Center. The test objectives were to measure the isolated rotor performance to provide a baseline for subsequent testing, and to operate the rotor throughout the speed and collective envelope before testing in the NFAC 40- by 80-Foot Wind Tunnel. Rotor forces and blade bending moments were measured at ambient wind conditions from zero to 6.23 m/sec. The test envelope was limited to rotor speeds of 1550 to 1850 rpm and minus 13 deg to plus 20 deg of blade collective pitch. The isolated rotor performance and blade loads data are presented.

  5. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  6. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  7. Integrated technology rotor/flight research rotor concept definition study

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  8. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  9. Highly ordered molecular rotor matrix on a nanopatterned template: titanyl phthalocyanine molecules on FeO/Pt(111).

    PubMed

    Lu, Shuangzan; Huang, Min; Qin, Zhihui; Yu, Yinghui; Guo, Qinmin; Cao, Gengyu

    2018-08-03

    Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C 32 H 16 N 8 OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.

  10. Performance degradation of a model helicopter rotor with a generic ice shape

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Cross, E. J., Jr.; Miller, T. L.

    1984-01-01

    An experimental program using a commercially available remotely controlled model helicopter in the Texas A&M University (TAMU) subsonic wind tunnel has been conducted to investigate the performance degradation resulting from the simulated formation of ice on the leading edge of the main rotor blades in both hover and forward flight. The rotor blades utilized a NACA 0012 airfoil with a 2.5-in. constant chord. A generic ice shape derived from a predetermined natural ice condition was applied to the 53.375-in.-diameter main rotor, and thrust and torque coefficients were measured for the main rotor as functions of velocity, main rotor rpm, fuselage angle of incidence, collective pitch angle, and spanwise extent of icing. The model helicopter test exhibited significant performance degradation of the main rotor when generic ice was added. An increase of approximately 150 percent in torque coefficient to maintain a constant thrust coefficient was noted when generic ice had been applied to the 85 percent rotor radial location. Also, considerable additional degradation occurred when generic ice was applied to the 100 percent rotor radial location, as compared with the 85 percent simulated ice performance values, indicating the sensitivity of the rotor tip region.

  11. A performance application study of a jet-flap helicopter rotor

    NASA Technical Reports Server (NTRS)

    Sullivan, R. J.; Laforge, S.; Holchin, B. W.

    1972-01-01

    A performance study was made of the application of a jet-flap to a reaction-drive rotor for a heavy-lift helicopter mission and for a high-speed-helicopter maneuverability (200 knots, 2g) mission. The results of the study are as follows: As a result of the increase in maximum airfoil lift coefficient achieved by the jet-flap, rotor solidity is reduced with the jet-flap to approximately 59% of a nonjet-flap rotor. As a result of the saving in rotor solidity, and hence in rotor weight, the jet-flap configuration had a 21% higher productivity than a nonjet-flap configuration. Of the three propulsion systems studied utilizing a jet-flap (hot cycle, warm cycle, cold cycle) the hot cycle gave the largest increase in productivity. The 200 knot 2g mission is performed best with a warm cycle propulsion system. The jet-flap permits designing for a rotor blade loading coefficient C sub T/sigma = .170 at 2g without encountering blade stall. The jet-flap rotor permits a 200 knot 2g maneuver without suffering the penalty of an unreasonable rotor solidity that would be required by a nonjet-flap rotor.

  12. A novel approach to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system

    NASA Astrophysics Data System (ADS)

    Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar

    2018-01-01

    The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.

  13. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  14. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.

  15. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  16. Flywheel Rotor Safe-Life Technology

    NASA Technical Reports Server (NTRS)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options. This report presents the papers selected for their relevance to this topic and summarizes them.

  17. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  18. T700 power turbine rotor multiplane/multispeed balancing demonstration

    NASA Technical Reports Server (NTRS)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  19. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  20. Experimental verification of an eddy-current bearing

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.

    1989-01-01

    A new type of electromagnetic bearing was built and tested. It consists of fixed AC-electromagnets in a star formation surrounding a conducting rotor. The bearing works by repulsion due to eddy-currents induced in the rotor. A single bearing is able to fully support a short rotor. The rotor support is inherently stable in all five degrees of freedom. No feedback control is needed. The bearing is also able to accelerate the rotor up to speed and decelerate the rotor back to standstill. The bearing design and the experimentation to verify its capabilities are described.

  1. Hovering and Low-Speed Performance and Control Characteristics of the Kaman Helicopter Rotor System as Determined on the Langley Helicopter Tower. TED No. NACA DE 205

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul J.; Paulnock, Russell S.

    1949-01-01

    An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.

  2. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.

    PubMed

    Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao

    2018-01-31

    Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.

  3. Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Saccullo, A.; Sheehy, T. W.

    1983-01-01

    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.

  4. Evaluation of effect of oil film of rotor bearing

    NASA Astrophysics Data System (ADS)

    Alekseeva, L. B.; Maksarov, V. V.

    2018-03-01

    The high-rpm rotors were subjected to the dynamic analysis. Oscillations of a rotor spinning in gapped bearings were considered. It was stated that the rotor necks motion pattern depends on a lot of factors: a ratio of static and dynamic loads on the bearing, radial clearance size, presence of oil film between a neck and a bearing, elastic and inertial properties of a mounting group. The most unfavourable mode where static and dynamic loads are equal was detected without taking into account the oil film impact. The impact of oil film on the bearing assembly dynamics is significant in high-rpm rotors. The presence of oil film can possibly cause rotor buckling failure and self-starting. Rotor motion stability in small was studied. Herewith, various schemes were considered. Expressions, determining the stability zones of a rigid rotor on the fixed support and the supports with elastic and inertial elements, were given.

  5. Optimization of Darrieus turbines with an upwind and downwind momentum model

    NASA Astrophysics Data System (ADS)

    Loth, J. L.; McCoy, H.

    1983-08-01

    This paper presents a theoretical aerodynamic performance optimization for two dimensional vertical axis wind turbines. A momentum type wake model is introduced with separate cosine type interference coefficients for the up and downwind half of the rotor. The cosine type loading permits the rotor blades to become unloaded near the junction of the upwind and downwind rotor halves. Both the optimum and the off design magnitude of the interference coefficients are obtained by equating the drag on each of the rotor halves to that on each of two cosine loaded actuator discs in series. The values for the optimum rotor efficiency, solidity and corresponding interference coefficients have been obtained in a closed form analytic solution by maximizing the power extracted from the downwind rotor half as well as from the entire rotor. A numerical solution was required when viscous effects were incorporated in the rotor optimization.

  6. Perturbation solutions for the influence of forward flight on helicopter rotor flapping stability

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    The stability of the flapping motion of a helicopter rotor blade in forward flight is investigated, using a perturbation technique which gives analytic expressions for the eigenvalues, including the influence of the periodic aerodynamic forces in forward flight. The perturbation solutions are based on small advance ratio (the ratio of the helicopter forward speed to the rotor tip speed). The rotor configurations considered are a single, independent blade; a teetering rotor; a gimballed rotor with three, four, and five or more blades; and a rotor with N independent blades. The constant coefficient approximation with the equations and degrees of freedom in the nonrotating frame represents the flap dynamic reasonably well for the lower frequency modes, although it cannot, of course, be completely correct. The transfer function of the rotor flap response to sinusoidal pitch input is examined, as an alternative to the eigenvalues as a representation of the dynamic characteristics of the flap motion.

  7. The identification of helicopter noise using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Fuller, Chris R.; O'Brien, Walter F.

    1990-01-01

    Experiments were carried out to demonstrate the ability of an artificial neural network (ANN) system to distinguish between the noise of two helicopters. The ANN is taught to identify helicopters by using two types of features: one that is associated with the ratio of the main-rotor to tail-rotor blade passage frequency (BPF), and the ohter that describes the distribution of peaks in the main-rotor spectrum, which is independent of the tail-rotor. It is shown that the ability of the ANN to identify helicopters is comparable to that of a conventional recognition system using the ratio of the main-rotor BPF to the tail-rotor BPF (when both the main- and the tail-rotor noise are present), but the performoance of ANN exceeds the conventional-method performance when the tail-rotor noise is absent. In addition, the results of ANN can be obtained as a function of propagation distance.

  8. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  9. Parametric Blade Study Test Report Rotor Configuration. Number 2

    DTIC Science & Technology

    1988-11-01

    Incidence Angle (100% N) .............. 51 9 Rotor Relative Inlet Mach Number (100% N) ... 51 1G Rotor Loss Coefficient (100% N) ............. 52 11 Rotor...Diffusion Factor (100% N) ............. 52 12 Rotor Deviation Angle (100% N) .............. 53 13 Stator Incidence Angle (100% N) ............. 53 14...78 50 Stator Deviation Angle (90% N) .............. 79 51 Stator Loss Coefficient (90% N) ............. 79 52 Static Pressure Distribution

  10. Quantum-rotor-induced polarization.

    PubMed

    Meier, Benno

    2018-07-01

    Quantum-rotor-induced polarization is closely related to para-hydrogen-induced polarization. In both cases, the hyperpolarized spin order derives from rotational interaction and the Pauli principle by which the symmetry of the rotational ground state dictates the symmetry of the associated nuclear spin state. In quantum-rotor-induced polarization, there may be several spin states associated with the rotational ground state, and the hyperpolarization is typically generated by hetero-nuclear cross-relaxation. This review discusses preconditions for quantum-rotor-induced polarization for both the 1-dimensional methyl rotor and the asymmetric rotor H 2 17 O@C 60 , that is, a single water molecule encapsulated in fullerene C 60 . Experimental results are presented for both rotors. Copyright © 2018 John Wiley & Sons, Ltd.

  11. DFVLR rotorcraft: Construction and engineering

    NASA Technical Reports Server (NTRS)

    Langer, H. J.

    1984-01-01

    A helicopter rotor test stand is described. Full scale helicopter components can be tested such as hingeless fiberglass rotors and two blade rotor with flapping hinge, or a hybrid system. The facility is used to test stability, rotor components and downwind components.

  12. Reduced order modeling, statistical analysis and system identification for a bladed rotor with geometric mistuning

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vinod

    Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from measurements of forced response. Forcing function is estimated for synchronous excitation of 3DOF rotor model, Academic rotor and Transonic rotor from measurement of response at few nodes. For asynchronous excitation forcing function is estimated only for 3DOF rotor model and Academic rotor from measurement of response. The impact of number of measurement locations and accuracy of ROM on the estimation of forcing function is discussed. iv.

  13. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  14. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    NASA Technical Reports Server (NTRS)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  15. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  16. An unsteady helicopter rotor: Fuselage interaction analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Egolf, T. Alan

    1988-01-01

    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.

  17. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off

    NASA Astrophysics Data System (ADS)

    Wang, Cun; Zhang, Dayi; Ma, Yanhong; Liang, Zhichao; Hong, Jie

    2016-08-01

    Blade loss from a running turbofan rotor will introduce sudden unbalance into the dynamical system, and as a consequence leads to the rub-impact, the asymmetry of rotor and a series of interesting dynamic characteristics. The paper focuses on the theoretical study on the sudden unbalance and rub-impact caused by blade loss, in particular investigates the response of the rotor on a rotor test rig with sudden unbalance and rub-impact device designed respectively. The results reveal that the sudden unbalance will induce impact effect on the rotor, and critical speed frequency is excited in frequency spectrum. Meantime, the impact effect is more obvious for the rotor operating above critical speed. The influence of rub-impact is considered as additional constraint to the rotor, analyzed by the theory of time-varying system for the first time, and the results are evaluated by experimental tests. The study shows that great attention should be paid to the dynamical design for the overhung rotor system, additional constraint and corresponding analysis method in rub-impact need to be intensively studied.

  18. Isolated Open Rotor Noise Prediction Assessment Using the F31A31 Historical Blade Set

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, William T.; Boyd, D. Douglas, Jr.; Zawodny, Nikolas S.

    2016-01-01

    In an effort to mitigate next-generation fuel efficiency and environmental impact concerns for aviation, open rotor propulsion systems have received renewed interest. However, maintaining the high propulsive efficiency while simultaneously meeting noise goals has been one of the challenges in making open rotor propulsion a viable option. Improvements in prediction tools and design methodologies have opened the design space for next generation open rotor designs that satisfy these challenging objectives. As such, validation of aerodynamic and acoustic prediction tools has been an important aspect of open rotor research efforts. This paper describes validation efforts of a combined computational fluid dynamics and Ffowcs Williams and Hawkings equation methodology for open rotor aeroacoustic modeling. Performance and acoustic predictions were made for a benchmark open rotor blade set and compared with measurements over a range of rotor speeds and observer angles. Overall, the results indicate that the computational approach is acceptable for assessing low-noise open rotor designs. Additionally, this approach may be used to provide realistic incident source fields for acoustic shielding/scattering studies on various aircraft configurations.

  19. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  1. 14 CFR 29.571 - Fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., but are not limited to, rotors, rotor drive systems between the engines and rotor hubs, controls... drive systems between the engines and rotor hubs, controls, fuselage, fixed and movable control surfaces... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation...

  2. Hingeless Rotorcraft Flight Dynamics

    DTIC Science & Technology

    1974-01-01

    or pitch rate of the rotor to determine the rotor forces and moments on the hub for these conditions. Many phenomena of flight dynamics can be treated... determining the hub forces and moments per unit linear and angular velocity increment from trim. The rotor derivatives can also be determined from...attitude instability. Since rotor lift and drag forces contribute to handling qualities, they must be determined . The rotor characteristics are also of no

  3. Previous Open Rotor Research in the US

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2011-01-01

    Previous Open Rotor noise experience in the United States, current Open Rotor noise research in the United States and current NASA prediction methods activities were presented at a European Union (EU) X-Noise seminar. The invited attendees from EU industries, research establishments and universities discussed prospects for reducing Open Rotor noise and reviewed all technology programs, past and present, dedicated to Open Rotor engine concepts. This workshop was particularly timely because the Committee on Aviation Environmental Protection (CAEP) plans to involve Independent Experts in late 2011 in assessing the noise of future low-carbon technologies including the open rotor.

  4. The importance of steady and dynamic inflow on the stability of rotor-body systems

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1988-01-01

    The induced flow field of a rotor responds in a dynamic fashion to oscillations in rotor lift. This was long known to affect the stability and control derivatives of the rotor. More recently, however, it was also shown that this dynamic inflow also affects rotor and rotor-body aeroelastic stability. Thus, both the steady and unsteady inflow have pronounced effects on air resonance. Recent theoretical developments were made in the modeling of dynamic inflow, and these were verified experimentally. Thus, there is now a simple, verified dynamic inflow model for use in dynamic analyses.

  5. Fluid flow rate control device

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H. (Inventor); Mohtar, Rafic (Inventor); Nelson, Richard O. (Inventor)

    1991-01-01

    A poppet is modulated between closed and full open positions by a brushless DC motor operating magnetically through a housing to drive a permanent magnet rotor which carries the poppet. The rotor is supported on several parallel cables which are stationarily fixed at one end and attached to the rotor at the other end, whereby rotation of the rotor twists the cables, causing axial foreshortening and axial translation of rotor and poppet. Axial translation is enhanced by placing a spacer between the cables, intermediate their ends. A permanent magnet ring is disposed around the valve seat directly axially attracting the rotor to a valve closed position.

  6. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  7. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  8. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  9. Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

    1990-01-01

    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

  10. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect

    PubMed Central

    Chen, Dianzhong; Liu, Xiaowei; Li, Hai; Li, Ling; Rong, Wanting; Zhang, Zhongzhao

    2018-01-01

    Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h. PMID:29385105

  11. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  12. Rotor blade boundary layer measurement hardware feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  13. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.

    2015-11-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.

  14. Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Hood, Manley J

    1935-01-01

    This report presents the results of force tests on and air-flow surveys near PCA-2 autogiro rotor in the NACA full-scale wind tunnel. The force tests were made at three pitch settings and several rotor speeds; the effect of fairing protuberances on the rotor blade was determined. Induced downwash and yaw angles were determined at low tip-speed ratios in a plane 1 1/2 feet above the path of the blade tips. The results show that the maximum l/d of the rotor cannot be appreciably increased by increasing the blade pitch angle above about 4.5 degrees at the blade tip; that the protuberances on the blades cause more than 5 percent of the total rotor drag; and that the rotor center-of-pressure travel is very small.

  15. Flexible rotor balancing by the influence coefficient method: Multiple critical speeds with rigid or flexible supports

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.

    1975-01-01

    Experimental tests were conducted to demonstrate the ability of the influence coefficient method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Various practical aspects of flexible-rotor balancing were investigated. Tests were made on a laboratory quality machine having a 122 cm (48 in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18000 rpm. The balancing method was in every instance effective, practical, and economical and permitted safe rotor operation over the full speed range covering four rotor bending critical speeds. Improved correction weight removal methods for rotor balancing were investigated. Material removal from a rotating disk was demonstrated through application of a commercially available laser.

  16. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  17. An analysis of dynamic stability for a flexible rotor filled with liquid

    NASA Astrophysics Data System (ADS)

    Wang, Guangding; Yuan, Huiqun

    2018-03-01

    The investigation of dynamic stability for a flexible rotor completely filled with liquid is carried out. The perturbation differential equations of infinitesimal fluid are established on the basis of three-dimensional flow analysis in the rotor cavity. The analytical expression of the hydrodynamic force exerted on the rotor inner wall is obtained by using the Fourier series expansion. Assuming that both ends of the rotor are simply supported and the fluid motion is axially symmetric, the nondimensional whirling frequency equation of the system is derived. According to the obtained frequency equation, the system stability is analyzed and the results are compared with a rigid rotor system. Moreover, the effects of the mass ratio and system parameter on the stability of a flexible liquid-filled rotor system are discussed.

  18. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  19. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1985-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.

  20. Mountain-Wave Induced Rotors in the Lee of Three-Dimensional Ridges

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Durran, D. R.

    2003-12-01

    Mountain waves forced by elongated ridges are often accompanied by low-level vortices that have horizontal circulation axes parallel to the ridgeline. These horizontal vortices, known as rotors, can be severe aeronautical hazards and have been cited as contributing to numerous aircraft accidents. In spite of their obvious importance, mountain-induced rotors still remain poorly understood, particularly with respect to three-dimensional aspects of the flow. In this study, the dynamics of rotors forced by three-dimensional topography are investigated through a series of high-resolution idealized simulations with the non-hydrostatic COAMPS model. The focus of this investigation is on the internal structure of rotors and in particular on the dynamics of small-scale intense circulations within rotors that we refer to as "sub-rotors". These are the first known simulations of sub-rotors in three dimensions, likely because explicit simulations have only just recently become computationally feasible with the new generation of massively parallel computers. The calculations were performed on an SGI Origin 3000 at the DoD Major Shared Resource Facility High Performance Computing Facility at the U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, Mississippi as part of the DoD Challenge program. Simulations are conducted using an upstream reference state representative of the conditions under which rotors form in the real atmosphere; in particular a vertical profile approximating the conditions upstream of the Colorado Front Range on 1200 UTC 3 March 1991. This is a few hours prior to a B737 crash at the Colorado Springs, CO airport that was initially linked to rotors and near the time when rotor clouds were observed in vicinity. The topography is specified as a 1000-m high elongated ridge with a half-width of 15 km on the upstream portion and 5 km on the downstream side. In several experiments, a 500-m circular peak with a half-width of 7.5 km is used to investigate the sensitivity of the rotor dynamics to topographic variations in the cross-flow direction. As many as six nested grids are used with a minimum horizontal resolution of 22 m and 90 vertical levels in order to resolve the internal rotor structure and sub-rotors. The simulation results indicate a thin sheet of high-vorticity fluid develops adjacent to the ground along the lee slope and then ascends abruptly as it is advected into the updraft at the leading edge of the first trapped lee wave. This vortex sheet is primarily forced by mechanical shear associated with frictional processes at the surface. Instability of the horizontal vortex sheet occurs along the leading edge of the "parent" rotor and as a result coherent sub-rotor circulations subsequently develop. These sub-rotors intensify and are advected downstream or back toward the mountain into the parent rotor at low-levels leading to an enhancement of the near-surface horizontal vorticity. Horizontal vorticity within the sub-rotors are enhanced several fold. The horizontal vorticity generation appears to be enhanced near the edges of the wake emanating from the circular peak due to vortex stretching of the parent rotor and also further maximized due to stretching associated with three-dimensional turbulent eddies. The results suggest that preferred regions of intense rotors may exist near topographic features that enhance vortex stretching.

  1. Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study.

    PubMed

    Martinez-Mateu, Laura; Romero, Lucia; Ferrer-Albero, Ana; Sebastian, Rafael; Rodríguez Matas, José F; Jalife, José; Berenfeld, Omer; Saiz, Javier

    2018-03-01

    Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35-94% of the simulation time, depending on the basket's position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures.

  2. Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

    PubMed Central

    Romero, Lucia; Rodríguez Matas, José F.; Berenfeld, Omer; Saiz, Javier

    2018-01-01

    Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35–94% of the simulation time, depending on the basket’s position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures. PMID:29505583

  3. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    NASA Astrophysics Data System (ADS)

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  4. Inner workings of aerodynamic sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadia, A.R.; Szucs, P.N.; Crall, D.W.

    1998-10-01

    The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfymore » identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.« less

  5. Acoustic Predictions of Manned and Unmanned Rotorcraft Using the Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) Code System

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2005-01-01

    The Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) is being developed under the Quiet Aircraft Technology Project within the NASA Vehicle Systems Program. The purpose of CARMA is to provide analysis tools for the design and evaluation of efficient low-noise rotorcraft, as well as support the development of safe, low-noise flight operations. The baseline prediction system of CARMA is presented and current capabilities are illustrated for a model rotor in a wind tunnel, a rotorcraft in flight and for a notional coaxial rotor configuration; however, a complete validation of the CARMA system capabilities with respect to a variety of measured databases is beyond the scope of this work. For the model rotor illustration, predicted rotor airloads and acoustics for a BO-105 model rotor are compared to test data from HART-II. For the flight illustration, acoustic data from an MD-520N helicopter flight test, which was conducted at Eglin Air Force Base in September 2003, are compared with CARMA full vehicle flight predictions. Predicted acoustic metrics at three microphone locations are compared for limited level flight and descent conditions. Initial acoustic predictions using CARMA for a notional coaxial rotor system are made. The effect of increasing the vertical separation between the rotors on the predicted airloads and acoustic results are shown for both aerodynamically non-interacting and aerodynamically interacting rotors. The sensitivity of including the aerodynamic interaction effects of each rotor on the other, especially when the rotors are in close proximity to one another is initially examined. The predicted coaxial rotor noise is compared to that of a conventional single rotor system of equal thrust, where both are of reasonable size for an unmanned aerial vehicle (UAV).

  6. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  7. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Shaw, Steven W.; Parker, Robert G.

    2016-12-01

    This paper investigates vibration reduction in a rigid rotor with tilting, rotational, and translational motions using centrifugal pendulum vibration absorbers (CPVAs). A linearized vibration model is derived for the system consisting of the rotor and multiple sets of absorbers tuned to different orders. Each group of absorbers lies in a given plane perpendicular to the rotor rotation axis. Gyroscopic system modal analysis is applied to derive the steady-state response of the absorbers and the rotor to external, rotor-order, periodic forces and torques with frequency mΩ, where Ω is the mean rotor speed and m is the engine order (rotor-order). It is found that an absorber group with tuning order m is effective at reducing the rotor translational, tilting, and rotational vibrations, provided certain conditions are met. When the periodic force and torque are caused by N substructures that are equally spaced around the rotor, the rotor translational and tilting vibrations at order j are addressed by two absorber groups with tuning orders jN±1. In this case, the rotor rotational vibration at order j can be attenuated by an absorber group with tuning order jN. The results show how the response depends on the load amplitudes and order, the rotor speed, and design parameters associated with the sets of absorbers, most importantly, their tuning, mass, and plane of placement. In the ideal case with zero damping and exact tuning of the absorber sets, the vibrations can be eliminated for a range of loads over which the linearized model holds. The response for systems with detuned absorbers is also determined, which is relevant to applications where small detuning is employed due to robustness issues, and to allow for a larger range of operating loads over which the absorbers are effective. The system also exhibits undesirable resonances very close to these tuning conditions, an issue that is difficult to resolve and deserves further investigation.

  8. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  9. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  10. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  11. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  12. Comparative study of bearing loads for different twin screw compressor rotor configurations

    NASA Astrophysics Data System (ADS)

    Buckney, D.; Anderson, C.

    2017-08-01

    Designing rotor geometry is a critical stage in the design of a twin screw compressor which has a significant impact on: capacity; leakage characteristics; thermodynamics; rotor stiffness; dynamics; and loading on the bearings. The focus of this paper is on bearing loads. In order to design screw compressors that can operate at higher pressures the bearings quickly become a limiting factor. With the need to house the bearings adjacent to one another on each of the parallel rotor shafts at a given centre distance there is an inherent limit to the bearing geometry envelope. In this investigation the ‘rotor configuration’ refers to the rotor lobe combination, length to diameter ratio (L/D), and wrap angle. The geometry of the transverse rotor profiles is kept constant, as far as possible, allowing conclusions to be drawn based on a manageable number of variables. A procedure to calculate bearing specific loads based on results from a thermodynamic chamber model is presented and results for a range of rotor configurations are discussed.

  13. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  14. Modern rotor balancing - Emerging technologies

    NASA Technical Reports Server (NTRS)

    Zorzi, E. S.; Von Pragenau, G. L.

    1985-01-01

    Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.

  15. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  16. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Dirusso, E.; Fleming, D. P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  17. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  18. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  19. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  20. Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.

    1975-01-01

    A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.

  1. Research study for effects of case flexibility on bearing loads and rotor stability

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Tarn, R. B.

    1984-01-01

    Methods to evaluate the effect of casing flexibility on rotor stability and component loads were developed. Recent Rocketdyne turbomachinery was surveyed to determine typical properties and frequencies versus running speed. A small generic rotor was run with a flexible case with parametric variations in casing properties for comparison with a rotor attached to rigid supports. A program for the IBM personal computer for interactive evaluation of rotors and casings is developed. The Root locus method is extended for use in rotor dynamics for symmetrical systems by transforming all motion and coupling into a single plane and using a 90 degree criterion when plotting loci.

  2. A Trade-off Study of Tilt Rotor Aircraft versus Helicopters Using VASCOMP 2 and HESCOMP

    DTIC Science & Technology

    1986-03-01

    PASSENGER TILT ROTOR --------------------- 42 r. 25-PASSENGER TILT ROTOR --------------------- 61 V. DESCRIPTION OF EXPERIMENTS...44-PAX TILT ROTOR --- 43 5. BELL/BOEING VERTOL 25-PASSENGER TILT ROTOR ------------ 61 6. COMPARISON OF BELL/BOEING & VASCOMP TILT ROTOR -------- 62...4 4a 0 " 00 4z w 00 o.~ .n w C o >4 Z-U 0H tW VA 4E- w0 Z0CE >E-%z Z 61 oc W ) 1 0000Z 00 X 4( 00 H w4 Q UE In 0 P w 0: z E- ’i -4 00 4H 0N~ 04 o n0

  3. Electrical machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice directionmore » from the respective orifices to the inner wall.« less

  4. Flow interaction and noise from a counter rotating propeller

    NASA Technical Reports Server (NTRS)

    Chung, Jin-Deog; Walls, James L.; Nagel, Robert T.

    1991-01-01

    The aerodynamic interaction between the forward and rear rotors in a counter rotating propeller (CRP) system, has been examined using a conditional sampling technique applied to three-dimensional thermal anemometer data. The technique effectively freezes the rotors in any desired relative position and provides the inter-rotor flow field. Axial, radial and circumferential mean flow between rotors is shown relative to the 'fixed' forward rotor for various 'fixed' aft rotor positions. Acoustic far field noise data have also been collected for the same operating conditions. The acoustic results are presented with emphasis on the blade passing frequencies and interaction tone of the CRP.

  5. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1986-01-01

    This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.

  6. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  7. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    NASA Astrophysics Data System (ADS)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  8. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  9. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  10. Initial results from the NASA Lewis wave rotor experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Fronek, Dennis

    1993-01-01

    Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.

  11. Initial results from the NASA-Lewis wave rotor experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Fronek, Dennis

    1993-01-01

    Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.

  12. Causal Scale of Rotors in a Cardiac System

    NASA Astrophysics Data System (ADS)

    Ashikaga, Hiroshi; Prieto-Castrillo, Francisco; Kawakatsu, Mari; Dehghani, Nima

    2018-04-01

    Rotors of spiral waves are thought to be one of the potential mechanisms that maintain atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral waves. In this study, we aimed to elucidate the causal relationship between rotors and spiral waves in a numerical model of cardiac excitation. To accomplish the aim, we described the system in a series of spatiotemporal scales by generating a renormalization group, and evaluated the causal architecture of the system by quantifying causal emergence. Causal emergence is an information-theoretic metric that quantifies emergence or reduction between micro- and macro-scale behaviors of a system by evaluating effective information at each scale. We found that the cardiac system with rotors has a spatiotemporal scale at which effective information peaks. A positive correlation between the number of rotors and causal emergence was observed only up to the scale of peak causation. We conclude that rotors are not the universal mechanism to maintain spiral waves at all spatiotemporal scales. This finding may account for the conflicting benefit of rotor ablation in clinical studies.

  13. Noise produced by turbulent flow into a rotor: Theory manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1989-01-01

    An analysis is presented for the calculation of noise produced by turbulent flow into a helicopter rotor. The method is based on the analysis of Amiet for the sound produced by an airfoil moving in rectilinear motion through a turbulent flow field. The rectilinear motion results are used in a quasi-steady manner to calculate the instantaneous spectrum of the rotor noise at any given rotor position; the overall spectrum is then found by averaging the instantaneous spectrum over all rotor azimuth angles. Account is taken of the fact that the rotor spends different amounts of retarded time at different rotor positions. Blade to blade correlation is included in the analysis, leading to harmonics of blade passing frequency. The spectrum of the turbulence entering the rotor is calculated by applying rapid distortion theory to an isotropic turbulence spectrum, assuming that the turbulence is stretched as it is pulled into the rotor. The inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. The analytical basis is provided for a module which was incorporated in NASA's ROTONET helicopter noise prediction program.

  14. Investigation of Rotor-Airframe Interaction Noise Associated with Small-Scale Rotary-Wing Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.

    2017-01-01

    In this study, hover acoustic measurements are taken on isolated rotor-airframe configurations representative of smallscale, rotary-wing unmanned aircraft systems (UAS). Each rotor-airframe configuration consists of two fixed-pitch blades powered by a brushless motor, with a simplified airframe geometry intended to represent a generic multicopter arm. In addition to acoustic measurements, CFD-based aeroacoustic predictions are implemented on a subset of the experimentally tested rotor-airframe configurations in an effort to better understand the noise content of the rotor-airframe systems. Favorable agreements are obtained between acoustic measurements and predictions, based on both time- and frequency-domain post-processing techniques. Results indicate that close proximity of airframe surfaces result in the generation of considerable tonal acoustic content in the form of harmonics of the rotor blade passage frequency (BPF). Analysis of the acoustic prediction data shows that the presence of the airframe surfaces can generate noise levels either comparable to or greater than the rotor blade surfaces under certain rotor tip clearance conditions. Analysis of the on-surface Ffowcs Williams and Hawkings (FW-H) source terms provide insight as to the predicted physical noise-generating mechanisms on the rotor and airframe surfaces.

  15. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  16. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  17. Method of manufacturing battery plate groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marui, T.; Uwani, T.

    A method is described of manufacturing battery plate groups which comprises (a) providing a pliable, smooth, continuous glass fiber mat which has a predetermined thickness, (b) providing a pair of plastic rotors which are aligned in parallel, the rotors including circumferential surfaces and equal numbers of projections extending outwardly from their circumferential surfaces a distance of between 0.7 mm and 2mm, (c) spacing the rotors apart such that a clearance is provided between the projections on one rotor and the circumferential surface of the other rotor which is between 1/3 and 1/2 the predetermined thickness of the glass fiber mat,more » (d) rotating both the rotors such that the projections from one rotor are displaced by half a pitch from the projections from the other rotor, (e) passing the glass fiber mat between the rotors such that the projections thereon form alternately-directed folding habits therein at regular intervals along its length and to provide interconnected separator portions which are aligned in an accordion-like fashion, (f) providing an alternating series of positive and negative battery plates on only one side of the interconnected separator portions, and (g) sequentially inserting the positive and negative battery plates between adjacent separator portions.« less

  18. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    PubMed

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  19. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness

    NASA Astrophysics Data System (ADS)

    Wu, R. Q.; Zhang, W.; Yao, M. H.

    2018-02-01

    In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.

  20. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  1. Navier-Stokes flowfield computation of wing/rotor interaction for a tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian G.

    1993-01-01

    The download on the wing produced by the rotor-induced downwash of a tilt rotor aircraft in hover is of major concern because of its severe impact on payload-carrying capability. A method has been developed to help gain a better understanding of the fundamental fluid dynamics that causes this download, and to help find ways to reduce it. In particular, the method is employed in this work to analyze the effect of a tangential leading edge circulation-control jet on download reduction. Because of the complexities associated with modeling the complete configuration, this work focuses specifically on the wing/rotor interaction of a tilt rotor aircraft in hover. The three-dimensional, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts both a radical and an azimuthal distribution of pressure rise and swirl to the flowfield. A momentum theory blade element analysis of the rotor is incorporated into the Navier-Stokes solution method. Solution blanking at interior points of the mesh has been shown here to be an effective technique in introducing the effects of the rotor and tangential leading edge jet. Results are presented both for a rotor alone and for wing/rotor interaction. The overall mean characteristics of the rotor flowfield are computed including the flow acceleration through the rotor disk, the axial and swirl velocities in the rotor downwash, and the slipstream contraction. Many of the complex tilt rotor flow features are captured including the highly three-dimensional flow over the wing, the recirculation fountain at the plane of symmetry, wing leading and trailing edge separation, and the large region of separated flow beneath the wing. Mean wing surface pressures compare fairly well with available experimental data, but the time-averaged download/thrust ratio is 20-30 percent higher than the measured value. The discrepancy is due to a combination of factors that are discussed. Leading edge tangential blowing, of constant strength along the wing span, is shown to be effective in reducing download. The jet serves primarily to reduce the pressure on the wing upper surface. The computation clearly shows that, because of the three-dimensionality of the flowfield, optimum blowing would involve a spanwise variation in blowing strength.

  2. 75 FR 21523 - Airworthiness Standards; Rotor Overspeed Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... would establish uniform rotor overspeed design and test requirements for aircraft engines and... establishing one harmonized standard requiring: (1) Rotors be designed with a burst/failure speed that exceeds... also establish uniform standards for the design and testing of engine rotor parts in the United States...

  3. 14 CFR 33.27 - Turbine, compressor, fan, and turbosupercharger rotor overspeed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction..., compressor, turbine, and turbosupercharger rotor, the applicant must establish by test, analysis, or a... integrity of such a rotor. (1) Test rotors used to demonstrate compliance with this section that do not have...

  4. 14 CFR 33.27 - Turbine, compressor, fan, and turbosupercharger rotor overspeed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction..., compressor, turbine, and turbosupercharger rotor, the applicant must establish by test, analysis, or a... integrity of such a rotor. (1) Test rotors used to demonstrate compliance with this section that do not have...

  5. 14 CFR 33.27 - Turbine, compressor, fan, and turbosupercharger rotor overspeed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction..., compressor, turbine, and turbosupercharger rotor, the applicant must establish by test, analysis, or a... integrity of such a rotor. (1) Test rotors used to demonstrate compliance with this section that do not have...

  6. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  7. Rotor Aerodynamics in Ground Effect at Low Advance Ratios.

    DTIC Science & Technology

    1982-07-27

    the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or

  8. Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1975-01-01

    The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.

  9. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    DTIC Science & Technology

    2010-05-01

    the pitch link for each rotor blade with an actuator so that the blade root pitch angles could be changed independently. This design was previously...with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. Analytical studies on IBC [8...rotor with coincident flap and lag articulation provided at the blade root by elastomeric bearings. This bearing, through the rotor spindle , also

  10. Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms.

    PubMed

    Nattel, Stanley; Xiong, Feng; Aguilar, Martin

    2017-09-01

    Treatment of atrial fibrillation (AF), the most common arrhythmia in clinical practice, remains challenging. Improved understanding of underlying mechanisms is needed to improve therapy. Functional re-entry is central to AF maintenance. The first detailed, quantitative theory of functional re-entry, the 'leading circle' model, was developed 40 years ago. Subsequently, an alternative paradigm based on 'spiral waves' has evolved. Spiral-wave generators, or 'rotors', have been identified using advanced mapping methods in experimental and clinical AF. A central tool in the analysis of spiral-wave rotors is the phase transformation, allowing for easier visualization of rotors and tracking of 'phase singularity' points at the rotor tip. In contrast to leading circle theory, which is expressed in terms familiar to (and easily understood by) cardiologists, the ideas needed to understand rotors are much more theoretical and harder for clinicians to apply. In this Review, we summarize the basic notions of phase mapping and spiral-wave rotors, and the ways in which rotor sources might be involved in AF maintenance. We discuss competing observations about the role of spatially confined rotors, short-lived rotors clustered at the edge of fibrotic zones, endocardial-epicardial interactive breeder properties and transmural re-entry, as well as studies underway to resolve them. We conclude with consideration of the clinical relevance of the issues discussed and their potential implications for the management of patients with AF.

  11. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.

  12. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislavskii, L.Ya.

    Large turbogenerators with built-up rotor designs operating in U.S.S.R. power plants were studied to obtain data on reliability, failures, and performance characteristics for normal and abnormal operating conditions. Data for 23 turbogenerators manufactured by domestic and foreign firms were analyzed. The studies showed that the reliability factor of the joints of built-up rotors should be equal to approximately 6 to provide a monolithic built-up rotor. At lower built-up rotor joint reliability factors, weakening of the joints occurred during their operation, leading to extreme generator vibration, damage to the insulating sockets at the joint, burning of the joints and sometimes breakagemore » of the screws holding the joints. When it is necessary to restore the monolithic nature of the joints of a rotor its design should permit replacement of the tightening devices (tie rods, screws). If this is not possible the built-up rotor becomes unsuitable for operation. During abnormal conditions there are maximum temperatures in the joint of a built-up rotor about 50 percent greater than in the end part of the rotor. Thus special structural measures are necessary to improve the electrical contact in the joints of the built-up parts of the rotors of large turbogenerators. In all cases where they are not dictated by construction requirements (supercooled turbogenerators), the use of built-up rotors is unfavorable. (LCL)« less

  14. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1992-01-01

    A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.

  15. Assessment of community noise for a medium-range airplane with open-rotor engines

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Shur, M. L.; Travin, A. K.; Belyaev, I. V.; Zamtfort, B. S.; Medvedev, Yu. V.

    2017-11-01

    Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff-landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.

  16. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (further experiments with progressing/regressing rotor flapping modes), Phase 7-C

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1973-01-01

    The experiments with progressing/regressing forced rotor flapping modes have been extended in several directions and the data processing method has been considerably refined. The 16 inch hingeless 2-bladed rotor model was equipped with a new set of high precision blades which removed previously encountered tracking difficulties at high advance ratio, so that tests up to .8 rotor advance ratio could be conducted. In addition to data with 1.20 blade natural flapping frequency data at 1.10 flapping frequency were obtained. Outside the wind tunnel, tests with a ground plate located at different distances below the rotor were conducted while recording the dynamic downflow at a station .2R below the rotor plane with a hot wire anemometer.

  17. Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point-speed and least squares procedures

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.

    1972-01-01

    The practical aspects of balancing real, flexible rotors were investigated through inclusion of rotor out-of-roundness data at the measurement probe locations. The computer program was demonstrated to be fully capable of handling out-of-roundness data in the investigation. Testing was performed predominantly with a machine having a 41-inch long, 126-pound rotor. This rotor was operated over a speed range encompassing three rotor-bearing system critical speeds. Both balancing procedures were evaluated for several different conditions of initial rotor unbalance. Safe (and slow) passage through all the critical speeds was obtained after two or three balancing runs in most cases. The Least Squares procedure was found to be generally equivalent in capability to the Exact Point-Speed procedure for the configurations studies. (U)

  18. Mach number scaling of helicopter rotor blade/vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  19. Incompressible lifting-surface aerodynamics for a rotor-stator combination

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.

    1984-01-01

    Current literature on the three dimensional flow through compressor cascades deals with a row of rotor blades in isolation. Since the distance between the rotor and stator is usually 10 to 20 percent of the blade chord, the aerodynamic interference between them has to be considered for a proper evaluation of the aerothermodynamic performance of the stage. A unified approach to the aerodynamics of the incompressible flow through a stage is presented that uses the lifting surface theory for a compressor cascade of arbitrary camber and thickness distribution. The effects of rotor stator interference are represented as a linear function of the rotor and stator flows separately. The loading distribution on the rotor and stator flows separately. The loading distribution on the rotor and stator blades and the interference factor are determined concurrently through a matrix iteration process.

  20. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.

    1986-01-01

    Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);

  1. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  2. Initial design of 12S-10P outer-rotor field excitation flux switching motor with different rotor width

    NASA Astrophysics Data System (ADS)

    Othman, Syed Muhammad Naufal bin Syed; Sulaiman, Erwan bin; Husin, Zhafir Aizat; Khan, Faisal; Mazlan, Mohamed Mubin Aizat

    2015-05-01

    This paper proposes an initial design of 12 slot, 10 pole outer-rotor field-excitation flux switching motor (FEFSM) with two different rotor width based from 2 different formula to design the rotor width. Hence, initial design include the three coil test to determine the U, W, V-phase, the flux strengthening and weakening, flux at various armature coil and field-excitation coil current, and finally the torque at various JA and JE. As for the materials, the stator and rotor consists of steel sheets made of electromagnetic steels, copper for armature coils and field excitation coils as the only field for magnetic flux source. There will be some design specification and restriction on outer-rotor FEFSM based on 2D-Finite Element Analysis will be applied to design the proposed machine.

  3. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, Peter B.; Myers, Wendell B.

    1995-01-01

    A ceramic helical rotor expander using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1100.degree. C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals.

  4. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, P.B.; Myers, W.B.

    1995-02-28

    A ceramic helical rotor expander is disclosed using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1,100 C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals. 3 figs.

  5. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    PubMed

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  6. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.

  7. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    NASA Astrophysics Data System (ADS)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  8. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  9. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuselage, landing gear, and rotor pylon structures. 27.549 Section 27.549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... rotor pylon structure must be designed as prescribed in this section. Resultant rotor forces may be...

  10. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuselage, landing gear, and rotor pylon structures. 27.549 Section 27.549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... rotor pylon structure must be designed as prescribed in this section. Resultant rotor forces may be...

  11. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuselage, landing gear, and rotor pylon structures. 27.549 Section 27.549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... rotor pylon structure must be designed as prescribed in this section. Resultant rotor forces may be...

  12. Method for VAWT Placement on a Complex Building Structure

    DTIC Science & Technology

    2013-06-01

    85 APPENDIX C: ANSYS CFX SPECIFICAITONS FOR WIND FLOW ANALYSIS .....87 APPENDIX D: SINGLE ROTOR ANALYSIS ANSYS CFX MESH DETAILS...89 APPENDIX E: SINGLE ROTOR ANALYSIS, ANSYS CFX SPECIFICS .....................91 APPENDIX F: DETAILED RESULTS OF SINGLE ROTOR...101 APPENDIX I: DUAL ROTOR ANALYSIS- ANSYS CFX SPECIFICATIONS (6 BLADED VAWTS

  13. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  14. Program user's manual for an unsteady helicopter rotor-fuselage aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.

    1988-01-01

    The Rotor-Fuselage Analysis is a method of calculating the aerodynamic reaction between a helicopter rotor and fuselage. This manual describes the structure and operation of the computer programs that make up the Rotor-Fuselage Analysis, programs which prepare the input and programs which display the output.

  15. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must meet...

  16. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must meet...

  17. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must meet...

  18. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must meet...

  19. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must meet...

  20. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  1. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOEpatents

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  2. Vibration limiting of rotors by feedback control

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.; Moore, J. W.; Bradley, P. L.; Allaire, P. E.

    1982-01-01

    Experimental findings of a three mass rotor with four channels of feedback control are reported. The channels are independently controllable with force being proportional to the velocity and/or instantaneous displacement from equilibrium of the shaft at the noncontacting probe locations (arranged in the vertical and horizontal attitudes near the support bearings). The findings suggest that automatic feedback control of rotors is feasible for limiting certain vibration levels. Control of one end of a rotor does afford some predictable vibration limiting of the rotor at the other end.

  3. On-board Model Predictive Control of a Quadrotor Helicopter: Design, Implementation, and Experiments

    DTIC Science & Technology

    2012-12-13

    speed, as the attached rotor effects momentum change of the surrounding air. However, we have in mind applications (e.g. mobile sensor networks... rotors is in play. At any rate, it suffices to note that the thrust from a given rotor is effectively proportional to its rate of rotation; indeed the...negligible impact on lift force when the main rotor is within 2 rotor diameters of the ground (Leishman, 2006). This effect has also been noted in other

  4. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  5. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Influence of rubbing on rotor dynamics, part 2

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.

  7. Subsynchronous instability of a geared centrifugal compressor of overhung design

    NASA Technical Reports Server (NTRS)

    Hudson, J. H.; Wittman, L. J.

    1980-01-01

    The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.

  8. Design of helicopter rotors to noise constraints

    NASA Technical Reports Server (NTRS)

    Schaeffer, E. G.; Sternfeld, H., Jr.

    1978-01-01

    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.

  9. Rotor fragment protection program: Statistics on aircraft gas turbine ngine rotor failures that occurred in U.S. commercial aviation during 1978

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Salvino, J. T.

    1981-01-01

    This report presents statistical information relating to the number of gas turbine engine rotor failures which occurred in commercial aviation service use. The predominant failure involved blade fragments, 82.4 percent of which were contained. Although fewer rotor rim, disk, and seal failures occurred, 33.3%, 100% and 50% respectively were uncontained. Sixty-five percent of the 166 rotor failures occurred during the takeoff and climb stages of flight.

  10. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  11. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  12. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  13. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.

    1973-01-01

    A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.

  14. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    NASA Astrophysics Data System (ADS)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  15. Blade attachment assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, andmore » retains the blade in the adaptor member, and the assembly in the rotor wheel.« less

  16. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  17. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  18. Substantially parallel flux uncluttered rotor machines

    DOEpatents

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  19. Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.

    1993-01-01

    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler Velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels.

  20. Description of the US Army small-scale 2-meter rotor test system

    NASA Technical Reports Server (NTRS)

    Phelps, Arthur E., III; Berry, John D.

    1987-01-01

    A small-scale powered rotor model was designed for use as a research tool in the exploratory testing of rotors and helicopter models. The model, which consists of a 29 hp rotor drive system, a four-blade fully articulated rotor, and a fuselage, was designed to be simple to operate and maintain in wind tunnels of moderate size and complexity. Two six-component strain-gauge balances are used to provide independent measurement of the rotor and fuselage aerodynamic loads. Commercially available standardized hardware and equipment were used to the maximum extent possible, and specialized parts were designed so that they could be fabricated by normal methods without using highly specialized tooling. The model was used in a hover test of three rotors having different planforms and in a forward flight investigation of a 21-percent-scale model of a U.S. Army scout helicopter equipped with a mast-mounted sight.

  1. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  2. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  3. Effects of simulated ice on the performance of price type-AA current meter rotors

    USGS Publications Warehouse

    Fulford, Janice M.

    1994-01-01

    Slush ice readily adheres to the standard metal rotor of the winter Price type-AA current meter and affects the ability of the meter to measure the flow velocity accurately. Tests conducted at the U.S. Geological Survey Hydraulics Laboratory at Stennis Space Center, Mississippi, attempt to quantify the effects of slush ice on the performance of standard Price type-AA meter metal rotors. Test data obtained for rotors filled with simulated slush are compared with data for solid-cup polymer and standard hollow-cup metal rotors. Partial filling of the cups only marginally affects rotor performance at velocities greater than 15.24 centimeters per second. However, when cups are filled or over-filled with simulated slush, rotor performance is noticeably affected. Errors associated with slush over-filling and filling of cups are also significant when flows are angled vertically.

  4. Performance and power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor on the Mod-O turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, Robert D.; Ensworth, Clinton B. F., III; Miller, Dean R.

    1987-01-01

    Tests were conducted on the DOE/NASA mod-0 horizontal axis wind turbine to compare and evaluate the performance and the power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor. The two aileron-controlled rotor configurations used 20 and 38 percent chord ailerons, while the tip-controlled rotor had a pitchable blade tip. The ability of the control surfaces to regulate power was determined by measuring the change in power caused by an incremental change in the deflection angle of the control surface. The data shows that the change in power per degree of deflection angle for the tip-controlled rotor was four times the corresponding value for the 2- percent chord ailerons. The root mean square power deviation about a power setpoint was highest for the 20 percent chord aileron, and lowest for the 38 percent chord aileron.

  5. Fan noise reduction achieved by removing tip flow irregularities behind the rotor - forward arc test configurations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Mackinnon, M. J.

    1984-01-01

    The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction.

  6. Demonstration of cardiac rotor and source mapping techniques in embryonic chick monolayers

    NASA Astrophysics Data System (ADS)

    You, Min Ju; Langfield, Peter; Campanari, Lucas; Dobbs, Matt; Shrier, Alvin; Glass, Leon

    2017-09-01

    Excitable media, such as the heart, display propagating waves with different geometries including target patterns and rotors (spiral waves). Collision of two waves leads to annihilation of both. We present algorithms for data processing and analysis to identify the core of rotors. In this work, we show that as the spatial sampling resolution decreases it becomes increasingly difficult to identify rotors—there are instances of false negatives and false positives. These observations are relevant to current controversies concerning the role of rotors in the initiation, maintenance, and treatment of cardiac arrhythmias, especially atrial fibrillation. Currently some practitioners target the core of rotors for ablation, but the effectiveness of this procedure has been questioned. In view of the difficulties inherent in the identification of rotors, we conclude that methods to identify rotors need to first be validated prior to assessing the efficacy of ablation.

  7. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  8. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  9. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  10. HPOTP low-speed flexible rotor balancing, phase 1

    NASA Technical Reports Server (NTRS)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  11. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  12. Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters. [momentum, vortices, and potential theory

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1979-01-01

    The concept of rotary-wing aircraft in general is defined. The energy effectiveness of helicopters is compared with that of other static thrust generators in hover, as well as with various air and ground vehicles in forward translation. The most important aspects of rotor-blade dynamics and rotor control are reviewed. The simple physicomathematical model of the rotor offered by the momentum theory is introduced and its usefulness and limitations are assessed. The combined blade-element and momentum theory approach, which provides greater accuracy in performance predictions, is described as well as the vortex theory which models a rotor blade by means of a vortex filament or vorticity surface. The application of the velocity and acceleration potential theory to the determination of flow fields around three dimensional, non-rotating bodies as well as to rotor aerodynamic problems is described. Airfoil sections suitable for rotors are also considered.

  13. Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab Paulas

    2018-04-01

    In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.

  14. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  15. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  16. Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures

    NASA Astrophysics Data System (ADS)

    Galal, Ahmed Mohamed; Kanemoto, Toshiaki

    This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.

  17. Aerodynamic Performance of a 0.27-Scale Model of an AH-64 Helicopter with Baseline and Alternate Rotor Blade Sets

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1990-01-01

    Performance of a 27 percent scale model rotor designed for the AH-64 helicopter (alternate rotor) was measured in hover and forward flight and compared against and AH-64 baseline rotor model. Thrust, rotor tip Mach number, advance ratio, and ground proximity were varied. In hover, at a nominal thrust coefficient of 0.0064, the power savings was about 6.4 percent for the alternate rotor compared to the baseline. The corresponding thrust increase at this condition was approx. 4.5 percent which represents an equivalent full scale increase in lift capability of about 660 lbs. Comparable results were noted in forward flight except for the high thrust, high speed cases investigated where the baseline rotor was slightly superior. Reduced performance at the higher thrusts and speeds was likely due to Reynolds number effects and blade elasticity differences.

  18. Design of plywood and paper flywheel rotors

    NASA Astrophysics Data System (ADS)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  19. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  20. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purpose of this paragraph, an affected power input includes all parts of the rotor drive system which can... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27...

  1. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purpose of this paragraph, an affected power input includes all parts of the rotor drive system which can... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27...

  2. Energy characteristics of Darrieus rotor ( review)

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.

    2010-09-01

    Presented below is the review of the results of experimental studies of energy characteristics of Darrieus rotor with vertical rotation axis. Influence of main geometry parameters of the rotor on its energy characteristics has been analyzed. It is shown that Darrieus rotor may have the higher level of energy characteristics than the best propeller wind turbines.

  3. Open Rotor Development

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  4. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    DTIC Science & Technology

    2016-01-22

    and Syal (Ref. 14) developed figure of merit expressions for a coaxial rotor for four different operating conditions; the results are used in the...helicopter rotor,” NACA TN- 2318, March 1951. 14Leishman, J. G. and Syal , M., “Figure of Merit Definition for Coaxial Rotors,” Journal of the American

  5. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  6. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  7. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  8. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  9. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...

  10. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...

  11. Parametric Study and Design of Tab Shape for Improving Aerodynamic Performance of Rotor Blade

    NASA Astrophysics Data System (ADS)

    Han, Jaeseong; Kwon, Oh Joon

    2018-04-01

    In the present study, the parametric study was performed to analyze the effect of the tab on the aerodynamic performance and characteristics of rotor blades. Also, the tab shape was designed to improve the aerodynamic performance of rotor blades. A computational fluid dynamics solver based on three-dimensional Reynolds averaged Navier-Stokes equation using an unstructured mesh was used for the parametric study and the tab design. For airfoils, the effect of length and angle of a tab was studied on the aerodynamic characteristics of airfoils. In addition, including those parameters, the effect of a span of a tab was studied for rotor blades in hovering flight. The results of the parametric study were analyzed in terms of change of the aerodynamic performance and characteristics to understand the effect of a tab. Considering the analysis, the design of tab shape was conducted to improve the aerodynamic performance of rotor blades. The simply attached tab to trailing edge of the rotor blades increases the thrust of the rotor blades without significant changing of aerodynamic characteristics of the rotor blades in hovering and forward flight.

  12. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  13. Analysis of the aerodynamic performance of the multi-rotor concept

    NASA Astrophysics Data System (ADS)

    Chasapogiannis, Petros; Prospathopoulos, John M.; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.

    2014-06-01

    The concept of a large (~20MW) multi-rotor wind turbine intended for offshore installations is analysed with respect to its aerodynamic performance. The effect of closely clustering rotors on a single actuator disk is estimated using two different modelling approaches: a CFD solver in which the rotors are simulated as distinct actuator disks and a vortex based solver in which the blade geometry is exactly considered. In the present work, a system of 7 rotors is simulated with a centre to centre spacing of 1.05D. At nominal conditions (tip speed ratio=9) both models predict an increase in power of ~3% alongside with an increase in thrust of ~1.5%. The analysis of the flow field indicates that in the 7 rotor system the individual wakes merge into one wake at ~2D and that flow recovery starts at approximately the same downstream distance as in the single rotor case. As regards the dynamic implications of the close spacing of the rotors it was found that there is an increase in the loading amplitude ranging from 0.30-2.13% at blade level in rated conditions.

  14. Forward Swept Compressor Testing

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1997-01-01

    A new forward-swept rotor designed by Allison Engine Company was tested in NASA Lewis Research Center's CE-18 facility. This testing was a follow-on project sponsored by NASA Lewis to study range enhancements in small turbomachinery. The test was conducted against a baseline rotor design that was also tested in CE-18. The design point for the rotor was a rotor pressure ratio of 2.69, a mass flow of 10.52 lbm/sec, and an adiabatic efficiency of 89.1 percent. Test data indicate that the rotor met the pressure ratio of 2.69 with a 10.77 lbm/sec flow rate, a 87.5-percent adiabatic efficiency, and a 19.5-percent stall margin. The baseline rotor achieved a pressure ratio of 2.69 at a 10.77 lbm/sec flow rate with a stall margin of only 9.2 percent and an adiabatic efficiency of 87.0 percent. The major differences are the significant stall margin increase and the substantially higher off-design peak efficiencies of the forward-swept rotor. The substantially higher performance over the baseline rotor design makes the new design a viable technology candidate for future products.

  15. Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.

  16. Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.

    1990-01-01

    Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.

  17. Drive system for the retraction/extension of variable diameter rotor systems

    NASA Technical Reports Server (NTRS)

    Gmirya, Yuriy (Inventor)

    2003-01-01

    A drive system for a variable diameter rotor (VDR) system includes a plurality of rotor blade assemblies with inner and outer rotor blade segments. The outer blade segment being telescopically mounted to the inner blade segment. The VDR retraction/extension system includes a drive housing mounted at the root of each blade. The housing supports a spool assembly, a harmonic gear set and an electric motor. The spool assembly includes a pair of counter rotating spools each of which drive a respective cable which extends through the interior of the inboard rotor blade section and around a pulley mounted to the outboard rotor blade section. In operation, the electric motor drives the harmonic gear set which rotates the counter rotating spools. Rotation of the spools causes the cables to be wound onto or off their respective spool consequently effecting retraction/extension of the pulley and the attached outboard rotor blade section relative the inboard rotor blade section. As each blade drive system is independently driven by a separate electrical motor, each independent VDR blade assembly is independently positionable.

  18. A comparison of theory and experiment for coupled rotor body stability of a bearingless rotor model in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.

    1988-01-01

    Seven cases were selected for correlation from a 1/5.86 Froude-scale experiment that examined several rotor designs which were being considered for full-scale flight testing as part of the Bearingless Main Rotor (BMR) program. The model rotor hub used in these tests consisted of back-to-back C-beams as flexbeam elements with a torque tube for pitch control. The first four cases selected from the experiment were hover tests which examined the effects on rotor stability of variations in hub-to-flexbeam coning, hub-to-flexbeam pitch, flexbeam-to-blade coning, and flexbeam-to-blade pitch. The final three cases were selected from the forward flight tests of optimum rotor configuration as defined during the hover test. The selected cases examined the effects of variations in forward speed, rotor speed, and shaft angle. Analytical results from Bell Helicopter Textron, Boeing Vertol, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor-to-fair to fair-to-good.

  19. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  20. Frequency Analysis of Wing-Rotor System Considering Flexibility in Capsule Based on High-Accurate Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiayang; Zhu, Ming; Zhao, Meijuan; Wu, Zhe

    2018-05-01

    Based on a typical wing-rotor thrust model on the airship, the dynamic influence of the gyroscopic effects from the tip rotor acting on the overall coupled system has been analyzed. Meanwhile, the flexibility at the capsule boundary has been studied, as well. Hamilton's principle is employed to derive the general governing equations and the numerical Rayleigh-Ritz method is finally chosen in actual frequency computations. A new set of shape functions are put forward and verified which take most of the couplings among dimensions into account. The parameter studies are also conducted to make deep investigations. The results demonstrate that the inherent frequencies are significantly affected by the rotor speed and the flexible capsule condition. When rotor revolves, the modal shapes have reached into complex states and the components of each mode will change with the increment of rotor speed. The flexibility will also greatly reduce the entire frequencies compared with the rigid case. It is also demonstrated that the inherent property will be significantly affected by the mounting geometry, rotor inertia, the structural stiffness, and rotor speed.

  1. Effects of rotor parameter variations on handling qualities of unaugmented helicopters in simulated terrain flight

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Dugan, D. D.; Chen, R. T. N.; Gerdes, R. M.

    1980-01-01

    A coordinated analysis and ground simulator experiment was performed to investigate the effects on single rotor helicopter handling qualities of systematic variations in the main rotor hinge restraint, hub hinge offset, pitch-flap coupling, and blade lock number. Teetering rotor, articulated rotor, and hingeless rotor helicopters were evaluated by research pilots in special low level flying tasks involving obstacle avoidance at 60 to 100 knots airspeed. The results of the experiment are in the form of pilot ratings, pilot commentary, and some objective performance measures. Criteria for damping and sensitivity are reexamined when combined with the additional factors of cross coupling due to pitch and roll rates, pitch coupling with collective pitch, and longitudinal static stability. Ratings obtained with and without motion are compared. Acceptable flying qualities were obtained within each rotor type by suitable adjustment of the hub parameters, however, pure teetering rotors were found to lack control power for the tasks. A limit for the coupling parameter L sub q/L sub p of 0.35 is suggested.

  2. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    NASA Technical Reports Server (NTRS)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  3. Inhomogeneity of Microstructure and Damping Capacity of a FC25 Disc-Brake Rotor and Their Interrelationship

    NASA Astrophysics Data System (ADS)

    Park, Jongbin; Han, Jeongho; Lee, Seung-Joon; Yi, Kyoungdon; Kwon, Chelwoong; Lee, Young-Kook

    2016-08-01

    The objective of the present study was to investigate the inhomogeneity of microstructure and damping capacity of a FC25 disc-brake rotor made of gray cast iron (GCI) and their interrelationship. The rotor had inhomogeneous microstructure due to different cooling rates caused by the position of inlets in a mold during casting. The volume fraction and size of graphite decreased with increasing cooling rate. A maximum deviation of the volume fraction of graphite within the rotor was approximately 2 pct, whereas that of the total perimeter of graphite per unit area was approximately 33 pct. Damping capacities measured at the first vibrational mode of both the real rotor and cantilever specimens, which were taken from four different regions within the rotor, depended on the location within the rotor. This result indicates that the damping capacity of the rotor is influenced by the inhomogeneous microstructure; particularly, the damping capacity was proportional to the total perimeter of graphite per unit area. Therefore, it was concluded that the damping of the GCI rotor used in the present study occurs primarily by the viscous or plastic flow at the interphase boundaries between the pearlite matrix and graphite particles at least at the frequencies of below 1140 Hz.

  4. Rotor mapping and ablation to treat atrial fibrillation

    PubMed Central

    Zaman, Junaid A.B.; Peters, Nicholas S.; Narayan, Sanjiv M.

    2015-01-01

    Purpose of review Rotors have long been postulated to drive atrial fibrillation, but evidence has been limited to animal models. This changed recently with the demonstration using focal impulse and rotor modulation (FIRM) mapping that rotors act as human atrial fibrillation sources. This mechanistic approach to diagnosing the causes of atrial fibrillation in individual patients has been supported by substantially improved outcomes from FIRM-guided ablation, resulting in increased attention to rotors as therapeutic targets. Recent findings In this review, we outline the pathophysiology of rotors in animal and in-silico studies of fibrillation, and how this motivated FIRM mapping in humans. We highlight the characteristics of rotors in human atrial fibrillation, now validated by several techniques, with discussion on similar and discrepant findings between techniques. The interventional approaches to eliminate atrial fibrillation rotors are explained and the ablation results in latest studies using FIRM are discussed. Summary We propose that mapping localized sources for human atrial fibrillation, specifically rotors, is moving the field towards a unifying hypothesis that explains several otherwise contradictory observations in atrial fibrillation management. We conclude by suggesting areas of potential research that may reveal more about these critical sites and how these may lead to better and novel treatments for atrial fibrillation. PMID:25389649

  5. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  6. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  7. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  8. Design of an Advanced Wood Composite Rotor and Development of Wood Composite Blade Technology

    NASA Technical Reports Server (NTRS)

    Stroebel, Thomas; Dechow, Curtis; Zuteck, Michael

    1984-01-01

    In support of a program to advance wood composite wind turbine blade technology, a design was completed for a prototype, 90-foot diameter, two-bladed, one-piece rotor, with all wood/epoxy composite structure. The rotor was sized for compatibility with a generator having a maximum power rating of 4000 kilowatts. Innovative features of the rotor include: a teetering hub to minimize the effects of gust loads, untwisted blades to promote rotor power control through stall, joining of blades to the hub structure via an adhesive bonded structural joint, and a blade structural design which was simplified relative to earlier efforts. The prototype rotor was designed to allow flexibility for configuring the rotor upwind or downwind of the tower, for evaluating various types of teeter dampers and/or elastomeric stops, and with variable delta-three angle settings of the teeter shaft axis. The prototype rotor was also designed with provisions for installing pressure tap and angle of attack instrumentation in one blade. A production version rotor cost analysis was conducted. Included in the program were efforts directed at developing advanced load take-off stud designs for subsequent evaluation testing by NASA, development of aerodynamic tip brake concepts, exploratory testing of a wood/epoxy/graphite concept, and compression testing of wood/epoxy laminate, with scarf-jointed plies.

  9. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria

    PubMed Central

    Gonzales, Matthew J.; Vincent, Kevin P.; Rappel, Wouter-Jan; Narayan, Sanjiv M.; McCulloch, Andrew D.

    2014-01-01

    Aims The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. Methods and results A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. Conclusion These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap. PMID:25362167

  10. Electrogram fractionation in murine HL-1 atrial monolayer model.

    PubMed

    Umapathy, Karthikeyan; Masse, Stephane; Kolodziejska, Karolina; Veenhuyzen, George D; Chauhan, Vijay S; Husain, Mansoor; Farid, Talha; Downar, Eugene; Sevaptsidis, Elias; Nanthakumar, Kumaraswamy

    2008-07-01

    Complex fractionated atrial electrograms have been suggested as important targets for catheter ablation of atrial fibrillation. The etiology and the mechanism of these signals have not been completely elucidated because of limitations of interpretation of these signals in relation to simultaneously acquired signals in the neighboring atrial tissue. This study sought to study the origin of electrogram fractionation under the conditions of rotor formation and wave fragmentation, using atrial monolayer preparations. We performed optical mapping of 45 atrial monolayer preparations using a complementary metal oxide semiconductor (CMOS) Brainvision Ultima camera system (SciMedia-Brainvision, Tokyo, Japan). We observed stable rotors in 32 of the 45 recordings. The derived bipolar electrograms did not show complex fractionation at the core of the rotor in any of the 32 recordings. We were also able to show that 2 bipolar electrodes placed adjacent to the core of a stable rotor in a zone where there is no wave break will record electrical activity for the majority of the rotor's cycle length. In 13 of the 45 recordings, wave break or wave collision events were present. Of these, 8 of 13 recordings showed complex fractionation. In 19 of the 27, simulation of meandering rotors also showed complex fractionation. Complex fractionated electrograms can be recorded at sites of migrating rotors and wave break. No fractionation occurs at the core of a stable rotor. Electrograms that span the rotor cycle length and alternate between 2 bipoles that straddle the core can identify site of a stable rotor.

  11. AV-95 Sun Devil: High-Speed Military Rotorcraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The AV-95 Sun Devil must combine helicopter capabilities, such as vertical takeoff and landings (VTOL) and rotor-powered flight, along with long-duration cruise and high-speed dash capabilities unobtainable by conventional helicopters. To be able to perform both tasks, and perform them well, the AV-95 Sun Devil design incorporates several unconventional devices; the AV-95 uses two convertible turbofan engines, able to provide both shaft power for the main rotor and tall fan as well as jet thrust either separately or simultaneously. Other devices used for the AV-95 include a variable diameter main rotor and a blown flap. In helicopter mode, the AV-95 Sun Devil performs like a winged helicopter. The addition of wings to an attack helicopter results in two significant advantages. First, the addition of wings makes a helicopter more maneuverable than a wingless, but otherwise similar helicopter. Second, since the wings produce lift, rotor stall and compressibility effects can be significantly delayed at high tip velocities. In fixed-wing mode, the main rotor is completely off-loaded but slightly powered, and the rotor diameter has been minimized. The AV-95 Sun Devil has many advantages over other VTOL aircraft. The conversion process is simple and fast; conversion does not make the AV-95 vulnerable to enemy attack during conversion such as a tilt-wing or a tilt-rotor. Stop-rotor aircraft and a stowed rotor aircraft require heavy breaking of the rotor for conversion; this adds time for conversion and weight to the aircraft. Because the AV-95 never stops the rotor in flight, much weight is spared, and conversion is much simpler and faster.

  12. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model

    PubMed Central

    Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858

  13. Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    PubMed Central

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  14. Rotor Performance at High Advance Ratio: Theory versus Test

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  15. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  16. Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.

    2013-01-01

    A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.

  17. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  18. The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors

    NASA Astrophysics Data System (ADS)

    Haji, Zyad N.; Olutunde Oyadiji, S.

    2014-11-01

    A variety of approaches that have been developed for the identification and localisation of cracks in a rotor system, which exploit natural frequencies, require a finite element model to obtain the natural frequencies of the intact rotor as baseline data. In fact, such approaches can give erroneous results about the location and depth of a crack if an inaccurate finite element model is used to represent an uncracked model. A new approach for the identification and localisation of cracks in rotor systems, which does not require the use of the natural frequencies of an intact rotor as a baseline data, is presented in this paper. The approach, named orthogonal natural frequencies (ONFs), is based only on the natural frequencies of the non-rotating cracked rotor in the two lateral bending vibration x-z and y-z planes. The approach uses the cracked natural frequencies in the horizontal x-z plane as the reference data instead of the intact natural frequencies. Also, a roving disc is traversed along the rotor in order to enhance the dynamics of the rotor at the cracked locations. At each spatial location of the roving disc, the two ONFs of the rotor-disc system are determined from which the corresponding ONF ratio is computed. The ONF ratios are normalised by the maximum ONF ratio to obtain normalised orthogonal natural frequency curves (NONFCs). The non-rotating cracked rotor is simulated by the finite element method using the Bernoulli-Euler beam theory. The unique characteristics of the proposed approach are the sharp, notched peaks at the crack locations but rounded peaks at non-cracked locations. These features facilitate the unambiguous identification and locations of cracks in rotors. The effects of crack depth, crack location, and mass of a roving disc are investigated. The results show that the proposed method has a great potential in the identification and localisation of cracks in a non-rotating cracked rotor.

  19. A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise

    NASA Astrophysics Data System (ADS)

    Patel, Krishna

    As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used for predicting downstream propagating interaction noise.

  20. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation

    NASA Astrophysics Data System (ADS)

    Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer

    2018-01-01

    Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their preferential driving influence on fibrillatory modes.

  1. Prevalence and mechanism of rotor activation identified during atrial fibrillation by noncontact mapping: Lack of evidence for a role in the maintenance of atrial fibrillation.

    PubMed

    Yamabe, Hiroshige; Kanazawa, Hisanori; Ito, Miwa; Kaneko, Shozo; Ogawa, Hisao

    2016-12-01

    It remains unclear whether atrial fibrillation (AF) is maintained by the rotor. We evaluated the role of the rotor and examined its mechanism. Among 75 patients with AF (60 paroxysmal, 15 persistent AF) who underwent 3-dimensional noncontact left atrial mapping during AF, we examined the prevalence and location of rotor activation and elucidated its mechanism. Catheter ablation was performed in a stepwise fashion (linear roof lesion and complex fractionated atrial electrogram ablation after pulmonary vein [PV) isolation) until AF termination. Rotor activation was observed in 11 patients (14.7%; 10 paroxysmal and 1 persistent AF) (tachycardia cycle length 160.0 ± 19.8 ms). Rotors were observed transiently (duration 6128 ± 9094 ms) during AF at the roof (n = 5), septum (n = 3), and ostium of the left superior PV (n = 3). Five rotors circulated in clockwise and 6 in counterclockwise directions. The length of the block line at the center of the rotor was 15.2 ± 6.9 mm. The electrograms at the block line showed low-amplitude multiple deflections (n = 7) or double potentials (n = 4), and the amplitudes during rotor activation were significantly lower than those during sinus rhythm (0.27 ± 0.18 mV vs 1.22 ± 0.92 mV; P < .01). No conduction disturbances were found during sinus rhythm, suggesting that the central line of block was formed functionally. AF was terminated by PV isolation alone without additional lesions in patients with rotors. Functionally formed rotor activation was observed during AF in a limited number of patients. These rotor activations may not be related to AF maintenance, but rather may reflect a transient organization of random propagation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Aerodynamic Evaluation of Two Compact Radial-Inflow Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Simonyi, P. Susan; Roelke, Richard J.; Stabe, Roy G.; Nowlin, Brentley C.; Dicicco, Danielle

    1995-01-01

    The aerodynamic evaluation of two highly loaded compact radial turbine rotors was conducted at the NASA Lewis Research Center Small Engine Component Test Facility (SECTF). The experimental results were used for proof-of-concept, for modeling radial inflow turbine rotors, and for providing data for code verification. Two rotors were designed to have a shorter axial length, up to a 10-percent reduced diameter, a lighter weight, and equal or higher efficiencies with those of conventional radial inflow turbine rotors. Three configurations were tested: rotor 1, having a 40-percent shorter axial length, with the design stator (stator 1); rotor 1 with the design stator vanes closed down (stator 2); and rotor 2, slightly shorter axially and having higher loading, with stator 2. The stator had 36 vanes and the rotors each had 14 solid blades. Although presently uncooled, the rotor blades were designed for thicknesses which would allow cooling passages to be added. The overall stage performance measurements and the rotor and stator exit flow field surveys were obtained. Measurements of steady state temperatures, pressures, mass flow rates, flow angles, and output power were made at various operating conditions. Data were obtained at corrected speeds of 80, 90, 100, 110, and 120 percent of design over a range of equivalent inlet-to-exit pressure ratios of 3.5, 4.0, 4.5, and 5.0, the maximum pressure ratio achieved. The test showed that the configuration of rotor 1 with stator 1 running at the design pressure ratio produced a flow rate which was 5.6 percent higher than expected. This result indicated the need to close down the stator flow area to reduce the flow. The flow area reduction was accomplished by restaggering the vanes. Rotor 1 was retested with the closed-down stator vanes and achieved the correct mass flow. Rotor 2 was tested only with the restaggered vanes. The test results of the three turbine configurations were nearly identical. Although the measured efficiencies of the compact designs fell 2 to 3 points below the predicted efficiency of 91 percent, they did meet and exceed by up to 2.5 percentage points the efficiences of state-of-the-art turbines found in the literature.

  3. Dovetail Rotor Construction For Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  4. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  5. Mechanisms of Sediment Entrainment and Transport in Rotorcraft Brownout

    DTIC Science & Technology

    2009-01-01

    understanding of the temporal evolution of the rotor wake in ground effect simultaneously with the processes of sediment entrainment and transport by the rotor ...14 1.8 Schematic and smoke flow visualization of a rotor flow during out-of- ground- effect ...operations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Schematic and smoke flow visualization of a rotor flow during in-ground- effect

  6. 14 CFR 29.653 - Pressure venting and drainage of rotor blades.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressure venting and drainage of rotor... § 29.653 Pressure venting and drainage of rotor blades. (a) For each rotor blade— (1) There must be means for venting the internal pressure of the blade; (2) Drainage holes must be provided for the blade...

  7. 14 CFR 27.653 - Pressure venting and drainage of rotor blades.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressure venting and drainage of rotor....653 Pressure venting and drainage of rotor blades. (a) For each rotor blade— (1) There must be means for venting the internal pressure of the blade; (2) Drainage holes must be provided for the blade; and...

  8. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  9. Flywheels Would Compensate for Rotor Imbalance

    NASA Technical Reports Server (NTRS)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  10. Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2012-01-01

    An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.

  11. Dynamic balancing of dual-rotor system with very little rotating speed difference.

    PubMed

    Yang, Jian; He, Shi-zheng; Wang, Le-qin

    2003-01-01

    Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.

  12. Effect of casing treatment on overall and blade element performance of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.; Blade, R. J.

    1971-01-01

    An axial flow compressor rotor was tested at design speed with six different casing treatments across the rotor tip. Radial surveys of pressure, temperature, and flow angle were taken at the rotor inlet and outlet. Surveys were taken at several weight flows for each treatment. All the casings treatments decreased the weight flow at stall over that for the solid casing. Radial surveys indicate that the performance over the entire radial span of the blade is affected by the treatment across the rotor tip.

  13. ARC-1959-AC-25685

    NASA Image and Video Library

    1959-08-15

    XV-3 HOVERING ON RAMP. Flight Test of Bell XV-3 Convertiplane. Bell VTOL tilt-rotor aircraft hovering in front of building N-211 at Moffett Field. The XV-3 design combined a helicopter rotor and a wing. A 450 horsepower Pratt & Whitney piston engine drove the two rotors. The XV-3, first flown in 1955 , was the first tilt-rotor to achieve 100% tilting of rotors. The vehicle was underpowered, however, and could not hover out of ground effect. Note the large ventral fin, which was added to imrpove directional stability in cruse (Oct 1962)

  14. Numerical simulation of a hovering rotor using embedded grids

    NASA Technical Reports Server (NTRS)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  15. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  16. Test characteristics of a welded rotor in a 36,000-rpm Lundell alternator

    NASA Technical Reports Server (NTRS)

    Lumannick, S.; Medwid, D. W.; Tulisiak, G.

    1973-01-01

    Two four-pole Lundell-type rotors consisting of magnetic and nonmagnetic materials were fabricated by weld-depositing Inconel 625 between two sections of AISI 4617 steel. The rotors had a major diameter of 8.28 cm (3.26 in.). Saturation curves for load and no-load conditions with one of the rotors installed in a 1200-Hz Brayton-cycle research alternator are presented. The other identical rotor was spin-tested to a speed of 63,000 rmp, which was equal to 175 percent of the rated speed.

  17. V/STOL tilt rotor aircraft study mathematical model for a real time simulation of a tilt rotor aircraft (Boeing Vertol Model 222), volume 8

    NASA Technical Reports Server (NTRS)

    Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.

    1973-01-01

    A mathematical model for a real time simulation of a tilt rotor aircraft was developed. The mathematical model is used for evaluating aircraft performance and handling qualities. The model is based on an eleven degree of freedom total force representation. The rotor is treated as a point source of forces and moments with appropriate response time lags and actuator dynamics. The aerodynamics of the wing, tail, rotors, landing gear, and fuselage are included.

  18. Effect of rotor tip clearance and configuration on overall performance of a 12.77-centimeter tip diameter axial-flow turbine

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1978-01-01

    The rotor tip clearance was obtained by use of a recess in the casing above the rotor blades and also by use of a reduced blade height. For the recessed casing configuration, the optimum rotor blade height was found to be the one where the rotor tip diameter was equal to the stator tip diameter. The tip clearance loss associated with this optimum recessed casing configuration was less than that for the reduced blade height configuration.

  19. Aeroelastic characteristics of composite bearingless rotor blades

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  20. A flight investigation of performance and loads for a helicopter with NLR-1T main-rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Tomaine, R. L.; Stevens, D. D.

    1979-01-01

    Data on performance and rotor loads for a teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade-section contour are presented. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec, and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point described vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor.

  1. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.

    2012-01-01

    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  2. Charts for Estimating Tail-rotor Contribution to Helicopter Directional Stability and Control in Low-Speed Flight

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B; Gessow, Alfred

    1955-01-01

    Theoretically derived charts and equations are presented by which tail-rotor design studies of directional trim and control response at low forward speed can be conveniently made. The charts can also be used to obtain the main-rotor stability derivatives of thrust with respect to collective pitch and angle of attack at low forward speeds. The use of the charts and equations for tail-rotor design studies is illustrated. Comparisons between theoretical and experimental results are presented. The charts indicate, and flight tests confirm, that the region of vortex roughness which is familiar for the main rotor is also encountered by the tail rotor and that prolonged operation at the corresponding flight conditions would be difficult.

  3. The acoustics of a small-scale helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, Cahit

    1989-01-01

    A 2.1 m diameter, 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80-foot wind tunnel. Performance and noise data on a small-scale rotor at various thrust coefficients and tip Mach numbers were obtained for comparison with existing data on similar full-scale helicopter rotors. These data form part of a data base to permit the estimation of scaling effects on various rotor noise mechanisms. Another objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing. Acoustic 1/3-octave-band spectra are presented, together with variations of overall acoustic levels with rotor performance, microphone distance, and directivity angle.

  4. Open Rotor - Analysis of Diagnostic Data

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  5. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations. Phase 6-B: Experiments with progressing/regressing forced rotor flapping modes

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1972-01-01

    A two bladed 16-inch hingeless rotor model was built and tested outside and inside a 24 by 24 inch wind tunnel test section at collective pitch settings up to 5 deg and rotor advance ratios up to .4. The rotor model has a simple eccentric mechanism to provide progressing or regressing cyclic pitch excitation. The flapping responses were compared to analytically determined responses which included flap-bending elasticity but excluded rotor wake effects. Substantial systematic deviations of the measured responses from the computed responses were found, which were interpreted as the effects of interaction of the blades with a rotating asymmetrical wake.

  6. Documentation of the Recirculation in a Closed-Chamber Rotor Hover Test

    NASA Technical Reports Server (NTRS)

    McCoy, Miranda; Wadcock, Alan J.; Young, Larry A.

    2016-01-01

    A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 < RPM < 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.

  7. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria.

    PubMed

    Gonzales, Matthew J; Vincent, Kevin P; Rappel, Wouter-Jan; Narayan, Sanjiv M; McCulloch, Andrew D

    2014-11-01

    The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  8. Successful Repeat Catheter Ablation of Recurrent Longstanding Persistent Atrial Fibrillation With Rotor Elimination as the Procedural Endpoint: A Case Series.

    PubMed

    Sommer, Philipp; Kircher, Simon; Rolf, Sascha; John, Silke; Arya, Arash; Dinov, Borislav; Richter, Sergio; Bollmann, Andreas; Hindricks, Gerhard

    2016-03-01

    There remains a lack of consensus regarding the ideal ablation strategy for atrial fibrillation (AF), particularly in patients with persistent or longstanding persistent AF. Given increasing evidence from clinical imaging studies that rotors sustain AF, rotor elimination may be a desirable procedural endpoint. However, there is no description to date of the clinical outcomes using rotor elimination during ablation as the procedural endpoint. Moreover, a series of studies question whether procedural AF termination is a desirable endpoint for ablation after many forms of AF ablation. We report a single-center experience of rotor elimination during AF ablation using Focal Impulse and Rotor Mapping (FIRM), describing 20 consecutive patients with case descriptions of 3 patients with recurrent longstanding persistent AF after prior ablation. In all cases, endocardial mapping using a 64-electrode basket catheter was performed to identify rotors, which were eliminated using radiofrequency catheter ablation. After it was verified that all identified rotors were eliminated, standard ablation consisting of PV isolation was performed. Notably, persistent AF terminated in only 1/20 (5%) patients. However, after a follow-up of 6 months, single-procedure freedom from AF was 80% (16/20 patients) with only 1 patient on antiarrhythmic drugs. All three patients in the highlighted series are AF free despite the lack of acute procedural AF termination. Patients with persistent AF including those with unsuccessful prior ablation can be treated successfully by rotor targeted ablation, using the elimination of all rotors rather than acute AF termination as the procedural endpoint. © 2015 Wiley Periodicals, Inc.

  9. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  10. Performance and wake conditions of a rotor located in the wake of an obstacle

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  11. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  12. Self energized air core superconducting (SEAC) motor

    NASA Astrophysics Data System (ADS)

    Hilal, M. A.; Huang, X.; Lloyd, J. D.; Crapo, A. D.

    1991-03-01

    The SEAC motor described utilizes superconductive windings both for the stator and the rotor and operates the same way as a conventional motor by supplying power to the stator. The rotor of a simple SEAC motor has a small and a large winding and two switches. The axes of the two rotor windings are normal to each other. The rotor is initially stationary, and the windings are exposed to the rotating stator field. Flux pumping is employed to charge the rotor windings. As the field rotates by 180 deg from being parallel to the axis of the small winding of the rotor, a switch connected in series with the windings automatically opens, allowing the magnetic flux to penetrate the winding. The switch is closed during most of the other half of the cycle. The flux trapped in the small winding is partially transferred to the larger rotor winding by opening another switch, which results in series connection of the two windings. This results in charging the large winding and in accelerating the rotor to reach the rotating field angular velocity. Current decay will not take place, since it will automatically trigger flux pumping and recharging of the windings. The use of superconductive windings will also make it feasible to operate at high magnetic field, thus eliminating the need for using iron laminations to magnetically link the rotor and the stator windings.

  13. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  14. Structural Considerations of a 20MW Multi-Rotor Wind Energy System

    NASA Astrophysics Data System (ADS)

    Jamieson, P.; Branney, M.

    2014-12-01

    The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.

  15. The Vortex Lattice Method for the Rotor-Vortex Interaction Problem

    NASA Technical Reports Server (NTRS)

    Padakannaya, R.

    1974-01-01

    The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.

  16. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben

    2016-01-01

    At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.

  17. Experimental hingeless rotor characteristics at low advance ratio with thrust. [wind tunnel tests of rotary wing operating at moderate to high lift

    NASA Technical Reports Server (NTRS)

    London, R. J.; Watts, G. A.; Sissingh, G. J.

    1973-01-01

    An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.

  18. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  19. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  20. Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions

    NASA Technical Reports Server (NTRS)

    Silva, Christopher; Yeo, Hyeonsoo; Johnson, Wayne R.

    2010-01-01

    A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions.

  1. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  2. Demonstration of various rotor instabilities (exhibit of Bently Rotor Dynamics Research Corporation Laborator rigs at symposium on instability in rotaing machinery)

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    The operation of rotor rigs used to demonstrate various instability phenomena occurring in rotating machines is described. The instability phenomena demonstrated included oil whirl/whip antiswirl, rub, loose rotating parts, water-lubricated bearing instabilities, and cracked shaft. The rotor rigs were also used to show corrective measures for preventing instabilities. Vibrational response data from the rigs were taken with modern, computerized instrumentation. The rotor nonsynchronous perturbation rig demonstrated modal identification techniques for rotor/bearing systems. Computer-aided data acquisition and presentation, using the dynamic stiffness method, makes it possible to identify rotor and bearing parameters for low modes. The shaft mode demonstrator presented the amplified modal shape line of the shaft excited by inertia forces of unbalance (synchronous perturbation). The first three bending modes of the shaft can be demonstrated. The user-friendly software, Orbits, presented a simulation of rotor precessional motion that is characteristic of various instability phenomena. The data presentation demonstration used data measured on a turbine driven compressor train as an example of how computer aided data acquisition and presentation assists in identifying rotating machine malfunctions.

  3. Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent

    NASA Astrophysics Data System (ADS)

    Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza

    2017-11-01

    All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  4. Electromagnetic Radial Forces in a Hybrid Eight-Stator-Pole, Six-Rotor-Pole Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2007-01-01

    Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  5. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  6. L.D.V. measurements of unsteady flow fields in radial turbine

    NASA Astrophysics Data System (ADS)

    Tabakoff, W.; Pasin, M.

    1992-07-01

    Detailed measurements of an unsteady flow field within the inlet guide vanes (IGV) and the rotor of a radial inflow turbine were performed using a three component Laser Doppler Velocimeter (LDV) system together with a rotary encoder. The mean velocity, the flow angle and the turbulence contours for IGV passages are presented at four blade-to-blade planes for different rotor positions to give three dimensional, unsteady behavior of the IGV flow field. These results are compared with the measurements obtained in the same passage in the absence of the rotor. The flow field of the IGV passage was found to be affected by the presence of the rotor. The ratio of the tangential normal stresses to the radial normal stresses at the exit of the IGV was found to be more than doubled when compared to the case without the rotor. The rotor flow field measurements are presented as relative mean velocity and turbulence stress contours at various cross section planes throughout the rotor. The cross flow and turbulence stress levels were found to be influenced by the incidence angle. Transportation of the high turbulence fluid by the cross flow was observed downstream in the rotor blade passages.

  7. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  8. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  9. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  10. Aeroelastic loads and stability investigation of a full-scale hingeless rotor

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Johnson, Wayne

    1991-01-01

    An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio.

  11. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  12. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  13. Use of active control systems to improve bending and rotor flapping response of a tilt rotor VTOL airplane

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Cheng, Y.

    1975-01-01

    The results are summarized of an analytical study of the use of active control systems for the purpose of reducing the root mean square response of wing vertical bending and rotor flapping to atmospheric turbulence for a tilt-rotor VTOL airplane. Only the wing/rotor assembly was considered so that results of a wind tunnel test program would be applicable in a subsequent phase of the research. The capabilities and limitations of simple single feedback configurations were identified, and the most promising multiloop feedback configurations were then investigated. Design parameters were selected so as to minimize either wing bending or rotor flapping response. Within the constraints imposed by practical levels of feedback gains and complexity and by considerations of safety, reduction in response due to turbulence of the order of 30 to 50 percent is predicted using the rotor longitudinal cyclic and a trailing edge wing flap as control effectors.

  14. The effect of forward skewed rotor blades on aerodynamic and aeroacoustic performance of axial-flow fan

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Zhong, Fangyuan

    Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.

  15. Rotors and the Dynamics of Cardiac Fibrillation

    PubMed Central

    Pandit, Sandeep V.; Jalife, José

    2013-01-01

    The objective of this article is to present a broad review on the role of cardiac electrical rotors and their accompanying spiral waves in the mechanism of cardiac fibrillation. At the outset, we present a brief historical overview regarding reentry, and then discuss the basic concepts and terminologies pertaining to rotors and their initiation. Thereafter, the intrinsic properties of rotors and spiral waves, including phase singularities, wavefront curvature and dominant frequency maps are discussed. The implications of rotor dynamics for the spatio-temporal organization of fibrillation, independent of the species being studied are touched upon next. The knowledge gained regarding the role of cardiac structure in the initiation and/or maintenance of rotors and the ionic bases of spiral waves in the last two decades, and its significance for drug therapy is reviewed subsequently. We conclude by looking at recent evidence suggesting that rotors are critical in sustaining both atrial and ventricular fibrillation (AF, VF) in the human heart, and its implications for treatment with radio-frequency ablation. PMID:23449547

  16. Investigation of the Unsteady Total Pressure Profile Corresponding to Counter-Rotating Vortices in an Internal Flow Application

    NASA Astrophysics Data System (ADS)

    Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua

    2013-11-01

    The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.

  17. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  18. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  19. Labyrinth seal forces on a whirling rotor

    NASA Technical Reports Server (NTRS)

    Wright, D. V.

    1983-01-01

    An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.

  20. Preliminary rotor wake measurements with a laser velocimeter

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Rhodes, D. B.; Meyers, J. F.

    1983-01-01

    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel.

  1. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  2. Elastomer mounted rotors - An alternative for smoother running turbomachinery

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.

    1979-01-01

    This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.

  3. Induced Power of the Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.

    2004-01-01

    A simplified rotor model was used to explore fundamental behavior of lifting rotor induced power at moderate and high advance ratios. Several rotor inflow theories, including dynamic inflow theory and prescribed-wake vortex theory, together with idealized notional airfoil stall models were employed. A number of unusual results were encountered at high advance ratios including trim control reversal and multiple trim solutions. Significant increases in rotor induced power (torque) above the ideal minimum were observed for moderately high advance ratio. Very high induced power was observed near and above unity advance ratio. The results were sensitive to the stall characteristics of the airfoil models used. An equivalent wing analysis was developed to determine induced power from Prandtl lifting line theory and help interpret the rotor induced power behavior in terms of the spanwise airload distribution. The equivalent wing approach was successful in capturing the principal variations of induced power for different configurations and operating conditions. The effects blade root cutout were found to have a significant effect on rotor trim and induced power at high advance ratios.

  4. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  5. Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat

    2015-05-01

    Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).

  6. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  7. Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors

    NASA Astrophysics Data System (ADS)

    Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J.

    2016-08-01

    Glass fibre-reinforced polymer (GFRP) composites offer a higher stiffness-to-weight ratio than conventional rotor materials used in turbomachinery. However, the material behaviour of GFRP high-speed rotors is difficult to predict due to the complexity of the composite material and the dynamic loading conditions. Consequently dynamic expansion measurements of GRFP rotors are required in situ and with micron precision. However, the whirling motion amplitude is about two orders of magnitude higher than the desired precision. To overcome this problem, a multi-sensor system capable of separating rotor expansion and whirling motion is proposed. High measurement rates well above the rotational frequency and micron uncertainty are achieved at whirling amplitudes up to 120μm and surface velocities up to 300 m/s. The dynamic elliptical expansion of a GFRP rotor is investigated in a rotor loading test rig under vacuum conditions. In situ measurements identified not only the introduced damage but also damage initiation and propagation.

  8. Laser velocimeter measurements of the flowfield generated by an advanced counterrotating propeller

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Krupar, Martin J.

    1989-01-01

    Results are presented of an investigation to measure the flowfield generated by an advanced counterrotating pusher propeller model similar to the full-scale Unducted Fan demonstrator engine. A laser Doppler velocimeter was used to measure the velocity field in several planes normal to the centerline of the model at axial stations upstream and downstream of each rotor. During this investigation, blades of the F4/A4 type were installed on the model which was operating in a freestream Mach 0.72 regime, with the advance ratio of each rotor set at 2.80. The measured data indicate only a slight influence of the potential field of each front rotor blade on the flowfield upstream of the rotor. The data measured downstream of the front rotor characterize the tip vortices, vortex sheets and potential field nonuniformities generated by the front rotor. The unsteadiness of the flow in the rotating frame of reference of the aft rotor is also illustrated.

  9. Repetitive switching for an electromagnetic rail gun

    NASA Astrophysics Data System (ADS)

    Gruden, J. M.

    1983-12-01

    Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.

  10. Correlation and evaluation of inplane stability characteristics for an advanced bearingless main rotor

    NASA Technical Reports Server (NTRS)

    Weller, W. H.

    1983-01-01

    A program of experimental and analytical research was performed to demonstrate the degree of correlation achieved between measured and computed rotor inplane stability characteristics. The experimental data were obtained from hover and wind tunnel tests of a scaled bearingless main rotor model. Both isolated rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage damping, inertia, and natural frequency. Analytical results for many test conditions were obtained. In addition, the analytical and experimental results were examined to ascertain the effects of the test parameters on rotor ground and air resonance stability. The results from this program are presented herein in tabular and graphical form.

  11. Coupled rotor-body vibrations with inplane degrees of freedom

    NASA Technical Reports Server (NTRS)

    Ming-Sheng, H.; Peters, D. A.

    1985-01-01

    In an effort to understand the vibration mechanisms of helicopters, the following basic studies are considered. A coupled rotor-fuselage vibration analysis including inplane degrees of freedom of both rotor and airframe is performed by matching of rotor and fuselage impedances at the hub. A rigid blade model including hub motion is used to set up the rotor flaplag equations. For the airframe, 9 degrees of freedom and hub offsets are used. The equations are solved by harmonic balance. For a 4-bladed rotor, the coupled responses and hub loads are calculated for various parameters in forward flight. The results show that the addition of inplane degrees of freedom does not significantly affect the vertical vibrations for the cases considered, and that inplane vibrations have similar resonance trends as do flapping vibrations.

  12. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 3: Data and performance for stage C

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D.

    1972-01-01

    Stage C, comprised of tandem-airfoil rotor C and tandem-airfoil stator B, was designed and tested to establish performance data for comparison with the performance of conventional single-airfoil blading. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor C achieved a maximum adiabatic efficiency of 91.8% at a pressure ratio of 1.31. The stage maximum adiabatic efficiency was 86.5% at a pressure ratio of 1.31.

  13. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  14. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  15. Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics

    NASA Astrophysics Data System (ADS)

    Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.

    2017-08-01

    The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.

  16. Comparison of the effect of two damper sizes on the performance of a low-solidity axial-flow transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Urasek, D. C.

    1972-01-01

    The experimental performance of a 20-inch-diameter axial-flow transonic compressor rotor with small dampers is presented. The compressor rotor was tested earlier with large dampers which were twice in size, and comparisons of overall performance and radial distributions of selected flow and performance parameters are made. The rotor with small dampers experienced lower losses in the damper region which resulted in locally higher values of temperature rise efficiency and total pressure ratio. However, there was no appreciable effect on overall efficiency and pressure ratio. A greater stall margin was measured for the rotor with small dampers at design speed, but at 70 and 90 percent of design speed the rotor with large dampers had somewhat greater flow range.

  17. Laser anemometer measurements in a transonic axial-flow fan rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  18. Analysis of a Hovering Rotor in Icing Conditions

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Kreeger, Richard E.

    2012-01-01

    A high fidelity analysis method is proposed to evaluate the ice accumulation and the ensuing rotor performance degradation for a helicopter flying through an icing cloud. The process uses computational fluid dynamics (CFD) coupled to a rotorcraft comprehensive code to establish the aerodynamic environment of a trimmed rotor prior to icing. Based on local aerodynamic conditions along the rotor span and accounting for the azimuthal variation, an ice accumulation analysis using NASA's Lewice3D code is made to establish the ice geometry. Degraded rotor performance is quantified by repeating the high fidelity rotor analysis with updates which account for ice shape and mass. The process is applied on a full-scale UH-1H helicopter in hover using data recorded during the Helicopter Icing Flight Test Program.

  19. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  20. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)

    1998-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  1. A Note about Self-Induced Velocity Generated by a Lifting-Line Wing or Rotor Blade

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2006-01-01

    This report presents an elementary analysis of the induced velocity created by a field of vortices that reside in the wake of a rotor blade. Progress achieved by other researchers in the last 70 years is briefly reviewed. The present work is presented in four stages of complexity that carry a lifting-line representation of a fixed wing into a single-blade rotor. The analysis leads to the conclusion that the lifting rotor's spiraling vortex wake structure has very high induced power when compared to the ideal wing. For an advanced ratio of one-half, induced power is on the order of 10 times that of the wing when the comparison is made at wingspan equal to rotor diameter and wing and rotor having equal lift.

  2. The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Brender, Scott; Mark, Hans; Aguilera, Frank

    1996-01-01

    The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.

  3. Definition of Forces on Turbomachinery Rotors. Task B Report: Dynamic Analysis of Rotors

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    The rotordynamic characteristics of turbomachinery are known to depend on the forces developed due to relative motion between the rotor and the housing. For example, the critical speed locations generally depend on the bearing stiffnesses, seal dampling influences rotor stability and bearing reaction amplitudes near critical speeds, etc. A systematic examination of the influence of changes in the forces acting on rotors is studied. More specifically, the sensitivity of the rotordynamic characteristics to changes in rotor forces is analyzed. Rotordynamic characteristics of the HPOTP (High Pressure Oxygen Turbopump) and HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine) are investigated. Because of their markedly different rotordynamic characteristics, these units are considered to be representative of a range of possible future liquid rocket engine turbomachinery.

  4. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOEpatents

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  5. Analysis of the wind tunnel test of a tilt rotor power force model

    NASA Technical Reports Server (NTRS)

    Marr, R. L.; Ford, D. G.; Ferguson, S. W.

    1974-01-01

    Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.

  6. Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design

    NASA Astrophysics Data System (ADS)

    Pereira, Jason L.

    The shrouded-rotor configuration has emerged as the most popular choice for rotary-wing Micro Air Vehicles (MAVs), because of the inherent safety of the design and the potential for significant performance improvements. However, traditional design philosophies based on experience with large-scale ducted propellers may not apply to the low-Reynolds-number (˜20,000) regime in which MAVs operate. An experimental investigation of the effects of varying the shroud profile shape on the performance of MAV-scale shrouded rotors has therefore been conducted. Hover tests were performed on seventeen models with a nominal rotor diameter of 16 cm (6.3 in) and various values of diffuser expansion angle, diffuser length, inlet lip radius and blade tip clearance, at various rotor collective angles. Compared to the baseline open rotor, the shrouded rotors showed increases in thrust by up to 94%, at the same power consumption, or reductions in power by up to 62% at the same thrust. These improvements surpass those predicted by momentum theory, due to the additional effect of the shrouds in reducing the non-ideal power losses of the rotor. Increasing the lip radius and decreasing the blade tip clearance caused performance to improve, while optimal values of diffuser angle and length were found to be 10 and 50% of the shroud throat diameter, respectively. With the exception of the lip radius, the effects of changing any of the shrouded-rotor parameters on performance became more pronounced as the values of the other parameters were changed to degrade performance. Measurements were also made of the wake velocity profiles and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip clearance, resulting in lower induced power losses. For high net shroud thrust, a favorable pressure distribution over the inlet was seen to be more important than in the diffuser. Strong suction pressures were observed above the blade-passage region on the inlet surface; taking advantage of this phenomenon could enable further increases in thrust. However, trade studies showed that, for a given overall aircraft size limitation, and ignoring considerations of the safety benefits of a shroud, a larger-diameter open rotor is more likely to give better performance than a smaller-diameter shrouded rotor. The open rotor and a single shrouded-rotor model were subsequently tested at a single collective in translational flight, at angles of attack from 0° (axial flow) to 90° (edgewise flow), and at various advance ratios. In axial flow, the net thrust and the power consumption of the shrouded rotor were lower than those of the open rotor. In edgewise flow, the shrouded rotor produced greater thrust than the open rotor, while consuming less power. Measurements of the shroud surface pressure distributions illustrated the extreme longitudinal asymmetry of the flow around the shroud, with consequent pitch moments much greater than those exerted on the open rotor. Except at low airspeeds and high angles of attack, the static pressure in the wake did not reach ambient atmospheric values at the diffuser exit plane; this challenges the validity of the fundamental assumption of the simple-momentum-theory flow model for short-chord shrouds in translational flight.

  7. Rotorcraft Aeromechanics Branch Home Page on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Warmbrodt, William (Technical Monitor)

    1996-01-01

    The tilt rotor aircraft holds great promise for improving air travel in the future. It's benefits include vertical take off and landing combined with airspeeds comparable to propeller driven aircraft. However, the noise from a tilt rotor during approach to a landing is potentially a significant barrier to widespread acceptance of these aircraft. This approach noise is primarily caused by Blade Vortex Interactions (BVI), which are created when the blade passes near or through the vortex trailed by preceding blades. The XV- 15 Aeroacoustic test will measure the noise from a tilt rotor during descent conditions and demonstrate several possible techniques to reduce the noise. The XV- 15 Aeroacoustic test at NASA Ames Research Center will measure acoustics and performance for a full-scale XV-15 rotor. A single XV-15 rotor will be mounted on the Ames Rotor Test Apparatus (RTA) in the 80- by 120-Foot Wind Tunnel. The test will be conducted in helicopter mode with forward flight speeds up to 100 knots and tip path plane angles up to +/- 15 degrees. These operating conditions correspond to a wide range of tilt rotor descent and transition to forward flight cases. Rotor performance measurements will be made with the RTA rotor balance, while acoustic measurements will be made using an acoustic traverse and four fixed microphones. The acoustic traverse will provide limited directionality measurements on the advancing side of the rotor, where BVI noise is expected to be the highest. Baseline acoustics and performance measurements for the three-bladed rotor will be obtained over the entire test envelope. Acoustic measurements will also be obtained for correlation with the XV-15 aircraft Inflight Rotor Aeroacoustic Program (IRAP) recently conducted by Ames. Several techniques will be studied in an attempt to reduce the highest measured BVI noise conditions. The first of these techniques will use sub-wings mounted on the blade tips. These subwings are expected to alter the size, strength, and location of the tip vortex, therefore changing the BVI acoustics of the rotor. The subwings are approximately 20% of the blade chord and increase the rotor radius by about 3 percent. Four different subwing configurations will be tested, including square tipped subwings with different angles of incidence. The ability of active controls to reduce BVI acoustics will also be assessed. The dynamic control system of the RTA will be used to implement open- and closed-loop active control techniques, including individual blade control. Open-loop testing will be conducted using a personal computer based, automated, real-time data acquisition system. This system features combined automated output of open loop control signals and automated data acquisition of the resulting test data. A final technique to alter the noise of the rotor will be examined. This will involve changing the number of blades from three to four. A four-bladed rotor hub has been fabricated on which the XV-15 blades will be mounted. While the solidity of the rotor will increase, much useful information can be gained by examining the changes in the thrust and RPM with four blades.

  8. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime (second wind tunnel test)

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1975-01-01

    A test was conducted in the NASA-Ames 7 x 10 ft low speed wind tunnel on a seven-foot diameter model of a teetering rotor. The objectives of the test were: (1) acquire pressure data for correlation with laser and flow visualization measurements; (2) explore rotor propulsive force limits by varying the advance ratio at constant lift and propulsive force coefficients; (3) obtain additional data to define the differences between teetering and articulated rotors; and (4) verify the acceleration sensitivity of experimental transducers. Results are presented.

  9. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  10. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  11. Pressure Sensitive Paint Measurements on 15% Scale Rotor Blades in Hover

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Watkins, Anthony Neal; Ingram, JoAnne L.

    2005-01-01

    This paper describes a proof of concept test to examine the feasibility of using pressure sensitive paint (PSP) to measure the pressure distributions on a rotor in hover. The test apparatus consisted of the US Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept tip rotor blades. Two camera/rotor separations were examined: 0.76 and 1.35 radii. The outer 15% of each blade was painted with PSP. Intensity and lifetime based PSP measurement techniques were attempted. Data were collected from all blades at thrust coefficients ranging from 0.004 to 0.009.

  12. Wind energy converter with high-speed vertical axis rotor and straight rotor blades

    NASA Astrophysics Data System (ADS)

    Zelck, G.

    1982-11-01

    Complete documents for a wind energy converter with a vertical axis rotor and straight blades (H-rotor) were developed. The 2 blade rotor with rigid and rectangular air foils in wooden construction reaches the nominal output of 75 KVA from 11,4 m/sec. wind velocity onwards. The development activities are supported by wind tunnel and component tests. The final design selected was based upon previous development work. Trade offs show that the design is more advantageous compared to other designs. The use of wood as a material for the rotary and horizontal blade supports gives positive result.

  13. Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-10

    A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.

  14. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  15. An Incidence Loss Model for Wave Rotors with Axially Aligned Passages

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1998-01-01

    A simple mathematical model is described to account for the losses incurred when the flow in the duct (port) of a wave rotor is not aligned with the passages. The model, specifically for wave rotors with axially aligned passages, describes a loss mechanism which is sensitive to incident flow angle and Mach number. Implementation of the model in a one-dimensional CFD based wave rotor simulation is presented. Comparisons with limited experimental results are consistent with the model. Sensitivity studies are presented which highlight the significance of the incidence loss relative to other loss mechanisms in the wave rotor.

  16. Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface (Problemes de Dynamique des Fluides des Vehicules Evoluant dans ou pres de L’interface Air-Mer).

    DTIC Science & Technology

    1999-02-01

    articulated rotor systems, the rotor blade can deflect several feet and contact the fuselage of the helicopter, resulting in a "tunnel strike " in...tandem rotor configurations; or the tailboom, resulting in a "tailboom strike " in single rotor configurations. The H-46 Sea Knight, a tandem rotor...helicopter used by the U.S. Navy and Marines, has encountered over 100 tunnel strikes since 1964 and still occasionally experiences them. Most tunnel

  17. Three-dimensional calculations of rotor-airframe interaction in forward flight

    NASA Technical Reports Server (NTRS)

    Zori, Laith A. J.; Mathur, Sanjay R.; Rajagopalan, R. G.

    1992-01-01

    A method for analyzing the mutual aerodynamic interaction between a rotor and an airframe model has been developed. This technique models the rotor implicitly through the source terms of the momentum equations. A three-dimensional, incompressible, laminar, Navier-Stokes solver in cylindrical coordinates was developed for analyzing the rotor/airframe problem. The calculations are performed on a simplified model at an advance ratio of 0.1. The airframe surface pressure predictions are found to be in good agreement with wind tunnel test data. Results are presented for velocity and pressure field distributions in the wake of the rotor.

  18. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  19. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Putoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38% chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  20. Note: Attenuation motion of acoustically levitated spherical rotor

    NASA Astrophysics Data System (ADS)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  1. Note: Attenuation motion of acoustically levitated spherical rotor.

    PubMed

    Lü, P; Hong, Z Y; Yin, J F; Yan, N; Zhai, W; Wang, H P

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  2. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  3. V/STOL tilt rotor aircraft study. Volume 10: Performance and stability test of A 1-14.622 Froude scaled Boeing Vertol Model 222 tilt rotor aircraft (Phase 1)

    NASA Technical Reports Server (NTRS)

    Mchugh, F. J.; Eason, W.; Alexander, H. R.; Mutter, H.

    1973-01-01

    Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing Model 222 with a full span, two prop, tilt rotor, powered model in the Boeing V/STOL wind tunnel are reported. Data were taken in transition and cruise flight conditions and include performance, stability and control and blade loads information. The effects of the rotors, tail surfaces and airframe on the performance and stability are isolated as are the effects of the airframe on the rotors.

  4. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Puthoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38 percent chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  5. Static-thrust Investigation of Full-scale PV-2 Helicopter Rotors Having NACA 0012.6 and 23012.6 Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Lipson, Stanley

    1946-01-01

    An investigation was conducted to compare the performance of two 25-ft-diam rotors which had identical dimensions and were similar in construction but different in blade airfoil-sections. Tests were conducted at indicated blade pitch angles from 3 degrees to 11.5 degrees and rotor speeds of 200, 290, and 371 rpm. The 23012.6 rotor required 2 percent less power to hover than the 0012.6. At thrust coefficients above design, the performance of the 23012.6 became better than the 0012.6 rotor.

  6. Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2010-01-01

    Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.

  7. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  8. Position Sensing for Rotor in Hybrid Stepper Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  9. Wave disc engine apparatus

    DOEpatents

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  10. Comparison of performances between IPM and SPM motors with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Hwang, C. C.; Chang, C. M.; Cheng, S. P.; Chan, C. K.; Pan, C. T.; Chang, T. Y.

    2004-11-01

    Rotor eccentricity in two three-phase, 6-pole, 36-slot interior permanent magnet- and surface-mounted synchronous motors are investigated and compared by means of a transient finite element model. Magnet flux density, EMF, cogging torque and average torque generated by the model are presented for the cases of static rotor eccentricity. These results are compared with those obtained from a symmetric rotor case.

  11. Servo Driven Corotation: Development of AN Inertial Clock.

    NASA Astrophysics Data System (ADS)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.

  12. Attraction of Rotors to the Pulmonary Veins in Paroxysmal Atrial Fibrillation: A Modeling Study

    PubMed Central

    Calvo, Conrado J.; Deo, Makarand; Zlochiver, Sharon; Millet, José; Berenfeld, Omer

    2014-01-01

    Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF. PMID:24739180

  13. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    NASA Astrophysics Data System (ADS)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  14. Attraction of rotors to the pulmonary veins in paroxysmal atrial fibrillation: a modeling study.

    PubMed

    Calvo, Conrado J; Deo, Makarand; Zlochiver, Sharon; Millet, José; Berenfeld, Omer

    2014-04-15

    Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher

    2004-01-01

    The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.

  16. Development of an active twist rotor blade with distributed actuation and orthotropic material

    NASA Astrophysics Data System (ADS)

    Wierach, Peter; Riemenschneider, Johannes; Keye, Stefan

    2005-05-01

    Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87m/s based on a 2.5 to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.

  17. Treatment of Recurrent Nonparoxysmal Atrial Fibrillation Using Focal Impulse and Rotor Mapping (FIRM)-Guided Rotor Ablation: Early Recurrence and Long-Term Outcomes.

    PubMed

    Spitzer, Stefan Georg; Károlyi, László; Rämmler, Carola; Scharfe, Frank; Weinmann, Thomas; Zieschank, Mirko; Langbein, Anke

    2017-01-01

    A patient-tailored ablation approach focused on the elimination of both pulmonary vein triggers as well as substrate drivers may result in favorable outcomes in recurrent persistent AF patients. We evaluated the long-term outcomes of rotor ablation combined with conventional pulmonary vein isolation (PVI) in patients with recurrent nonparoxysmal AF. Fifty-eight consecutive patients underwent FIRM-guided rotor ablation followed by conventional PVI for the treatment of recurrent nonparoxysmal AF. A software algorithm was used to display rotational activity at rotor sites by creating propagation maps from unipolar electrograms recorded using a 64-electrode basket catheter. These rotor sites were targeted for ablation, followed by conventional PVI. All patients had nonparoxysmal AF (83% longstanding persistent) and a previously failed conventional ablation procedure. Stable rotors were identified in all patients (mean of 3.0 ± 1.6 per patient), with 55.2% having right atrial rotors and 96.6% left atrial rotors, respectively. Complications occurred in 5.2% of patients, none related to the FIRM procedure. The median follow-up was 12 months. At 6 and 12 months of follow-up, 73.2% and 76.9% of patients remained free from AF/AT, respectively. Excluding 2 patients who underwent a successful redo ablation procedure/electrical cardioversion, at 12 months of follow-up, 69.2% were free from any AF/AT and 73.1% were free from AF after a single FIRM-guided ablation procedure. A high degree of success was observed in this cohort of primarily longstanding persistent AF patients treated for recurrent AF with FIRM-guided rotor ablation. Prospective randomized controlled trials are needed. © 2016 Wiley Periodicals, Inc.

  18. Rotor Stability Separates Sustained Ventricular Fibrillation From Self-Terminating Episodes in Humans

    PubMed Central

    Krummen, David E.; Hayase, Justin; Morris, David J.; Ho, Jeffrey; Smetak, Miriam R.; Clopton, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2014-01-01

    Objective We mapped human ventricular fibrillation (VF) to define mechanistic differences between episodes requiring defibrillation versus those that spontaneously terminate. Background VF is a leading cause of mortality, yet episodes may also self-terminate. We hypothesized that the initial maintenance of human VF is dependent upon the formation and stability of VF rotors. Methods We enrolled 26 consecutive patients (age 64±10 years, n=13 with LV dysfunction) during ablation procedures for ventricular arrhythmias, using 64-electrode basket catheters in both ventricles to map VF prior to prompt defibrillation per IRB-approved protocol. Fifty-two inductions were attempted and 36 VF episodes were observed. Phase analysis was applied to identify bi-ventricular rotors in the first 10 seconds or until VF terminated, whichever came first (11.4±2.9 seconds to defibrillator charging). Results Rotors were present in 16 of 19 patients with VF, and in all patients with sustained VF. Sustained, but not self-limiting VF, was characterized by greater rotor stability: (1) rotors were present in 68±17% of cycles in sustained versus 11±18% of cycles in self-limiting VF (p<0.001); with (2) maximum continuous rotations greater in sustained (17±11, range 7–48) versus self-limiting VF (1.1±1.4, range 0–4, p<0.001). Additionally, biventricular rotor locations in sustained VF were conserved across multiple inductions (7/7 patients, p=0.025). Conclusions In patients with and without structural heart disease, the formation of stable rotors identifies individuals whose VF requires defibrillation from those in whom VF spontaneously self-terminates. Future work should define the mechanisms that stabilize rotors and evaluate whether rotor modulation may reduce subsequent VF risk. PMID:24794115

  19. A nano universal joint made from curved double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Kun; Cai, Haifang; Shi, Jiao

    2015-06-15

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less

  20. A nano universal joint made from curved double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.

    2015-06-01

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.

  1. Study on the dynamics responses of a transmission system made from carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hang; Cai, Kun, E-mail: kuicansj@163.com; Wei, Ning

    2015-06-21

    A rotational transmission system from coaxial carbon nanotubes (CNTs) is investigated using a computational molecular dynamics approach. The system consists of a motor from a single-walled carbon nanotube and a bearing from a double-walled carbon nanotube. The motor has a high fixed rotational frequency and the two ends of the outer tube in the bearing are fixed. The inner tube in the bearing works as a rotor. Because of the interlayer friction in the bearing, configurations of the joint between the adjacent ends of motor and rotor have significant effects on rotational transmission properties. Four factors are considered in simulation,more » i.e., the bonding types of atoms (sp{sup 1} and sp{sup 2}) on the ends of motor and rotor, the difference between motor and rotor radii, the rotational speed of motor, and the environmental temperature. It is found that the synchronous transmission happens if the sp{sup 1} atoms on the jointed ends of motor and rotor are bonded each other and become new sp{sup 2} atoms. Therefore, the lower difference between radii of motor and rotor, higher temperature of environment leads to synchronous rotational transmission easily. If the environmental temperature is too low (e.g., <150 K), the end of motor adjacent to rotor is easily under buckling and new sp{sup 2} atoms appear, too. With capped CNTs or higher radii difference between rotor and motor at an appropriate temperature, a stable asynchronous rotation of rotor can be generated, and the rotor's frequency varying linearly with motor's frequency between 230 and 270 GHz. A multi-signal transmission device combined with oscillating and rotational motion is proposed for motor and stator shares a same size in radius.« less

  2. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method

    NASA Astrophysics Data System (ADS)

    Mokhtar, Md Asjad; Kamalakar Darpe, Ashish; Gupta, Kshitij

    2017-08-01

    The ever-increasing need of highly efficient rotating machinery causes reduction in the clearance between rotating and non-rotating parts and increase in the chances of interaction between these parts. The rotor-stator contact, known as rub, has always been recognized as one of the potential causes of rotor system malfunctions and a source of secondary failures. It is one of few causes that influence both lateral and torsional vibrations. In this paper, the rotor stator interaction phenomenon is investigated in the finite element framework using Lagrange multiplier based contact mechanics approach. The stator is modelled as a beam that can respond to axial penetration and lateral friction force during the contact with the rotor. It ensures dynamic stator contact boundary and more realistic contact conditions in contrast to most of the earlier approaches. The rotor bending-torsional mode coupling during contact is considered and the vibration response in bending and torsion are analysed. The effect of parameters such as clearance, friction coefficient and stator stiffness are studied at various operating speeds and it has been found that certain parameter values generate peculiar rub related features. Presence of sub-harmonics in the lateral vibration frequency spectra are prominently observed when the rotor operates near the integer multiple of its lateral critical speed. The spectrum cascade of torsional vibration shows the presence of bending critical speed along with the larger amplitudes of frequencies close to torsional natural frequency of the rotor. When m × 1/n X frequency component of rotational frequency comes closer to the torsional natural frequency, stronger torsional vibration amplitude is noticed in the spectrum cascade. The combined information from the stator vibration and rotor lateral-torsional vibration spectral features is proposed for robust rub identification.

  3. SWIFT Code Assessment for Two Similar Transonic Compressors

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2009-01-01

    One goal of the NASA Fundamental Aeronautics Program is the assessment of computational fluid dynamic (CFD) codes used for the design and analysis of many aerospace systems. This paper describes the assessment of the SWIFT turbomachinery analysis code for two similar transonic compressors, NASA rotor 37 and stage 35. The two rotors have identical blade profiles on the front, transonic half of the blade but rotor 37 has more camber aft of the shock. Thus the two rotors have the same shock structure and choking flow but rotor 37 produces a higher pressure ratio. The two compressors and experimental data are described here briefly. Rotor 37 was also used for test cases organized by ASME, IGTI, and AGARD in 1994-1998. Most of the participating codes over predicted pressure and temperature ratios, and failed to predict certain features of the downstream flowfield. Since then the AUSM+ upwind scheme and the k- turbulence model have been added to SWIFT. In this work the new capabilities were assessed for the two compressors. Comparisons were made with overall performance maps and spanwise profiles of several aerodynamic parameters. The results for rotor 37 were in much better agreement with the experimental data than the original blind test case results although there were still some discrepancies. The results for stage 35 were in very good agreement with the data. The results for rotor 37 were very sensitive to turbulence model parameters but the results for stage 35 were not. Comparison of the rotor solutions showed that the main difference between the two rotors was not blade camber as expected, but shock/boundary layer interaction on the casing.

  4. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  5. Applications of Fluorogens with Rotor Structures in Solar Cells.

    PubMed

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  6. Hybrid-secondary uncluttered permanent magnet machine and method

    DOEpatents

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  7. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  8. Gas turbine sealing apparatus

    DOEpatents

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  9. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-10-01

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system thatmore » can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.« less

  10. Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit

    NASA Technical Reports Server (NTRS)

    Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira

    1991-01-01

    The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.

  11. A flight investigation of performance and loads for a helicopter with 10-64C main rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K.; Tomaine, R. L.; Stevens, D. D.

    1980-01-01

    A flight investigation produced data on performance and rotor loads for a teetering rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade section contour. The test envelope included hover, forward flight speeds from 34 to 83 m/sec (65 to 162 knots), and collective fixed maneuvers at about 0.25 tip speed ratio. The data set for each test point describes vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak to peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor. Detailed data for an advanced airfoil on an AH-1G are presented.

  12. Prediction and measurement of low-frequency harmonic noise of a hovering model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Aggarawal, H. R.; Schmitz, F. H.; Boxwell, D. A.

    1989-01-01

    Far-field acoustic data for a model helicopter rotor have been gathered in a large open-jet, acoustically treated wind tunnel with the rotor operating in hover and out of ground-effect. The four-bladed Boeing 360 model rotor with advanced airfoils, planform, and tip shape was run over a range of conditions typical of today's modern helicopter main rotor. Near in-plane acoustic measurements were compared with two independent implementations of classical linear theory. Measured steady thrust and torque were used together with a free-wake analysis (to predict the thrust and drag distributions along the rotor radius) as input to this first-principles theoretical approach. Good agreement between theory and experiment was shown for both amplitude and phase for measurements made in those positions that minimized distortion of the radiated acoustic signature at low-frequencies.

  13. Power method for calculating the far acoustic field of the helicopter lift rotor

    NASA Astrophysics Data System (ADS)

    Samokhin, V. F.

    2011-05-01

    A semiempirical method for calculating the far acoustic field of the lift rotor of a helicopter operating in the regime of oblique flow over it is described. The basic parametric relations for the acoustic radiation power of rotor noise components have been obtained on the basis of the Lamb idea that vortex-free motion arises under the action of a periodic force on an infinitely small volume of the medium. All sources of lift rotor noise are subdivided into two groups pertaining, respectively, to the inductive and profile parts of the total power supplied to the rotor. A comparison has been made between the results of calculation of the harmonic components of lift rotor noise made on the basis of the power method and the experimental data for the Mi-28 helicopter.

  14. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  15. A theoretical analysis of the effect of thrust-related turbulence distortion on helicopter rotor low-frequency broadband noise

    NASA Technical Reports Server (NTRS)

    Williams, M.; Harris, W. L.

    1984-01-01

    The purpose of the analysis is to determine if inflow turbulence distortion may be a cause of experimentally observed changes in sound pressure levels when the rotor mean loading is varied. The effect of helicopter rotor mean aerodynamics on inflow turbulence is studied within the framework of the turbulence rapid distortion theory developed by Pearson (1959) and Deissler (1961). The distorted inflow turbulence is related to the resultant noise by conventional broadband noise theory. A comparison of the distortion model with experimental data shows that the theoretical model is unable to totally explain observed increases in model rotor sound pressures with increased rotor mean thrust. Comparison of full scale rotor data with the theoretical model shows that a shear-type distortion may explain decreasing sound pressure levels with increasing thrust.

  16. A Sequential Shifting Algorithm for Variable Rotor Speed Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.

    2007-01-01

    A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.

  17. Design and numeric evaluation of a novel axial-flow left ventricular assist device.

    PubMed

    Toptop, Koral; Kadipasaoglu, Kamuran A

    2013-01-01

    Virtual design characteristics and performance of the first Turkish axial-flow left ventricular assist device (LVAD) are presented, with emphasis on rotor geometry. The patented rotor design includes a central flow channel carved inside the main block, which carries permanent magnets. A concentric rotor-stator gap minimizes the distance between respective magnets, improving electromagnetic efficiency and creating a second blood pathway. Dual sets of three helical blades, placed on the shaft and external surface of the rotor block, ensure unidirectionality. Hemodynamic performance was tested with computational fluid dynamics (CFD); and rotor-blade geometry was optimized, to maximize overall efficiency d and minimize backflow and wall shear stresses. For a shaft radius of 4.5 mm, rotor blade height of 2.5 mm, and blade inlet and exit metal angles of 67° and 32°, pump operation at the nominal head-flow combination (5 L/min and 100.4 mm Hg) was achieved at a rotor speed of 10,313 rpm. At the nominal point, backflow as percent of total flow was 7.29 and 29.87% at rotor inlet and exit, respectively; overall hydraulic efficiency reached 21.59%; and maximum area-averaged shroud shear was 520 Pa. Overall efficiency peaked at 24.07% for a pump flow of 6.90 L/min, and averaged at 22.57% within the flow range of 4-8 L/min. We concluded that the design satisfies initial rotor design criteria, and that continued studies with diffuser optimization and transient flow analysis are warranted.

  18. Comparison of individual pitch and smart rotor control strategies for load reduction

    NASA Astrophysics Data System (ADS)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  19. Nonlinear Whirl Response of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2005-01-01

    Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.

  20. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.

Top