Science.gov

Sample records for rough dwarf disease

  1. Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China.

    PubMed

    Fang, S; Yu, J; Feng, J; Han, C; Li, D; Liu, Y

    2001-01-01

    Three virus isolates from maize with rough dwarf in different provinces in China were analyzed at the molecular level. When compared to an isolate from diseased rice plants in Hubei Province, all four isolates had identical genomic RNA electrophoretic profiles, which were composed of ten double-stranded (ds) RNAs. Full-length cDNAs of segment 10 (S10) from each of the four isolates were cloned by RT-PCR and the complete sequences were determined. Analysis of the sequences revealed that each consisted of 1801 nucleotides and contained a single open reading frame (ORF) which potentially encoded a protein with 558 amino acids. Further, the sequences showed more than 97.0% and 98.0% identity at nucleotide and amino acid levels, respectively. In addition, their identities to rice black-streaked dwarf virus S10 were significantly higher than those to maize rough dwarf virus S10. Based on these results, it is suggested that the virus which causes this maize disease in China is rice black-streaked dwarf virus.

  2. [Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance].

    PubMed

    Xuan, Ning; Zhao, Chuanzhi; Peng, Zhenying; Chen, Gao; Bian, Fei; Lian, Mingzheng; Liu, Guoxia; Wang, Xingjun; Bi, Yuping

    2015-09-01

    Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA.

  3. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease.

    PubMed

    Wang, Zhao-Hui; Fang, Shou-Guo; Xu, Jia-Ling; Sun, Li-Ying; Li, Da-Wei; Yu, Jia-Lin

    2003-10-01

    The complete nucleotide sequences of 10 genomic segments (S1-S10) from an isolate of rice black-streaked dwarf virus causing rough dwarf disease on maize (RBSDV-Hbm) in China were determined, a total of 29,142 base pairs (bp). Each segment possessed the genus-specific termini with conserved nucleotide sequences of (+) 5'-AAGUUUUU......CAGCUNNNGUC-3' and a perfect or imperfect inverted repeat of seven to eleven nucleotides immediately adjacent to the terminal conserved sequence. While the coding strand of most RBSDV-Hbm segments contained one open reading frame (ORF), there were two non-overlapping ORFs in S7 and S9, and one small overlapping ORF downstream of the major ORF in S5. Homology comparisons suggest that S1 encodes a RNA-dependent RNA polymerase (RdRp), with 63.5% and 32.6% identity to the putative RdRp encoded by Fiji disease virus (FDV) and Nilaparvata lugens reovirus (NLRV), respectively. The proteins encoded by S2, S3, and S4 showed various degrees of similarity to those encoded by the corresponding segments of FDV or NLRV. In S5 and S6, low identities were found to those of FDV only, but not to NLRV. Sequence analyses showed that RBSDV-Hbm had the most similarities in the genome organizations and the coding assignments with a RBSDV isolated from rice in China, in which each pair of the corresponding segments shared sequence identities of 93.8-98.9% and 93.5-100% at nucleotide or amino acid levels, respectively. In addition, phylogenetic analyses suggested that RBSDV-Hbm had the closest evolutionary relationship to RBSDV in Fijivirus.

  4. Genome-Wide Association Implicates Candidate Genes Conferring Resistance to Maize Rough Dwarf Disease in Maize.

    PubMed

    Chen, Gengshen; Wang, Xiaoming; Hao, Junjie; Yan, Jianbing; Ding, Junqiang

    2015-01-01

    Maize rough dwarf disease (MRDD) is a destructive viral disease in China, which results in 20-30% of the maize yield losses in affected areas and even as high as 100% in severely infected fields. Understanding the genetic basis of resistance will provide important insights for maize breeding program. In this study, a diverse maize population comprising of 527 inbred lines was evaluated in four environments and a genome-wide association study (GWAS) was undertaken with over 556000 SNP markers. Fifteen candidate genes associated with MRDD resistance were identified, including ten genes with annotated protein encoding functions. The homologous of nine candidate genes were predicted to relate to plant defense in different species based on published results. Significant correlation (R2 = 0.79) between the MRDD severity and the number of resistance alleles was observed. Consequently, we have broadened the resistant germplasm to MRDD and identified a number of resistance alleles by GWAS. The results in present study also imply the candidate genes in defense pathway play an important role in resistance to MRDD in maize.

  5. Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.).

    PubMed

    Shi, Liyu; Weng, Jianfeng; Liu, Changlin; Song, Xinyuan; Miao, Hongqin; Hao, Zhuanfang; Xie, Chuanxiao; Li, Mingshun; Zhang, Degui; Bai, Li; Pan, Guangtang; Li, Xinhai; Zhang, Shihuang

    2013-04-01

    Maize rough dwarf disease (MRDD, a viral disease) results in significant grain yield losses, while genetic basis of which is largely unknown. Based on comparative genomics, eukaryotic translation initiation factor 4E (eIF4E) was considered as a candidate gene for MRDD resistance, validation of which will help to understand the possible genetic mechanism of this disease. ZmeIF4E (orthologs of eIF4E gene in maize) encodes a protein of 218 amino acids, harboring five exons and no variation in the cDNA sequence is identified between the resistant inbred line, X178 and susceptible one, Ye478. ZmeIF4E expression was different in the two lines plants treated with three plant hormones, ethylene, salicylic acid, and jasmonates at V3 developmental stage, suggesting that ZmeIF4E is more likely to be involved in the regulation of defense gene expression and induction of local and systemic resistance. Moreover, four cis-acting elements related to plant defense responses, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS were detected in ZmeIF4E promoter for harboring sequence variation in the two lines. Association analysis with 163 inbred lines revealed that one SNP in EECCRCAH1 is significantly associated with CSI of MRDD in two environments, which explained 3.33 and 9.04 % of phenotypic variation, respectively. Meanwhile, one SNP in GT-1 motif was found to affect MRDD resistance only in one of the two environments, which explained 5.17 % of phenotypic variation. Collectively, regulatory motifs respectively harboring the two significant SNPs in ZmeIF4E promoter could be involved in the defense process of maize after viral infection. These results contribute to understand maize defense mechanisms against maize rough dwarf virus.

  6. Complete Genomic Sequence of Maize Rough Dwarf Virus, a Fijivirus Transmitted by the Small Brown Planthopper.

    PubMed

    Lv, Mingfang; Xie, Li; Yang, Jian; Chen, Jianping; Zhang, Heng-Mu

    2016-02-04

    The nucleotide sequences of the 10 genomic segments of an Italian isolate of maize rough dwarf virus (MRDV) were determined. This first complete genomic sequence of MRDV will help understand the phylogenetic relationships among group 2 fijiviruses and especially the closely related rice black-streaked dwarf virus, which is also found to naturally infect maize.

  7. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    SciTech Connect

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  8. Dwarf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa dwarf occurs rarely in alfalfa fields. Dwarf has been identified only in California, where it is found at a low frequency. Plants with symptoms of dwarf were reported in the 1950s in Mississippi, Georgia, and Rhode Island, but experimental confirmation of the disease in those States was no...

  9. Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV).

    PubMed

    Bai, Feng-Wei; Yan, Jian; Qu, Zhi-cai; Zhang, Hong-Wei; Xu, Jia; Ye, Ming-Ming; Shen, Da-leng

    2002-10-01

    A viral disease with dwarfing symptoms is associated with severe damage of different cereal crops including rice, maize, wheat and sorghum grown in China. It is believed that the pathogenic agent of the disease on rice and sorghum is rice black streaked dwarf virus (RBSDV), however, the cause of maize dwarf disease in China is still inconclusive. In this report, dsRNA was isolated from virus particles obtained from the diseased plants of rice, maize, wheat and sorghum from two Chinese provinces. Full-length cDNAs of genome segments 9 (S9) and 10 (S 10) were obtained through a RT-PCR approach. Sequence analysis showed that the S9 sequences of Chinese isolates and Japanese RBSDV isolate were very similar to each other (89.1-89.6% identity at the nucleotide level, 92.3-92.9% and 95.8-98.6% identity at the amino acid level for ORF1 and ORF2, respectively). In addition, the S10 sequences of Chinese isolates and Japanese RBSDV were very similar to each other (93.0-95.4% identical nucleotides and 96.2-97.0% identical amino acids, respectively). However, there were lower similarities for S9 and S10 sequences between Chinese isolates and an Italian Maize Rough Dwarf Virus (MRDV) isolate. Phylogenetic analysis indicates that Chinese viral isolates found to infect rice, maize, wheat and sorghum and leading to similar cereal dwarfing manifestations could be grouped to the same virus species, RBSDV.

  10. Pollen Transmitted Diseases, Raspberry bushy dwarf virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry bushy dwarf virus (RBDV) occurs naturally worldwide in many Rubus species and cultivars. In North America, it naturally infects many red raspberry, black raspberry, blackberry and blackberry-raspberry hybrid cultivars. RBDV also occurs in wild R. idaeus L. var. strigosus, R. occidentali., ...

  11. [cDNA cloning and sequence analysis of the seventh segment of maize rough dwarf virus genome].

    PubMed

    Deng, W; Yang, X; Zhang, Y; Liu, Y; Kang, L

    2000-10-01

    The double strand RNA of maize rough dwarf virus (MRDV) was prepared from the maize samples showing symptoms which was from the Luanchen county of Heibei province of China. The primers were designed according to the known sequence of MRDV, the cDNA sequence of the seventh segment of MRDV was obtained by RT-PCR, the S7 sequence was analyzed by computer after sequencing. The results showed: the full length of the S7 cDNA is 1936 bp and equal to that of the S7 cDNA from abroad, the two open reading frame(ORF1 and ORF2) contained in the S7 segment are also unchanged. In comparison with the S7 segment from Italy, the homology of S7 nucleotide is 87.7% and the homology of ORF1 amino acid sequence is 91.6%. However, the MRDV S7 segment and the rice black strike dwarf virus S8 segment showed 95.5% nucleotide identities and 93.5% ORF1 amino acid identities.

  12. Stimulation of jasmonic acid production in Zea mays L. infected by the maize rough dwarf virus-Río Cuarto. Reversion of symptoms by salicylic acid.

    PubMed

    Vigliocco, A; Bonamico, B; Alemano, S; Miersch, O; Abdala, G

    2002-12-01

    In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus-Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.

  13. [Eye diseases in dwarf rabbits. 2. Diseases of the cornea, intraocular and retrobulbar disorders, and neoplasms].

    PubMed

    Wagner, F; Heider, H J; Görig, C; Fehr, M

    1998-09-01

    In the second part of this review article the diseases affecting the cornea, intraocular and retrobulbar disorders, and eye-neoplasia of dwarf rabbits are described. These are illustrated by means of selected photographs.

  14. Detection of longitudinal ulcer using roughness value for computer aided diagnosis of Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2011-03-01

    The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.

  15. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  16. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    PubMed

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  17. Complete nucleotide sequence of a potyvirus causing maize dwarf mosaic disease in central China.

    PubMed

    Liu, X; Wang, X; Zhao, Y; Zheng, C; Zhou, G

    2003-01-01

    The full-length nucleotide sequence of a potyvirus causing the maize dwarf mosaic (MDM) disease in Henan province, central China, was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA 5'-end (5'-RACE). The viral genome comprised of 9596 nucleotides except the polyA tail and encoded a putative polyprotein of 3603 amino acids. The entire genomic sequence of this isolate shared identities of 94.2% and 98.3% with Sugarcane mosaic virus (SCMV) HZ isolate at the nucleotide and deduced amino acid levels, respectively, but only a 69.1% identity with MDM virus (MDMV) Bulgarian isolate (MDMV-Bg) at the nucleotide level. Phylogenetical tree analysis of the complete nucleotide sequences indicated that the Henan isolate of a potyvirus causing MDM disease is in fact a Henan strain of SCMV (SCMV-HN).

  18. Phylogenetic and recombination analysis of rice black-streaked dwarf virus segment 9 in China.

    PubMed

    Zhou, Yu; Weng, Jian-Feng; Chen, Yan-Ping; Liu, Chang-Lin; Han, Xiao-Hua; Hao, Zhuan-Fang; Li, Ming-Shun; Yong, Hong-Jun; Zhang, De-Gui; Zhang, Shi-Huang; Li, Xin-Hai

    2015-04-01

    Rice black-streaked dwarf virus (RBSDV) is an economically important virus that causes maize rough dwarf disease and rice black-streaked dwarf disease in East Asia. To study RBSDV variation and recombination, we examined the segment 9 (S9) sequences of 49 RBSDV isolates from maize and rice in China. Three S9 recombinants were detected in Baoding, Jinan, and Jining, China. Phylogenetic analysis showed that Chinese RBSDV isolates could be classified into two groups based on their S9 sequences, regardless of host or geographical origin. Further analysis suggested that S9 has undergone negative and purifying selection.

  19. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice.

    PubMed

    Puig, Kendra L; Kulas, Joshua A; Franklin, Whitney; Rakoczy, Sharlene G; Taglialatela, Giulio; Brown-Borg, Holly M; Combs, Colin K

    2016-04-01

    APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression.

  20. Association of Satellites with a Mastrevirus in Natural Infection: Complexity of Wheat Dwarf India Virus Disease

    PubMed Central

    Kumar, Jitendra; Kumar, Jitesh; Singh, Sudhir P.

    2014-01-01

    Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies. PMID:24719407

  1. Understanding Brown Dwarf Variability

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2013-01-01

    Surveys of brown dwarf variability continue to find that roughly half of all brown dwarfs are variable. While variability is observed amongst all types of brown dwarfs, amplitudes are typically greatest for L-T transition objects. In my talk I will discuss the possible physical mechanisms that are responsible for the observed variability. I will particularly focus on comparing and contrasting the effects of changes in atmospheric thermal profile and cloud opacity. The two different mechanisms will produce different variability signatures and I will discuss the extent to which the current datasets constrain both mechanisms. By combining constraints from studies of variability with existing spectral and photometric datasets we can begin to construct and test self-consistent models of brown dwarf atmospheres. These models not only aid in the interpretation of existing objects but also inform studies of directly imaged giant planets.

  2. Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice.

    PubMed

    Zhou, Tong; Du, Linlin; Wang, Lijiao; Wang, Ying; Gao, Cunyi; Lan, Ying; Sun, Feng; Fan, Yongjian; Wang, Guoliang; Zhou, Yijun

    2015-07-22

    Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is transmitted by small brown planthoppers (Laodelphax striatellus Fallén, SBPH) and causes severe yield loss in epidemic years in China and other East Asian countries. Breeding for resistance to RBSDV is a promising strategy to control the disease. We identified Tetep that showed resistance to RBSDV using a field test and artificial inoculation test. An evaluation of the resistance mechanism revealed that Tetep was resistant to RBSDV but not to SBPH. Genetic analysis showed that the resistance of Tetep to RBSDV was controlled by quantitative trait loci (QTLs). Three new QTLs for RBSDV resistance were identified in this study, i.e., qRBSDV-3, qRBSDV-10 and qRBSDV-11. The LOD scores of qRBSDV-3, qRBSDV-10 and qRBSDV-11 were 4.07, 2.24 and 2.21, accounting for 17.5%, 0.3% and 12.4% of the total phenotypic variation, respectively. All the resistance loci identified in this study were associated with virus resistance genes. The alleles for enhancing resistance on chromosomes 3 and 11 originated from Tetep, whereas the other allele on chromosome 10 originated from a susceptible parent. The identified new resistance QTLs in this study are useful resources for efficiently breeding resistant rice cultivars to RBSDV.

  3. Maize dwarf mosaic disease in different regions of China is caused by Sugarcane mosaic virus.

    PubMed

    Jiang, J X; Zhou, X P

    2002-12-01

    Sugarcane mosaic virus (SCMV) was detected in all 62 maize samples collected from eight maize-growing provinces in China showing dwarf mosaic symptoms by immunocapture reverse-transcription polymerase chain reaction (RT-PCR). Maize dwarf mosaic virus (MDMV), Sorghum mosaic virus (SrMV) and Johnsongrass mosaic virus (JGMV), however, were not detected in any of the samples by RT-PCR. Eleven cDNA fragments of approximately 0.8 kilobases covering most of the coat protein (CP) gene of SCMV were sequenced and sequence analysis indicates that these eleven isolates share 98.1 to 100 % identity at the amino acid level. Sequence comparison and phylogenetic analysis of the CP genes from the eleven Chinese isolates as well as 21 SCMV subgroup virus isolates indicate that the eleven Chinese virus isolates were closely related to SCMV with 97.0 to 98.1 % sequence identity at the amino acid level, while relatively lower sequence identity was found with MDWV, SrMV or JGMV. The results indicate that the Chinese isolates are members of the SCMV species, and thus, SCMV can be considered as the most common and important potyvirus infecting maize in China.

  4. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease

    NASA Astrophysics Data System (ADS)

    Gai, Ying-Ping; Li, Yi-Qun; Guo, Fang-Yue; Yuan, Chuan-Zhong; Mo, Yao-Yao; Zhang, Hua-Liang; Wang, Hong; Ji, Xian-Ling

    2014-06-01

    The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants.

  5. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease

    PubMed Central

    Gai, Ying-Ping; Li, Yi-Qun; Guo, Fang-Yue; Yuan, Chuan-Zhong; Mo, Yao-Yao; Zhang, Hua-Liang; Wang, Hong; Ji, Xian-Ling

    2014-01-01

    The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants. PMID:24946736

  6. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV

  7. Detection of H alpha emission in a methane (T type) brown dwarf

    NASA Technical Reports Server (NTRS)

    Burgasser, A.; Kirkpatrick, J.; Reid, I.; Liebert, J.; Gizis, J.; Brown, M.

    2000-01-01

    We report the detection of H alpha emission in the T dwarf (methane brown dwarf) 2MASSW J1237392 + 652615 over three days using the Keek Low esolution Imaging Spectrograph. The measured line flux, log (L-H alpha/L-bol) = -4.3, is roughly consistent with early M dwarf activity levels and inconsistent with decreasing activity trends in late M and L dwarfs. Similar emission is not seen in two other T dwarfs.

  8. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    PubMed

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  9. New White Dwarf-Brown Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Geier, S.; Lodieu, N.

    2017-03-01

    We present follow-up spectroscopy to 12 candidate white dwarf-brown dwarf binaries. We have confirmed that 8 objects do indeed have a white dwarf primary (7 DA, 1 DB) and two are hot subdwarfs. We have determined the Teff and log g for the white dwarfs and subdwarfs, and when combining these values with a model spectrum and the photometry, we have 3 probable white dwarf-substellar binaries with spectral types between M6 and L6.

  10. The fate of exomoons in white dwarf planetary systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Veras, Dimitri; Gänsicke, Boris T.; Holman, Matthew J.

    2017-01-01

    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.

  11. Naming Disney's Dwarfs.

    ERIC Educational Resources Information Center

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  12. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development

    PubMed Central

    Jin, Lian; Qin, Qingqing; Wang, Yu; Pu, Yingying; Liu, Lifang; Wen, Xing; Ji, Shaoyi; Wu, Jianguo; Wei, Chunhong; Li, Yi

    2016-01-01

    The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis. PMID:27606959

  13. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae.

    PubMed

    Loconsole, Giuliana; Saldarelli, Pasquale; Doddapaneni, Harshavardhan; Savino, Vito; Martelli, Giovanni P; Saponari, Maria

    2012-10-10

    In the attempt to identify the causal agent of Citrus chlorotic dwarf disease (CCDD), a virus-like disorder of citrus, the small RNA fraction and total DNA from symptomatic citrus plants were subjected to high-throughput sequencing. DNA fragments deriving from an apparently new geminivirus-like agent were found and assembled by NGS to re-construct the entire viral genome. The newly identified virus has a circular single-stranded DNA genome comprising five open reading frames (ORFs) with sequence homologies with those encoded by geminiviruses. PCR and qPCR assays were successfully used for determining its presence in the CCDD-affected plants obtained by graft propagation. The larger genome size (3.64 vs. 2.5-3.0 kb) and a number of differences in its structural organization, identified this virus as a highly divergent member of the family Geminiviridae, to which the provisional name of Citrus chlorotic dwarf-associated virus (CCDaV) is assigned.

  14. A Search for Fine Wines: Discovering Close Red Dwarf-White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Boyd, Mark; Finch, C. T.; Hambly, N. C.; Henry, T. J.; Jao, W.; Riedel, A. R.; Subasavage, J. P.; Winters, J. G.; RECONS

    2012-01-01

    Like fine wines, stars come in both red and white varieties. Here we present initial results of the Fine Wines Project that targets red dwarf-white dwarf pairs. The two scientific goals of Fine Wines are (1) to develop methods to estimate ages for red dwarfs based on the cooling ages of the white dwarfs, and (2) to identify suitable pairs for dynamical mass determinations of white dwarfs to probe their interior structures. Here we focus on the search for Fine Wines, including sample selection, elimination of false positives, and initial reconnaissance. The sample was extracted via color-color plots from a pool of more than 30,000 proper motion systems examined during the SuperCOSMOS-RECONS (SCR) and UCAC3 Proper Motion (UPM) surveys. The initial sample of 75 best candidates is being observed for BVRI photometry and 3500-9500 A spectroscopy to confirm whether or not the systems are red dwarf-white dwarf pairs. Early results indicate that roughly 50% of the candidates selected are indeed Fine Wine systems. This effort is supported by the NSF through grant AST 09-08402 and via observations made possible by the SMARTS Consortium.

  15. Stellar feedback in dwarf galaxy formation.

    PubMed

    Mashchenko, Sergey; Wadsley, James; Couchman, H M P

    2008-01-11

    Dwarf galaxies pose substantial challenges for cosmological models. In particular, current models predict a dark-matter density that is divergent at the center, which is in sharp contrast with observations that indicate a core of roughly constant density. Energy feedback, from supernova explosions and stellar winds, has been proposed as a major factor shaping the evolution of dwarf galaxies. We present detailed cosmological simulations with sufficient resolution both to model the relevant physical processes and to directly assess the impact of stellar feedback on observable properties of dwarf galaxies. We show that feedback drives large-scale, bulk motions of the interstellar gas, resulting in substantial gravitational potential fluctuations and a consequent reduction in the central matter density, bringing the theoretical predictions in agreement with observations.

  16. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  17. Investigating Dwarf Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  18. New strains of chickpea chlorotic dwarf virus discovered on diseased papaya and tomato plants in Burkina Faso.

    PubMed

    Ouattara, Alassane; Tiendrébéogo, Fidèle; Lefeuvre, Pierre; Hoareau, Murielle; Claverie, Sohini; Traoré, Edgar Valentin; Barro, Nicolas; Traoré, Oumar; Varsani, Arvind; Lett, Jean-Michel

    2017-02-22

    This is the first description of full genome sequences of chickpea chlorotic dwarf virus (CpCDV; genus Mastrevirus; family Geminiviridae) identified in papaya and tomato plants sampled in Burkina Faso. The CpCDV full genome sequences from papaya and tomato share the highest pairwise sequence identity (84% and 93.5%) with Sudanese isolates of the CpCDV-K and CpCDV-M strains, respectively. Based on the strain demarcation threshold (>94% identity) for mastreviruses, we propose two new strains, CpCDV-Q and CpCDV-R, identified in papaya and tomato, respectively. Phylogenetic analysis confirmed that the sequences belong to a distinct clade of the highly diverse population of CpCDVs. Evidence of inter-strain recombination provided more support for the important role of recombination in CpCDV evolution. The discovery of CpCDV on papaya, a previously unsuspected host, raises many questions about the natural and potential host range of this dicot-infecting mastrevirus species that is reported to be emerging worldwide.

  19. Exploring Dwarf Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Dunn, Jacqueline M.

    2017-01-01

    Dwarf galaxies are the most numerous galaxies in the universe, yet little is definitively understood about their formation and evolution. An evolutionary link has been proposed between dwarf irregular and dwarf elliptical galaxies by previous studies. The nature and existence of so-called dwarf spiral galaxies is still heavily debated. This project explores the properties of dwarf galaxies spanning a range in morphological type, luminosity, physical size, and surrounding environment (i.e. group / field galaxies). The goal of this project is to determine the range of exhibited properties for each type of dwarf galaxy using available ultraviolet, visible, and near-infrared imaging and spectra. Similarities in visible, broadband colors support the proposed evolutionary link dwarf irregular and dwarf elliptical galaxies when the range of brightness of the samples is constrained to the fainter galaxies. Here, comparisons amongst a sub-sample of 59 dwarf irregulars, 12 dwarf ellipticals, and 29 dwarf spirals will be presented using archival ultraviolet, visible, and near-infrared imaging. The effect of constraining the comparisons to the fainter sample members will be explored, as well as the effect of constraining the comparisons to the brighter sample members.

  20. [cDNA cloning and expression in Escherichia coli of rice black-streaked dwarf virus segment 7].

    PubMed

    Zhong, Yongwang; Zhou, Jie; Zhuang, Binquan; Wei, Chunhong; Li, Yi

    2003-08-01

    Using primers designed from the terminal sequences of maize rough dwarf virus S6, a 2.2 kb cDNA fragment was amplified by RT-PCR from maize plants showing maize rough dwarf disease. Sequence analysis shows that the full length of this cDNA is 2193bp. It contains two open reading frames that encoded two polypeptides with molecular weight of 41.0kD and 36.3kD, respectively. Results of multi-sequences alignment suggest that, this cDNA sequence has significant similarity to rice black-streaked dwarf virus S7, much higher than to MRDV S6. The ORFs were cloned into expression vectors, pET21-d (ORF1) or pGEX-KG (ORF2), respectively, and then transformed to BL21(DE3)-gold. After induction with IPTG, both proteins were highly expressed. The recombinant proteins were purified and high titer antisera of these two proteins were prepared.

  1. The Hunt for Dwarf Galaxies' Ancestors

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    formation had already occurred by this time.Finally, the authors compared the properties of these 73 scaled-back dwarfs to those of high-redshift galaxies that we have already detected with the Hubble and Spitzer Space Telescopes, as well as to the detection limits of the upcoming James Webb Space Telescope (JWST) mission launching in 2018.Patej and Loeb find that, when scaled back to redshifts of z = 6 or 7, the dwarf galaxies would be too faint to detect with current telescopes despite being roughly the same size as high-redshift galaxies weve already detected. But the capabilities of JWST will push into this regime: according to Patej and Loebs calculations, JWST would be able to detect 13 of the 73 galaxies in the sample at a redshift of z = 6, and 9/73 at a redshift of z = 7.Furthermore, the fraction of detectable galaxies would increase if these ancient dwarfs contained large numbers of Population-III-like, massive, bright stars. But even without such a boost, the hunt for the ancestors of local dwarf galaxies appears to be well within JWSTs capabilities!CitationAnna Patej and Abraham Loeb 2015 ApJ 815 L28. doi:10.1088/2041-8205/815/2/L28

  2. How, Now, Brown Dwarfs?

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2009-01-01

    The vocabulary of astronomy is riddled with colorful names for stars, from red giants to blue stragglers. Objects with masses between roughly .01 and .1 solar masses are called "brown dwarfs". Do they - could they - ever actually appear brown? Color is not a one-dimensional physical parameter like wavelength. It is a complex, psychophysical phenomenon involving not only three degrees of freedom - hue (often incorrectly equated with "color"), saturation and brightness - but also observational context. The perceptual nature of color has been known since Newton wrote in his "Opticks” in 1704: "For the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and disposition to stir up a Sensation of this or that Colour.” To most observers, the 2000 or so naked eye stars observable from the northern hemisphere all appear white, with the half dozen exceptions which look reddish/orange like Betelgeuse, Arcturus and Antares. But what color would Betelgeuse (effective temperature 3600 K) appear at a distance of, say, 100 times the Earth-Sun separation? Not red. In fact, it has a temperature about 40% higher than that of an ordinary incandescent light bulb. It would appear white (or yellowish)! Can a very cool radiating (emissive) object ever appear brown? What is brown anyway? It is not a primary or even secondary color. In this presentation, we will explore the nature and meaning of "brown” by the use of several physical and computer demonstrations developed as part of "Project LITE- Light Inquiry Through Experiments", an educational materials development project. These demonstrations show that an isolated thermally radiating object will never appear brown. Hence the term "Brown Dwarf” is as nonsensical as the phrase "How, Now, Brown Cow?". Project LITE is supported by the NSF through DUE Grant # 0715975.

  3. Outbursts in Two New Cool Pulsating DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, M. H.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.; Winget, D. E.; Dennihy, E.; Gianninas, A.; Tremblay, P.-E.; Chote, P.; Winget, K. I.

    2016-10-01

    The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with {T}{eff} = 10,780 ± 140 K and {log} g = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with {T}{eff} = 11,190 ± 170 K and {log} g = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.

  4. T Dwarf Explorer

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Hora, Joseph; Luhman, Kevin; Marengo, Massimo; Patten, Brian; Sonnett, Sarah; Stauffer, John

    2007-05-01

    With the basic colors and photometry for M, L, and T dwarfs in the IRAC bandpasses established (Patten et al. 2006), we wish to shift our focus to the differences seen among objects with similar T_eff and, in particular, to expand on the exploration of the T dwarfs. While some of the observed dispersion of T dwarf colors and magnitudes in the near- and mid-IR for objects of the same sub-type can be explained by differences in metallicity and gravity, some of this scatter may also be due to binarity and intrinsic variability (i.e., 'brown dwarf weather'). We are curious as to whether or not the observed scatter with color in the infrared, which appears to be largest in the mid-T dwarfs, really tapers off and grows smaller in the late-T dwarfs, or if we are simply not seeing the whole picture due to small number statistics. On the warmer end of the T sequence, recent results suggest that the transition from the late-L to early-T types in brown dwarf temperature progresses very quickly in an evolutionary sense. Therefore, objects with early T types should be relatively rare. Many of the early-T brown dwarfs used in the in the Patten et al. 2006 study (and others) have turned out to be very close binaries (e.g. Burgasser et al. 2006), which has resulted in a deficit of true, single early-T brown dwarfs with well-determined mid-infrared colors and photometry. We are proposing to acquire IRAC photometry for an additional ~23 T-type dwarfs in order to allow us to better characterize trending with color and spectral type for the T dwarfs. These new T dwarf data will be combined with the existing T dwarf data previously acquired by IRAC to produce the color-color and color-magnitude diagrams necessary to compare observation to theory for the coolest sub-stellar mass objects known. These data will prove invaluable in constraining searches in color and magnitude space for brown dwarf companions to nearby stars as well as for free-floating brown dwarfs in the field.

  5. Color Profile Trends of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location. Furthermore, color trends reveal information about possible stellar population changes at the breaks. Here we show color trends for the four profile types from a large multi-wavelength photometric study of dwarf disk galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  6. The begomoviruses Honeysuckle yellow vein mosaic virus and Tobacco leaf curl Japan virus with DNAbeta satellites cause yellow dwarf disease of tomato.

    PubMed

    Ogawa, T; Sharma, P; Ikegami, M

    2008-11-01

    The complete nucleotide sequences of two begomoviruses (Nara virus-1 and Nara virus-2), a satellite DNA (DNAbeta-Nara) and defective DNAs were obtained from honeysuckle (Lonicera japonica) showing characteristic yellow vein mosaic symptoms in Nara Prefecture, Japan. One begomovirus (Ibaraki virus) and a satellite DNA (DNAbeta-Ibaraki) was isolated and cloned from honeysuckle plants exhibited typical yellowing of veins and small elliptical shaped enations along veins on the under side of the leaves in Ibaraki Prefecture, Japan. The genome organization of the three viruses is the same as those of other Old World monopartite begomoviruses. Nara virus-1 had overall nucleotide sequence identity with Nara virus-2 of 94% and Ibaraki virus of 90%. DNAbeta-Nara had overall nucleotide sequence identity with DNAbeta-Ibaraki of 83%. Comparison of the nucleotide sequences with other begomoviruses revealed that Nara virus-1 and Nara virus-2 are strains of Honeysuckle yellow vein mosaic virus (HYVMV), hence named as HYVMV-Nara1 and HYVMV-Nara2, whereas Ibaraki virus was a strain of Tobacco leaf curl Japan virus (TbLCJV), designated as TbLCJV-Hs[Iba]. HYVMV-Nara1 and HYVMV-Nara2 have hybrid genomes, which are likely to have formed recombination between HYVMV and TbLCJV. TbLCJV-Hs[Iba] or HYVMV-Nara2 could infect and cause yellowing, leaf crinkling and stunting symptoms when partial tandem dimeric constructs were agroinoculated on tomato plants. However, in the presence of DNAbeta, both TbLCJV-Hs[Iba] or HYVMV-Nara2 produced more severe stunting symptoms in tomato plants. Therefore, these viruses along with their satellites are causal agents of tomato yellow dwarf disease in Japan, and honeysuckle acts as a potential reservoir host. Previously available evidence indicated that DNAbeta elements do not contain iteron sequences of their helper viruses; hence this is the first evidence that DNAbeta satellites have the iteron of their helper virus.

  7. Astrometric Binaries: White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  8. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  9. Spectroscopy of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Rebolo, R.

    Recent searches for brown dwarfs have succeeded in finding these elusive objects. Massive brown dwarfs (40-70 Jupiter masses) have been found in the Pleiades, orbiting around a nearby star and, very recently, in the field. A review is given of their observed photometric and spectroscopic properties in the optical and near-infrared. The diagnosis of substellar nature based on lithium lines and methane bands is discussed in detail. While lithium has proved useful to test brown dwarfs with effective temperatures hotter than ~1600 K, methane is a substellar indicator at lower temperatures.

  10. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  11. Could Ultracool Dwarfs Have Sun-Like Activity?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    emission primarily polarized in a single direction. The dwarfs flares in late 2013, however, all showed polarization in the opposite direction. Could this be an indication that J1047+21 has a stable, global dipolar field that flipped polarity in between the two sets of observations? If so, this could mean that the star has a magnetic cycle similar to the Suns.Artists impression showing the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter [Credit: NASA/IPAC/R. Hurt (SSC)]Inspired by this possibility, Route conducted an investigation of the long-term magnetic behavior of all known radio-flaring ultracool dwarfs, a list of 14 stars. Using polarized radio emission measurements, he found that many of his targets exhibited similar polarity flips, which he argues is evidence that these dwarfs are undergoing magnetic field reversals on roughly decade-long timescales, analogous to those reversals that occur in the Sun.If this is indeed true, then we need to examine our models of how magnetic fields are generated in stars: the interface between the radiative and convective layers may not be necessary to produce large-scale magnetic fields. Understanding this process is certainly an important step in interpreting the potential habitability of planets around ultracool dwarfs.CitationMatthew Route 2016 ApJL 830 L27. doi:10.3847/2041-8205/830/2/L27

  12. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  13. ROUGH ROCK DEMONSTRATION SCHOOL.

    ERIC Educational Resources Information Center

    FORBES, JACK

    THE ROUGH ROCK DEMONSTRATION SCHOOL IS LOCATED IN NORTHEASTERN ARIZONA, WHERE THE NAVAJO LANGUAGE IS UNIVERSALLY SPOKEN BY THE NAVAJO PEOPLE. IT IS LOCATED ON A NAVAJO RESERVATION AND WAS DESIGNED AS A BIA EXPERIMENTAL SCHOOL TO SERVE 200 ELEMENTARY PUPILS, MOST OF WHOM ARE IN THE BOARDING SCHOOL SITUATION. AN OBJECTIVE OF THE SCHOOL IS TO GAIN…

  14. Surface Roughness Lengths

    DTIC Science & Technology

    1993-08-01

    m trees 110 - 170 Thom 1972 Pine forest - 20 m trees 128 DeBruin and Moore 1985 Forested plateau, rolling 120 - 130 Ming et al. 1983 Rolling terrain...H. A. R., and C. J. Moore , 1985 , "Zero-Plane Displacement and Roughness Length for Tall Vegetation, Derived from a Simple Mass Conservation

  15. VLA Detects Unexplained Radio Emission From Three Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2005-01-01

    at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs had long been thought to exist, but proved difficult to find. Astronomers found the first brown dwarf in 1995, and a few hundred now are known. The type of radio emission seen in the brown dwarfs arises in more-massive stars as a result of plasma interacting with the star's magnetic field. However, astronomers have noted that this type of activity declines in less-massive stars. This is why they expected brown dwarfs, with masses less than that of any star, to lack radio emission. Surprisingly, based on discoveries since 2001, it now appears that radio-emitting magnetic activity may actually become more common in these very low-mass objects. "We don't have an explanation for this," Osten said. The scientists hope that brown-dwarf radio emission may give them a new tool for analysis. "Since both stars and the planets in our Solar System produce radio emission, detailed study of the radio emission properties of these brown dwarfs may enable us to distinguish where the boundary between stellar and planetary behavior occurs in these not-quite-stars, not-quite-planets," Osten explained. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  16. Disintegrating Planetary Bodies Around a White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Several months ago, the discovery of WD 1145+017 was announced. This white dwarf appears to be orbited by planetary bodies that are actively disintegrating due to the strong gravitational pull of their host. A follow-up study now reveals that this system has dramatically evolved since its discovery.Signs of DisruptionPotential planetary bodies orbiting a white dwarf would be exposed to a particular risk: if their orbits were perturbed and they passed inside the white dwarfs tidal radius, they would be torn apart. Their material could then form a debris disk around the white dwarf and eventually be accreted.Interestingly, we have two pieces of evidence that this actually happens:Weve observed warm, dusty debris disks around ~4% of white dwarfs, andThe atmospheres of ~25-50% of white dwarfs are polluted by heavy elements that have likely accreted recently.But in spite of this indirect evidence of planet disintegration, wed never observed planetary bodies actively being disrupted around white dwarfs until recently.Unusual TransitsIn April 2015, observations by Keplers K2 mission revealed a strange transit signal around WD 1145+017, a white dwarf 570 light-years from Earth that has both a dusty debris disk and a polluted atmosphere. This signal was interpreted as the transit of at least one, and possibly several, disintegrating planetesimals.In a recent follow-up, a team of scientists led by Boris Gnsicke (University of Warwick) obtained high-speed photometry of WD 1145+017 using the ULTRASPEC camera on the 2.4m Thai National Telescope. These observations were taken in November and December of 2015 roughly seven months after the initial photometric observations of the system. They reveal that dramatic changes have occurred in this short time.Rapid EvolutionA sample light curve from TNT/ULTRASPEC, obtained in December 2015 over 3.9 hours. Many varied transits are evident (click for a better view!). Transits labeled in color appear across multiple nights. [Gnsicke et al

  17. Photometric Variability of Y Dwarfs

    NASA Astrophysics Data System (ADS)

    Trucks, Jesica; Cushing, M.; Hardegree-Ullman, K.; Gelino, C. R.; Kirkpatrick, J. D.; Mace, G. N.; Gizis, J.; Marley, M. S.; Morley, C.; Fortney, J. J.

    2014-01-01

    Condensate clouds are present in brown dwarf atmospheres due to their low surface temperatures. As the coolest (Teff < 600 K) class of brown dwarfs currently known, Y dwarfs allow us to study the unique atmospheric physics that occur at these temperatures including the formation of sulfide, chloride, and water clouds. Dynamic inhomogeneities in cloud cover should manifest as photometric variabilities in the observed light curves of brown dwarfs. This phenomenon was originally documented in two brown-dwarfs by Morales-Calderón et al. (2006) at 4.5 microns, and in one brown dwarf by Heinze et al. (2013) at 3.6 microns. We describe our ongoing program to monitor fourteen Y dwarfs for photometric variability at 3.6 and 4.5 microns with the Spitzer Space Telescope and present initial results including the first detection of Y dwarf variability.

  18. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  19. The search for brown dwarfs

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1991-01-01

    The theory of brown dwarfs is summarized and observational findings regarding brown dwarfs are reviewed. The equation of state, the thermal properties, the interior transport properties, the boundary conditions, and the initial conditions are examined. Indirect observations, IR speckle interferometry, IR photometry, and field observations of brown dwarfs are discussed.

  20. The Gobbling Dwarf that Exploded

    NASA Astrophysics Data System (ADS)

    2007-07-01

    supernova has ever been observed at this level of detail for more than four months after the explosion," says Ferdinando Patat, lead author of the paper reporting the results in this week's issue of Science Express, the online version of the Science research journal. "Our data set is really unique." The most remarkable findings are clear changes in the absorption of material, which has been ejected from the companion giant star. Such changes of interstellar material have never been observed before and demonstrate the effects a supernova explosion can have on its immediate environment. The astronomers deduce from the observations the existence of several gaseous shells (or clumps) which are material ejected as stellar wind from the giant star in the recent past. "The material we have uncovered probably lies in a series of shells having a radius of the order of 0.05 light-years, or roughly 3 000 times the distance between Earth and the Sun", explains Patat. "The material is moving with a velocity of 50 km/s, implying that the material would have been ejected some 50 years before the explosion." Such a velocity is typical for the winds of red giants. The system that exploded was thus most likely composed of a white dwarf that acted as a giant 'vacuum cleaner', drawing gas off its red giant companion. In this case however, the cannibal act proved fatal for the white dwarf. This is the first time that clear and direct evidence for material surrounding the explosion has been found. "One crucial issue is whether what we have seen in SN 2006X represents the rule or is rather an exceptional case," wonders Patat. "But given that this supernova has shown no optical, UV and radio peculiarity whatsoever, we conclude that what we have witnessed for this object is a common feature among normal SN Ia. Nevertheless, only future observations will give us answers to the many new questions these observations have posed to us." A high resolution image of SN 2006X in the spiral galaxy Messier

  1. Origins, Evolution, and Fate of Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Martin, Eduardo

    2003-01-01

    Research related to the origins, evolution and fate of brown dwarfs is presented. The topics include: 1) Imaging surveys for brown dwarfs; 2) Companion detection techniques; 3) Measurements of fundamental properties of brown dwarfs; 4) Classification schemes for ultracool dwarfs; 5) Origins and evolution of brown dwarfs; 6) Ultracool atmospheres and interiors; 7) Time variable phenomena in brown dwarfs; 8) Comparisons between brown dwarfs and planets; 9) Substellar mass functions; and 10) Future facilities.

  2. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    SciTech Connect

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-07-10

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1} = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  3. Dwarf Eye Disorder

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Johns Hopkins researchers at the Wilmer Eye Institute have discovered what appears to be the first human gene mutation that causes extreme farsightedness. The researchers report that nanophthalmos, Greek for "dwarf eye," is a rare, potentially blinding disorder caused by an alteration in a gene called MFRP that helps control eye growth and…

  4. Rough and Tumble Play 101

    ERIC Educational Resources Information Center

    Carlson, Frances

    2009-01-01

    Many people fear that play-fighting or rough and tumble play is the same as real fighting. There is also a fear that this rough play will become real fighting if allowed to continue. Most of all, parents and teachers fear that during the course of rough and tumble play a child may be hurt. To provide for and allow children to play rough without…

  5. Rough Sea Transfer Ship

    DTIC Science & Technology

    2008-07-01

    GROUP 2.3 2.36003 TRIAGE 20.00 60.00 GROUP 2.4 2.41005 VENDING MACHINE AREA 1.84 5.53 2.42001 LAUNDRY 27.15 81.44 GROUP 2.5...Research Enterprise Intern Program Rough Seas Transfer Ship Acknowledgements This report is the culmination of work conducted by students hired...under the National Research Enterprise Intern Program sponsored by the Office of Naval Research. This program provides an opportunity for students to

  6. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  7. Armor Plate Surface Roughness Measurements

    DTIC Science & Technology

    2005-04-01

    Armor Plate Surface Roughness Measurements by Brian Stanton, William Coburn, and Thomas J. Pizzillo ARL-TR-3498 April 2005... Armor Plate Surface Roughness Measurements Brian Stanton, William Coburn and Thomas J. Pizzillo Sensors and Electron Devices Directorate...October 2004 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Armor Plate Surface Roughness Measurements 5c. PROGRAM ELEMENT NUMBER

  8. Dwarf Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Colín, P.; Klypin, A.; Valenzuela, O.; Gottlöber, Stefan

    2004-09-01

    We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses of 107-109 h-1 Msolar. We find that the density profiles of relaxed dwarf halos are well fitted by the Navarro, Frenk, & White (NFW) profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model, while the latter is well fitted by a lognormal distribution with λ0=0.042 and σλ=0.63. We estimate the distribution of concentrations for halos in a mass range that covers 6 orders of magnitude, from 107 to 1013 h-1 Msolar, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z=0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6×109 to 1013 h-1 Msolar and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just downscaled versions of the large halos. They are cuspy and, as expected, more concentrated. They have the same spin parameter distribution and follow the same mass function that was measured for large halos.

  9. RELATIONSHIP BETWEEN THE AERODYNAMIC ROUGHNESS LENGTH AND THE ROUGHNESS DENSITY IN CASES OF LOW ROUGHNESS DENSITY

    EPA Science Inventory

    This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.

  10. Tuning Into Brown Dwarfs: Long-Term Radio Monitoring of Two Very Low Mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Linge, Russell; Burgasser, Adam J.; Melis, Carl; Williams, Peter K. G.

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs, with effective temperatures T < 3000 K, exhibit mixed magnetic activity trends, with H-alpha and X-ray emission that declines rapidly beyond type M7/M8, but persistent radio emission in roughly 10-20% of sources. The dozen or so VLM radio emitters known show a broad range of emission characteristics and time-dependent behavior, including steady persistent emission, periodic oscillations, periodic polarized bursts, and aperiodic flares. Understanding the evolution of these variability patterns, and in particular whether they undergo solar-like cycles, requires long-term monitoring. We report the results of a long-term JVLA monitoring program of two magnetically-active VLM dwarf binaries, the young M7 2MASS 1314+1320AB and older L5 2MASS 1315-2649AB. On the bi-weekly cadence, 2MASS 1314 continues to show variability by revealing regular flaring while 2MASS 1315 continues to be a quiescent emitter. On the daily time scale, both sources show a mean flux density that can vary significantly just over a few days. These results suggest long-term radio behavior in radio-emitting VLM dwarfs is just as diverse and complex as short-term behavior.

  11. M Dwarf Mysteries

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Jao, Wei-Chun; Irwin, Jonathan; Dieterich, Sergio; Finch, Charlie T.; Riedel, Adric R.; Subasavage, John P.; Winters, Jennifer; RECONS Team

    2017-01-01

    During RECONS' 17-year (so far) astrometry/photometry program at the CTIO/SMARTS 0.9m, we have observed thousands of the ubiquitous red dwarfs in the solar neighborhood. During this reconnaissance, a few mysterious characters have emerged ...The Case of the Mercurial Stars: One M dwarf has been fading steadily for more than a decade, at last measure 6% fainter than when it was first observed. Another has grown brighter by 7% over 15 years. Are these brightness changes part of extremely long stellar cycles, or something else entirely?The Case of Identical Stellar Twins that Aren't: Two M dwarfs seem at first to be identical siblings traveling together through the Galaxy. They have virtually identical spectra at optical wavelengths and identical colors throughout the VRIJHK bands. Long-term astrometry indicates that they are, indeed, at the same distance via parallax measurements, and their proper motions match precisely. Yet, one of the twins is FOUR times brighter than the other. Followup work has revealed that the brighter component is a very close spectroscopic double, but no other stars are seen. So, the mystery may be half solved, but why do the close stars remain twice as bright as their widely-separated twin?The Case of the Great Kaboom!: After more than 1000 nights of observing on the reliable 0.9m telescope, with generally routine frames reading out upon the screen, one stellar system comprised of five red dwarfs flared in stunning fashion. Of the two distinct sources, the fainter one (an unresolved double) surpassed the brightness of the brighter one (an unresolved triple), increasing by more than three full magnitudes in the V filter. Which component actually flared? Is this magnificent outburst an unusual event, or in fact typical for this system and other M dwarfs?At the AAS meeting, we hope to probe the cognoscenti who study the Sun's smaller cousins to solve these intriguing M Dwarf Mysteries.This effort has been supported by the NSF through grants

  12. A case of antibacterial-responsive mucocutaneous disease in a seven-year-old dwarf lop rabbit (Oryctolagus cuniculus) resembling mucocutaneous pyoderma of dogs.

    PubMed

    Benato, L; Stoeckli, M R; Smith, S H; Dickson, S; Thoday, K L; Meredith, A

    2013-04-01

    A seven-year-old, ovariohysterectomised female dwarf lop rabbit (Oryctolagus cuniculus) was referred with severe swelling and erythema of the mucocutaneous junctions of the lips, nares and vulva. Bilateral, severe periocular dermatitis was also present. Heavy pure growths of a member of the Staphylococcus intermedius group were cultured from nasal and aural swabs and skin biopsies. Other possible differential diagnoses were eliminated by standard tests. The clinical features and histopathological characteristics of the biopsies were most consistent with mucocutaneous pyoderma, a dermatosis previously reported in dogs but not in rabbits. Treatment of the bacterial infection with oral marbofloxacin and topical ofloxacin eye drops together with supportive therapy resulted in resolution of the lesions. To the authors' knowledge, this is the first report of mucocutaneous bacterial pyoderma, similar to mucocutaneous pyoderma of dogs, in a rabbit.

  13. Engine roughness control means

    SciTech Connect

    Matsuura, M.; Doi, N.; Yoshioka, S.; Okimoto, H.; Veda, K.

    1987-08-04

    This patent describes a control system for a vehicle engine comprising engine condition detecting means for detecting an engine operating condition and producing an engine condition signal representing the engine operating condition, engine combustion control means for controlling a condition of combustion in the engine; and a control factor storage means for storing control factors for controlling the engine combustion. A modifying means connect the comparator means to receive the output signal and to modify the control factor from the storage means by the output of the comparator means so that the combustion control means is controlled by the modified control factor in a direction that the engine vibrations are suppressed. A reference signal changes means connected with the engine condition detecting means to change the reference roughness signal in accordance with the engine operating condition so that the reference signal is decreased when the engine is in idling operation.

  14. Surface Brightness Profiles of Dwarf Galaxies. II. Color Trends and Mass Profiles

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2016-06-01

    In this second paper of a series, we explore the B - V, U - B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ˜1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (-9 > MB > -14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (-14 > MB > -19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1-2 M⊙ pc-2 for Type II dwarfs but higher at 5.9 M⊙ pc-2 or 27 M⊙ pc-2 for Type III BCDs and dIms, respectively.

  15. White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, D.; Romero, A. D.; Ourique, G.; Pelisoli, I.

    2017-03-01

    We present the mass distribution for all S/N ≥ 15 DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12 in 2015, fitted with Koester models for ML2/α=0.8 (Teff≥ 10000 K), and for DBs with S/N ≥ 10, fitted with ML2/α=1.25, for Teff >16 000 K. These mass distributions are for logg≥6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 M ⊙ but very distinct shapes.

  16. Solidification of carbon-oxygen white dwarfs

    NASA Technical Reports Server (NTRS)

    Schatzman, E.

    1982-01-01

    The internal structure of white dwarfs is discussed. Highly correlated plasmas are reviewed. Implications for phase separation in the core of cooling white dwarfs are considered. The consequences for evolution of white dwarfs are addressed.

  17. Local Universe Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    One of the outstanding problems in cosmology is addressing the "small-scale crisis" and understanding structure formation at the smallest scales. Standard Lambda Cold Dark Matter cosmological simulations of Milky Way-size DM halos predict many more DM sub-halos than the number of dwarf galaxies observed. This is the so-called Missing Satellites Problem. The most popular interpretation of the Missing Satellites Problem is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The virialized extent of the Milky Way's halo should contain ~500 satellites, while only ˜100 satellites and dwarfs are observed in the whole Local Group. Despite the large amount of theoretical work and new optical observations, the discrepancy, even if reduced, still persists between observations and hierarchical models, regardless of the model parameters. It may be possible to find those isolated ultra-faint missing dwarf galaxies via their neutral gas component, which is one of the goals we are pursuing with the SKA precursor KAT-7 in South Africa, and soon with the SKA pathfinder MeerKAT.

  18. Convection in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Shipman, H.; Dalessio, J.; M, M.

    2012-01-01

    Convection is one of the largest sources of theoretical uncertainty in our understanding of stellar physics. Current studies of convective energy transport are based on the mixing length theory. Originally intended to depict turbulent flows in engineering situations, MLT enjoys moderate success in describing stellar convection. However, problems arising from MLT's incompleteness are apparent in studies ranging from determinations of the ages of massive stars, to understanding the structure F and early A stars, to predicting the pulsation periods of solar stars, to understanding the atmosphere of Titan. As an example for white dwarfs, Bergeron et al. (1995) show that model parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed MLT parameterization. The authors find systematic uncertainties ranging from 25% for effective temperatures to 11% for mass and radius. The WET is engaged in a long term project to empirically determine the physical properties of convection in the atmospheres of pulsating white dwarfs. The technique, outlined by Montgomery et al. (2010), uses information from nonlinear (non-sinusoidal) pulse shapes of the target star to empirically probe the physical properties of its convection zone. Approximately two thirds of all white dwarfs show nonlinear characteristics in their light curves. We present current results from WET targets in 2008-2011.

  19. Overexpression of rice black-streaked dwarf virus p7-1 in Arabidopsis results in male sterility due to non-dehiscent anthers.

    PubMed

    Sun, Feng; Yuan, Xia; Xu, Qiufang; Zhou, Tong; Fan, Yongjian; Zhou, Yijun

    2013-01-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways.

  20. The search for brown dwarfs with infrared surveys

    NASA Technical Reports Server (NTRS)

    Chester, T. J.

    1994-01-01

    Infrared Astronomy Satellite (IRAS), ISO, Space Infrared Telescope Facility (SIRTF), WIRE, Deep Near-Infrared Survey (DENIS), and Two Micron All-Sky Survey (2MASS) observations were used to compute the maximum number of observable brown dwarfs for various infrared surveys by combining the maximum possible Oort limit (0.1 'missing' solar mass p/cu c) with all possible brown dwarf mass and age distributions. This approach shows what limits will be placed on the contribution of brown dwarfs to any possible 'missing mass' if no brown dwarfs are observed. I consider brown dwarfs with masses of 0.01-0.08 solar mass and ages of 10(exp 9)-10(exp 10) years. The full range of predicted numbers of brown dwarfs above approx. 6 times the noise of each of the below surveys is: IRAS Point Source Catalog, 0.02-6; IRAS Faint Source Catalog absolute value of b greater than 10 deg, 0.05-16; ISO (2 week 12 micrometer survey), 0.15-80; SIRTF (2 week 12 micrometer survey), 2.50-1600; WIRE (4 month 12 micrometer survey), 21.80-6000; DENIS(half sky) absolute value of b greater than 10 deg, 0.00-2000; and 2MASS(full sky) absolute value of b greater than 10 deg, 0.00-8800. A failure to find brown dwarfs in the IRAS FSC would just barely rule out about half of the mass-age range for Oort limit total masses. A failure to find brown dwarfs in 2MASS/DENIS would rule out roughly the same mass-age range, but would set a limit of 0.1-0.01 times the Oort mass in that mass-age region. No limits would be set for the other half of the mass-age range since both IRAS and 2MASS/DENIS have insufficient sensitivity for brown dwarfs with T less than 750 K. A failure to find brown dwarfs with ISO would rule out almost all of the mass-age range for Oort limit total masses, but would not set a significantly lower limit to the brown dwarf mass limit. A failure to find brown dwarfs with SIRTF or WIRE would rule out the entire mass-age range for Oort limit total masses and set an upper limit of 0.1-0.001 times

  1. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  2. Are dwarf galaxies killed by reionization?

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Trujillo-Gomez, Sebastian; Ceverino, Daniel; Primack, Joel R.

    2015-01-01

    The ΛCDM cosmological model has been very successful at predicting the large-scale structure of the Universe. However, for dwarf galaxies, simulations have failed to reproduce the number and structure of satellite and isolated dwarf galaxies. The inclusion of baryons in simulations has been found to alleviate the small-scale issues within ΛCDM, such as the core-cusp, missing satellites, and too-big-to-fail problems. To address these concerns, we analyzed state-of-the-art, high-resolution hydrodynamical simulations of galaxy formation created using the ART code. These simulations model relevant physical processes of star formation and stellar feedback including stellar winds, supernovae feedback, and radiation pressure. We examined 1,000 galaxies from the VELA suite of simulations and find steep velocity functions for satellite galaxies and a large spread in the stellar halo mass relation for a given virial mass or maximum circular velocity. The star formation histories of these galaxies agree with recent observations in that they have an initial burst and then are roughly constant. Reionization does not completely suppress star formation in the majority of these galaxies and only acts to decrease the star formation rate. 73% of galaxies with virial masses greater than 108 M⊙ are luminous, which contributes to a larger abundance of these low mass objects than are observed. Analysis of these kinds of simulations can shed light on the role of baryons in the overabundance and structure problems.

  3. Roughness Measurement of Dental Materials

    NASA Astrophysics Data System (ADS)

    Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo

    2016-06-01

    This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.

  4. Surface roughness measurements

    NASA Astrophysics Data System (ADS)

    Howard, Thomas G.

    1994-10-01

    The Optics Division is currently in the research phase of producing grazing-incidence mirrors to be used in x-ray detector applications. The traditional method of construction involves labor-intensive glass grinding. This also culminates in a relatively heavy mirror. For lower resolution applications, the mirrors may be of a replicated design which involves milling a mandrel as a negative of the final shape and electroplating the cylindrical mirror onto it. The mirror is then separated from the mandrel by cooling. The mandrel will shrink more than the 'shell' (mirror) allowing it to be pulled from the mandrel. Ulmer (2) describes this technique and its variations in more detail. To date, several mirrors have been tested at MSFC by the Optical Fabrication Branch by focusing x-ray energy onto a detector with limited success. Little is known about the surface roughness of the actual mirror. Hence, the attempt to gather data on these surfaces. The test involves profiling the surface of a sample, replicating the surface as described above, and then profiling the replicated surface.

  5. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    SciTech Connect

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  6. A New Milky Way dwarf galaxy in Ursa Major

    SciTech Connect

    Willman, Beth; Dalcanton, Julianne J.; Martinez-Delgado, David; West, Andrew A.; Blanton, Michael R.; Hogg, David W.; Barentine, J.C.; Brewington, Howard J.; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H., Jr.; Nitta, Atsuko; Snedden, Stephanie A.; /CCPP, New York /Washington U., Seattle, Astron. Dept. /IAA, Granada /Heidelberg, Max Planck Inst. Astron. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Fermilab

    2005-03-01

    In this Letter, we report the discovery of a new dwarf satellite to the Milky Way, located at ({alpha}{sub 2000}, {delta}{sub 2000}) = (158.72,51.92) in the constellation of Ursa Major. This object was detected as an overdensity of red, resolved stars in Sloan Digital Sky Survey data. The color-magnitude diagram of the Ursa Major dwarf looks remarkably similar to that of Sextans, the lowest surface brightness Milky Way companion known, but with approximately an order of magnitude fewer stars. Deeper follow-up imaging confirms this object has an old and metal-poor stellar population and is {approx} 100 kpc away. We roughly estimate M{sub V} = -6.75 and r{sub 1/2} = 250 pc for this dwarf. Its luminosity is several times fainter than the faintest known Milky Way dwarfs. However, its physical size is typical for dSphs. Even though its absolute magnitude and size are presently quite uncertain, Ursa Major is likely the lowest luminosity and lowest surface brightness galaxy yet known.

  7. Radial Color and Mass Profile Trends of Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Hunter, D. A.; THINGS, LITTLE

    2014-01-01

    Radial stellar surface brightness (SB) profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar SB profile breaks are also found in dwarf disk galaxies, but with an additional sub-category of Type II profiles: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location which can be combined with color mass-to-light ratio relationships to examine radial mass profiles as well. Here we show radial color and mass profile trends for the three main SB types from a large multi-wavelength photometric study of dwarf irregular galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors.

  8. MWA targeted campaign of nearby, flaring M dwarf stars

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Kaplan, D. L.

    2017-01-01

    Flaring activity is a common characteristic of magnetically active stellar systems. Flare events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. Early 100 - 200 MHz observations of M dwarf flare stars detected bright (>100 mJy) flares with occurrence rates between 0.06 - 0.8 flares per hour. These rates imply that observing 100 - 200 MHz flares from M dwarf stars is fairly easy with many detections expected for modern low-frequency telescopes. However, long observational campaigns using these modern telescopes have not reproduced these early detections. This could be because the rates are over estimated and contaminated by radio frequency interference. Recently Lynch et al. (submitted) detected four flares from UV Ceti at 154 MHz using the Murchison Widefield Array. The flares have flux densities between 10-65 mJy -- a factor of 100 fainter than most flares in the literature at these frequencies -- and are only detected in circular polarization. The flare rates for these newly detected flares are roughly consistent with earlier rates however the uncertainties are large. Building off this result we propose a 102 hour survey of the closet six M dwarf stars with observed magnetic activity traced in X-rays and 100 - 200 MHz emission. The rates measured from this survey would inform the duration required for future blind surveys for flares from M dwarf stars.

  9. Kinematics of faint white dwarfs.

    PubMed

    Luyten, W J

    1978-10-01

    An analysis has been made for solar motion for 128 very faint white dwarfs of color class b or a. While about 40% of these stars may be high-velocity objects, it seems definitely indicated that the luminosity of all of them is considerably lower than that for the "normal" white dwarf of the same color.

  10. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Houck, James R.; Higdon, Sarah

    2004-09-01

    Tidal Dwarf Galaxies (TDG's) are formed from material stripped from the disks of spiral galaxies, which are undergoing tidal interactions with a nearby companion. These galaxies provide important clues to our understanding of galaxy formation, evolution and cosmic recycling. Using the IRS we will measure the star formation activity in 6 TDG candidates. We will measure the ionization state ( [NeII] 12.8 um, [NeIII] 15.6 um and [NeV] 14.3um and [OIV] 25.9 um), the density in the ionized gas ([SIII] 18.7um/33.5um), the PAH fractions at 5.5-9um and 11-12.2um and possibly (optimistic here!) molecular hydrogen emission form PDRs at H2 (S0) 28um and H2 (S1) at 17um. In addition to the IRS observations we will map both the Guitar and Stephan's Quintet with IRAC. This will enable us to compare the PAH fraction in the dwarf galaxy to that of its parent. Similarly we will compare our observation of the proposed TDG at the southern tip of NGC 4038 with the GT observations of the central region of the Antennae. This program compliments two existing GT programmes: 1) the high-Z program - these observations enable us to observe in fine detail the nearby/present day analogs of galaxy formation in the early universe. 2) Blue Compact Dwarf programme - On first inpsection BCD's and TDG's appear the same: BCDs are similar in size to TDG's, but TDG's may not have a large dark matter halo component (affecting the long term stability of an object) and BCD's typically have a much lower metallicity. We will be able to compare the star formation activity in terms of the ionization state and PAH fraction in the two galaxy types.

  11. Seeing Baby Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version

    The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

    The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light.

    The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

    Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve.

    The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The

  12. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  13. White Dwarf Calibration

    NASA Astrophysics Data System (ADS)

    Colina, Luis

    1994-01-01

    As a result of last November calibration workshop, all parties agreed that the HST should be switched to the WD basis for absolute fluxes. This proposal implements that decision. A measurement of the absolute sensitivity of the FOS detectors will be performed using theoretical pure hydrogen model atmosphere calculations for three white dwarfs. The high resolution gratings will be used in the 1 arcsec aperture. A four stage peakup of the standard star provides centering in the aperture. Observations are requested for fall 94 with repeated observations about two months after.

  14. Generalizing roughness: experiments with flow-oriented roughness

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano

    2015-04-01

    Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C

  15. White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

    Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.

    The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at

    http://oposite.stsci.edu/pubinfo/pr/2002/10/ or

    http://www.jpl.nasa.gov/images/wfpc .

    The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.

    The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.

    Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the

  16. Brown Dwarfs: A New Class of Stellar Lighthouse

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Brown dwarfs, thought just a few years ago to be incapable of emitting any significant amounts of radio waves, have been discovered putting out extremely bright "lighthouse beams" of radio waves, much like pulsars. A team of astronomers made the discovery using the National Science Foundation's Very Large Array (VLA) radio telescope. Artist's Conception of Brown Dwarf Artist's conception of "mini-aurorae" at poles of brown dwarf, producing beams of strong radio emission. CREDIT: Hallinan et al., NRAO/AUI/NSF Click on image for page of graphics and full information "These beams rotate with the brown dwarf, and we see them when the beam passes over the Earth. This is the same way we see pulses from pulsars," said Gregg Hallinan of the National University of Ireland Galway. "We now think brown dwarfs may be a missing link between pulsars and planets in our own Solar System, which also emit, but more weakly," he added. Brown dwarfs are enigmatic objects that are too small to be stars but too large to be planets. They are sometimes called "failed stars" because they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs were long thought to exist. However, it was not until 1995 that astronomers were able to actually find one. A few dozen now are known. In 2001, a group of summer students at the National Radio Astronomy Observatory used the VLA to observe a brown dwarf, even though they had been told by seasoned astronomers that brown dwarfs are not observable at radio wavelengths. Their discovery of a strong flare of radio emission from the object surprised astronomers and the students' scientific paper on the discovery was published in the prestigous scientific journal Nature. Hallinan and his team observed a set of brown dwarfs with the VLA last year, and found that three of the objects emit extremely

  17. Review of Hydraulic Roughness Scales in the Fully Rough Regime

    DTIC Science & Technology

    2010-04-01

    Bowden and Davison 11 to be used with the 1978 ITTC perfor - mance prediction line for ship resistance. This coefficient is a function of the mean...con- siderations, along with a lack of accurate hull roughness measure- ments, led the ITTC Specialist Committee on Powering Perfor - mance Prediction...roughness length. For the two layer approach, the wall layer model is patched to the outer layer model by modifying the k boundary condition in the k− model

  18. PROPERTIES OF THE COOLEST DWARFS

    SciTech Connect

    SAUMON, DIDIER; LEGGETT, SANDY K.; FREEDMAN, RICHARD S.; GEBALLE, THOMAS R.; GOLIMOWSKI, DAVID A.; LODIEU, NICOLAS; MARLEY, MARK S.; STEPHENS, DENISE; PINFIELD, DAVID J.; WARREN, STEPHEN J.

    2007-01-18

    Eleven years after the discovery of the first T dwarf, we have a population of ultracool L and T dwarfs that is large enough to show a range of atmospheric properties, as well as model atmospheres advanced enough to study these properties in detail. Since the last Cool Stars meeting, there have been observational developments which aid in these studies. they present recent mid-infrared photometry and spectroscopy from the Spitzer Space Telescope which confirms the prevalence of vertical mixing in the atmospheres of L and T dwarfs. Hence, the 700 K to 2200 K L and t dwarf photspheres require a large number of parameters for successful modeling: effective temperature, gravity, metallicity, grain sedimentation and vertical mixing efficiency. They also describe initial results of a search for ultracool dwarfs in the UKIRT Infrared Deep Sky Survey, and present the latest T dwarf found to date. They conclude with a discussion of the definition of the later-than-T spectral type, the Y dwarf.

  19. The brown dwarf kinematics project

    NASA Astrophysics Data System (ADS)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  20. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  1. PHL 5038: a spatially resolved white dwarf + brown dwarf binary

    NASA Astrophysics Data System (ADS)

    Steele, P. R.; Burleigh, M. R.; Farihi, J.; Gänsicke, B. T.; Jameson, R. F.; Dobbie, P. D.; Barstow, M. A.

    2009-06-01

    A near-infrared excess is detected at the white dwarf PHL 5038 in UKIDSS photometry, consistent with the presence of a cool, substellar companion. We have obtained H- and K-grism spectra and images of PHL 5038 using NIRI on Gemini North. The target is spatially and spectrally resolved into two components: an 8000 K DA white dwarf, and a likely L8 brown dwarf companion, separated by 0.94 arcsec. The spectral type of the secondary was determined using standard spectral indices for late L and T dwarfs. The projected orbital separation of the binary is 55 AU, so it becomes only the second known wide WD+dL binary to be found after GD 165AB. This object could potentially be used as a benchmark for testing substellar evolutionary models at intermediate to older ages.

  2. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  3. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  4. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  5. Rotation Velocities of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Karl, C.; Napiwotzki, R.; Heber, U.; Dreizler, S.; Koester, D.; Reid, I. N.

    White dwarfs are the compact remnants of low and intermediate mass stars (M < 8Msolar). Due to the conservation of angular momentum white dwarfs should be very fast rotators, if a significant fraction of the angular momentum of the progenitor stars were preserved. The existence of sharp NLTE cores of the hydrogen Hα line in high resolution spectra (obtained at the Keck observatory) of DA white dwarfs allowed us to determine (projected) rotational velocities v sin i for white dwarfs. Among those of our targets lying close to the ZZ Ceti instability many show evidence for extra broadening similar to rotation, whereas stars at higher temperatures (and therefore younger ones) rotate more slowly or not at all. Our result based on a large sample is in accordance with previous results presented by Koester et al. (1998). We discuss possible explanations for this astonishing result.

  6. White Dwarfs in Astrometric Binaries?

    NASA Astrophysics Data System (ADS)

    Oliversen, N. A.; Evans, N. R.; Feibelman, W. A.; Kamper, K. W.

    1993-12-01

    Lippincott (1978, Space Sci Rev, 22, 153) compiled a list of astrometric binaries with unseen companions typically within 20 pc of the sun. Red companions have been observed in a number of these systems (e.g. McCarthy, D. W. 1983, IAU Coll. # 76, p. 107). Unseen, low mass companions could also be white dwarfs. We have obtained IUE observations of stars on the list which have primaries with spectral types M1 or earlier (white dwarf companions of cooler primaries could be detected from the ground), and are brighter than 10 mag, which do not have known red companions. Preliminary reductions (comparison with standard stars of appropriate spectral types) indicate that there are no white dwarfs in the sample. Further processing is being done to determine limits on possible white dwarf temperatures.

  7. Characterizing K2 Planetary Systems Orbiting Cool Dwarfs

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2

    2017-01-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program

  8. New low surface brightness dwarf galaxies in the Centaurus group

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Jerjen, Helmut; Binggeli, Bruno

    2017-01-01

    Context. The distribution of satellite galaxies around the Milky Way and Andromeda and their correlation in phase space pose a major challenge to the standard ΛCDM model of structure formation. Other nearby groups of galaxies are now being scrutinized to test for the ubiquity of the phenomenon. Aims: We conducted an extensive CCD imaging survey for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region, encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Methods: Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey camera at the 4 m Blanco telescope at CTIO. The surface brightness limit reached for unresolved dwarf galaxies is μr ≈ 29 mag arcsec-2. The faintest suspected Centaurus members found have mr ≈ 19.5 mag or Mr ≈ -8.8 mag at the mean distance of the group. The images were enhanced using different filtering techniques. Results: We found 41 new dwarf galaxy candidates, which together with the previously discovered 16 dwarf candidates in the M 83 subgroup amounts to almost a doubling of the number of known galaxies in the Centaurus complex, if the candidates are confirmed. We carried out surface photometry in g and r, and report the photometric parameters derived therefrom, for all new candidates as well as previously known members in the surveyed area. The photometric properties of the candidates, when compared to those of Local Group dwarfs and previously known Centaurus dwarfs, suggest membership in the Centaurus group. The sky distribution of the new objects is generally

  9. Earth-Sized Planets Around Nearby Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Despite having lost two of its reaction wheels, the Kepler mission has proven itself still capable of making discoveries. Now in a mission extension called K2, in which radiation pressure from the Sun stabilizes the spacecraft, Kepler has continued to detect planets in distant solar systems. And one of its latest discoveries is an especially intriguing pair of Earth-sized planets transiting a small, cool star only ~200 light-years away Transiting Discoveries: Earth-sized planets that orbit close to their host stars are thought to be remarkably common. Theyre predicted to exist around more than a quarter of Sun-like stars, and to be nearly ubiquitous around the smaller, cooler M dwarfs. Unfortunately, systems with M-dwarf hosts are hard to find, since theyre often very faint; a large survey is needed to spot the few M dwarfs near enough to be easily detectable. Luckily, Kepler has risen to the occasion Calibrated photometry for the K2-21 system, with the planet transits marked by red and teal ticks. Best-fit light curves for the transits are shown in the lower panels. Click for a closer look [Petigura et al. 2015] In a recent paper, a team of scientists led by Erik Petigura (Hubble Fellow at the California Institute of Technology) reports the discovery of two new transiting, Earth-sized planets around nearby M dwarf K2-21. The team followed up with spectroscopy of the host star, which allowed them to estimate that the two planets, K2-21b and K2-21c, have radii roughly 1.6 and 1.9 times the radius of Earth. These sizes mean that they straddle the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes.Unique PlanetsOne unanswered question about close-in, small planets common around dwarfs is whether they form in situ, or form far from their host and migrate inward. K2-21b and c have orbital periods of approximately 9.3 and 15.5 days, which means they are very nearly in a 5:3 resonance. This may be evidence that they formed

  10. Roughness effects in uncompensated antiferromagnets

    SciTech Connect

    Charilaou, M.; Hellman, F.

    2015-02-28

    Monte Carlo simulations show that roughness in uncompensated antiferromagnets decreases not just the surface magnetization but also the net magnetization and particularly strongly affects the temperature dependence. In films with step-type roughness, each step creates a new compensation front that decreases the global net magnetization. The saturation magnetization decreases non-monotonically with increasing roughness and does not scale with the surface area. Roughness in the form of surface vacancies changes the temperature-dependence of the magnetization; when only one surface has vacancies, the saturation magnetization will decrease linearly with surface occupancy, whereas when both surfaces have vacancies, the magnetization is negative and exhibits a compensation point at finite temperature, which can be tuned by controlling the occupancy. Roughness also affects the spin-texture of the surfaces due to long-range dipolar interactions and generates non-collinear spin configurations that could be used in devices to produce locally modified exchange bias. These results explain the strongly reduced magnetization found in magnetometry experiments and furthers our understanding of the temperature-dependence of exchange bias.

  11. Robust Prediction of Hydraulic Roughness

    DTIC Science & Technology

    2011-03-01

    floodplain hydraulics, in particular hydraulic roughness, is critical for flood control concerns; however, diversity of vegetation type and...or particular flood return inter- val analyses. Field Assessment. Field assessment methods refer to those that do not rely on direct mea- surement or...material (riprap) Form Roughness Calculators Brownlie ( 1983 ) Lab, Field H, S, d50, σg 0.082 < R < 55.8 ft (0.025 < R < 17 m), 2.9 × 10-4 < d50

  12. Topology theory on rough sets.

    PubMed

    Wu, QingE; Wang, Tuo; Huang, YongXuan; Li, JiSheng

    2008-02-01

    For further studying the theories and applications of rough sets (RS), this paper proposes a new theory on RS, which mainly includes topological space, topological properties, homeomorphism, and its properties on RS by some new definitions and theorems given. The relationship between partition and countable open covering is discussed, and some applications based on the topological rough space and its topological properties are introduced. Moreover, some perspectives for future research are given. Throughout this paper, the advancements of the new theory on RS and topological algebra not only represent an important theoretical value but also exhibit significant applications of RS and topology.

  13. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  14. Brown dwarfs as close companions to white dwarfs

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.

    1990-01-01

    The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.

  15. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  16. The late-M dwarfs

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.

    1991-02-01

    Far-red spectra and VRIJHK photometry have been obtained for a sample of late-M dwarfs selected on the basis of large reduced red magnitudes from the LHS Catalog. Half of the stars in the three faintest 1 mag bins are late-M stars, the other red stars are metallic-hydride subdwarfs. Relations between various colors for the late-M dwarfs are investigated. Of all the colors I - K most reliably correlates with spectral type. FeH bands near 9900 A are clearly seen in the spectra of all dwarf stars later than M5. Two stars cooler than VB10, and similar in temperature to LHS2924 have been identified; both have H-alpha in emission and appear variable in magnitude and R - I color; one is a flare star. The other stars are of earlier spectral type and resemble W359 and VB8. The observed MI, I - K main sequence is in good agreement with the IG theoretical main sequence of Stringfellow, and the faintest stars could be about 0.09 solar mass red dwarfs or lower mass brown dwarfs.

  17. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  18. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  19. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  20. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  1. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Rough diamond. 592.310 Section 592... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply...

  2. Light Scattering from Rough Surfaces

    DTIC Science & Technology

    1994-08-17

    us (V. Ruiz Cortes) was supported by a CONACYT and CICESE scholarship. 5. REFERENCES I.-K.A. O’Donnell and E.R. Mdndez, "Experimental study of...Calculated variation of scattenng for increasing roughness. The angle of incidence is 800. The solid line is (DAJA45-90-C-0026). VRC thanks CONACYT and for a

  3. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  4. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    SciTech Connect

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-07-10

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J - H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 {mu}m) and W2 (4.6 {mu}m) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < {alpha} < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  5. The Dusty Accretion of Polluted White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.

    2017-03-01

    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  6. Eclipse Observations of a Temperate Transiting Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas; Curtis, Jason; Montet, Benjamin; Vanderberg, Andrew

    2016-08-01

    We wish to use 15.7 hours of Spitzer time to observe two eclipses, one each at 3.6 um and 4.5 um of a newly discovered transiting brown dwarf, which we refer to as R147-BD. R147-BD is a 36 MJ object on a 5.3 day orbit about a K=10.666, 5800K solar analog. Uniquely, R147-BD and its host star are both members of the 3.0 Gyr old open cluster Ruprecht 147. R147-BD is thus one of the only transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models. These models predict that a field object with the mass and age of R147-BD should have an effective temperature of about 800K due to internal heat. The zero-albedo blackbody equilibrium temperature for R147-BD, based only on its host star's insolation, is 1125K. This makes R147-BD the first observationally accessible sub-stellar object for which the internal and external energy fluxes are approximately equal, and it can serve as a unique laboratory to test the effect of stellar irradiation on the vertical pressure-temperature structure and clouds of giant planets. Specifically, we wish to investigate three different questions with these observations. First, how does the measured mass, radius, age and emission of R147-BD compare to brown dwarf evolution models, and how have these been altered by stellar irradiation? Second, does R147-BD's dayside atmosphere resemble its isolated field equivalent, or is it closer to hot Jupiters at similar temperatures? Third, can we constrain the cloud properties of R147-BD's dayside? Besides these particular science questions, observations of R147-BD allow us to scout-out future JWST observations of temperate giant planets, which also will have roughly equal amounts of stellar irradiation and internal heat.

  7. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  8. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  9. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize

    PubMed Central

    Zhou, Yu; Xu, Zhennan; Duan, Canxing; Chen, Yanping; Meng, Qingchang; Wu, Jirong; Hao, Zhuanfang; Wang, Zhenhua; Li, Mingshun; Yong, Hongjun; Zhang, Degui; Zhang, Shihuang; Weng, Jianfeng; Li, Xinhai

    2016-01-01

    Maize rough dwarf disease (MRDD) is a viral infection that results in heavy yield losses in maize worldwide, particularly in the summer maize-growing regions of China. MRDD is caused by the Rice black-streaked dwarf virus (RBSDV). In the present study, analyses of microRNAs (miRNAs), the degradome, and transcriptome sequences were used to elucidate the RBSDV-responsive pathway(s) in maize. Genomic analysis indicated that the expression of three non-conserved and 28 conserved miRNAs, representing 17 known miRNA families and 14 novel miRNAs, were significantly altered in response to RBSDV when maize was inoculated at the V3 (third leaf) stage. A total of 99 target transcripts from 48 genes of 10 known miRNAs were found to be responsive to RBSDV infection. The annotations of these target genes include a SQUAMOSA promoter binding (SPB) protein, a P450 reductase, an oxidoreductase, and a ubiquitin-related gene, among others. Characterization of the entire transcriptome suggested that a total of 28 and 1085 differentially expressed genes (DEGs) were detected at 1.5 and 3.0 d, respectively, after artificial inoculation with RBSDV. The expression patterns of cell wall- and chloroplast-related genes, and disease resistance- and stress-related genes changed significantly in response to RBSDV infection. The negatively regulated genes GRMZM2G069316 and GRMZM2G031169, which are the target genes for miR169i-p5 and miR8155, were identified as a nucleolin and a NAD(P)-binding Rossmann-fold superfamily protein in maize, respectively. The gene ontology term GO:0003824, including GRMZM2G031169 and other 51 DEGs, was designated as responsive to RBSDV. PMID:27493226

  10. Evaluation of oat cultivars and lines under infection with barley yellow dwarf virus.

    PubMed

    Mozhaeva, K A; Domier, L; Kastalyeva, T B; Magurov, P F; Yakovleva, I N

    2004-01-01

    Thirteen domestic and foreign oat cultivars and eight breeding lines bred from the University of Illinois were evaluated for resistance to barley yellow dwarf (BYD) using artificial inoculation with Rhopalosiphum padi viruliferous for an isolate of Barley yellow dwarf virus-PAV endemic to Moscow region origin. Cultivar Blaze and six Illinois lines showed the best grain yields under disease pressure that resembled a BYD epidemic.

  11. FORMATION OF DWARF SPHEROIDAL GALAXIES VIA MERGERS OF DISKY DWARFS

    SciTech Connect

    Kazantzidis, Stelios; Lokas, Ewa L.; Klimentowski, Jaroslaw; Mayer, Lucio; Knebe, Alexander

    2011-10-10

    We perform collisionless N-body simulations to investigate whether binary mergers between rotationally supported dwarfs can lead to the formation of dwarf spheroidal galaxies (dSphs). Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. We select merger events from a Constrained Local Universe simulation of the Local Group (LG) and record the properties of the interacting dwarf-sized halos. This information is subsequently used to seed controlled experiments of binary encounters between dwarf galaxies consisting of exponential stellar disks embedded in cosmologically motivated dark matter halos. These simulations are designed to reproduce eight cosmological merger events, with initial masses of the interacting systems in the range {approx}(5-60) x 10{sup 7} M{sub sun}, occurring quite early in the history of the LG, more than 10 Gyr ago. We compute the properties of the merger remnants as a distant observer would and demonstrate that at least three of the simulated encounters produce systems with kinematic and structural properties akin to those of the classic dSphs in the LG. Tracing the history of the remnants in the cosmological simulation to z = 0, we find that two dSph-like objects remain isolated at distances {approx}> 800 kpc from either the Milky Way or M31. These systems constitute plausible counterparts of the remote dSphs Cetus and Tucana which reside in the LG outskirts, far from the tidal influence of the primary galaxies. We conclude that merging of rotationally supported dwarfs represents a viable mechanism for the formation of dSphs in the LG and similar environments.

  12. Noise of sliding rough contact

    NASA Astrophysics Data System (ADS)

    Le Bot, Alain

    2017-01-01

    This article is a discussion about the origin of friction noise produced when rubbing solids having rough surfaces. We show that noise emerges from numerous impacts into the contact between antagonist asperities of surfaces. Prediction of sound sources reduces to a statistical problem of contact mechanics. On the other hand, contact is also responsible of dissipation of vibration. This leads to the paradoxical result that the noise may not be proportional to the number of sources.

  13. Sensing roughness and polish direction

    NASA Astrophysics Data System (ADS)

    Jakobsen, M. L.; Olesen, A. S.; Larsen, H. E.; Stubager, J.; Hanson, S. G.; Pedersen, T. F.; Pedersen, H. C.

    2016-04-01

    As a part of the work carried out on a project supported by the Danish council for technology and innovation, we have investigated the option of smoothing standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development cost and time consumption can become relatively large numbers in a research budget. Machining the optical surfaces directly is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, but then the object needs to be manually polished. During the polishing process the operator needs information about the RMS-value of the surface roughness and the current direction of the scratches introduces by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid complications during the casting process. In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 - 100 nm, which corresponds to the finish categories of A1, A2 and A3. Based on simple intensity measurements we estimates the RMS-value of the surface roughness, and by using a sectioned annual photo-detector to collect the scattered light we can determine the direction of polishing and distinguish light scattered from random structures and light scattered from scratches.

  14. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  15. Irregular Dwarf Galaxy IC 1613

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  16. The Physics of White Dwarfs.

    ERIC Educational Resources Information Center

    Van Horn, Hugh M.

    1979-01-01

    Describes the current understanding of the structure and evolution of the white dwarf stars that was gained as a result of the increasingly sensitive and detailed astronomical observations coupled with calculations of the properties of matter under extreme conditions. (Author/GA)

  17. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    SciTech Connect

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim; Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O.; Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Burse, Mahesh P.; Das, H. K.; Kasliwal, Mansi M.; Nugent, Peter; and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  18. Three New Eclipsing White-dwarf-M-dwarf Binaries Discovered in a Search for Transiting Planets around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel; Fulton, Benjamin J.; Hillenbrand, Lynne A.; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S.; Bui, Khanh; Burse, Mahesh P.; Cenko, S. Bradley; Das, H. K.; Davis, Jack. T. C.; Dekany, Richard G.; Filippenko, Alexei V.; Kasliwal, Mansi M.; Kulkarni, S. R.; Nugent, Peter; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Ramaprakash, A. N.; Riddle, Reed; Silverman, Jeffrey M.; Sivanandam, Suresh; Tendulkar, Shriharsh P.

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 × faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R ⊙ (0.01 AU). The M-dwarfs have masses of approximately 0.35 M ⊙, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M ⊙. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R ⊙ (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%^{+0.10%}_{-0.05%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing

  19. Faint dwarfs in nearby groups

    SciTech Connect

    Speller, Ryan; Taylor, James E. E-mail: taylor@uwaterloo.ca

    2014-06-20

    The number and distribution of dwarf satellite galaxies remain a critical test of cold dark matter-dominated structure formation on small scales. Until recently, observational information about galaxy formation on these scales has been limited mainly to the Local Group. We have searched for faint analogues of Local Group dwarfs around nearby bright galaxies, using a spatial clustering analysis of the photometric catalog of the Sloan Digital Sky Survey (SDSS) Data Release 8. Several other recent searches of SDSS have detected clustered satellite populations down to Δm{sub r} ≡ (m{sub r,} {sub sat} – m{sub r,} {sub main}) ∼ 6-8, using photometric redshifts to reduce background contamination. SDSS photometric redshifts are relatively imprecise, however, for faint and nearby galaxies. Instead, we use angular size to select potential nearby dwarfs and consider only the nearest isolated bright galaxies as primaries. As a result, we are able to detect an excess clustering signal from companions down to Δm{sub r} = 12, 4 mag fainter than most recent studies. We detect an overdensity of objects at separations <400 kpc, corresponding to about 4.6 ± 0.5 satellites per central galaxy, consistent with the satellite abundance expected from the Local Group, given our selection function. Although the sample of satellites detected is incomplete by construction, since it excludes the least and most compact dwarfs, this detection provides a lower bound on the average satellite luminosity function, down to luminosities corresponding to the faintest ''classical'' dwarfs of the Local Group.

  20. THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    SciTech Connect

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Tsai, Chao-Wei; Beichman, Charles A.; Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R.; Bauer, James M.; Skrutskie, Michael F.; Wright, Edward L.; McLean, Ian S.; Lake, Sean E.; Petty, Sara M.; Thompson, Maggie A.; Benford, Dominic J.; Bridge, Carrie R.; Stanford, S. A.; Bailey, Vanessa; and others

    2011-12-01

    We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types {>=}T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 {mu}m (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8{sup +1.3}{sub -0.6} pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of {approx}4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of

  1. RESOLVED SPECTROSCOPY OF A BROWN DWARF BINARY AT THE T DWARF/Y DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.

    2012-01-20

    We report resolved near-infrared imaging and spectroscopic observations of the T8.5 binary WISEP J045853.90+643452.6AB obtained with Keck/NIRC2, Keck/OSIRIS, and the Keck Laser Guide Star Adaptive Optics system. These data confirm common proper and radial motion for the two components, and we see the first indications of orbital motion (mostly radial) for this system. H-band spectroscopy identifies both components as very late type brown dwarfs with strong H{sub 2}O and CH{sub 4} absorption. The spectrum of WISE J0458+6434B also exhibits a compelling signature of NH{sub 3} absorption over 1.52-1.54 {mu}m when compared to the T9 dwarf UGPS J072227.51-054031.2. Comparison to T8-Y0 spectral standards and H-band spectral indices indicate classifications of T8.5 and T9.5 for these two components, approaching the boundary between the T dwarf and Y dwarf spectral classes.

  2. Fractal study and simulation of fracture roughness

    SciTech Connect

    Kumar, S.; Bodvarsson, G.S. )

    1990-05-01

    This study examines the roughness profiles of the surfaces of fractures and faults by using concepts from fractal geometry. Relationships between fractal characteristics of profiles and isotropic surfaces are analytically developed and a deterministic representation of the roughness is examined.

  3. Are Stellar Storms Bad News for M-Dwarf Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    active.Dodging Deflected StormsInterestingly, an important factor in the survival of an M dwarfs habitable-zone planet is the plane in which the planets orbit lies. A team of scientists led by Christina Kay (NASA Goddards Solar Physics Laboratory and Boston University) recently modeled CMEs from V374 Peg, a mid-type M dwarf of roughly a third of the Suns mass and radius, to determine how the CMEs propagate and the probability that theyll impact a hypothetical planet in the stars habitable zone.The team shows that traveling CMEs tend to be deflected by the stars magnetic field. Instead of propagating purely radially outward, the CMEs are pushed toward the astrospheric current sheet the minimum point of the background magnetic field which moves around, but is generally located toward the stellar equatorial plane.Kay and collaborators find that planet orbits roughly aligned with the current sheet therefore have a higher probability of getting hit by a CME: around 10%. In contrast, planets with higher-inclination orbits have CME impact probabilities around 1%. These probabilities translate to an impact rate of about 0.55 times per day for a habitable-zone planet around a mid-type M dwarf which is 220 times the average at Earth during solar maximum!Minimum planetary magnetic field strength required to sustain a magnetosphere twice the size of the planetary radius for different CME masses and speeds, for a 1 kG (left) and 20 kG (right) initial CME magnetic field strength. A typical CME requires a field strength of 10100 G. [Adapted from Kay et al. 2016]Is There Hope for Planet Habitability?With this many CME impacts even outside of the current-sheet plane, how can a planet hope to survive? The key lies in having a strong magnetic field to protect the planet. Such a field would deflect the charged particles from the CME, preventing the CME from stripping the planets atmosphere.Kay and collaborators calculate that a habitable-zone mid-type M-dwarf exoplanet would need a

  4. RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS

    SciTech Connect

    Prato, L.; Mace, G. N.; Rice, E. L.; McLean, I. S.; Kirkpatrick, J. Davy; Burgasser, A. J.; Kim, Sungsoo S.

    2015-07-20

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.

  5. Molecular Genetic Analysis and Evolution of Segment 7 in Rice Black-Streaked Dwarf Virus in China

    PubMed Central

    Chen, Yanping; Wu, Jirong; Meng, Qingchang; Han, Xiaohua; Hao, Zhuanfang; Li, Mingshun; Yong, Hongjun; Zhang, Degui; Zhang, Shihuang; Li, Xinhai

    2015-01-01

    Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease or rice black-streaked dwarf disease and can lead to severe yield losses in maize and rice. To analyse RBSDV evolution, codon usage bias and genetic structure were investigated in 111 maize and rice RBSDV isolates from eight geographic locations in 2013 and 2014. The linear dsRNA S7 is A+U rich, with overall codon usage biased toward codons ending with A (A3s, S7-1: 32.64%, S7-2: 29.95%) or U (U3s, S7-1: 44.18%, S7-2: 46.06%). Effective number of codons (Nc) values of 45.63 in S7-1 (the first open reading frame of S7) and 39.96 in S7-2 (the second open reading frame of S7) indicate low degrees of RBSDV-S7 codon usage bias, likely driven by mutational bias regardless of year, host, or geographical origin. Twelve optimal codons were detected in S7. The nucleotide diversity (π) of S7 sequences in 2013 isolates (0.0307) was significantly higher than in 2014 isolates (0.0244, P = 0.0226). The nucleotide diversity (π) of S7 sequences in isolates from Jinan (0.0391) was higher than that from the other seven locations (P < 0.01). Only one S7 recombinant was detected in Baoding. RBSDV isolates could be phylogenetically classified into two groups according to S7 sequences, and further classified into two subgroups. S7-1 and S7-2 were under negative and purifying selection, with respective Ka/Ks ratios of 0.0179 and 0.0537. These RBSDV populations were expanding (P < 0.01) as indicated by negative values for Tajima's D, Fu and Li's D, and Fu and Li's F. Genetic differentiation was detected in six RBSDV subpopulations (P < 0.05). Absolute Fst (0.0790) and Nm (65.12) between 2013 and 2014, absolute Fst (0.1720) and Nm (38.49) between maize and rice, and absolute Fst values of 0.0085-0.3069 and Nm values of 0.56-29.61 among these eight geographic locations revealed frequent gene flow between subpopulations. Gene flow between 2013 and 2014 was the most frequent. PMID:26121638

  6. Intelligent Information Retrieval Using Rough Set Approximations.

    ERIC Educational Resources Information Center

    Srinivasan, Padmini

    1989-01-01

    Describes rough sets theory and discusses the advantages it offers for information retrieval, including the implicit inclusion of Boolean logic, term weighting, ranked retrieval output, and relevance feedback. Rough set formalism is compared to Boolean, vector, and fuzzy models of information retrieval and a small scale evaluation of rough sets is…

  7. Discovery of Nearest Known Brown Dwarf

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Surveys (SSS) optical photographic plates (I-band, centred at wavelength 0.7 µm) on which this very high proper motion object was discovered. The lower image is the 'Quicklook atlas' infrared image (Ks-band, 2.1 µm) from the Two Micron All Sky Survey (2MASS). Epsilon Indi B is much brighter in the near-infrared than at optical wavelengths, indicating that it is a very cool object. Both images cover roughly 7 x 5 arcmin. Imagine you are a professional ornithologist, recently returned home from an expedition to the jungles of South America, where you spent long weeks using your high-powered telephoto lenses searching for rare species of birds. Relaxing, you take a couple of wide-angle snapshots of the blooming flowers in your back garden, undistracted by the common blackbird flying across your viewfinder. Only later, when carefully comparing those snaps, you notice something tiny and unusually coloured, flittering close behind the blackbird: you've discovered an exotic, rare bird, right there at home. In much the same way, a team of astronomers [2] has just found one of the closest neighbours to the Sun, an exotic 'failed star' known as a 'brown dwarf', moving rapidly across the sky in the southern constellation Indus (The Indian). Interestingly, at a time when telescopes are growing larger and are equipped with ever more sophisticated electronic detectors, there is still much to be learned by combining old photographic plates with this modern technology. Photographic plates taken by wide-field ("Schmidt") telescopes over the past decades have been given a new lease on life through being digitised by automated measuring machines, allowing computers to trawl effectively through huge and invaluable data archives that are by far not yet fully exploited [3]. For the Southern Sky, the Institute for Astronomy in Edinburgh (Scotland, UK) has recently released scans made by the SuperCOSMOS machine of plates spanning several decades in three optical passbands. These data are

  8. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    SciTech Connect

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  9. Mass Modelling of dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Klimentowski, Jarosław; Łokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2008-05-01

    We study the origin and properties of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. We create mock kinematic data sets by observing the dwarf in different directions. When the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. However, most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert. We model the velocity dispersion profiles of the cleaned-up kinematic samples using solutions of the Jeans equation. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25%.

  10. Discovery of an Ultracool White Dwarf Companion

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2004-08-01

    The discovery of a low-luminosity common proper-motion companion to the white dwarf GD 392 at a wide separation of 46" is reported. BVRI photometry suggests a low temperature (Teff~4000 K), while JHK data strongly indicate suppressed flux at all near-infrared wavelengths. Thus, GD 392B is one of the few white dwarfs to show significant collision-induced absorption due to the presence of photospheric H2 and the first ultracool white dwarf detected as a companion to another star. Models fail to explain GD 392B as a normal-mass white dwarf. If correct, the cool companion may be explained as a low-mass white dwarf or unresolved double degenerate. The similarities of GD 392B to known ultracool degenerates are discussed, including some possible implications for the faint end of the white dwarf luminosity function.

  11. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    NASA Astrophysics Data System (ADS)

    2001-06-01

    " . Indeed, since they have no sustained energy generation by thermal nuclear reactions, many of their properties are more similar to those of giant gas planets in our own solar system such as Jupiter, than to stars like the Sun. For example, even though their masses range between 10-70 times that of Jupiter (the largest and most massive planet in our solar system), the sizes of Brown Dwarfs are still comparable to that of Jupiter, approximately 140,000 km, or roughly 10 times smaller than the Sun. Are Brown Dwarfs giant planets or failed stars? Among the most fundamental issues raised by the existence of Brown Dwarfs is the question of their origin and genetic relationship to planets and stars. Are Brown Dwarfs giant planets or small, failed stars, or perhaps something completely different? The critical test needed to resolve this very basic question is to learn whether Brown Dwarfs form by a process similar to what produces stars or rather to one which produces planets. Stars are thought to form when gravity causes a cold, dusty and rarefied cloud of gas to contract. Such clouds are inevitably rotating so the gas naturally collapses into a rotating disk before it falls onto the forming star. These disks are called circumstellar or protoplanetary disks . They have been found around virtually all young stars and are considered to be sites of planet formation. Gravity helps planets form too, but this occurs by condensation and agglomeration of material contained in the circumstellar disk around a young star. Thus, stars form with a disk around them while planets form within disks around young stars . The planets in our own solar system were formed in such a circumstellar disk around the young Sun about 4.6 billion years ago. To date, the most important observations bearing on the question of Brown Dwarf origin have been: * the observed lack of Brown Dwarf companions to normal stars (something astronomers have called the "Brown Dwarf desert"), and * the existence of free

  12. The physics of white dwarfs

    NASA Astrophysics Data System (ADS)

    Isern, Jordi; García-Berro, Enrique; Hernanz, Margarida; Mochkovitch, Robert

    1998-12-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for 0953-8984/10/49/015/img6 and allows one to obtain information about the age of the Galaxy as well as about the past stellar formation rate in the solar neighbourhood. Therefore, it is important to identify all of the relevant sources of energy as well as the mechanisms that control its flow to the space. We show in this paper that the inclusion of a detailed treatment of phase transitions in Coulomb plasmas made up of a mixture of different chemical species is crucial, since their redistribution can keep the white dwarf warm for 0.5 to 9 Ga depending on the chemical composition and physical assumptions adopted.

  13. Students Use VLA to Make Startling Brown-Dwarf Discovery

    NASA Astrophysics Data System (ADS)

    2001-03-01

    the hour and a half's worth of data up into smaller slices of time. This showed that the brown dwarf's radio emission had risen to a strong peak, then weakened. That meant that the star had undergone a flare. "Then we got real excited," Berger said. They immediately sought and received more observing time, ultimately capturing two more flares. "They got very lucky," Frail said. "The thing flared during their observation. Other astronomers had looked for radio emission from brown dwarfs and not found any. This one flared at just the right time," Frail added. "It was just an incredible fluke that we found it," said Becker. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs had long been thought to exist. Actually finding them, however, proved difficult. After decades of searching, astronomers found the first brown dwarf in 1995, and a few dozen now are known. The strong radio emission was unexpected because brown dwarfs, according to conventional theories, are not supposed to have magnetic fields strong enough to generate the radio emission. "The presumed internal structure of a brown dwarf will not permit a strong enough magnetic field," said Frail. "It looks like we're going to have to re-examine how we believe brown dwarfs work," he said. "The mere fact that they detected radio emission is remarkable," said Tim Bastian, an astronomer at the NRAO in Charlottesville, Virginia, who added that this object "will likely have something to teach us." "We're going to have to study this and other brown dwarfs more extensively with the VLA to answer the questions raised by our summer students' discovery," Frail said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under

  14. Effects of plaque lengths on stent surface roughness.

    PubMed

    Syaifudin, Achmad; Takeda, Ryo; Sasaki, Katsuhiko

    2015-01-01

    The physical properties of the stent surface influence the effectiveness of vascular disease treatment after stent deployment. During the expanding process, the stent acquires high-level deformation that could alter either its microstructure or the magnitude of surface roughness. This paper constructed a finite element simulation to observe the changes in surface roughness during the stenting process. Structural transient dynamic analysis was performed using ANSYS, to identify the deformation after the stent is placed in a blood vessel. Two types of bare metal stents are studied: a Palmaz type and a Sinusoidal type. The relationship between plaque length and the changes in surface roughness was investigated by utilizing three different length of plaque; plaque length longer than the stent, shorter than the stent and the same length as the stent. In order to reduce computational time, 3D cyclical and translational symmetry was implemented into the FE model. The material models used was defined as a multilinear isotropic for stent and hyperelastic for the balloon, plaque and vessel wall. The correlation between the plastic deformation and the changes in surface roughness was obtained by intermittent pure tensile test using specimen whose chemical composition was similar to that of actual stent material. As the plastic strain is achieved from FE simulation, the surface roughness can be assessed thoroughly. The study found that the plaque size relative to stent length significantly influenced the critical changes in surface roughness. It was found that the length of stent which is equal to the plaque length was preferable due to the fact that it generated only moderate change in surface roughness. This effect was less influential to the Sinusoidal stent.

  15. SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF MAGNETIC ACTIVITY IN ULTRACOOL DWARFS. III. X-RAY, RADIO, AND Halpha ACTIVITY TRENDS IN M AND L DWARFS

    SciTech Connect

    Berger, E.; Basri, G.; Fleming, T. A.; Liebert, J.; Giampapa, M. S.; Gizis, J. E.; MartIn, E.; Rutledge, R. E.

    2010-01-20

    As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and Halpha observations of three M9.5-L2.5 dwarfs (BRI 0021-0214, LSR 060230.4+391059, and 2MASS J052338.2-140302). We do not detect X-ray or radio emission from any of the three sources, despite previous detections of radio emission from BRI 0021 and 2M0523-14. Steady and variable Halpha emission are detected from 2M0523-14 and BRI 0021, respectively, while no Halpha emission is detected from LSR 0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the number of ultracool dwarfs observed in X-rays, and triples the number of L dwarfs, providing in addition the deepest limits to date, log(L{sub X}/L{sub bol}) approx< -5. With this larger sample we find the first clear evidence for a substantial reduction in X-ray activity, by about two orders of magnitude, from mid-M to mid-L dwarfs. We find that the decline in Halpha roughly follows L{sub Ha}lpha/L{sub bol} propor to 10{sup -0.4x(SP-6)} for SP >= 6, where SP = 0 for spectral type M0. In the radio band, however, the luminosity remains relatively unchanged from M0 to L4, leading to a substantial increase in L{sub rad}/L{sub bol}. Our survey also provides the first comprehensive set of simultaneous radio/X-ray/Halpha observations of ultracool dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond spectral type M7, evolving smoothly from L{sub n}u{sub ,rad}/L{sub X} approx 10{sup -15.5} to approx10{sup -11.5} Hz{sup -1} over the narrow spectral-type range M7-M9. This breakdown reflects the substantial reduction in X-ray activity beyond M7, but its physical origin remains unclear since, as evidenced by the uniform radio emission, there is no drop in the field dissipation and particle acceleration efficiency. Based on the results of our survey, we conclude that a further investigation of magnetic activity in ultracool dwarfs will benefit from a two-pronged approach

  16. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  17. Are All Magnetic White Dwarf Stars Massive?

    NASA Astrophysics Data System (ADS)

    Nitta, A.; Kepler, S. O.; Kulebi, B.; Koester, D.; Kleinman, S. J.; Winget, D. E.; Castanheira, B. G.; Corsico, A. H.

    2017-03-01

    We obtained follow-up spectra on 25 white dwarf stars identified in our white dwarf catalog of Sloan Digital Sky Survey (SDSS) as massive or magnetic. We identified over 300 magnetic white dwarf stars from SDSS with some uncertainties due to the low S/N of the spectra. With much higher S/N Gemini data, our sample should be able to help us confirm accuracy of our determinations. We present here our results so far from the follow up observations.

  18. Subpatch roughness in earthquake rupture investigations

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Mai, P. M.

    2016-03-01

    Fault geometric complexities exhibit fractal characteristics over a wide range of spatial scales (<µm to > km) and strongly affect the rupture process at corresponding scales. Numerical rupture simulations provide a framework to quantitatively investigate the relationship between a fault's roughness and its seismic characteristics. Fault discretization, however, introduces an artificial lower limit to roughness. Individual fault patches are planar and subpatch roughness—roughness at spatial scales below fault patch size—is not incorporated. Does negligence of subpatch roughness measurably affect the outcome of earthquake rupture simulations? We approach this question with a numerical parameter space investigation and demonstrate that subpatch roughness significantly modifies the slip-strain relationship—a fundamental aspect of dislocation theory. Faults with subpatch roughness induce less strain than their planar-fault equivalents at distances beyond the length of a slipping fault. We further provide regression functions that characterize the stochastic effect subpatch roughness.

  19. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  20. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  1. Brown dwarfs in young stellar clusters

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.

    1991-01-01

    The present calculations of the early evolution of brown dwarfs and very low mass stars (LMSs) yield isochrones spanning 0.01-0.2 solar masses for ages in the 1 to 300 million year range. Since the brown dwarfs remain sharply segregated in T(eff) from LMSs for ages of less than 100 million years, it follows that for coeval populations of known age, a domain exists in the H-R diagram in which only brown dwarfs exist. These theoretical results are compared with recent observations of the Pleiades brown dwarf candidates, using two new sets of color-T(eff) transformations. Both sets yield consistent interpretations.

  2. Dynamical Masses of Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Pala, A. F.; Gänsckie, B. T.

    2017-03-01

    The mass retention efficiency is a key question in both the theoretical and observational study of accreting white dwarfs in interacting binaries, with important implications for their potential as progenitors for type Ia supernovae (SNe Ia). Canonical wisdom is that classical nova eruptions erode the white dwarf mass, and consequently, cataclysmic variables (CVs) have been excluded from the SN Ia progenitor discussion. However the average mass of white dwarfs in CVs is substantially higher (≃ 0.83 M⊙) than that of single white dwarfs (≃ 0.64 M ⊙), in stark contrast to expectations based on current classical nova models. This finding is based on a sample of ≃ 30 CV white dwarfs with accurate mass measurements, most of them in eclipsing systems. Given the fundamental importance of the mass evolution of accreting white dwarfs, it is necessary to enlarge this sample and to diversify the methods used for measuring masses. We have begun a systematic study of 27 CVs to almost double the number of CV white dwarfs with an accurate mass measurement. Using VLT/X-shooter phase-resolved observations, we can measure the white dwarf masses to a few percent, and will be able to answer the question whether accreting CV white dwarfs grow in mass.

  3. Tidal evolution of planets around brown dwarfs

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.

    2011-11-01

    Context. The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs' terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit. Aims: In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. This has important implications for the tidal evolution of planets around BDs. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of a large ensemble of planet-BD systems. We tested the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both the BD and planet, and the tidal dissipation factors. Results: We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than ~0.1 are repelled from the BD. Some planets initially interior to corotation can survive if their inward tidal evolution is slower than the BD's spin evolution, but most initially close-in planets fall onto the BD. Conclusions: We find that the most important parameter for the tidal evolution is the initial orbital distance with respect to the corotation distance. Some planets can survive in the habitable zone for Gyr timescales, although in many cases the habitable zone moves inward past the planet's orbit in just tens to hundreds of Myr. Surviving planets can have orbital periods of less than 10 days (as small as 10 h), so they could be observable by transit.

  4. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  5. A possible brown dwarf companion to Gliese 569

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Shure, Mark; Skrutskie, M. F.

    1988-01-01

    A faint cool companion to Gliese 569, discovered during an IR imaging survey of nearby stars, may be the lowest-mass stellar object yet found. The companion is somewhat cooler in its 1.65-3.75-micron energy distribution than the coolest known main-sequence stars, indicating a low mass. Despite its lower temperature, it is more luminous than similar extremely low-mass stars, suggesting that it is either a young low-mass star evolving toward the main sequence or a cooling substellar brown dwarf. The primary star has emission lines and a low space velocity and exhibits flaring, all of which imply youth for this system. Observations of Gliese 569 and its companion over a period of 2 yr confirm the common proper motion expected of a true binary. The 5-arcsec apparent separation (50 AU) implies an orbital period of roughly 500 yr, which will permit an eventual direct determination of the mass of the companion.

  6. A Novel QTL Associated with Dwarf Bunt Resistance in Idaho 444 Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant component of Mendel’s legacy has been the ability to discover, map, and utilize genes for resistance to diseases in the crops that the world relies on for food. Dwarf bunt [Tilletia contraversa Kühn (syn. Tilletia controversa)] is a destructive disease of wheat (Triticum aestivum L.) ...

  7. An unsuccessful search for brown dwarf companions to white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1986-01-01

    The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.

  8. Coronary artery bypass grafting in an achondroplastic dwarf.

    PubMed

    Balaguer, J M; Perry, D; Crowley, J; Moran, J M

    1995-01-01

    To our knowledge, coronary bypass for complications of coronary artery disease in achondroplasia has not previously been described. Achondroplasia, in and of itself, is not a contraindication to coronary bypass. Although the anatomic reserve of saphenous vein is less in achondroplastic dwarfs than in people of normal stature, that vessel and the internal mammary artery can be harvested in routine fashion. A 60-year-old woman with several risk factors for coronary artery disease underwent successful bypass surgery, which included the use of both a saphenous vein and the left internal mammary artery.

  9. Establishment of a novel dwarf rat strain: cartilage calcification insufficient (CCI) rats.

    PubMed

    Tanaka, Masami; Watanabe, Minoru; Yokomi, Izuru; Matsumoto, Naoki; Sudo, Katsuko; Satoh, Hitoshi; Igarashi, Tsuneo; Seki, Azusa; Amano, Hitoshi; Ohura, Kiyoshi; Ryu, Kakei; Shibata, Shunichi; Nagayama, Motohiko; Tanuma, Jun-ichi

    2015-01-01

    Rats with dwarfism accompanied by skeletal abnormalities, such as shortness of the limbs, tail, and body (dwarf rats), emerged in a Jcl-derived Sprague-Dawley rat colony maintained at the Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine. Since the dwarfism was assumed to be due to a genetic mutation based on its frequency, we bred the dwarf rats and investigated their characteristics in order to identify the causative factors of their phenotypes and whether they could be used as a human disease model. One male and female that produced dwarf progeny were selected, and reproduction was initiated by mating the pair. The incidence of dwarfism was 25.8% among the resultant litter, and dwarfism occurred in both genders, suggesting that it was inherited in an autosomal recessive manner. At 12 weeks of age, the body weights of the male and female dwarf rats were 40% and 57% of those of the normal rats, respectively. In soft X-ray radiographic and histological examinations, shortening and hypoplasia of the long bones, such as the tibia and femur, were observed, which were suggestive of endochondral ossification abnormalities. An immunohistochemical examination detected an aggrecan synthesis disorder, which might have led to delayed calcification and increased growth plate thickening in the dwarf rats. We hypothesized that the principal characteristics of the dwarf rats were systemically induced by insufficient cartilage calcification in their long bones; thus, we named them cartilage calcification insufficient (CCI) rats.

  10. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    SciTech Connect

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana; Putman, Mary E.; Stern, Daniel E-mail: marla.geha@yale.edu E-mail: mputman@astro.columbia.edu

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimates comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.

  11. Studying the dwarf galaxies in nearby groups of galaxies: Spectroscopic and photometric data

    NASA Astrophysics Data System (ADS)

    Hopp, U.; Vennik, J.

    2014-11-01

    Galaxy evolution by interaction-driven transformation is probably highly efficient in groups of galaxies. Dwarf galaxies with their shallow potential are expected to reflect the interaction most prominently in their observable structure. The major aim of this series of papers is to establish a data base which allows to study the impact of group interaction onto the morphology and star-forming properties of dwarf galaxies. Firstly, we present our selection rules for target groups and the morphological selection method of target dwarf member candidates. Secondly, the spectroscopic follow-up observations with the HET are presented. Thirdly, we applied own reduction methods based on adaptive filtering to derive surface photometry of the candidates. The spectroscopic follow-up indicate a dwarf identification success rate of roughly 55 %, and a group member success rate of about 33 %. A total of 17 new low surface-brightness members is presented. For all candidates, total magnitudes, colours, and light distribution parameters are derived and discussed in the context of scaling relations. We point out short comings of the SDSS standard pipeline for surface photometry for these dim objects. We conclude that our selection strategy is rather efficient to obtain a sample of dim, low surface brightness members of groups of galaxies within the Virgo super-cluster. The photometric scaling relation in these X-ray dim, rather isolated groups does not significantly differ from those of the galaxies within the local volume.

  12. Roughness Length Variability over Heterogeneous Surfaces

    DTIC Science & Technology

    2010-03-01

    System ( COAMPS ) model fields for selected times during Tropical Storm Fay. Figure 42. Contoured roughness length from (a) COAMPS and 16.5-m wind...passage of Tropical Storm Fay on 18–21 August 2008. Spatial and temporal variations in roughness lengths for a period of one year are compared to...the same height in the tropical storm case, for wind speeds exceeding 20 ms-1, evidence is presented that indicates roughness lengths are related to

  13. Turbulent Flow over Rough Turbine Airfoils.

    DTIC Science & Technology

    1985-08-01

    SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Turbine blades ’ vanes ; surface roughness...turbulent boundary layer over rough turbine vanes or blades is developed. A new formulation of the mixing length model, expressed in the velocity-space...A-163 005 TURBULENT FLOW OVER ROUGH TURBINE AIRFOILS (U) OHIO 1/ STATE UNIV RESEARCH FOUNDATION COLUMBUS L S HAN AUG B5 OSURF-76357/?i4467 AFWL-TR-95

  14. Magnetic White Dwarfs with Heavy Elements

    NASA Astrophysics Data System (ADS)

    Hardy, F.; Dufour, P.; Jordan, S.

    2017-03-01

    Using our newly developed model atmosphere code appropriate for magnetic white dwarfs with metal lines in the Paschen-Back regime, we study various magnetic white dwarfs and explore the effects of various parameters such as the field geometry and the convective efficiency.

  15. AR Sco: A Precessing White Dwarf Synchronar?

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2017-02-01

    The emission of the white dwarf–M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. Synchronization requires a magnetic field ∼100 Gauss at the M dwarf and ∼ {10}8 Gauss at the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf, within the near zone of the rotating white dwarf’s field, by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf’s magnetic field sweeps past the M dwarf or by a misaligned white dwarf rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of the optical maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  16. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  17. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  18. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Stripf, M.

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  19. Rough set models of Physarum machines

    NASA Astrophysics Data System (ADS)

    Pancerz, Krzysztof; Schumann, Andrew

    2015-04-01

    In this paper, we consider transition system models of behaviour of Physarum machines in terms of rough set theory. A Physarum machine, a biological computing device implemented in the plasmodium of Physarum polycephalum (true slime mould), is a natural transition system. In the behaviour of Physarum machines, one can notice some ambiguity in Physarum motions that influences exact anticipation of states of machines in time. To model this ambiguity, we propose to use rough set models created over transition systems. Rough sets are an appropriate tool to deal with rough (ambiguous, imprecise) concepts in the universe of discourse.

  20. Dust in Cluster Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Baes, M.; Fritz, J.; Verstappen, J.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; Davies, J. I.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Magrini, L.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    Based on single cross-scan data of the Herschel Virgo Cluster Survey, we report the first detections of dust in cluster early-type dwarf galaxies: VCC 209, VCC 781 and VCC 951. All three galaxies have dust masses M d ≈ 105 - 106 M⊙ and average dust temperatures ≈ 16-20 K. Since these three early-type dwarfs reside in densely crowded regions close to the center of the Virgo cluster, and several H I-detected dwarfs in the outskirts of Virgo were not detected by Herschel(implying a dust content < 104 M⊙), this might imply that dust in dwarfs is more closely related to the molecular gas, which is more centrally peaked in a galaxy's potential well and therefore, not easily removed by any stripping mechanism. We conclude that the removal of interstellar dust from these early-type dwarfs appears to be less efficient than the removal of the H I gas.

  1. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  2. A white dwarf with an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  3. Double White Dwarf Merger Rates

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon

    2013-01-01

    Type Ia supernovae (SNe Ia) are very successfully used as standard candles on cosmological distance scales, but so far the nature of the progenitor(s) is unclear. A possible scenario for SNe Ia are merging carbon/oxygen white dwarfs with a combined mass exceeding the Chandrasekhar mass. We determine the theoretical rates and delay time distribution of these mergers for two different common envelope prescriptions and metallicities. The shape of the delay time distributions is rather insensitive to the assumptions. The normalization is a factor ~3-13 too low compared to observations.

  4. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  5. Central Dark Matter Distribution In Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Se-Heon; Brook, C.; Governato, F.; Brinks, E.; Mayer, L.; de Blok, E.; Brooks, A.; Walter, F.

    2012-01-01

    Central dark matter distribution in dwarf galaxies Se-Heon Oh, Chris Brook, Fabio Governato, Elias Brinks, Lucio Mayer, W.J.G. de Blok, Alyson Brooks and Fabian Walter We present high-resolution mass models of 7 nearby dwarf galaxies from "The HI Nearby Galaxy Survey” (THINGS) and compare these with those from hydrodynamic simulations of dwarf galaxies assuming a ΛCDM cosmology. The simulations include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating and most importantly, physically motivated gas outflows driven by supernovae (SNe). For the THINGS dwarf galaxies, we derive the mass models for the dark matter component by subtracting the contribution from baryons, derived from our HI observations and using the "Spitzer Infrared Nearby Galaxies Survey” (SINGS) 3.6μm data, from the total kinematics, leaving only the contribution by the Dark Matter halo. In parallel, we perform dark matter mass modeling of the simulated dwarf galaxies in exactly the same way as the observed THINGS dwarf galaxies. From a direct comparison between the observations and simulations, we find that the dark matter rotation curves of the simulated dwarf galaxies rise less steeply in the inner regions than those of dark-matter-only simulations based on the ΛCDM paradigm, and are more consistent with those of the THINGS dwarf galaxies. In addition, the mean value of the logarithmic inner dark matter density slopes, α, of the simulated galaxies is approximately -0.4 ± 0.1, which is in good agreement with α = -0.29 ± -0.07 of the THINGS dwarf galaxies. This shows that the baryonic feedback processes in the simulations are efficient in flattening the initial cusps with α = -1.0 to -1.5 predicted from dark-matter-only simulations, and render the dark matter halo mass distribution more similar to that observed in nearby dwarf galaxies.

  6. The luminosities of the coldest brown dwarfs

    SciTech Connect

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Cushing, Mike; Morley, Caroline V.; Wright, Edward L.

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.

  7. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  8. Keck Telescope Observations of Externally-Polluted White Dwarfs

    NASA Astrophysics Data System (ADS)

    Zuckerman, Ben M.; NASA, Research was Supported in Part by

    2013-01-01

    Beginning in the late 1990s the Keck telescope and HIRES echelle spectrometer have contributed mightily to investigations of white dwarf photospheres that contain elements heavier than helium that have been accreted from surrounding planetary systems. Today we report new Keck measurements of helium atmosphere (DB and DZ) white dwarfs, of Hyades white dwarfs, and of white dwarfs in binary systems.

  9. Effect of roughness on imaging and characterizing rough crack-like defect using ultrasonic arrays

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.

    2012-05-01

    All naturally occurring crack-like defects in solid structures are rough to some degree, which can affect defect inspection and characterization. Based on the simulated array data for various rough cracks and the total focusing method imaging algorithm, the effect of roughness on defect imaging and characterization was discussed. The array data was simulated by using the forward model combining with scattering matrices for various rough cracks. The scattering matrix describes the scattering field of a scatterer from all possible incident and scattering directions. It is shown that roughness can be either beneficial or detrimental to the detectability of a crack-like defect, depending on the defect characteristics such as length, roughness, correlation length, orientation angle, and array inspection configuration. It is also shown that roughness can cause the underestimation of length of rough crack-like defects by using the image-based approach.

  10. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  11. Angular Momentum of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}ȯ ). We find that the sAM of neutral atomic hydrogen (H i) alone is about 2.5 times higher than that of the stars. The M–j relation of H i is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H i fraction with {M}{{b}}.

  12. Polarization of Young Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Manjavacas, Elena; Miles-Páez, Paulo A.; Zapatero-Osorio, Maria Rosa; Goldman, Bertrand; Buenzli, Esther; Henning, Thomas; Pallé, Enric

    2016-08-01

    Linear polarization due to scattering processes can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inverse to the surface gravity.We aimed to measure optical linear polarization from a sample of six young brown dwarfs, with spectral types between M6 to L2, and cataloged previously as objects with low gravity using spectroscopy. These targets are believed to have dusty atmospheres as a consequence of their low gravity, therefore linearly polarized light is expected from these objects.Linear polarimetric data were collected in I and R-band using CAFOS at the 2.2m telescope in Calar Alto Observatory.We obtained results of linear polarization in the I-band compatible with non polarization for all the objects, and similar results for the polarization degree in the R-band for all objects with the exception of 2M0422. For this object we find a linear polarization degree of 0.81+-0.18%. 2M0422 is 10 deg to the south of the Taurus star-forming region, thus, we suspect that its polarization is caused by the dust in the cloud in which 2M0422 might be embedded.

  13. Wetting properties of molecularly rough surfaces

    SciTech Connect

    Svoboda, Martin; Lísal, Martin; Malijevský, Alexandr

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  14. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  15. 7 CFR 51.1873 - Slightly rough.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Fresh Tomatoes 1 Definitions § 51.1873 Slightly rough. Slightly rough means that the tomato...

  16. Wetting properties of molecularly rough surfaces

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-09-01

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel's law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  17. Hydrodynamics and Roughness of Irregular Boundaries

    DTIC Science & Technology

    2011-01-01

    principle component analysis (PCA) similar to that used by Preston (2009) for ship- mounted multibeam data. Several variables derived from the...complex boundaries as well as characterization of acoustic and optical processes. Turbulent processes at the seabed are at the foundation of littoral...nearshore hydrodynamics, turbulence over rough beds influences optical and acoustic properties. Bed roughness also directly affects acoustic propagation in

  18. Specular Reflection from Rough Surfaces Revisited

    ERIC Educational Resources Information Center

    Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.

    2016-01-01

    In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in…

  19. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection.

    PubMed

    Li, Kunpeng; Xu, Changzheng; Zhang, Juren

    2011-10-10

    Maize rough dwarf disease (MRDD) is a viral disease and causes great yield loss. To better understand the effects of MRDD on plant growth and metabolism, comparative proteomic analysis of leaves from virus-infected and normal plants was performed. In order to eliminate the interference of Ribulose-1, 5-bisphosphate carboxylase with low-abundance proteins, total proteins were pre-fractionated by 15% PEG and the proteins from supernatant and precipitated fractions were analyzed by 2-DE, subsequently. Out of approximately 1200 protein spots detected, less than 2% of the spots on the gels were overlapping between the fractions of precipitation and supernatant. We identified 91 differentially accumulated proteins that belong to multiple metabolic/biochemical pathways in plants. Further analysis of these identified proteins indicated that MRDD resulted in dramatic changes in the fundamental metabolism, including glycolysis and starch metabolism, and eventually the significant differences in morphology and development between virus-infected and normal plants. Moreover, MRDD occurrence increased the demands for G-proteins, antioxidant enzymes, lipoxygenases and UDP-glucosyltransferase BX9, which may play important roles in response of plant against virus infection. The results also suggested that MRDD is a complicated disease controlled by multigene participating in different pathways.

  20. Modeling surface roughness scattering in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  1. Specular Reflection from Rough Surfaces Revisited

    NASA Astrophysics Data System (ADS)

    Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.

    2016-10-01

    In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in nontransparent rough surfaces at oblique angles, where roughness was treated as a variable. We present a simple trigonometry-based model explaining the observed phenomenon, which we experimentally validated using aluminum surfaces that have controlled roughness. The reported demonstration requires no special equipment, other than cellphone cameras, dielectric or metal plate, and sandpaper, and serves as an introduction to wave optics. This activity can be used to get further insight into everyday applications of wave optics for students already familiar with wave optics fundamentals.

  2. Anisotropy in the wetting of rough surfaces.

    PubMed

    Chen, Yong; He, Bo; Lee, Junghoon; Patankar, Neelesh A

    2005-01-15

    Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contact line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding of this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of anisotropic wetting and to propose a methodology to quantify the apparent contact angles and the drop shape. We report a theoretical and an experimental study of wetting of surfaces with parallel groove geometry.

  3. SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect

    Kleinman, S. J.; Nitta, A.; Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Koester, D.; Krzesinski, J.; Dufour, P.; Lachapelle, F.-R.; Bergeron, P.; Yip, Ching-Wa; Harris, Hugh C.; Eisenstein, Daniel J.; Althaus, L.; Corsico, A.

    2013-01-15

    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

  4. THE METALLICITY OF VOID DWARF GALAXIES

    SciTech Connect

    Kreckel, K.; Groves, B.; Croxall, K.; Pogge, R. W.; Van de Weygaert, R.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M{sub r} > –16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  5. An overview of white dwarf stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Charpinet, S.; Randall, S. K.; Van Grootel, V.

    2013-03-01

    We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning) that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid/solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms) is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state. We set the stage for the reviews that follow on cooling white dwarfs as cosmochronometers and physics laboratories, as well as on the properties of pulsating white dwarfs and the asteroseismological results that can be inferred.

  6. The origin of low-mass white dwarfs

    SciTech Connect

    Rebassa-Mansergas, A.; Schreiber, M. R.; Gaensicke, B. T.; Girven, J.; Gomez-Moran, A. Nebot

    2010-11-23

    We present white dwarf mass distributions of a large sample of post common-envelope binaries and wide white dwarf main sequence binaries and demonstrate that these distributions are statistically independent. While the former contains a much larger fraction of low-mass white dwarfs, the latter is similar to single white dwarf mass distributions. Taking into account observational biases we also show that the majority of low-mass white dwarfs are formed in close binaries.

  7. Are white dwarfs born with a `KICK'?

    NASA Astrophysics Data System (ADS)

    Davis, Saul; Richer, H. B.; Coffey, J.; Anderson, J.; Brewer, J.; Fahlman, G. G.; Hansen, B. M.; Hurley, J.; Kalirai, J. S.; King, I. R.; Reitzel, D.; Rich, R. M.; Rich, M. R.; Shara, M. M.

    2006-12-01

    The unusually large kinetic energies possessed by some pulsars, as inferred from their observed velocities in excess of the escape speed of the Galaxy, imply that the violent explosions in which they are born impart some fraction of their energy into the motion of the pulsar. Does a similar, but less energetic process occur during the birth of a white dwarf? Two major Hubble Space Telescope imaging campaigns of the two nearest globular star clusters, NGC 6397 and Messier 4, yield the radial distribution of both white dwarfs and main-sequences. Because globular clusters are relaxed populations, the velocity dispersion, and hence radial distribution, for stars of a particular mass is directly dependent on that mass. To first approximation, all white dwarf s have a mass of 0.55 M⊙. If white dwarfs are not born with a kick, we expect white dwarf s of an age younger than a relaxation time to have a radial distribution similar to main-sequence stars of 0.8 M⊙, i.e. the mass of their progenitor. Conversely, if white dwarf s are born with a kick, the radial distribution of white dwarfs younger than the relaxation time should mimic that of main-sequence stars of lesser mass. By comparing the radial distributions of white dwarfs of various ages with those of main-sequence stars of various masses in these two globular clusters, we find that the radial distributions of young white dwarfs are most similar to that of main-sequence stars of 0.2 M⊙, implying a natal kick of >1.6 km/s.

  8. Gaia limits for brown dwarf studies.

    NASA Astrophysics Data System (ADS)

    Sarro, L. M.; Barrado, D.; Carrión, C.; Caballero, J. A.

    In this work we present a study of the expected properties of the Gaia sample of ultracool dwarfs (UCDs). This is defined preliminary (at a stage where we do not have real Gaia data yet) by analysing the detectability by Gaia of known UCDs in the Dwarf Archive. We complement the observations listed in the Dwarf Archive (J-, H-, and K- band magnitudes) with SDSS magnitudes and compare them with the BT-Settl model library in order to assess detectability. We also discuss the fraction of UCDs that will have accompanying RVS spectra in the Calcium triplet wavelength region.

  9. Principal Component Analysis of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Cleary, Colleen; Rodriguez, David

    2017-01-01

    Principal component analysis is a technique for reducing variables and emphasizing patterns in a data set. In this study, the data set consisted of the attributes of 174 brown dwarfs. The PCA was performed on several photometric measurements in near-infrared wavelengths and colors in order to determine if these variables showed a correlation with the physical parameters. This research resulted in two separate models that predict luminosity and temperature. The application of principal component analysis on the near-infrared photometric measurements and colors of brown dwarfs, along with models, provides alternate methods for predicting the luminosity and temperature of brown dwarfs using only photometric measurements.

  10. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  11. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wheeler, J. Craig

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  12. The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven

    2017-03-01

    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8–7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4–8.2 Gyr for the thin disk and 9.5–9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.

  13. Magnetic fields in Local Group dwarf irregulars

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization

  14. Effects of surface roughness on shear viscosity

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Frank, Michael; Drikakis, Dimitris

    2017-03-01

    This paper investigates the effect of surface roughness on fluid viscosity using molecular dynamics simulations. The three-dimensional model consists of liquid argon flowing between two solid walls whose surface roughness was modeled using fractal theory. In tandem with previously published experimental work, our results show that, while the viscosity in smooth channels remains constant across the channel width, in the presence of surface roughness it increases close to the walls. The increase of the boundary viscosity is further accentuated by an increase in the depth of surface roughness. We attribute this behavior to the increased momentum transfer at the boundary, a result of the irregular distribution of fluid particles near rough surfaces. Furthermore, although the viscosity in smooth channels has previously been shown to be independent of the strength of the solid-liquid interaction, here we show that in the presence of surface roughness, the boundary viscosity increases with the solid's wettability. The paper concludes with an analytical description of the viscosity as a function of the distance from the channel walls, the walls' surface roughness, and the solid's wetting properties. The relation can potentially be used to adjust the fluid dynamics equations for a more accurate description of microfluidic systems.

  15. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    SciTech Connect

    Bekki, Kenji

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  16. Aerobic intestinal flora of wild-caught African dwarf crocodiles Osteolaemus tetraspis.

    PubMed

    Huchzermeyer, F W; Henton, M M; Riley, J; Agnagna, M

    2000-09-01

    Intestinal contents were collected from wild-caught African dwarf crocodiles (Osteolaemus tetraspis) in 1993 and 1995 which were slaughtered at urban markets in the Congo Republic. The samples were kept frozen and brought back to Onderstepoort for aerobic culture. Out of 29 specimens, 33 species of bacteria and 20 species of fungi were isolated. The bacteria included three isolates of Salmonella and eight isolates of Escherichia coli, most of the latter being rough strains. The flora of individual specimens contained 1-5 bacterial and 0-5 fungal species. Neither Aeromonas hydrophila nor Edwardsiella tarda were isolated from any of the samples.

  17. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    SciTech Connect

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.; Goldberg, Kenneth A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  18. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  19. Relationships between topographic roughness and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Rasmussen, K. R.; White, B. R.; Saunders, R. S.; Wall, S.; Dobrovolskis, Anthony R.; Iversen, J. D.

    1991-01-01

    The interaction between winds and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationships between radar backscatter and aerodynamic roughness as part of the NASA Shuttle Imaging radar (SIR-C) Mission. Here, researchers report results from measurements of boundary layer wind profiles and surface roughness at sites in Death Valley and discuss their implications. The sites included a flat to undulating gravel and sand reg, alluvial fans, and a playa. Estimates of average particle size composition of Death Valley sites and arithmetic mean values of aerodynamic roughness are given in tabular form.

  20. Using Maize chlorotic dwarf virus to explore future frontiers in plant virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize chlorotic dwarf virus (MCDV) causes a chlorosis and stunting disease of corn throughout the Midwest United States. It is a waikavirus transmitted by the leafhopper Graminella nigrifrons. Although waikaviruses are economically important viruses in corn and rice, little is known about the viru...

  1. Analysis of induction and establishment of dwarf bunt of wheat under marginal climatic conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dwarf bunt caused by Tilletia contraversa has limited distribution due to essential climatic requirements; primarily persistent snow cover. The pathogen is a quarantine organism in several countries outside of the USA, some of which may have marginal climate for the disease, including the People’s ...

  2. Analysis of induction and establishment of dwarf bunt of wheat under marginal climatic conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dwarf bunt caused by Tilletia contraversa is a disease of winter wheat that has a limited geographic distribution due to specific winter climate requirements. The pathogen is listed as a quarantine organism by several countries that may have wheat production areas with inadequate or marginal climat...

  3. Mapping of QTL for tolerance to cereal yellow dwarf virus in two-rowed spring barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal yellow dwarf virus (CYDV-RPV) causes a serious viral disease affecting small grain crops around the world. In the US, it frequently is present in California where it causes significant yield losses, and when infections start early in development, plant death. CYDV is transmitted by aphids, an...

  4. Maize dwarf mosaic can reduce weed suppressive ability of sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize dwarf mosaic (MDM) stunts corn growth, delays development, and is the most prevalent viral disease of sweet corn grown in many regions of North America and Europe. Although weeds evade control in most sweet corn fields, the extent to which MDM influences the weed suppressive ability of the cro...

  5. Maize dwarf mosaic in sweet corn contributes to weed growth and seed production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize dwarf mosaic (MDM) stunts corn growth, delays development, and is the most prevalent viral disease of sweet corn. Although weeds evade control in most sweet corn fields, the extent to which MDM influences the crop’s weed suppressive ability is unknown. Field studies were conducted over a three...

  6. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  7. Building Magnetic Fields in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  8. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  9. Tidal Effects in Inspiraling Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Willems, B.; Kalogera, Vicky; Vecchio, A.; Ivanova, N.; Deloye, C.; Hansen, B.

    2006-12-01

    Despite the overwhelming abundance of double white dwarfs in the LISA gravitational wave frequency band, modeling of their waveforms has remained limited to the point-mass approximation in which gravitational radiation is the only source of systemic orbital angular momentum loss. As a significant fraction of these systems spirals in to periods as short as 5-10 minutes, tidal effects can, however, play an important role in modifying the gravitational wave frequency evolution. The strength of the tidal effects depends strongly on the energy dissipation mechanism damping the tides, which, for white dwarfs, is highly uncertain. In this poster, we present the first results of a systematic study of tidal dissipation in white dwarfs, and the impact of tides on the gravitational wave signal of close double white dwarfs.

  10. Transit probabilities for debris around white dwarfs

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Johnson, John A.

    2017-01-01

    The discovery of WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. However, we only have one example and there are presently no published studies of transit detection/discovery probabilities for white dwarfs within this interesting regime. We present a preliminary look at the transit probabilities for metal-polluted white dwarfs and their projected space density in the Solar Neighborhood, which will inform future searches for analogs to WD 1145+017.

  11. Pulsating White Dwarf Stars and Precision Asteroseismology

    NASA Astrophysics Data System (ADS)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  12. L' AND M' Photometry Of Ultracool Dwarfs

    NASA Technical Reports Server (NTRS)

    Marley, M. S.; Tsvetanov, Z. I.; Vrba, F. J.; Henden, A. A.; Luginbuhl, C. B.

    2004-01-01

    We have compiled L' (3.4-4.1 microns) and M' (4.6- 4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set. This compilation includes new L' measurements of eight L dwarfs and 13 T dwarfs and new M' measurements of seven L dwarfs, five T dwarfs, and the M1 dwarf Gl 229A. These new data increase by factors of 0. 6 and 1.6, respectively, the numbers of ultracool dwarfs T (sub eff) dwarfs whose flux-calibrated JHK spectra, L' photometry, and trigonometric parallaxes are available, and we estimate these quantities for nine other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC(SUB K) is a well-behaved function of near-infrared spectral type with a dispersion of approx. 0.1 mag for types M6-T5 it is significantly more scattered for types T5-T9. T (sub eff) declines steeply and monotonically for types M6-L7 and T4-T9, but it is nearly constant at approx. 1450 K for types L7-T4 with assumed ages of approx. 3 Gyr. This constant T(sub eff) is evidenced by nearly unchanging values of L'-M' between types L6 and T3. It also supports recent models that attribute the changing near-infrared luminosities and spectral features across the L-T transition to the rapid migration, disruption, and/or thinning of condensate clouds over a narrow range of T(sub eff). The L' and M' luminosities of early-T dwarfs do not exhibit the pronounced humps or inflections previously noted in l through K bands, but insufficient data exist for types L6-T5 to assert that M(Sub L') and M(sub M') are strictly monotonic within this range of typew. We compare the observed K, L', and M' luminosities of L and T dwarfs in our sample with those predicted by precipitation-cloud-free models for varying surface gravities and sedimentation efficiencies.

  13. A wave model for dwarf novae

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Kutter, G. S.

    1980-01-01

    The rapid coherent oscillation during a dwarf nova outburst is attributed to an accretion-driven wave going around the white dwarf component of the binary system. The increase and decrease in the period of this oscillation is due to the change in the velocity of the wave as it is first being driven and then damped. Qualitatively, a large number of observations can be explained with such a model. The beginnings of a mathematical representation of this model are developed.

  14. Formation of Brown Dwarfs LTSA 2001

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goals of the work funded by this grant are: 1) The measurement of the mass function and minimum mass of free-floating brown dwarfs down to the mass of Jupiter. 2) The measurement of the frequency of wide brown dwarf and planetary companions down to the mass of Jupiter as function of primary mass (0.02-2 Msun), age (1-10 Myr), and environment (clusters vs. dispersed regions).

  15. ANS ultraviolet observations of dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, C. R.; Wu, C.-C.

    1983-03-01

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) are presented. The UV light curves are consistent with those in the visual region. When compared to standard stars, all three dwarf Cepheids exhibit flux deficiencies at the shortest observed wavelengths. The most extreme deficiencies appear for SX Phe; these may be related to the other properties previously noted for this star, including low metallicity, high space motion, and low luminosity.

  16. Three-tier rough superhydrophobic surfaces.

    PubMed

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-07

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  17. The Surface Roughness of Terrains on Mars

    NASA Technical Reports Server (NTRS)

    Deal, K. S.; Arvidson, R. E.; Neumann, G. A.

    2003-01-01

    The RMS roughness measurements produced by Neumann et al. from Mars Orbiter Laser Altimeter (MOLA) data provide unique information about surface height variations at an effective length scale of < 75 m. Roughness at this scale is important not only for landing site safety considerations, but also for assessment of landscape evolution, which depends on emplacement mechanisms and erosional/depositional processes. Here we present an examination of the global surface roughness map with discussion of terrain types and potential formation and/or alteration mechanisms. Spatially coherent terrain types were identified based on inspection of the roughness map. These terrains were further characterized through analysis of morphology and geology using MOLA topography, MOC wide-angle, and MOC narrow-angle images as well as the geologic maps produced by Scott & Tanaka and Greeley & Guest. All of these data were used to explore potential formation and modification processes.

  18. Ellipsometric analysis for surface roughness and texture.

    PubMed

    Nee, S M

    1988-07-15

    A 2-D symmetric model is incorporated into the calculation of the ellipsometric parameters Psi and Delta for surface roughness and texture characterization based on the effective medium theory. The least-squares fits of the experimental data at a 5-microm IR wavelength for rough fused silica samples at multiple angles of incidence give the standard deviations of Psi and Delta of about twice the instrumental errors. The effective thickness and the depolarization factor obtained by ellipsometry agree with the roughness and average height-to-halfwidth ratio of voids obtained by stylus profilometry. The surface texture can be characterized by the fit depolarization factors set. The excellent agreement between theory and experiments indicates that ellipsometry can be a promising nondestructive technique for rough-surface evaluation.

  19. Three-tier rough superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  20. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  1. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

    SciTech Connect

    Tremblay, P.-E.; Fontaine, G.; Brassard, P.; Freytag, B.; Steiner, O.; Ludwig, H.-G.; Steffen, M.; Wedemeyer, S.

    2015-10-10

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T{sub eff}) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with T{sub eff} ≲ 10,000 K cool significantly slower than non-magnetic degenerates.

  2. MICROLENSING BINARIES WITH CANDIDATE BROWN DWARF COMPANIONS

    SciTech Connect

    Shin, I.-G.; Han, C.; Gould, A.; Skowron, J.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozlowski, S.; Wyrzykowski, L.; Sumi, T.; Dominik, M.; Beaulieu, J.-P.; Tsapras, Y.; Bozza, V.; Abe, F.; Collaboration: OGLE Collaboration; MOA Collaboration; muFUN Collaboration; and others

    2012-12-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during the 2004-2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found seven candidate events: OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured masses of the brown dwarf companions are 0.02 {+-} 0.01 M {sub Sun} and 0.019 {+-} 0.002 M {sub Sun} for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well-covered light curves increases with new-generation searches.

  3. How supercontinents and superoceans affect seafloor roughness.

    PubMed

    Whittaker, Joanne M; Müller, R Dietmar; Roest, Walter R; Wessel, Paul; Smith, Walter H F

    2008-12-18

    Seafloor roughness varies considerably across the world's ocean basins and is fundamental to controlling the circulation and mixing of heat in the ocean and dissipating eddy kinetic energy. Models derived from analyses of active mid-ocean ridges suggest that ocean floor roughness depends on seafloor spreading rates, with rougher basement forming below a half-spreading rate threshold of 30-35 mm yr(-1) (refs 4, 5), as well as on the local interaction of mid-ocean ridges with mantle plumes or cold-spots. Here we present a global analysis of marine gravity-derived roughness, sediment thickness, seafloor isochrons and palaeo-spreading rates of Cretaceous to Cenozoic ridge flanks. Our analysis reveals that, after eliminating effects related to spreading rate and sediment thickness, residual roughness anomalies of 5-20 mGal remain over large swaths of ocean floor. We found that the roughness as a function of palaeo-spreading directions and isochron orientations indicates that most of the observed excess roughness is not related to spreading obliquity, as this effect is restricted to relatively rare occurrences of very high obliquity angles (>45 degrees ). Cretaceous Atlantic ocean floor, formed over mantle previously overlain by the Pangaea supercontinent, displays anomalously low roughness away from mantle plumes and is independent of spreading rates. We attribute this observation to a sub-Pangaean supercontinental mantle temperature anomaly leading to slightly thicker than normal Late Jurassic and Cretaceous Atlantic crust, reduced brittle fracturing and smoother basement relief. In contrast, ocean crust formed above Pacific superswells, probably reflecting metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, is not associated with basement roughness anomalies. These results highlight a fundamental difference in the nature of large-scale mantle upwellings below supercontinents and superoceans, and their impact on oceanic crustal

  4. Geoacoustic Physical Modeling: Volume-Roughness Interactions

    DTIC Science & Technology

    2008-09-30

    important break by showing its relationship to the angle of repose , a fundamental feature of granular sediments (such as sands)[Ivakin, 2005...significant considering the fact that the slope of roughness at sub-cm scales at SAX99 site is large and can be close to both angle of repose and...roughness interactions and should be very pronounced at near- and sub-critical grazing angles . For example, the very first theoretical considerations

  5. Anatomy of the Ocean Surface Roughness

    DTIC Science & Technology

    2007-11-02

    with Theory,” J. Phys. Oceanogr. 13, 1505-1518, 1983. Tang, S. and O.H. Shemdin , “Measurement of High Frequency Waves Using a Wave Follower ,” J...SAR 45 Paul A. Hwang 228-688-4708 Ocean surface roughness can be decomposed into an ambient component, surface wave geometric contribution (the mean...square slope), and breaking wave contribution (the breaking roughness). Only the last two components can be attributed to local wind conditions for

  6. Role of surface roughness in superlubricity

    NASA Astrophysics Data System (ADS)

    Tartaglino, U.; Samoilov, V. N.; Persson, B. N. J.

    2006-05-01

    We study the sliding of elastic solids in adhesive contact with flat and rough interfaces. We consider the dependence of the sliding friction on the elastic modulus of the solids. For elastically hard solids with planar surfaces with incommensurate surface structures we observe extremely low friction (superlubricity), which very abruptly increases as the elastic modulus decreases. We show that even a relatively small surface roughness may completely kill the superlubricity state.

  7. Role of surface roughness in superlubricity.

    PubMed

    Tartaglino, U; Samoilov, V N; Persson, B N J

    2006-05-03

    We study the sliding of elastic solids in adhesive contact with flat and rough interfaces. We consider the dependence of the sliding friction on the elastic modulus of the solids. For elastically hard solids with planar surfaces with incommensurate surface structures we observe extremely low friction (superlubricity), which very abruptly increases as the elastic modulus decreases. We show that even a relatively small surface roughness may completely kill the superlubricity state.

  8. Investigating the Surface Roughness of Mercury

    NASA Astrophysics Data System (ADS)

    Susorney, H. C. M.; Barnouin, O. S.; Ernst, C. M.

    2014-12-01

    The Mercury Laser Altimeter (MLA) on the MErcury, Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft has acquired high-resolution topographic measurements of Mercury's northern hemisphere. These measurements permit the quantification of surface roughness on Mercury over baselines between 500 m and 200 km. In contrast to previous studies of Mercury's surface roughness, which have employed median differential surface slope, we calculate surface roughness as the root mean square (RMS) deviation of the difference in height. If the topography is self-affine or fractal, a power law can be fit to the RMS deviation as a function of baseline length. The exponent of this fit is called the Hurst exponent. This Hurst exponent describes whether or not a surface is self-affine, which occurs when processes produce a surface roughness that is inherently random. The surface roughness of Mercury's northern hemisphere reflects the observed bimodal nature of Mercury: the northern smooth plains have lower roughness values than the rougher heavily cratered terrain and intercrater plains. The relationship between RMS height and baseline length on Mercury shows two fractal sections, one between lengths of 500 m and 1 km, and another between lengths of 1 km and 20 km. We also find that the northern rise is indistinguishable from the surrounding smooth plains across all measured baselines, implying that the rise did not alter its surface topography at the baselines used in this study. Craters that host radar-bright deposits have similar roughness values to craters that do not host such deposits. Finally, fresh crater ejecta within the smooth plains have similar roughness values (particularly at the 1 km baseline) to the intercrater plains, supporting the interpretation that the intercrater plains may result from the modification of volcanic plains via cratering.

  9. Molecular variation and expansion of a rice black-streaked dwarf virus population based on analysis of segment 1 in Jining, China.

    PubMed

    Zhou, Yu; Meng, Qingchang; Chen, Yanping; Wu, Jirong; Hao, Zhuanfang; Wang, Zhenhua; Zhang, Degui; Li, Mingshun; Yong, Hongjun; Zhang, Shihuang; Li, Xinhai; Weng, Jianfeng

    2016-12-01

    To analyze the variation in rice black-streaked dwarf virus (RBSDV) in an area with high incidence of maize rough dwarf disease (MRDD), the RBSDV S1 segment in a collection of 100 maize isolates (sample population A100) from Jining, Shandong Province, was sequenced. An additional 21 maize and rice isolates (subpopulation B21) that were sampled from nine other geographic locations in China in 2012 and 2013 were used as a control. A total of 914 nucleotide mutations, including 239 singleton variable and 675 parsimony-informative sites were detected among the segment 1 (S1) sequences from A100. A total of 614 nucleotide mutation sites including 164 singleton variable and 450 parsimony-informative sites were detected among the S1 sequences from B21, while 97.55 % of the parsimony-informative sites from B21 were also detected in A100. The nucleotide sequence diversities of A100 (π = 0.0479) and B21 (π = 0.0396) were significantly different (P = 0.0002) but showed similar trends. Phylogenetic analysis showed that the 121 RBSDV isolates could be classified into two groups based on their S1 sequences, independent of subpopulation, with a combination of host species and locations. A100 and B21 were under the same level of negative and purifying selection, with Ka/Ks ratios of 0.0337 and 0.0369, respectively. The combined RBSDV population, including 121 isolates, was expanding, with negative values for Tajima's D, Fu and Li's D, and Fu and Li's F in both A100 and B21, except Tajima's D in A100. Based on S1, the RBSDV population in China has long-term phytogeographic stability, and there do not appear to be any newly-emerging strains.

  10. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  11. Influence of surface roughness on dispersion forces.

    PubMed

    Svetovoy, V B; Palasantzas, G

    2015-02-01

    Surface roughness occurs in a wide variety of processes where it is both difficult to avoid and control. When two bodies are separated by a small distance the roughness starts to play an important role in the interaction between the bodies, their adhesion, and friction. Control of this short-distance interaction is crucial for micro and nanoelectromechanical devices, microfluidics, and for micro and nanotechnology. An important short-distance interaction is the dispersion forces, which are omnipresent due to their quantum origin. These forces between flat bodies can be described by the Lifshitz theory that takes into account the actual optical properties of interacting materials. However, this theory cannot describe rough bodies. The problem is complicated by the nonadditivity of the dispersion forces. Evaluation of the roughness effect becomes extremely difficult when roughness is comparable with the distance between bodies. In this paper we review the current state of the problem. Introduction for non-experts to physical origin of the dispersion forces is given in the paper. Critical experiments demonstrating the nonadditivity of the forces and strong influence of roughness on the interaction between bodies are reviewed. We also describe existing theoretical approaches to the problem. Recent advances in understanding the role of high asperities on the forces at distances close to contact are emphasized. Finally, some opinions about currently unsolved problems are also presented.

  12. Dentine roughness after different surface treatments.

    PubMed

    Mohsen, M M; Shabka, A A

    1993-01-01

    Surface roughness is one of the most influential criteria affecting the durability and strength of the adhesive restorative materials to the dentine. This study was carried out to investigate the roughness of the dentine surface after some of the modalities proposed for its treatment prior to application of the DBA. Dentine surface roughness of the sixty teeth divided into 12 groups were tested where the dentine surfaces were denuded and were brought to a similar 600 grit surface roughness then different treatments were carried out using H2O2, CO2 gas laser at 30 and 48 J/cm2 energy densities, EDTA and polyacrylic acid treatments. The dentine surface roughness was determined using a profilometer and the results were digitized and plotted using an AUTO-CAD software and Rolland plotter to compare the effects of the different treatments on the dentine surface roughness of the tested samples. Results revealed that the laser treatment left smooth dentine surface and added further evidences to the simplicity and reliability of the conventional use of EDTA and the polyacrylic acid according to the type of adhesive to be used.

  13. Cells preferentially grow on rough substrates.

    PubMed

    Gentile, Francesco; Tirinato, Luca; Battista, Edmondo; Causa, Filippo; Liberale, Carlo; di Fabrizio, Enzo M; Decuzzi, Paolo

    2010-10-01

    Substrate nanotopography affects cell adhesion and proliferation and is fundamental to the rational design of bio-adhesives, to tissue engineering and to the development of assays for in-vitro screening. Cell behavior on rough substrates is still elusive, and the results presented in the open literature remain controversial. Here, the proliferation of cells on electrochemically etched silicon substrates with different roughness and nearly similar surface energy was studied over three days with confocal and atomic force microscopy. The surface profile of the substrates is a self-affine fractal with a roughness R(a) growing with the etching time from approximately 2 to 100 nm and a fractal dimension D ranging between about 2 (nominally flat surface) and 2.6. For four cell types, the number of adhering cells and their proliferation rates exhibited a maximum on moderately rough (R(a) approximately 10-45 nm) nearly Brownian (D approximately 2.5) substrates. The observed cell behavior was satisfactorily interpreted within the theory of adhesion to randomly rough solids. These findings demonstrated the importance of nanogeometry in cell stable adhesion and growth, suggesting that moderately rough substrates with large fractal dimension could selectively boost cell proliferation.

  14. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  15. The Dwarf Novae UZ Serpentis and SS Aurigae During Quiescence: Exposed White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Lake, J.; Sion, E. M.

    2000-12-01

    UZ Serpentis and SS Aurigae are both U Geminorum-type dwarf novae with similar orbital periods, outburst amplitudes, and outburst recurrence times. Since dwarf novae above the period gap have higher accretion rates, their accretion disks may remain optically thick even during quiescence. Hence the detection of the white dwarf is more difficult. UZ Ser and SS Aur offer the possiblity of extending the range of systems for which the underlying white dwarf accreter has been analyzed with model atmospheres. We have applied the Massa-Fitzpatrick (2000) flux calibration correction to the archival IUE NEWSIPS SWP spectra of these two systems, obtained during dwarf nova quiescence. We have carried out high gravity model atmosphere using the codes TLUSTY195, SYNSPEC42, ROTIN and accretion disk synthetic spectra from the grid of Wade and Hubeny (1998). We have determined the physical properties of the white dwarf accreters, including temperature, gravity chemical abundances estimates, and the accretion rate during quiescence. We discuss our results in the context of the overall picture of accretion physics in dwarf novae and the effects of accretion on the white dwarf. This research was supported in part by NSF grant AST 99-01955, NASA ADP grant NAG5-8388 and by summer research funding from the NASA- Delaware Space Grant Colleges Consortium.

  16. Cold Brown Dwarfs with WISE: Y Dwarfs and the Field Mass Function

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy

    2012-01-01

    Why study Brown Dwarf stars? They re the lowest mass byproducts of star formation.. They provide time capsules across the age of the Galaxy.. They show what low-T(sub eff) atmospheres look like.. They may be some of our closest neighbors in space..WISE is a 40cm Earth-orbiting telescope. There are 211 stars and only 33 brown dwarfs in this volume.. This means that stars outnumber brown dwarfs by a factor of 6:1 currently.. The number of brown dwarfs will continue to increase if:: (a) more nearby Y dwarf candidates are confirmed, or (b) our distances to known Y s are overestimated, or (c) there are colder BDs invisible to WISE..

  17. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  18. RE 0044+09: A new K dwarf rapid rotator with a white dwarf companion

    NASA Technical Reports Server (NTRS)

    Kellett, Barry J.; Bromage, Gordon E.; Brown, Alexander; Jeffries, Robin D.; James, David J.; Kilkenny, David; Robb, Russell M.; Wonnacott, David; Lloyd, Christopher; Clayton, C.

    1995-01-01

    We report the discovery of a new K dwarf rapid rotator with a potential white dwarf companion. The white dwarf accounts for over 90% of the observed extreme ultraviolet flux detected from this system. Analysis of ROSAT Wide Field Camera (WFC) and IUE data both suggest a white dwarf temperature of approximately 28,700 K. Optical photometry and the IUE long wavelength prime (LWP) spectrum (with the white dwarf contribution removed) imply that the late-type star has a spectral type of K1-3 V, and a distance of 55 +/- 5 pc. Using this distance, the observed IUE SWP flux, and the best-fit temperature results in a white dwarf radius of 0.0088 solar radius. The estimated white dwarf mass is then approximately 0.91 solar mass; somewhat over-massive compared to field white dwarfs. Optical photometry of the K star reveals a 'spot' modulation period of approximately 10 hr (now observed over 3 yr). However, radial velocity observations have revealed no significant variations. Spectroscopic observations place a low limit on the lithium abundance, but do show rapid rotation with a v sin i of 90 +/- 10 km/s. The K star was detected as a radio source at 3.6 cm (on two occasions) and 6 cm by the Very Large Array (VLA). The most likely evolutionary scenario is that the K star and hot white dwarf from either a wide binary or common proper motion pair with an age of 0.1-0.1 Gyr-consistent with the evolutionary timescale of the white dwarf and the rapid rotation of the K star. However, from the proper motion of the K star, this system does not seem to be associated with any of the known young stellar groups.

  19. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  20. Water clouds in Y dwarfs and exoplanets

    SciTech Connect

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Lupu, Roxana; Greene, Tom; Saumon, Didier; Lodders, Katharina

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ∼ 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ∼ 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 μm. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 μm in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  1. Methane Opacities in T Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Homeier, D.; Hauschildt, P. H.; Allard, F.

    2003-01-01

    We present the current status of PHOENIX model atmospheres for dwarfs of spectral type T, typical for older field brown dwarfs and low-mass brown dwarfs. In comparison to warmer L dwarf atmosphers, the spectral features of these objects can largely be reproduced by treating the influence of dust in the limiting case of complete settling, i. e. neglecting the dust opacity (Cond models). One major challenge in modelling cool brown dwarf atmospheres is the correct treatment of the molecular lines of H2O and CH4. These are the dominant opacity sources in the IR and responsible for the very blue colours of T dwarfs in the near infrared. Reliable opacity data for these absorbers are thus mandatory for a correct determination of the temperature structure as well as for detailed modelling of the characteristic absorption features in the H and K bands, which are the defining criteria of spectral class T. Line lists extracted from low temperature atmospheric databases such as HITRAN and GEISA are generally strongly limited to lower-state energies. To overcome these limits, a new list of line-by-line predictions for the methane opacities from the four lowest vibrational states has been computed with the Spherical Top Database System (STDS). Improvements of these line lists have been achieved thanks to recent successes in the experimental calibration of the molecular parameter describing the vibrational and rotational bands in the spherical top model. This allowed extrapolations to higher rotational states than previously possible. As a result our opacity sampling models now allow a much more complete reproduction of the strong features occuring in the temperature regimes of brown dwarf atmospheres. A more diffuse background opacity remains due to the extremely high line density from higher vibrational states, which at this time can be described only partly by statistical models.

  2. The response of a dwarf nova disc to real mass transfer variations

    NASA Astrophysics Data System (ADS)

    Schreiber, M. R.; Gänsicke, B. T.; Hessman, F. V.

    2000-06-01

    We present simulations of dwarf nova outbursts taking into account realistic variations of the mass loss rate from the secondary. The mass transfer variation has been derived from 20 years of visual monitoring and from X-ray observations covering various accretion states of the discless cataclysmic variable AM Herculis. We find that the outburst behaviour of a fictitious dwarf nova with the same system parameters as AM Her is strongly influenced by these variations of the mass loss rate. Depending on the mass loss rate, the disc produces either long outbursts, a cycle of one long outburst followed by two short outbursts, or only short outbursts. The course of the transfer rate dominates the shape of the outbursts because the mass accreted during an outburst cycle roughly equals the mass transferred from the secondary over the outburst interval. Only for less than 10% of the simulated time, when the mass transfer rate is nearly constant, the disc is in a quasi-stationary state during which it periodically repeats the same cycle of outbursts. Consequently, assuming that the secondary stars in non-magnetic CV's do not differ from those in magnetic ones, our simulation indicates that probably all dwarf novae are rarely in a stationary state and are constantly adjusting to the prevailing value of the mass transfer rate from the secondary.

  3. Amplitude Variability as Evidence of Crystallization in GD 518 and Other Massive Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Kepler, S. O.; Montgomery, M. H.; Gianninas, A.; Castanheira, Barbara G.; Winget, D. E.

    2015-06-01

    In 2013 March we discovered pulsations in the most massive pulsating hydrogen-atmosphere white dwarf to date, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a Teff = 12,030±210 K, log g = 9.08±0.06 white dwarf, which corresponds to a mass of 1.20±0.03 M⊙. Such a massive WD should also be significantly crystallized at this temperature, and may possibly contain an oxygen-neon core. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7% in a given night, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, although the pulsation amplitudes change drastically over the 33 days of our discovery observations. We investigate the possibility that these amplitude variations are a consequence of the pulsation modes sampling only the non-crystallized outer mass fraction of the white dwarf (perhaps <0.05 M⊙ of material), and thus have very low mode inertia. Amplitude variability could be an observational consequence of a significantly crystallized stellar interior.

  4. Exploring Links Between Orbital Dynamics and Atmospheres in Kepler M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ballard, Sarah

    2015-12-01

    The Solar System furnishes the most familiar planetary architecture: many planets, orbiting nearly coplanar to one another. However, the most common planetary systems in the Milky Way orbit much smaller M dwarf stars, and these may present a very different blueprint. The Kepler data set has furnished more than 100 exoplanets orbiting stars half the mass of the sun and smaller. Half of these planets reside in systems with at least one additional planet. The data much prefer a model with two distinct modes of planet formation around M dwarfs, which occur in roughly equal measure. One mode is one very similar to the Solar System in terms of multiplicity and coplanarity, and the other is very dissimilar. Given this so-called "Kepler Dichotomy," we examine the broadband transmission spectra (with data from Kepler and hundreds of hours of Spitzer observations) of dozens of M dwarf planets: half of which reside in one type of planetary system, and half in the other. Although the data set is too small and the observational uncertainty too large to characterize any one system alone, we examine ensemble trends between planetary dynamics and atmospheric content.

  5. A Comparative Study of Enamel Surface Roughness After Bleaching With Diode Laser and Nd: YAG Laser.

    PubMed

    Mirzaie, Mansoreh; Yassini, Esmaiel; Ganji, Saber; Moradi, Zohreh; Chiniforush, Nasim

    2016-01-01

    Introduction: Bleaching process can affect surface roughness of enamel, which is a vital factor in esthetic and resistance of tooth. The aim of this study was to compare surface roughness of enamel in teeth bleached using Diode and Neodymium-Doped Yttrium Aluminium Garnet (Nd: YAG) lasers with those bleached using conventional method. Methods: In this study, 75 anterior human teeth from upper and lower jaws (These teeth extracted because of periodontal disease) were randomly divided into 5 groups. Group 1: Laser white gel (Biolase, USA) with 45% hydrogen peroxide concentration and GaAlAs Diode laser (CHEESE(TM), GIGAA, China), group 2: Heydent gel (JW, Germany) with 30% Hydrogen peroxide concentration and Diode laser, group 3: Laser white gel and Nd:YAG laser (FIDELIS(TM), Fotona, Slovenia), group 4: Heydent gel and Nd:YAG laser and group 5: The Iranian gel Kimia (Iran) with 35% hydrogen peroxide concentration were used. Surface roughness of the samples was measured using the Surface Roughness Tester system (TR 200 Time Group, Germany) before and after bleaching. In each group, one sample was randomly selected for SEM analysis. Results: The results showed that the mean surface roughness of the teeth before and after bleaching had a significant difference in all the study groups. It was indicated that after bleaching, the mean surface roughness had increased in all the study groups. The highest surface roughness was seen in the conventional bleaching group and the lowest surface roughness was reported in group 3 (laser white gel + diode laser), in which the average surface roughness increased by only 0.1 μm. Conclusion: It was concluded that using the Laser white gel and the diode laser for bleaching resulted in the least surface roughness compared to conventional method.

  6. A Comparative Study of Enamel Surface Roughness After Bleaching With Diode Laser and Nd: YAG Laser

    PubMed Central

    Mirzaie, Mansoreh; Yassini, Esmaiel; Ganji, Saber; Moradi, Zohreh; Chiniforush, Nasim

    2016-01-01

    Introduction: Bleaching process can affect surface roughness of enamel, which is a vital factor in esthetic and resistance of tooth. The aim of this study was to compare surface roughness of enamel in teeth bleached using Diode and Neodymium-Doped Yttrium Aluminium Garnet (Nd: YAG) lasers with those bleached using conventional method. Methods: In this study, 75 anterior human teeth from upper and lower jaws (These teeth extracted because of periodontal disease) were randomly divided into 5 groups. Group 1: Laser white gel (Biolase, USA) with 45% hydrogen peroxide concentration and GaAlAs Diode laser (CHEESETM, GIGAA, China), group 2: Heydent gel (JW, Germany) with 30% Hydrogen peroxide concentration and Diode laser, group 3: Laser white gel and Nd:YAG laser (FIDELISTM, Fotona, Slovenia), group 4: Heydent gel and Nd:YAG laser and group 5: The Iranian gel Kimia (Iran) with 35% hydrogen peroxide concentration were used. Surface roughness of the samples was measured using the Surface Roughness Tester system (TR 200 Time Group, Germany) before and after bleaching. In each group, one sample was randomly selected for SEM analysis. Results: The results showed that the mean surface roughness of the teeth before and after bleaching had a significant difference in all the study groups. It was indicated that after bleaching, the mean surface roughness had increased in all the study groups. The highest surface roughness was seen in the conventional bleaching group and the lowest surface roughness was reported in group 3 (laser white gel + diode laser), in which the average surface roughness increased by only 0.1 μm. Conclusion: It was concluded that using the Laser white gel and the diode laser for bleaching resulted in the least surface roughness compared to conventional method. PMID:28144442

  7. Metallic Winds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N-Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  8. Surface roughness measurement with laser triangulation

    NASA Astrophysics Data System (ADS)

    Bai, Fuzhong; Zhang, Xiaoyan; Tian, Chaoping

    2016-09-01

    A surface roughness measurement method is introduced in the paper, which is based on laser triangulation and digital image processing technique. In the measuring system, we use the line-structured light as light source, microscope lens and high-accuracy CCD sensor as displacement sensor as well. In addition, the working angle corresponding to the optimal sensitivity is considered in the optical structure design to improve the measuring accuracy. Through necessary image processing operation for the light strip image, such as center-line extraction with the barycenter algorithm, Gaussian filtering, the value of roughness is calculated. A standard planing surface is measured experimentally with the proposed method and the stylus method (Mitutoyo SJ-410) respectively. The profilograms of surface appearance are greatly similar in the shape and the amplitude to two methods. Also, the roughness statistics values are close. The results indicate that the laser triangulation with the line-structured light can be applied to measure the surface roughness with the advantages of rapid measurement and visualized display of surface roughness profile.

  9. Brightness versus roughness: a multiscale approach

    NASA Astrophysics Data System (ADS)

    Bigerelle, M.; Marteau, J.; Paulin, C.

    2015-03-01

    A link between roughness and brightness is sought for brass specimens that were superfinished, sandblasted and brushed. Only the blasting conditions are varied in order to get different roughness and brightness. First, a relation between roughness and brightness is sought for specimens that were superfinished and sandblasted. The best relation is obtained using the mean height of the motifs, calculated using a low-pass filter and cut-off length equal to 30 μm, with a logarithmic-logarithmic model. Then, the same type of relation is determined after superfinishing sandblasting and brushing. The core material volume Vmc, computed using a high-pass filter with a cut-off length of 60 μm and a linear-logarithmic relationship, gives the best results. A relation between roughness and brightness that is common to both the pre-brushing state and post-brushing state is identified: the best roughness parameter is the arithmetic mean deviation Sa using a high-pass filter with a cut-off of 15 μm, with a logarithmic-logarithmic relationship. Finally, it is shown that the use of these filtering conditions enables us to verify the model of Beckmann and Spizzichino for the examined specimens. This scale corresponds to the end of the fractal regime and is close to the end of the signal correlation.

  10. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.

  11. Identifying Changes in Snowpack Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Corrao, M. V.; Deems, J. S.; Stednick, J. D.

    2006-12-01

    The flow of air over a surface is influenced by its roughness. The surface of a snowpack is smooth relative to the underlying ground surface. The relative roughness of the snowpack surface changes directionally, spatially, and temporally, due to deposition, erosion, and melt. To examine these changes in snowpack surface roughness at the microtopographic scale for a Northern Colorado site, the surface was photographed using a darker-coloured roughness board that was inserted into the snowpack so that a black (board) versus white (snow) contrast existed along the entire length of the board. The board was 1-m long and was inserted 11 times at 10-cm intervals to create a 1-m by 1-m mesh. The orientation of the boards was rotated 90 degrees to provide finer resolution data in perpendicular directions. For the 1-m boards, the pixel resolution was approximately 0.4 mm. To measure the snow grain scale, a crystal card was photographed and yielded a pixel resolution of approximately 0.1 mm. Incorporating image processing issues such as image contrast and brightness, the digital images were translated into individual lines. These lines were used to compute semi- variograms in log-log space, from which the magnitude of semi-variance, the fractal dimensions, and the scale break were computed. The semi-variogram characteristics were used to illustrate directional, spatial, and temporal changes in snowpack surface roughness.

  12. Identification of Nearby Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lowrance, P. J.; Kirkpatrick, J. D.; Reid, I. N.

    2004-12-01

    The comparison of optical and 2MASS near-infrared photometry for large samples of cataloged proper motion stars has the potential to discover previously unrecognized nearby objects of rare type. We have obtained classification spectra for carbon dwarf candidates which lie in a sparsely populated part of optical/near-IR color-color space within a cross-reference of the New Luytens Two-Tenths (NLTT) catalogue and 2MASS 2nd Release. We present the discovery of nine of the coolest and nearest carbon dwarfs, whose optical spectra, exhibiting absorptions by C2 and/or CN is displayed. The only known discriminator between carbon giants and dwarfs is luminosity, which can be gained through distance or inferred from proper motion. Therefore, we have also observed most known dwarfs and giants to fully explore spectroscopic diagnostics that can be used to differentiate between carbon dwarfs and giants including many published in the Sloan Digital Sky Survey papers. We also plan to continue to merge the NLTT with the 2MASS ALL-Sky Release and obtain classification spectra for candidates for the rest of the sky not covered in the first merge.

  13. White dwarf stars with carbon atmospheres.

    PubMed

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  14. THE MASSES OF POPULATION II WHITE DWARFS

    SciTech Connect

    Kalirai, Jason S.; Davis, D. Saul; Richer, Harvey B.; Bergeron, P.; Catelan, Marcio; Hansen, Brad M. S.; Michael Rich, R. E-mail: sdavis@astro.ubc.c E-mail: bergeron@astro.umontreal.c E-mail: hansen@astro.ucla.ed

    2009-11-01

    Globular star clusters are among the first stellar populations to have formed in the Milky Way, and thus only a small sliver of their initial spectrum of stellar types are still burning hydrogen on the main sequence today. Almost all of the stars born with more mass than 0.8 M{sub sun} have evolved to form the white dwarf cooling sequence of these systems, and the distribution and properties of these remnants uniquely holds clues related to the nature of the now evolved progenitor stars. With ultra-deep Hubble Space Telescope imaging observations, rich white dwarf populations of four nearby Milky Way globular clusters have recently been uncovered, and are found to extend impressive 5-8 mag in the faint-blue region of the Hertzsprung-Russell diagram. In this paper, we characterize the properties of these population II remnants by presenting the first direct mass measurements of individual white dwarfs near the tip of the cooling sequence in the nearest of the Milky Way globulars, M4. Based on Gemini/GMOS and Keck/LRIS multiobject spectroscopic observations, our results indicate that 0.8 M{sub sun} population II main-sequence stars evolving today form 0.53 +- 0.01 M{sub sun} white dwarfs. We discuss the implications of this result as it relates to our understanding of stellar structure and evolution of population II stars and for the age of the Galactic halo, as measured with white dwarf cooling theory.

  15. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  16. Clouds in the Coldest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Tinney, Christopher G.; Kirkpatrick, J. Davy; Skemer, Andrew

    2015-01-01

    The NASA WISE satellite has been extremely effective at discovering and characterizing the coldest brown dwarfs. Among the objects in the "300 K or below club" are our best analogs to Jupiter (~125 K). Since 2011 our team has been using the Magellan FourStar infrared imager to measure parallaxes of a subset of the current collection of Y dwarfs. We have also used the VLT ISAAC infrared imager to record J, H and/or K band magnitudes. In this contribution, we will report new parallax and photometric measurements for a subset of the population and examine atmospheric implications from model comparisons of color magnitude diagrams. While warmer T dwarfs are often regarded as cloudless, we find that clouds return as temperatures cool and sulfide clouds help explain the diversity in absolute magnitudes of Y dwarfs. In the case of the coldest brown dwarf known (W0855; Luhman 2014) there are indications that water and sulfide ice clouds are present in the atmosphere.

  17. The Potential of White Dwarf Cosmochronology

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Bergeron, P.

    2001-04-01

    In the light of recent significant progress on both the observational and theoretical fronts, we review the status of white dwarf stars as cosmochronometers. These objects represent the end products of stellar evolution for the vast majority of stars and, as such, can be used to constrain the ages of various populations of evolved stars in the Galaxy. For example, the oldest white dwarfs in the solar neighborhood (the remnants of the very first generation of intermediate-mass stars in the Galactic disk) are still visible and can be used, in conjunction with cooling theory, to estimate the age of the disk. More recent observations suggest the tantalizing possibility that a population of very old white dwarfs inhabits the Galactic halo. Such a population may contribute significantly to baryonic ``dark'' matter in the Milky Way and may be used to obtain an independent estimate of the age of the halo. In addition, white dwarf cosmochronology is likely to play a very significant role in the coming era of giant 8-10 m telescopes when faint white dwarf populations should be routinely discovered and studied in open and globular clusters. Based, in part, on the C. S. Beals Lecture presented by G. Fontaine at the Annual General Meeting of the Canadian Astronomical Society held in Vancouver (2000 May).

  18. White Dwarf Stars: A Brief Overview

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Charpinet, S.; Randall, S. K.; Van Grootel, V.

    2013-12-01

    We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass-loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning) that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid and solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms) is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state.

  19. White Dwarfs in the GALEX Survey

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.

  20. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice.

    PubMed

    Brown-Borg, Holly M; Rakoczy, Sharlene

    2013-09-01

    Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity.

  1. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice

    PubMed Central

    Brown-Borg, Holly M.; Rakoczy, Sharlene

    2013-01-01

    Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity. PMID:23832075

  2. Optical Roughness Measurements Of Industrial Surfaces

    NASA Astrophysics Data System (ADS)

    Gilsinn, David; Vorburger, Theodore; Cao, Lin-Xiang; Giauque, Charles; Scire, Fredric; Teague, E. Clayton

    1986-10-01

    This paper reviews our efforts to develop the theory and instrumentation needed to measure surface roughness of manufactured surfaces by optical scattering methods. We are addressing three key problems: developing a valid and sufficient optical scattering theory for this roughness range, applying appropriate mathematical inversion techniques so that practical roughness parameters can be calculated from scattering distributions, and finally evaluating a compact commercial instrument for a wide variety of problems. Recent results from our group suggest that the simple phase screen approximation model of optical scattering validly describes light scattering from machined metal surfaces with a predominant surface lay in the 0.01 pm R to 3.0 pm R range. A model for scattering in the entire farr-field hemisphere and obsera vations on our r approach to the inverse problem is given.

  3. Discrete Roughness Transition for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.

    2007-01-01

    The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.

  4. Faster magnetic walls in rough wires.

    PubMed

    Nakatani, Yoshinobu; Thiaville, André; Miltat, Jacques

    2003-08-01

    In some magnetic devices that have been proposed, the information is transmitted along a magnetic wire of submicrometre width by domain wall (DW) motion. The speed of the device is obviously linked to the DW velocity, and measured values up to 1 km x s(-1) have been reported in moderate fields. Although such velocities were already reached in orthoferrite crystal films with a high anisotropy, the surprise came from their observation in the low-anisotropy permalloy. We have studied, by numerical simulation, the DW propagation in such samples, and observed a very counter-intuitive behaviour. For perfect samples (no edge roughness), the calculated velocity increased with field up to a threshold, beyond which it abruptly decreased--a well-known phenomenon. However, for rough strip edges, the velocity breakdown was found to be suppressed. We explain this phenomenon, and propose that roughness should rather be engineered than avoided when fabricating nanostructures for DW propagation.

  5. An infrared spectral sequence into the brown dwarf regime

    NASA Astrophysics Data System (ADS)

    Jones, H. R. A.

    2000-05-01

    A spectral sequence from mid-type M dwarfs into the brown dwarf regime is presented. These spectra cover the wavelength range 0.8 to 2.4 microns and measure the peak of the spectral energy distribution for these extremely red objects. The spectra were taken with the Hubble Space Telescope and represent an infrared spectra of M dwarfs and brown dwarfs which are free from the problems of correcting for the terrestial atmospheric absorption.

  6. The white dwarf binary pathways survey - I. A sample of FGK stars with white dwarf companions

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Rebassa-Mansergas, A.; Schreiber, M. R.; Gänsicke, B. T.; Zorotovic, M.; Ren, J. J.

    2016-12-01

    The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ˜30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low-mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper, we identify 934 main-sequence FGK stars from the Radial Velocity Experiment survey in the Southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey in the Northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and Type Ia supernovae formation channels.

  7. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  8. Roughness measurement of paper using speckle

    NASA Astrophysics Data System (ADS)

    Pino, Abdiel; Pladellorens, Josep; Cusola, Oriol; Caum, Jesus

    2011-09-01

    We present a method of measure of the roughness of the paper based on the analysis of a speckle pattern on the surface. Images of speckle over the surface of paper are captured by means of a simple configuration using a laser, beam expander, and a camera charge-coupled device (CCD). Then we use the normalized covariance function of the fields, leaving the surface to find the roughness. We compare the results obtained with the results obtained with a confocal microscope and the Bendtsen method that is a standard of the paper industry. This method can be considered as a noncontact surface profiling method that can be used online.

  9. A measuring system for surface roughness parameters

    NASA Astrophysics Data System (ADS)

    Han, Jinhong; Wang, Yunkai; Zhang, Xianfeng

    2006-11-01

    We designed a measurement and control system which can measure the surface roughness parameters with a Single Chip Micyoco (SCM) as its kernel. It uses an inductive transducer to pick up the data. The instrumental structure and the working principle are also introduced in this paper. The integrated hardware and software systems have been designed and improved. The prototype model was calibrated and the instrumental precision was analysed according to the measured data. In this system the surface roughness parameters can automatically be measured and controlled, such as data processing, determination of the reference line, disposal of the surface profile informations, display and print of the results etc.

  10. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  11. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Hunter, C.

    2012-03-28

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended

  12. Surface roughness effects in elastohydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Tripp, J. H.; Hamrock, B. J.

    1985-01-01

    Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.

  13. Venus surface roughness and Magellan stereo data

    NASA Technical Reports Server (NTRS)

    Maurice, Kelly E.; Leberl, Franz W.; Norikane, L.; Hensley, Scott

    1994-01-01

    Presented are results of some studies to develop tools useful for the analysis of Venus surface shape and its roughness. Actual work was focused on Maxwell Montes. The analyses employ data acquired by means of NASA's Magellan satellite. The work is primarily concerned with deriving measurements of the Venusian surface using Magellan stereo SAR. Roughness was considered by means of a theoretical analyses based on digital elevation models (DEM's), on single Magellan radar images combined with radiometer data, and on the use of multiple overlapping Magellan radar images from cycles 1, 2, and 3, again combined with collateral radiometer data.

  14. Laws of Flow in Rough Pipes

    NASA Technical Reports Server (NTRS)

    Nikuradse, J

    1950-01-01

    An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.

  15. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  16. Roughness Perception of Haptically Displayed Fractal Surfaces

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)

    2000-01-01

    Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.

  17. General laws of X-ray reflection from rough surfaces: II. Conformal roughness

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, I. V.

    2012-07-01

    Is shown that, if the expansions of the Debye-Waller formulas for the reflection and total scattering coefficients in the roughness height σ are limited to terms of order σ2, these expressions are valid for any layered inhomogeneous medium with conformal (depth-periodic) roughness and for any distribution function of the roughness heights if the roughness correlation length along the surface is sufficiently large. The advantages of measuring the total reflection coefficient, which characterizes the total intensity of radiation (both specularly reflected and diffusively scattered) directed by a rough surface back into vacuum, for solving the inverse problem of X-ray reflectometry (i.e., the reconstruction of the permittivity profile from a measured reflection curve) are discussed.

  18. HAWAII QUASAR AND T DWARF SURVEY. I. METHOD AND DISCOVERY OF FAINT FIELD ULTRACOOL DWARFS ,

    SciTech Connect

    Kakazu, Yuko; Capak, Peter L.; Hu, Esther M.; Liu, Michael C.; Wainscoat, Richard J.; Wang Weihao

    2010-11-01

    The Hawaii Quasar and T dwarf survey (HQT Survey) is a wide-field, red optical survey carried out with the Suprime-Cam mosaic CCD camera on the 8.2 m Subaru telescope. The HQT survey is designed to search for low-luminosity (M{sub AB1450} < -23) quasars at high redshift (z>5.7) as well as T dwarfs, both of which are selected by their very red I - z' colors. We use an optical narrowband filter NB816 to break a well-known I - z' color degeneracy between high-z quasars and foreground M and L dwarfs, which are more numerous than quasars. This paper is the first in a series of papers from the HQT survey and we report on the discovery of six faint (19 {<=} J {<=} 20) ultracool dwarfs found over a {approx}9.3 deg{sup 2} area with a limiting magnitude of z'{sub AB} {<=} 23.3. These dwarfs were confirmed by near-IR imaging and/or spectroscopy conducted at various facilities on Mauna Kea. With estimated distances of 60-170 pc, these are among the most distant spectroscopically confirmed field brown dwarfs to date. Limits on the proper motions of these ultracool dwarfs suggest that they are old members of the Galactic disk, though future follow-up observations are necessary to minimize errors. Our finding rate of ultracool dwarfs is within model predictions of Liu et al. However, the large brightening amplitude ({approx}1 mag) previously reported for the L/T transition objects appears to overpredict the numbers. We also examine how the survey field latitude affects the survey sensitivity to the vertical scale height of ultracool dwarfs.

  19. The benefit of amateur observations for research in dwarf novae

    NASA Technical Reports Server (NTRS)

    La Dous, Constanze

    1992-01-01

    Contributions of amateur astronomers to research on dwarf novae, which are based on carefully monitoring the outburst behavior of these objects, are reviewed. These contributions range from scheduling of observations to the observational basis for research on the dwarf nova outburst mechanism. It is suggested, that, with better equipment, observations of orbital light variations in dwarf novae might be performed by amateur astronomers.

  20. Evolution of Dwarf Spheroidal Satellites in the Common Surface-density Dark Halos

    NASA Astrophysics Data System (ADS)

    Okayasu, Yusuke; Chiba, Masashi

    2016-08-01

    We investigate the growth histories of dark matter halos associated with dwarf satellites in Local Group galaxies and the resultant evolution of the baryonic component. Our model is based on the recently proposed property that the mean surface density of a dark halo inside a radius at maximum circular velocity {V}{{\\max }} is universal over a large range of {V}{{\\max }}. Given that a surface density of 20 M ⊙ pc-2 well explains dwarf satellites in the Milky Way and Andromeda, we find that the evolution of the dark halo in this common surface-density scale is characterized by the rapid increase of the halo mass assembled by the redshift {z}{{TT}} of the tidal truncation by its host halo, at early epochs of {z}{{TT}}≳ 6 or {V}{{\\max }}≲ 22 km s-1. This mass growth of the halo is slow at lower {z}{{TT}} or larger {V}{{\\max }}. Taking into account the baryon content in this dark halo evolution, under the influence of the ionizing background radiation, we find that the dwarf satellites are divided into roughly two families: those with {V}{{\\max }}≲ 22 km s-1 having high star formation efficiency and those with larger {V}{{\\max }} having less efficient star formation. This semianalytical model is in agreement with the high-resolution numerical simulation for galaxy formation and with the observed star formation histories for Fornax and Leo II. This suggests that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellites.

  1. A Nearby Survey of M-Dwarfs

    NASA Astrophysics Data System (ADS)

    Ray, Amy Elaine

    2017-01-01

    We present the results of a survey of 913 M-dwarf stars from the Lepine and Shara Proper Motion(LSPM) catalog within 25 parsecs of the Sun. Data for these targets was collected with the Robo-AO camera on the Palomar 60-in telescope. Separation and position angles were measured and compared for two epochs of the images, separated by two years, containing multiple stars to look for changes. We analyzed these positional data, combined with available 2MASS photometric data, to try to determine which stars are in gravitationally bound systems. This research was conducted measure the statistics of multiple M-dwarf systems within 25pc. Identifying and confirming higher ordered systems at both wide and small separations will help improve understanding of M-dwarf formation by comparing these results to star formation models.

  2. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  3. Be stars with white dwarf companions

    NASA Astrophysics Data System (ADS)

    Orio, Marina; Luna, Gerardo; Zemko, Polina; Kotulla, Ralf; Gallagher, Jay; Harbeck, Daniel

    2016-07-01

    A handful of supersoft X-ray sources in the Magellanic Clouds that could not be identified with transient nova outbursts turned out to be mainly massive close binaries. Recently, we have clearly identified a Be binary in M31, and are currently collecting data for another candidate in that galaxy. Work is in progress to assess whether the compact object companion really is a hydrogen burning white dwarf (the alternative being a massive stellar-mass black hole). If we can prove that Be+white dwarf interacting close binaries are common, and that hydrogen is often ignited on the white dwarf in these systems, we have discovered a new promising channel towards the explosion of supernovae of type Ia in star forming regions, without invoking double degenerate systems

  4. White dwarfs, the Galaxy and Dirac's cosmology

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1976-01-01

    The additive and multiplicative versions of Dirac's cosmological hypothesis relating the gravitational constant variation with elapsed time and number of particles populating the universe is invoked to account for the deficiency or absence of white dwarfs fainter than about 0.0001 solar luminosity. An estimate is made of white dwarf luminosity in accordance with the two evolutionary models, and it is conjectured that some old white dwarfs with high space velocities may be on the verge of gravitational collapse. Lack of a special mechanism to produce the vast numbers of black holes or other dead stars accounting for 'missing matter' in the vicinity of the sun and in the galactic halo is noted in Dirac's multiplicative model. Results indicate that either Dirac's theory is untenable, or that radiation and heating are of some unknown nature, or that the process of creation of new matter requires a corresponding input of energy.

  5. Heterosis in normal versus dwarf laying hens.

    PubMed

    Merat, P; Minvielle, F; Bordas, A; Coquerelle, G

    1994-01-01

    The effect of genotype at the sex-linked dwarf locus on heterosis in crosses between a White Leghorn and a brown egg line for body weight, egg production, and related traits was studied. Heterozygous Dw/dw males were used to produce normal and dwarf pullets in each of the pure lines and their reciprocal crosses (eight genotype-line combinations). There were 54 pullets per combination. Line differences were significant for shank length, body weights at 8, 17, and 52 wk, age at first egg, egg number, clutch length, rate of lay, and egg weight. Heterosis was observed for all of these traits. Body weight as a covariate was not important in analyses of egg number, clutch length, and egg weight. The egg production reduction associated with the dw gene in pure lines was smaller in F1 hens. This discovery may be adequate to warrant use of dwarf crossbred hens for egg production.

  6. Recombination energy in double white dwarf formation

    NASA Astrophysics Data System (ADS)

    Nandez, J. L. A.; Ivanova, N.; Lombardi, J. C.

    2015-06-01

    In this Letter, we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of an ˜1.5 M⊙ red giant star in an ˜30 d orbit with a white dwarf companion.

  7. Mystery of a Dimming White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  8. Dwarf Discoveries from Serendipitous Field Star Observations

    NASA Astrophysics Data System (ADS)

    Green, Wayne

    2016-05-01

    For the past two years, The University of Colorado, in collaboration with Las Cumbres Observatory Global Telescope Network (LCOGTN) has been taking Sloans r' and i' images of approximately 200 galaxies during each new moon period to provide ground data in support of the approximately 1100 hours of warm Spitzer time awarded to Dr. Mansi Kasliwal's Caltech SPIRITS program. Currently there are over 6,000 images in this archive. Small telescope scientists routinely image the same fields, building similar archives brimming with science potential. This paper reports the technique to develop serendipitous observations of dwarf field stars. Answers to questions surrounding the dwarf's early life in proximity to non-hierarchal multiple star groups, about how dwarfs not only survive but are so numerous are well within the capabilities of small telescope scientists. The role of the small telescope scientist is of vital importance in these (re)discovery, confirmation, monitoring and reporting tasks.

  9. Youth Indicators of Late-M Dwarfs

    NASA Astrophysics Data System (ADS)

    Feldman, Daniel; Cruz, K.; Lépine, S.; Alpert, N.

    2011-01-01

    We present a study in which we searched for a correlation between weak Na absorption doublet (8183Å, 8194Å) and strong H-Alpha emission (6563Å) in late-M dwarf stars (M6-M9), as both are indicative of youth. Our sample consists of late-M Dwarfs from the LSPM Survey (Lépine and Shara, 2005), which contain stars with measured proper motions of mu > 40 mas/yr. Measurements for emission and absorption strength were made using spectral indices. Our preliminary results are presented; future work will include a similar analysis of early type M Dwarfs, as well as kinematics. This work was funded by the CUNY Summer Undergraduate Research Program, as well as the CUNY Macaulay Honors College, and we acknowledge the hospitality of the American Museum of Natural History.

  10. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  11. White Dwarfs in Gaia Data Release 1

    NASA Astrophysics Data System (ADS)

    Jordan, S.

    2017-03-01

    On September 14, the Gaia archives opened for access to the Gaia DR1. The catalogue with more than one billion star positions and more than two million parallaxes and proper motions will have enormous influence on many topics in astronomy. However, due to their extremely blue colour, parallaxes and proper motions of only six white dwarfs were directly measured. Tremblay et al. used these data and those for 46 white dwarfs in binaries in order to construct an empirical mass-radius relation. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. With Gaia DR2 coming in late 2017 the prospects for white dwarf research are much better.

  12. Hubble Space Telescope Studies of Exposed White Dwarfs in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.

    Coordinated AAVSO optical observations and Hubble Space Telescope (HST) far ultraviolet (UV) spectroscopic observations of cataclysmic variables, during dwarf nova quiescence when the underlying white dwarf is exposed in the far UV, have yielded a number of new insights into accretional heating, photospheric abundances of the accreted atmosphere, and rotational velocities of the underlying degenerates. Recent results of synthetic spectral analyses of HST spectra are highlighted. Their impact on our understanding of accretion physics and the effect of accretion on the white dwarf are discussed.

  13. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  14. Probing an Ancient Thermonuclear Runaway on a White Dwarf in a Dwarf Nova

    NASA Astrophysics Data System (ADS)

    Sion, Edward

    1999-07-01

    We unexpectedly discovered evidence, based upon two GHRS G160M spectra, of greatly elevated abundances of odd-numbered nuclei Phosphorus and Aluminum as well as a Nitrogen to Carbon ratio of 10 in the photosphere of the white dwarf in the dwarf nova VW Hy ons and determine the first chem ical abundances of many odd-numbered proton capture species; {2} determine a accurate mass for the white dwarf and; {3} probe changes in the accretion belt and surface abundances as a function of time since a superoutburst. This study will hold important

  15. White Dwarf Mergers on Adaptive Meshes

    NASA Astrophysics Data System (ADS)

    Katz, Maximilian Peter

    The mergers of binary white dwarf systems are potential progenitors of astrophysical explosions such as Type Ia supernovae. These white dwarfs can merge either by orbital decay through the emission of gravitational waves or by direct collisions as a result of orbital perturbations. The coalescence of the stars may ignite nuclear fusion, resulting in the destruction of both stars through a thermonuclear runaway and ensuing detonation. The goal of this dissertation is to simulate binary white dwarf systems using the techniques of computational fluid dynamics and therefore to understand what numerical techniques are necessary to obtain accurate dynamical evolution of the system, as well as to learn what conditions are necessary to enable a realistic detonation. For this purpose I have used software that solves the relevant fluid equations, the Poisson equation for self-gravity, and the systems governing nuclear reactions between atomic species. These equations are modeled on a computational domain that uses the technique of adaptive mesh refinement to have the highest spatial resolution in the areas of the domain that are most sensitive to the need for accurate numerical evolution. I have identified that the most important obstacles to accurate evolution are the numerical violation of conservation of energy and angular momentum in the system, and the development of numerically seeded thermonuclear detonations that do not bear resemblance to physically correct detonations. I then developed methods for ameliorating these problems, and determined what metrics can be used for judging whether a given white dwarf merger simulation is trustworthy. This involved the development of a number of algorithmic improvements to the simulation software, which I describe. Finally, I performed high-resolution simulations of typical cases of white dwarf mergers and head-on collisions to demonstrate the impacts of these choices. The results of these simulations and the corresponding

  16. Discerning Spectral Features in L Dwarfs

    NASA Astrophysics Data System (ADS)

    Nunez, Alejandro; Cruz, K.; Burgasser, A. J.; Kirkpatrick, J. D.; Reid, I. N.

    2011-01-01

    Brown dwarfs are star-like objects that, due to their very low masses (less than 75 Jupiter masses,) never reach the main sequence, and instead cool with time. This cooling leads to a breakdown of the relationship between temperature and mass that exists for stars. Therefore, brown dwarfs with similar temperatures (as indicated by spectral type) could have very different masses and ages. We are investigating the near-infrared spectra of L dwarfs with the same optically derived spectral types (implying similar effective temperatures) with the goal of distinguishing subtle differences, patterns, and/or correlations among absorption features that could reveal information about their ages and masses. Our sample consists of 43 L0-L8 dwarfs with both optical and near-infrared spectra, thus covering the 0.65 to 2.4-micron range. Our analysis included objects with either "typical” or peculiar spectra. Some of the objects with peculiar spectra are suspected low-gravity/young and blue/low-metallicity dwarfs. For each optical type, we normalized and overplotted the spectra in four bands separately: Optical, J, H, and K band. Each resulting plot was examined by eye to look for subtle differences in spectral absorption features, likely due to age and mass. We present the preliminary results from this detailed spectral analysis. In particular, our analysis reveals the major spectral differences in the near infrared of both "red” and "blue” L dwarfs. This work was funded by the RISE Grant GM R25 6066, and we acknowledge the hospitality of the American Museum of Natural History.

  17. A Dual Hesitant Fuzzy Multigranulation Rough Set over Two-Universe Model for Medical Diagnoses

    PubMed Central

    Zhang, Chao; Li, Deyu; Yan, Yan

    2015-01-01

    In medical science, disease diagnosis is one of the difficult tasks for medical experts who are confronted with challenges in dealing with a lot of uncertain medical information. And different medical experts might express their own thought about the medical knowledge base which slightly differs from other medical experts. Thus, to solve the problems of uncertain data analysis and group decision making in disease diagnoses, we propose a new rough set model called dual hesitant fuzzy multigranulation rough set over two universes by combining the dual hesitant fuzzy set and multigranulation rough set theories. In the framework of our study, both the definition and some basic properties of the proposed model are presented. Finally, we give a general approach which is applied to a decision making problem in disease diagnoses, and the effectiveness of the approach is demonstrated by a numerical example. PMID:26858772

  18. White dwarf stars with chemically stratified atmospheres

    NASA Technical Reports Server (NTRS)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  19. The dwarf spheroidal galaxy Andromeda I

    SciTech Connect

    Mould, J.; Kristian, J. Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1990-05-01

    Images of Andromeda I in the visual and near-infrared show a giant branch characteristic of galactic globular clusters of intermediate metallicity. The distance of the galaxy is estimated from the tip of the giant branch to be 790 + or - 60 kpc. The physical dimensions and luminosity are similar to those of the dwarf spheroidal in Sculptor. There is no evidence for an intermediate age population in Andromeda I, and appropriate upper limits are specified. There is marginal evidence for a color gradient in the galaxy, a phenomenon not previously noted in a dwarf spheroidal. 21 refs.

  20. Ultra-high precision white dwarf asteroseismology

    NASA Astrophysics Data System (ADS)

    Giammichele, Noemi; Charpinet, Stéphane; Fontaine, Gilles; Brassard, Pierre; Zong, Weikai

    We present a brief progress report in our quest for deriving seismic models of pulsating white dwarfs that can account simultaneously for all the observed periods at the precision of the observations. We point out that this is possible from a pratical point of view only if parametrized models are used to complement evolutionary models. We adopt a double optimization procedure that insures that the best possible model in parameter space is found objectively and automatically. Our ultimate goal is to be able to account for the exquisite period data gathered with Kepler and Kepler-2 on key pulsating white dwarfs of both the DA (ZZ Ceti) and DB (V777 Her) type.

  1. The spectral evolution of dwarf nova outbursts

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.; Kenyon, Scott J.

    1987-01-01

    The disk instability model for dwarf nova eruptions is investigated by computing the spectral development of the accretion disk through a complete limit cycle. Observed stellar spectra are used to model the radiation emitted by optically thick annuli within the disc. The general findings agree with those of Smak (1984) and Pringle et al. (1986). It is suggested that the 'dwarf nova oscillations' might be a source of information concerning the evolution of the inner disk and that detailed observations of this phenomenon can be used to test various outburst mechanisms.

  2. White Dwarf Pulsational Constraints on Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Dunlap, Bart H.; Clemens, J. Christopher; O'Brien, Patrick C.; Hermes, J. J.; Fuchs, Joshua T.

    2017-01-01

    The complex processes that convert a protostellar cloud into a carbon/oxygen-core white dwarf star are distilled and modeled in state of the art stellar evolution codes. Many of these processes are well-constrained, but several are uncertain or must be parameterized in the models because a complete treatment would be computationally prohibitive—turbulent motions such as convective overshoot cannot, for example, be modeled in 1D. Various free parameters in the models must therefore be calibrated. We will discuss how white dwarf pulsations can inform such calibrations. The results of all prior evolution are cemented into the interiors of white dwarf stars and, so, hidden from view. However, during certain phases of their cooling, pulsations translate the star's evolutionary history into observable surface phenomena. Because the periods of a pulsating white dwarf star depend on an internal structure assembled as it evolved to its final state, white dwarf pulsation periods can be viewed as observable endpoints of stellar evolution. For example, the thickness of the helium layer in a white dwarf directly affects its pulsations; the observed periods are, therefore, a function of the number of thermal pulses during which the star converts helium into core material on the asymptotic giant branch. Because they are also a function of several other significant evolutionary processes, several pulsation modes are necessary to tease all of these apart. Unfortunately, white dwarf pulsators typically do not display enough oscillation modes to constrain stellar evolution. To avoid this limitation, we consider the pulsations of the entire collection of hot pulsating hydrogen-atmosphere white dwarf stars (DAVs). Though any one star may not have sufficient information to place interesting constraints on its evolutionary history, taken together, the stars show a pattern of modes that allows us to test evolutionary models. For an example set of published evolutionary models, we show a

  3. Pulsating White Dwarfs in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  4. The Field White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.

    2017-03-01

    We study the white dwarf mass distributions for the volume-complete survey within 20 pc and the SDSS magnitude-limited sample. The observed mass distributions are modelled with Monte Carlo simulations. We find that under fixed standard assumptions for Galactic and stellar evolution, the predicted masses are in good qualitative agreement with the observed values. Nevertheless, the number of massive white dwarfs is overpredicted and we find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution.

  5. Methane and the Spectra of T Dwarfs

    NASA Astrophysics Data System (ADS)

    Homeier, Derek; Hauschildt, Peter H.; Allard, France

    2003-06-01

    We have updated our PHOENIX model atmospheres and theoretical spectra for ultracool dwarfs with new opacity data for methane based on line strength predictions with the STDS software. By extending the line list to rotational levels of J = 40 we can significantly improve the shape of the near-IR absorption features of CH_4, and in addition find an enhanced blanketing effect, resulting in up to 50% more flux emerging in the J band than seen in previous models, which may thus contribute to the brightening in J and blue IR colors observed in T dwarfs.

  6. "Missing Mass" Found in Recycled Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did

  7. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  8. Surface roughness modulations by submesoscale currents

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Chapron, Bertrand; Nouguier, Frederic; Ponte, Aurelien; Mouche, Alexis; Molemaker, Jeroen

    2016-04-01

    At times, high resolution images of sea surface roughness can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present two major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using surface roughness observations at multiple azimuth viewing angles. They also pave the way towards a better understanding of the coupling between ocean, waves and atmosphere at high resolution.

  9. Measurement and Correlation of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Hentschel, Daniel B.; Ruff, Gary A.

    2003-01-01

    Measurements were taken of the roughness characteristics of ice accreted on NACA 0012 airfoils in the NASA Glenn Icing Research Tunnel (IRT). Tests were conducted with size scaled, using models with chords of 26.7, 53.3, and 80.0 cm, and with liquid-water content scaled, both according to previously-tested scaling methods. The width of the smooth zone which forms on either side of the leading edge of the airfoil and the diameter of the roughness elements are presented in non-dimensional form as functions of the accumulation parameter. The smooth-zone width was found to decrease with increasing accumulation parameter. The roughness-element diameter increased with accumulation parameter until a plateau was reached. This maximum diameter was about 0.06 times twice the model leading-edge radius. Neither smooth-zone width nor element diameter were affected by a change in freezing fraction from 0.2 to 0.4. Both roughness characteristics appeared to scale with model size and with liquid-water content.

  10. Thermal smoothing of rough surfaces in vacuo

    NASA Technical Reports Server (NTRS)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  11. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  12. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    NASA Astrophysics Data System (ADS)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  13. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  14. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  15. Contact angle hysteresis on randomly rough surfaces: a computational study.

    PubMed

    David, Robert; Neumann, A Wilhelm

    2013-04-09

    Wetting is important in many applications, and the solid surfaces being wet invariably feature some amount of surface roughness. A free energy-based computational simulation is used to study the effect of roughness on wetting and especially contact angle hysteresis. On randomly rough, self-affine surfaces, it is found that hysteresis depends primarily on the value of the Wenzel roughness parameter r, increasing in proportion with r - 1. Micrometer-level roughness causes hysteresis of a few degrees.

  16. THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Cruz, Kelle L.; Burgasser, Adam J.; Walter, Frederick M.; Van der Bliek, Nicole; Vrba, Frederick J.; Anglada-Escude, Guillem

    2012-06-10

    We report parallax measurements for 70 ultracool dwarfs (UCDs) including 11 late-M, 32 L, and 27 T dwarfs. In this sample, 14 M and L dwarfs exhibit low surface gravity features, 6 are close binary systems, and 2 are metal-poor subdwarfs. We combined our new measurements with 114 previously published UCD parallaxes and optical-mid-IR photometry to examine trends in spectral-type/absolute magnitude, and color-color diagrams. We report new polynomial relations between spectral type and M{sub JHK}. Including resolved L/T transition binaries in the relations, we find no reason to differentiate between a 'bright' (unresolved binary) and a 'faint' (single source) sample across the L/T boundary. Isolating early T dwarfs, we find that the brightening of T0-T4 sources is prominent in M{sub J} where there is a [1.2-1.4] mag difference. A similar yet dampened brightening of [0.3-0.5] mag happens at M{sub H} and a plateau or dimming of [-0.2 to -0.3] mag is seen in M{sub K} . Comparison with evolutionary models that vary gravity, metallicity, and cloud thickness verifies that for L into T dwarfs, decreasing cloud thickness reproduces brown dwarf near-IR color-magnitude diagrams. However we find that a near constant temperature of 1200 {+-}100 K along a narrow spectral subtype of T0-T4 is required to account for the brightening and color-magnitude diagram of the L-dwarf/T-dwarf transition. There is a significant population of both L and T dwarfs which are red or potentially 'ultra-cloudy' compared to the models, many of which are known to be young indicating a correlation between enhanced photospheric dust and youth. For the low surface gravity or young companion L dwarfs we find that 8 out of 10 are at least [0.2-1.0] mag underluminous in M{sub JH} and/or M{sub K} compared to equivalent spectral type objects. We speculate that this is a consequence of increased dust opacity and conclude that low surface gravity L dwarfs require a completely new spectral-type/absolute magnitude

  17. Local Volume TiNy Titans: gaseous dwarf-dwarf interactions in the Local Universe

    NASA Astrophysics Data System (ADS)

    Pearson, Sarah; Besla, Gurtina; Putman, Mary E.; Lutz, Katharina A.; Fernández, Ximena; Stierwalt, Sabrina; Patton, David R.; Kim, Jinhyub; Kallivayalil, Nitya; Johnson, Kelsey; Sung, Eon-Chang

    2016-06-01

    In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT . This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (<30 Mpc from Milky Way), which span mass ratios of M*, 1/M*, 2 < 20, projected separations <100 kpc, and pair member masses of log(M*/M⊙) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with haloes of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogues, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the H I distributions in the form of trailing tails and that the gas is not unbound and lost to the surroundings unless the dwarf pair is residing near a massive galaxy. We conclude that a nearby, massive host galaxy is what ultimately prevents the gas from being re-accreted. Dwarf-dwarf interactions thus represent an important part of the baryon cycle of low-mass galaxies, enabling the `parking' of gas at large distances to serve as a continual gas supply channel until accretion by a more massive host.

  18. GIANT GALAXIES, DWARFS, AND DEBRIS SURVEY. I. DWARF GALAXIES AND TIDAL FEATURES AROUND NGC 7331

    SciTech Connect

    Ludwig, Johannes; Pasquali, Anna; Grebel, Eva K.; Gallagher, John S. III

    2012-12-01

    The Giant GAlaxies, Dwarfs, and Debris Survey (GGADDS) concentrates on the nearby universe to study how galaxies have interacted in groups of different morphology, density, and richness. In these groups, we select the dominant spiral galaxy and search its surroundings for dwarf galaxies and tidal interactions. This paper presents the first results from deep wide-field imaging of NGC 7331, where we detect only four low-luminosity candidate dwarf companions and a stellar stream that may be evidence of a past tidal interaction. The dwarf galaxy candidates have surface brightnesses of {mu}{sub r} Almost-Equal-To 23-25 mag arcsec{sup -2} with (g - r){sub 0} colors of 0.57-0.75 mag in the Sloan Digital Sky Survey filter system, consistent with their being dwarf spheroidal (dSph) galaxies. A faint stellar stream structure on the western edge of NGC 7331 has {mu}{sub g} Almost-Equal-To 27 mag arcsec{sup -2} and a relatively blue color of (g - r){sub 0} = 0.15 mag. If it is tidal debris, then this stream could have formed from a rare type of interaction between NGC 7331 and a dwarf irregular or transition-type dwarf galaxy. We compare the structure and local environments of NGC 7331 to those of other nearby giant spirals in small galaxy groups. NGC 7331 has a much lower ({approx}2%) stellar mass in the form of early-type satellites than found for M31 and lacks the presence of nearby companions like luminous dwarf elliptical galaxies or the Magellanic Clouds. However, our detection of a few dSph candidates suggests that it is not deficient in low-luminosity satellites.

  19. DETECTION OF A WHITE DWARF COMPANION TO THE WHITE DWARF SDSSJ125733.63+542850.5

    SciTech Connect

    Marsh, T. R.; Gaensicke, B. T.; Steeghs, D.; Southworth, J.; Koester, D.; Harris, V.; Merry, L.

    2011-08-01

    SDSSJ125733.63+542850.5 (hereafter SDSSJ1257+5428) is a compact white dwarf binary from the Sloan Digital Sky Survey that exhibits high-amplitude radial velocity variations on a period of 4.56 hr. While an initial analysis suggested the presence of a neutron star or black hole binary companion, a follow-up study concluded that the spectrum was better understood as a combination of two white dwarfs. Here we present optical spectroscopy and ultraviolet fluxes which directly reveal the presence of the second white dwarf in the system. SDSSJ1257+5428's spectrum is a composite, dominated by the narrow-lined spectrum from a cool, low-gravity white dwarf (T{sub eff} {approx_equal} 6300 K, log g = 5-6.6) with broad wings from a hotter, high-mass white dwarf companion (11, 000-14, 000 K; {approx}1 M{sub sun}). The high-mass white dwarf has unusual line profiles which lack the narrow central core to H{alpha} that is usually seen in white dwarfs. This is consistent with rapid rotation with vsin i = 500-1750 km s{sup -1}, although other broadening mechanisms such as magnetic fields, pulsations, or a helium-rich atmosphere could also be contributory factors. The cool component is a puzzle since no evolutionary model matches its combination of low gravity and temperature. Within the constraints set by our data, SDSSJ1257+5428 could have a total mass greater than the Chandrasekhar limit and thus be a potential Type Ia supernova progenitor. However, SDSSJ1257+5428's unusually low-mass ratio q {approx} 0.2 suggests that it is more likely that it will evolve into an accreting double white dwarf (AM CVn star).

  20. Cytological modifications in maize plants infected by barley yellow dwarf virus and maize dwarf mosaic virus.

    PubMed

    Musetti, R; Bruni, L; Favali, M A

    2002-01-01

    Three inbred lines of maize (33-16, MO17 and B73) differing in their susceptibility to Barley yellow dwarf virus and Maize dwarf mosaic virus were studied to compare the ultrastructural modifications induced by the two viruses in leaf tissues of different age. The results demonstrate that the alterations induced by the two viruses in the different maize lines could depend on the particular line tested.

  1. TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES: ENHANCED TRANSFORMATION INTO DWARF SPHEROIDALS

    SciTech Connect

    Kazantzidis, Stelios; Lokas, Ewa L.; Mayer, Lucio

    2013-02-20

    According to the tidal stirring model, late type, rotationally supported dwarfs resembling present day dwarf irregular (dIrr) galaxies can transform into dwarf spheroidals (dSphs) via interactions with Milky-Way-sized hosts. We perform collisionless N-body simulations to investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes {gamma} of the dwarf DM density profiles ({rho}{proportional_to}r {sup -{gamma}}). For a given orbit inside the primary galaxy, rotationally supported dwarfs embedded in DM halos with core-like distributions ({gamma} = 0.2) and mild density cusps ({gamma} = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles ({gamma} = 1). Such shallow DM distributions are akin to those of observed dIrrs highlighting tidal stirring as a plausible model for the Local Group (LG) morphology-density relation. When {gamma} < 1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform; these new results allow tidal stirring to explain virtually all known dSphs across a wide range of distances from their hosts. A subset of disky dwarfs initially embedded in DM halos with shallow density profiles are eventually disrupted by the primary; those that survive as dSphs are generally on orbits with lower eccentricities and/or larger pericenters compared to those of typical cold dark matter satellites. The latter could explain the peculiar orbits of several LG dSphs such as Fornax, Leo I, Tucana, and Cetus.

  2. The Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) Survey: Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Peter, Annika; Price, Paul A.; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2017-01-01

    We discuss the first results of our observational program to comprehensively map nearly the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. These will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. We will detail our discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  3. Interaction between the IGM and a dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Lora, V.; Raga, A. C.; Grebel, E. K.

    2015-04-01

    Dwarf Galaxies are the most common objects in the Universe and are believed to contain large amounts of dark matter. There are mainly three morphologic types of dwarf galaxies: dwarf ellipticals, dwarf spheroidals and dwarf irregulars. Dwarf irregular galaxies are particularly interesting in dwarf galaxy evolution, since dwarf spheroidal predecessors could have been very similar to them. Therefore, a mechanism linked to gas-loss in dwarf irregulars should be observed, i.e. ram pressure stripping. In this paper, we study the interaction between the ISM of a dwarf galaxy and a flowing IGM. We derive the weak-shock, plasmon solution corresponding to the balance between the post-bow shock pressure and the pressure of the stratified ISM (which we assume follows the fixed stratification of a gravitationally dominant dark matter halo). We compare our model with previously published numerical simulations and with the observed shape of the HI cloud around the Ho II and Pegasus dwarf irregular galaxies. We show that such a comparison provides a straightforward way for estimating the Mach number of the impinging flow.

  4. A wide binary trigger for white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Bonsor, Amy; Veras, Dimitri

    2015-11-01

    Metal pollution in white dwarf atmospheres is commonly assumed to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals on to star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few per cent of an observed sample of white dwarfs with wide binary companions, independent of white dwarf age. This age independence is the key difference between this wide binary mechanism and others mechanisms suggested in the literature to explain white dwarf pollution. Current observational samples are not large enough to assess whether this mechanism makes a significant contribution to the population of polluted white dwarfs, for which better constraints on the wide binary population are required, such as those that will be obtained in the near future with Gaia.

  5. 37 NEW T-TYPE BROWN DWARFS IN THE CANADA-FRANCE BROWN DWARFS SURVEY

    SciTech Connect

    Albert, Loic; Artigau, Etienne; Delorme, Philippe; Reyle, Celine; Forveille, Thierry; Delfosse, Xavier

    2011-06-15

    The Canada-France Brown Dwarfs Survey is an i'- and z'-band survey realized with MegaCam at the Canada-France-Hawaii Telescope that covers a surface area of 780 deg{sup 2}. Image analysis is now completed while J-band follow-up campaigns are {approx}90% done. The survey identified about 70 T dwarf candidates, of which 43 now have near-infrared spectra obtained with NIRI and GNIRS at Gemini and ISAAC at the Very Large Telescope. Six of these were previously published and we present here the 37 new discoveries, all T dwarfs. They range from T0 to T8.5 with four being of type T7 or later. Both newly identified T8 dwarfs are possibly high log (g) massive brown dwarfs of thin disk age. One T4.5 dwarf shows signs of sub-metallicity. We present proper motions and near-infrared photometry, and discuss about the most peculiar/interesting objects in some details.

  6. K2 Ultracool Dwarfs Survey. I. Photometry of an L Dwarf Superflare

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Paudel, Rishi R.; Schmidt, Sarah J.; Williams, Peter K. G.; Burgasser, Adam J.

    2017-03-01

    We report on K2 Campaign 8 measurements of a huge white light flare on the L1 dwarf SDSSp J005406.55-003101.8 (EPIC 220186653). The source is a typical L1 dwarf at a distance of ∼50 pc, probably an old hydrogen-burning star rather than a young brown dwarf. In the long (30-minute) cadence photometry, the flare peak is 21 times the flux of the stellar photosphere in the broad optical Kepler filter, which we estimate corresponds to ΔV ≈ ‑7.1. The total equivalent duration of the flare is 15.4 hr. We estimate that the total bolometric energy of the flare was 4 × 1033 erg, more powerful than the previously reported Kepler white light flares for the L1 dwarf WISEP J190648.47+401106.8, but weaker than the ΔV = ‑11 L0 dwarf superflare ASASSN-16ae. The initial (impulsive) cooling phase is too rapid to resolve with our 30-minute cadence data, but after 1 hour the gradual cooling phase has an exponential time constant of 1.8 hr. We use template fitting to estimate that the full time-width-at-half-amplitude of the light curve is <10 minutes and that the true flare maximum reached ∼70 times the stellar photosphere, or ΔV ≈ ‑8. This flare is comparable to the most powerful Kepler flares observed on the active M4 dwarf GJ 1243.

  7. PTF/M-dwarfs: First Results From a Large New M-dwarf Planetary Transit Survey

    NASA Astrophysics Data System (ADS)

    Law, N. M.; Kraus, A. L.; Street, R. R.; Lister, T.; Shporer, A.; Hillenbrand, L. A.; Palomar Transient Factory Collaboration

    2011-12-01

    PTF/M-dwarfs is a 100,000-target M-dwarf planetary transit survey, a Key Project of the Palomar Transient Factory (PTF) collaboration. The survey is sensitive to Jupiter-radius planets around all of the target stars, and has sufficient precision to reach Neptunes and super-Earths for the best targets. The Palomar Transient Factory is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky. The survey is performed using a new 7.26 square degree camera installed on the 48 inch Samuel Oschin telescope at Palomar Observatory. Each 92-megapixel R-band exposure contains about 3,000 M-dwarfs usable for planet detection. In each PTF observational season PTF/M-dwarfs searches for Jupiter-radius planets around almost 30,000 M-dwarfs, Neptune-radius planets around approximately 500 M-dwarfs, and super-Earths around 100 targets. The full survey is expected to cover more than 100,000 targets over the next several years. Photometric and spectroscopic followup operations are performed on the Palomar 60-inch, LCOGT, Palomar 200-inch, MDM and Keck telescopes. The survey has been running since mid-2009. We detail the survey design, the survey's data analysis pipeline and the performance of the first year of operations.

  8. White Dwarfs in the Galaxy's Halo

    NASA Astrophysics Data System (ADS)

    Oppenheimer, B.; Murdin, P.

    2002-12-01

    The Galaxy's large spherical halo (see GALACTICMETAL-POOR HALO and HALO, GALACTIC) may harboras many as several hundred billion WHITE DWARFS, apopulation as large in number as the total number of stars in theGalaxy's disk (see DISK GALAXIES and GALACTIC THIN DISK). Although this assertion iscontroversial, several astronomical surveys provide strong support for it andthe implications affect fields ...

  9. Brown Dwarf Variability: What's Varying and Why?

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2014-01-01

    Surveys by ground based telescopes, HST, and Spitzer have revealed that brown dwarfs of most spectral classes exhibit variability. The spectral and temporal signatures of the variability are complex and apparently defy simplistic classification which complicates efforts to model the changes. Important questions include understanding if clearings are forming in an otherwise uniform cloud deck or if thermal perturbations, perhaps associated with breaking gravity waves, are responsible. If clouds are responsible how long does it take for the atmospheric thermal profile to relax from a hot cloudy to a cooler cloudless state? If thermal perturbations are responsible then what atmospheric layers are varying? How do the observed variability timescales compare to atmospheric radiative, chemical, and dynamical timescales? I will address such questions by presenting modeling results for time-varying partly cloudy atmospheres and explore the importance of various atmospheric processes over the relevant timescales for brown dwarfs of a range of effective temperatures. Regardless of the origin of the observed variability, the complexity seen in the atmospheres of the field dwarfs hints at the variability that we may encounter in the next few years in directly imaged young Jupiters. Thus understanding the nature of variability in the field dwarfs, including sensitivity to gravity and metallicity, is of particular importance for exoplanet characterization.

  10. Photometric Parallaxes for Red Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Humphrey, Nick; Robertson, T.

    2008-05-01

    The luminosity function of low luminosity red stars is import due to the high frequency of such stars and their substantial contribution to the mass of baryonic matter as determined by analysis of the numbers of such stars within a few parsecs of the Sun. Many such stars relatively close to the Sun have not been detected due to their low luminosity and to an inability to distinguish between red giant and dwarf stars. A sample of one hundred potential red dwarf stars was selected from 2MASS photometric data, and USNO-B photometric and astrometric data. Sample stars were observed using the SARA (Southeastern Association for Research in Astronomy) telescope using Kron-Cousins RI photometry and intermediate-band CaH photometry. All thirty two sample stars observed have luminosity classes consistent with red dwarfs. The photometric parallaxes range from 40 to 230 pc. A comparison of USNO-B R magnitudes and the observed CCD R magnitudes (observed - USNO) indicated no systematic difference (-0.03 with and standard error of the mean of 0.05). A comparison of the R-I color index showed a mean difference of -0.21 and standard error of the mean of 0.03. The selection criterion used seems to be quite efficient in identifying red dwarf stars. This study used data collected with the SARA Telescope and was funded by grants from the Indiana Space Grant Consortium and Ball State University.

  11. SOAR + SMARTS Southern White Dwarf Survey

    NASA Astrophysics Data System (ADS)

    Subasavage, John P.; Lepine, S.

    2012-01-01

    We present early results from the SOAR + SMARTS Southern White Dwarf SURVEY (SSSWDS). Our initial sift of relatively bright (15 < V < 18), white dwarf candidates uses the technique of reduced proper motion with inputs from the SUPERBLINK proper motion database combined with photographic magnitudes. Crude distance estimates from the linear photographic magnitude-color relation of Oppenheimer et al. 2001 are obtained and permit prioritized follow-up. For confirmation of luminosity class, we use the SOAR telescope atop Cerro Pachon equipped with the Goodman Spectrograph and a moderate resolution grating. In tandem, we acquire multi-epoch, optical Johnson-Kron-Cousins BVRI photometry using the SMARTS 1.0m telescope atop CTIO. Combined with JHK from 2MASS, we compare the photometric SED to relevant white dwarf model atmospheres to estimate physical parameters (e.g., effective temperature, mass) and distance. For the nearest targets, specifically those within the RECONS (www.recons.org) horizon of 25 pc, we aim to obtain trigonometric parallaxes as part of the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) project being conducted at the SMARTS 0.9m telescope. To date, we have confirmed 100 relatively bright, new white dwarfs in the southern hemisphere. Of those, 13 are estimated to be within our 25 pc horizon-of-interest, including two that are estimated to be within 15 pc. Ongoing observations will boost these figures by the end of the project.

  12. Photospheric composition and structure in white dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.

    1993-12-01

    One of the central mysteries of white dwarf studies has been the nature and abundance of trace elements in the atmospheres of these stars. It had been thought that the dominant trace element in otherwise pure hydrogen DA white dwarf atmospheres was helium. However, some spectroscopic and theoretical evidence suggested that, at least in some stars, heavier elements may be important. Prior to the launch of ROSAT the questions regarding the atmospheric composition of DA white dwarfs in general remained unresolved. The ROSAT mission has provided EUV and X-ray data for a large sample of DA white dwarfs with which we can study their photospheric composition and structure through the effect of trace opacity sources on the emergent fluxes. Contrary to expectations little (if any) helium is found and the main sources of opacity appear to be trace heavy elements. Support for these conclusions is found in recent EUV and far-UV spectra of several stars. However, photometric data do not allow us to determine the abundance of the individual elements and observations with the extreme ultraviolet explorer satellite (EUVE) spectrometers will be essential for detailed composition measurements.

  13. White dwarfs identified in LAMOST DR 2

    NASA Astrophysics Data System (ADS)

    Guo, Jincheng; Zhao, Jingkun; Tziamtzis, Anestis; Liu, Jifeng; Li, Lifang; Zhang, Yong; Hou, Yonghui; Wang, Yuefei

    2015-12-01

    Here we present a catalogue of 1056 spectroscopically identified hydrogen-dominated white dwarfs (DAWDs), 34 helium-dominated white dwarfs (DBWDs) and 276 white dwarf main sequence (WDMS) binaries from the Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey data release 2 (DR2). 383 DAWDs, 4 DBWDs and 138 WDMSs are new identifications after cross-match with literature. There are ˜4100 k spectra in total from DR 2. The low ratio of white dwarfs found in LAMOST is attributed to biased selection of LAMOST input catalogue and much brighter targets relative to stars observed in Sloan Digital Sky Survey. In this paper, a new DAWD selection method is adopted as a new attempt and supplement to the traditional methods. The effective temperature, surface gravity, mass, cooling age and distance of high signal-to-noise DAWDs are estimated. The peak of the mass distribution is found to be ˜0.6 M⊙, which is consistent with previous work. The parameters of WDMS binaries are also provided in this paper. As the foundation of our future work, which is to identify more WDs with debris disc, WDs found in LAMOST showed a lot of potential. Interesting infrared-excess WDs will be reported in our forthcoming paper.

  14. DA white dwarfs in the Kepler field

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2017-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-m, and Bok 2.3-m telescopes. Using atmospheric models, we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows. (i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these 11 happens to be a presumed binary, KIC 11604781, with a period of ˜5 d. (ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation time-scales.

  15. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  16. Brown Dwarfs: Discovery and Detailed Studies

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    2001-01-01

    We obtained the optical and IR spectra of Gliese 229B and identified Cs, I, and CO features - as expected in theoretical models. Our optical IR spectrum showed that most of the refractory metals have condensed out of the atmosphere and the presence of Cs, I and CO shows evidence for disequilibrium chemistry. We reported orbital evidence for Gliese 229B. The HST measured optical magnitudes provide additional evidence for the absence of dust in the atmosphere of this cool object. The luminosity of brown dwarfs depend on their masses and ages and in order to interpret the results of the survey we have carried out an extensive Monte Carlo analysis. Our conclusion is that warm brown dwarfs are rare, as companions in the orbital period range beyond approximately 30 - 50 AU. The Palomer survey poses no constraint for brown dwarfs in planetary orbits similar to those of the outer planets. We have just started a program of imaging nearby stars with the newly commissioned AO system at Palomar and Keck and have already found a brown dwarf candidate.

  17. Doppler Imaging of Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Crossfield, I.; Biller, B.; Schlieder, J.; Deacon, N.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; Goldman, Bertr; Kopytova, T.

    2014-03-01

    Doppler Imaging produces 2D global maps. When applied to cool planets or more massive brown dwarfs, it can map atmospheric features and track global weather patterns. The first substellar map, of the 2pc-distant brown dwarf Luhman 16B (Crossfeld et al. 2014), revealed patchy regions of thin & thick clouds. Here, I investigate the feasibility of future Doppler Imaging of additional objects. Searching the literature, I find that all 3 of P, v sin i, and variability are published for 22 brown dwarfs. At least one datum exists for 333 targets. The sample is very incomplete below ~L5; we need more surveys to find the best targets for Doppler Imaging! I estimate limiting magnitudes for Doppler Imaging with various hi-resolution near-infrared spectrographs. Only a handful of objects - at the M/L and L/T transitions - can be mapped with current tools. Large telescopes such as TMT and GMT will allow Doppler Imaging of many dozens of brown dwarfs and the brightest exoplanets. More targets beyond type L5 likely remain to be found. Future observations will let us probe the global atmospheric dynamics of many diverse objects.

  18. Efficiency of Metal Mixing in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Saitoh, Takayuki R.

    2017-04-01

    Metal mixing plays a critical role in the enrichment of metals in galaxies. The abundance of elements such as Mg, Fe, and Ba in metal-poor stars helps us understand the metal mixing in galaxies. However, the efficiency of metal mixing in galaxies is not yet understood. Here we report a series of N-body/smoothed particle hydrodynamics simulations of dwarf galaxies with different efficiencies of metal mixing using a turbulence-induced mixing model. We show that metal mixing apparently occurs in dwarf galaxies from Mg and Ba abundances. We find that a scaling factor for metal diffusion larger than 0.01 is necessary to reproduce the measured abundances of Ba in dwarf galaxies. This value is consistent with the value expected from turbulence theory and experiments. We also find that the timescale of metal mixing is less than 40 Myr. This timescale is shorter than the typical dynamical times of dwarf galaxies. We demonstrate that the determination of a degree of scatters of Ba abundance by the observation will help us to better constrain the efficiency of metal mixing.

  19. Theoretical Study of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  20. The 25 parsec local white dwarf population

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  1. The atmospheres of M dwarfs: Observations

    NASA Technical Reports Server (NTRS)

    Rodono, Marcello

    1987-01-01

    After presenting global properties of M dwarfs, the principal diagnostic of activity phenomena occurring in their atmosphere from the geometrical, energetic, and temporal points of view is stressed. Observations of sunspots, plages, flares, and activity cycles are presented. The major sources of activity are discussed with particular emphasis on the generation, intensification, and measurements of stellar magnetic fields.

  2. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  3. Subpixellar roughness effects on Mars thermal inertia

    NASA Astrophysics Data System (ADS)

    Gaudin, D.; Delacourt, C.; Allemand, P.

    2011-12-01

    Thermal inertia is an important derived variable from thermal infrared remote sensing, since it depends on physical properties of the studied surface, including density (ρ), heat capacity (c), and bulk thermal conductivity (λ). For example, due to its stronger heat capacity, water has a greater thermal inertia compared to rocks, and thus, moisture on Earth can be derived from thermal inertia. On Mars, thermal conductivity is believed to be strongly linked with grainsize. Consequently, thermal inertia is widely used for the study of surface processes. Physically, thermal inertia is defined as the ratio of thermal flux variation (ΔΦ) to surface temperature variation (ΔT), on a sinusoidal forcing, and can be re-write as follow : I=ΔΦ/ΔT=√(λ.ρ.c) To retrieve thermal inertia from thermal infrared pictures, a model is needed : the variation of surface temperature during the day is modelled for different values of thermal inertia and then compared to remote sensing temperature. Additional parameters, like atmospheric dust concentration or sun angles are set to predict the brightness temperature, as seen by the satellite. These models do not account well for infrapixellar roughness. However, surface geometry is responsible of a few effects : - Shadowing of part of the surface makes the sun incoming flux spatially and temporally variable. - The interreflexion between two opposite surface makes the local flux weaker. Consequently, a rough surface is heated during a shorter time, compared with a smooth one, but the effect is strongly non-linear. In this study, we designed a radiative and conductive code to test these effects, taking into account a 2D roughness surface state. By modelling the heat fluxes on several geometries, we retrieved the surface temperature evolution, compared to smooth geometry. Here, the key parameters are the geometry, the height of the roughness and the physical parameters of the soil (emissivity, albedo, thermal conductivity and heat

  4. Combinatorial Block Copolymer Ordering on Tunable Rough

    SciTech Connect

    Kulkarni M. M.; Yager K.; Sharma, A.; Karim, A.

    2012-05-01

    Morphology control of block copolymer (BCP) thin films through substrate interaction via controlled roughness parameters is of significant interest for numerous high-tech applications ranging from solar cells to high-density storage media. While effects of substrate surface energy (SE) and roughness (R) on BCP morphology have been individually investigated, their synergistic effects have not been explored in any systematic manner. Interestingly, orientation response of BCP to changes in SE can be similar to what can be accomplished with variations in R. Here we present a novel approach for orienting lamellar BCP films of poly(styrene)-block-poly(methyl methacrylate) (PS-PMMA) on spin-coated xerogel (a dried gel of silica nanoparticle network) substrate with simultaneously tunable surface energy, {gamma}{sub s} {approx} 29-53 mJ/m{sup 2}, by UVO exposure and roughness, R{sub rms} {approx} 0.5-30 nm, by sol-gel processing steps of regulating the catalyst concentration and sol aging time. As in previous BCP orientation studies on 20 nm diameter monodisperse silica nanoparticle coated surface, we find a similar but broadened oscillatory BCP orientation behavior with film thickness due to the random rather than periodic rough surfaces. We also find that higher random roughness amplitude is not the necessary criteria for obtaining a vertical orientation of BCP lamellae. Rather, a high surface fractal dimension (D{sub f} > 2.4) of the rough substrate in conjunction with an optimal substrate surface energy {gamma}{sub s} 29 mJ/m{sup 2} results in 100% vertically oriented lamellar microdomains. The AFM measured film surface microstructure correlates well with the internal 3D BCP film structure probed by grazing incidence small-angle X-ray scattering (GISAXS) and rotational small-angle neutron scattering (SANS). In contrast to tunable self-assembled monolayer (SAM)-coated substrates, the xerogel films are very durable and retain their chemical properties over period of

  5. The transmutation of dwarf galaxies: stellar populations

    NASA Astrophysics Data System (ADS)

    Koleva, Mina; Bouchard, Antoine; Prugniel, Philippe; De Rijcke, Sven; Vauglin, Isabelle

    2013-02-01

    Transition-type dwarf (TTD) galaxies share characteristics of early- and late-type dwarfs. Thus, they are suspected to be the thread that connects them. We selected 19 TTD galaxies in the nearby Universe (cz < 2900 km s-1) from the Sloan Digital Sky Survey. They span the luminosity range from ˜- 14.5 to -19.0 mag in the B band, and are located in different environments. We derive their single stellar population parameters and star formation histories, using the full spectrum fitting technique with two independent population synthesis models. Irrespective of the synthesis models, we find that these dwarfs have a relatively young mean age (around 1-2 Gyr) and low metallicities (˜- 0.7 dex). Moreover, they had approximately constant star formation rates until a few Gyr ago, associated with strong metal enrichment during the first few Gyr of their evolution. We compare these results with the results from Koleva et al., who studied dwarf elliptical (dE) galaxies in the same luminosity range. We find that (1) both samples occupy the same region in the luminosity-metallicity relation, (2) the build-up of the stellar mass in both types of galaxies is very similar, with most of the stars already formed 5 Gyr ago and (3) contrary to the dEs, TTDs are forming stars at present, but after 1 Gyr of passive evolution, their star formation histories would appear identical to that of dEs. As far as the stellar population is concerned, the transformation of TTDs into dEs is definitely possible. A star-forming dwarf galaxy can be stripped of at least a fraction of its gas, and its star formation rate can be reduced to that of the TTDs of the present sample. Continued gas removal may drive a galaxy to the state of a gas-depleted bona fide dE. However, we cannot exclude a scenario where a star-forming galaxy is rapidly transformed into an early type without passing through a noticeable `transition' phase, as suggested by the relatively small fraction of observed dEs with an

  6. Formation of Brown Dwarfs LTSA 2001

    NASA Technical Reports Server (NTRS)

    Luhman, Kevin L.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    The goals of the work funded by this grant are: 1) The measurement of the mass function and minimum mass of free-floating brown dwarfs down to the mass of Jupiter; 2) The measurement of the frequency of wide brown dwarf and planetary companions down to the mass of Jupiter as function of primary mass (0.02-2 Msun), age (1-10 Myr), and environment (clusters vs. dispersed regions). For the first objective, we have completed the design of guaranteed SIRTF observations of nearby star-forming regions. With the successful launch of the SIRTF mission in August of 2003, we now await the execution of these observations, which should begin in early 2004. In support of these upcoming observations, in the fall of 2002 and spring of 2003 we obtained optical spectroscopy at the MMT, the 1.5 meter telescope at Fred Lawrence Whipple Observatory, and Magellan Observatory for several hundred candidate young low-mass stars and brown dwarfs in the IC348, Taurus, and Chamaeleon star-forming regions. All of these data have been published in three papers in The Astrophysical Journal. We also recently used the MMT to obtain deep near-IR images of IC348 to accompany the SIRTF images and have time in the next month at the IRTF and Keck for spectroscopy of candidate brown dwarfs in IC348 and Taurus. We have submitted proposals for deep optical and near-IR imaging of the SIRTF fields in Chamaeleon and Ophiuchus for spring 2004 with Magellan and the AAT. Results from this research have been presented in invited talks at UU Symposium 221 (July 2003) and at the SIRTF Galactic Science Workshop (August 2003). For the second objective, we have used deep HST WFPC2 images to search for young giant planets and brown dwarfs around approx. 100 low-mass stars and brown dwarfs in the nearby cluster IC348. We have completed all data reduction and have checked these data for candidate companions. We expect to submit the paper describing these observations to The Astrophysical Journal by the end of the year

  7. Tactile perception of the roughness of the end of a tool: what role does tool handle roughness play?

    PubMed

    Zampini, Massimiliano; Mawhinney, Sara; Spence, Charles

    2006-06-12

    We investigated whether the perceived roughness of the end of a tool is influenced by the texture of the handle used to hold it. Participants rated the roughness of the ends (caps) of a series of tools by rubbing them along their forearm, and indicated the perceived roughness of the tool's cap by means of an anchored visual scale. The caps of the tools had one of eight different levels of roughness varying from very smooth (sample 1) to very rough (sample 8). The participants held the tool handle in one hand while rubbing the cap of the tool against their contralateral forearm. The tool handle was either smooth (similar in smoothness to sample 1) or else very rough (matched in roughness to sample 8). Overall, participants were remarkably good at ignoring the roughness of the tool's handle when discriminating the roughness of the tool's cap. Nevertheless, the roughness of the tool handle was shown to modulate roughness judgments concerning the tool cap under certain conditions: in particular, tool caps at the rougher end of the scale (6 and 7) were rated as being significantly less rough when the participants held tools with a rough handle than when they held tools with a smooth handle. Our results therefore demonstrate a small but significant effect of the roughness of the handle of a tool on the perceived roughness of its cap.

  8. Chandra And Kepler Monitoring Of Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Paudel, Rishi R.; Gizis, John E.

    2016-07-01

    We present the results of Chandra observation of L1 dwarf WISEP J190648.47+401106.8 (W1906+40 hereafter) and Kepler monitoring of L8 dwarf WISEP J060738.65+242953.4 (W0607+24 hereafter). W1906+40 was observed by Chandra for 49 ks on August 14, 2015. The net count of X-ray photons from this L dwarf is estimated to be ≍2 with the lower and upper limits equal to 0.44 and 6.07 respectively at 90 % confidence level. The time averaged X-ray luminosity over the duration of observation is found to be 1.87 × 10^25 erg s^-1 with the lower and upper limits equal to 4.03 × 10^24 erg s^-1 and 5.19× 10^25 erg s^-1 respectively at 90 % confidence level. The corresponding X-ray activity level is log L_X ≍ -4.64. This dwarf does not follow the rotation ac- tivity relation as seen in earlier-type stars despite being a rapid rotator with period of 8.9 hours. In addition, total time averaged energy (UBVRI ) of white light flares observed in the same dwarf is calculated to be 5.25 × 10^25 which is 30% of the total time averaged flare energy (XUBVRI). W0607+24 was monitored by Kepler for 36 days during K2 Campaign 0. Kepler photometry rules out any possibility of stable periodic signals in the optical with amplitudes greater than 1.5% and periods between 1.5 hours and 2 days. The results are consistent with those obtained by Spitzer observations which show no variabiltiy at the 0.2% level over 10 hours each in the 3.6 and 4.5 micron bands.

  9. Replicated mask surface roughness effects on EUV lithographic pattering and line edge roughness

    SciTech Connect

    George, Simi A.; Naulleau, Patrick P.; Gullikson, Eric M.; Mochi, Iacopo; Salmassi, Farhad; Goldberg, Kenneth A.; Anderson, Erik H.

    2011-03-11

    To quantify the roughness contributions to speckle, a programmed roughness substrate was fabricated with a number of areas having different roughness magnitudes. The substrate was then multilayer coated. Atomic force microscopy (AFM) surface maps were collected before and after multilayer deposition. At-wavelength reflectance and total integrated scattering measurements were also completed. Angle resolved scattering based power spectral densities are directly compared to the AFM based power spectra. We show that AFM overpredicts the roughness in the picometer measurements range. The mask was then imaged at-wavelength for the direct characterization of the aerial image speckle using the SEMATECH Berkeley Actinic Inspection Tool (AIT). Modeling was used to test the effectiveness of the different metrologies in predicting the measured aerial-image speckle. AIT measured contrast values are 25% or more than the calculated image contrast values obtained using the measured rms roughness input. The extent to which the various metrologies can be utilized for specifying tolerable roughness limits on EUV masks is still to be determined. Further modeling and measurements are being planned.

  10. Simulation studies on sputtering in rough surface

    NASA Astrophysics Data System (ADS)

    Kenmotsu, T.; Yamamura, Y.; Muramoto, T.; Hirotani, N.

    2005-01-01

    The influence of a surface roughness on sputtering is studied using a Monte Carlo simulation code ACAT. In order to estimate this influence in ACAT calculation, the ACAT code is modified. The two-dimensional fractal surface model is applied to the ACAT code and a surface binding energy of a target material is estimated by a many-body tight-binding potential. Simulation results calculated with the modified ACAT are compared with experimental data and the standard planar ACAT on sputtering yields of a Mo surface irradiated with 2 keV D+ ions. The modified ACAT code predicts well experimental data from rough surfaces compared with the standard planar ACAT code.

  11. Thin layer solar drying of rough rice

    SciTech Connect

    Zaman, M.A.; Bala, B.K. )

    1989-01-01

    This paper presents a set of simple empirical equations for natural air flow solar drying of rough rice in mixed-mode type dryer, box-type dryer and open floor drying system. The moisture contents predicted by the equations were in good agreement with the observed values. The effect of drying air temperature on the drying rate constants for these three cases were found to be insignificant. The equilibrium moisture content appeared to be the most important variable controlling the drying rate. The highest drying rate was observed in case of mixed-mode dryer. The drying rate of box dryer was next to that of mixed-mode dryer. This study shows that the introduction of solar dryer for drying of rough rice is highly recommended in Bangladesh.

  12. Surface Roughness Reduction on Divinylbenzene Foam Shells

    NASA Astrophysics Data System (ADS)

    Streit, Jon; Karnes, John; Motta, Brian; Petta, Nicole

    2009-11-01

    Inertial fusion energy targets for the Naval Research Laboratory's High Average Power Laser Program require millimeter-scale, low density foam capsules with a gas permeation barrier and an outer surface roughness less than 50 nm RMS. Divinylbenzene (DVB) foam is a candidate for the capsule wall material, but its porous, open celled surface has been both too rough and difficult to seal. To overcome this difficulty we have repurposed a previously reported dual stage initiator emulsion microencapsulation method, adding an additional step that enhances the surface of the foam capsules. Using both low and high temperature initiators allows the DVB foam to gel in the low temperature stage and a water soluble monomer to be added and polymerized during the high temperature stage without breaking down the emulsion. This method forms a submicron skin that covers the open celled DVB foam surface, resulting in a superior substrate for gas permeation barrier deposition.

  13. A model for rough wall turbulent heating and skin friction

    NASA Astrophysics Data System (ADS)

    Finson, M. L.

    1982-01-01

    A Reynolds stress model for turbulent boundary layers on rough walls is used to investigate the effects of roughness character and compressibility. The flow around roughness elements is treated as form drag. A method is presented for deriving the required roughness shape and spacing from profiometer surface measurements. Calculations based on the model compare satisfactorily with low speed data on roughness character and hypersonic measurements with grit roughness. The computer model is exercised systematically over a wide range of parameters to derive a practical scaling law for the equivalent roughness. In contrast to previous correlations, for most roughness element shapes the effective roughness does not show a pronounced maximum as the element spacing decreases. The effect of roughness tends to be reduced with increasing edge Mach number, primarily due to decreasing density in the vicinity of the roughness elements. It is further shown that the required roughness Reynolds number for fully rough behavior increases with increasing Mach number, explaining the small roughness effects observed in some hypersonic tests.

  14. Anomalous Cooling of the Massive White Dwarf in U Geminorum Following a Narrow Dwarf Nova Outburst

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.; Cheng, F. H.; Szkody, Paula; Sparks, Warren; Gänsicke, Boris; Huang, Min; Mattei, Janet

    1998-03-01

    We obtained Hubble Space Telescope Goddard High-Resolution Spectrograph medium-resolution (G160M grating), phase-resolved spectroscopic observations of the prototype dwarf nova U Geminorum during dwarf nova quiescence, 13 days and 61 days following the end of a narrow outburst. The spectral wavelength ranges were centered on three different line regions: N V (1238 Å, 1242 Å), Si III (1300 Å), and He II (1640 Å). All of the quiescent spectra at both epochs are dominated by absorption lines and show no emission features. The Si III and He II absorption-line velocities versus orbital phase trace the orbital motion of the white dwarf, but the N V absorption velocities appear to deviate from the white dwarf motion. We confirm our previously reported low white dwarf rotational velocity, V sin i = 100 km s-1. We obtain a white dwarf orbital velocity semiamplitude K1 = 107 km s-1. Using the γ-velocity of Wade, we obtain an Einstein redshift of 80.4 km s-1 and hence a carbon core white dwarf mass of ~1.1 M⊙. We report the first subsolar chemical abundances of C and Si for U Gem with C/H = 0.05 times solar, almost certainly a result of C depletion due to thermonuclear processing. This C depletion is discussed within the framework of a weak thermonuclear runaway, contamination of the secondary during the common envelope phase, and mixing of C-depleted white dwarf gas with C-depleted matter deposited during a dwarf nova event. Remarkably, the Teff of the white dwarf 13 days after outburst is only 32,000 K, anomalously cooler than previous early postoutburst measurements. Extensive cooling during an extraordinarily long (210 days) quiescence followed by accretion onto an out-of-equilibrium cooled degenerate could explain the lower Teff. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. Radiative Transfer Model for Contaminated Rough Surfaces

    DTIC Science & Technology

    2013-02-01

    transfer, reflectance, rough surface, BRDF, Kramers- Kronig , penetration depth, fill factor, infrared, LWIR, MWIR, absorption coefficient, scattering...can be obtained from the absorption coefficient via Equation 6 (below) and the real part may be obtained via Kramers- Kronig (KK) analysis,18 n = KK(k...expanded reference library with more than one reference spectrum per material. Kramers- Kronig Relations: The Kramers- Kronig relationship is a

  16. Sparseness and Roughness of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Ausloos, M.

    An accurate multiaffine analysis of 23 foreign currency exchange rates has been performed. The roughness exponent H1 which characterizes the excursion of the exchange rate has been numerically measured. The degree of intermittency C1 has been also estimated. In the (H1,C1) phase diagram, the currency exchange rates are dispersed in a wide region around the Brownian motion value (H1=0.5,C1=0) and have a significantly intermittent component (C1≠0).

  17. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    SciTech Connect

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  18. Wenzel Wetting on Slippery Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Stogin, Birgitt; Dai, Xianming; Wong, Tak-Sing

    2015-11-01

    Liquid repellency is an important surface property used in a wide range of applications including self-cleaning, anti-icing, anti-biofouling, and condensation heat transfer, and is characterized by apparent contact angle (θ*) and contact angle hysteresis (Δθ*). The Wenzel equation (1936) predicts θ* of liquids in the Wenzel state, and is one of the most fundamental equations in the wetting field. However, droplets in the Wenzel state on conventional rough surfaces exhibit large Δθ* , making it difficult to experimentally verify the model with precision. As a result, precise verification of the Wenzel wetting model has remained an open scientific question for the past 79 years. Here we introduce a new class of liquid-infused surfaces called slippery rough surfaces -- surfaces with significantly reduced Δθ* compared to conventional rough surfaces--and use them to experimentally assess the Wenzel equation with the highest precision to date. We acknowledge the funding support by National Science Foundation (NSF) CAREER Award #: 1351462 and Office of Navy Research MURI Award #: N00014-12-1-0875. Stogin acknowledges the support from the NSF Graduate Research Fellowship (Grant No. DGE1255832).

  19. Roughness coefficients for stream channels in Arizona

    USGS Publications Warehouse

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

           n in which V = mean cross-sectional velocity of flow, in feet per second; R = hydraulic radius at a cross section, which is the cross-sectional area divided by the wetter perimeter, in feet; Se = energy slope; and n = coefficient of roughness. Many research studies have been made to determine "n" values for open-channel flow (Carter and others, 1963). Guidelines for selecting coefficient of roughness for stream channels are given in most of the literature of stream-channel hydraulics, but few of the data relate directly to streams of Arizona, The U.S> Geological Survey, at the request of the Arizona Highway Department, assembled the color photographs and tables of the Manning "n" values in this report to aid highway engineers in the selection of roughness coefficients for Arizona streams. Most of the photographs show channel reaches for which values of "n" have been assigned by experienced Survey personnel; a few photographs are included for reaches where "n" values have been verified. Verified "n" values are computed from a known discharge and measured channel geometry. Selected photographs of stream channels for which "n" values have been verified are included in U.S. Geological Survey Water-Supply Paper 1849 (Barnes, 1967); stereoscopic slides of Barnes' (1967) photographs and additional photographs can be inspected at U.S> Geological Survey offices in: 2555 E. First Street, Tucson; and 5017 Federal Building, 230 N. First Avenue, Phoenix.

  20. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  1. Soil Surface Roughness through Image Analysis

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Saa-Requejo, A.; Valencia, J. L.; Moratiel, R.; Paz-Gonzalez, A.; Agro-Environmental Modeling

    2011-12-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on several factors being one of them surface micro-topography, usually quantified trough soil surface roughness (SSR). SSR greatly affects surface sealing and runoff generation, yet little information is available about the effect of roughness on the spatial distribution of runoff and on flow concentration. The methods commonly used to measure SSR involve measuring point elevation using a pin roughness meter or laser, both of which are labor intensive and expensive. Lately a simple and inexpensive technique based on percentage of shadow in soil surface image has been developed to determine SSR in the field in order to obtain measurement for wide spread application. One of the first steps in this technique is image de-noising and thresholding to estimate the percentage of black pixels in the studied area. In this work, a series of soil surface images have been analyzed applying several de-noising wavelet analysis and thresholding algorithms to study the variation in percentage of shadows and the shadows size distribution. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010- 21501/AGR and by Xunta de Galicia through project no INCITE08PXIB1621 are greatly appreciated.

  2. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  3. Black Holes At the Centers of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.; Shahinyan, Karlen; Sugarman, Hannah R.; Vélez, Darik O.; Eracleous, Michael

    2014-12-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d≤slant 80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with {{M}BH}≤slant {{10}6} {{M}⊙ }. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. Thus, as a set, the host galaxies in our sample are the least massive objects in the very local universe certain to contain central black holes. Our sample is dominated by narrow-line (type 2) AGNs, and it appears to have a much lower fraction of broad-line objects than that observed for luminous, optically selected Seyfert galaxies. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O iii] λ 5007 luminosities of the Seyfert nuclei in our sample have a median value of {{L}5007}=2× {{10}5} {{L}⊙ } and extend down to ˜ {{10}4} {{L}⊙ }. Using published data for broad-line IMBH candidates, we have derived an [O iii] bolometric correction of log ({{L}bol}/{{L}5007})=3.0+/- 0.3, which is significantly lower than values obtained for high-luminosity AGNs. Applying this correction to our sample, we obtain minimum black hole mass estimates that fall mainly in the 103 {{M}⊙ }-104 {{M}⊙ } range, which is roughly where the predicted mass functions for different black hole seed formation scenarios overlap the most. In the stellar mass range that includes the bulk of the AGN host galaxies in our sample, we derive a lower limit on the AGN fraction of a few

  4. Different Effects of Roughness (Granularity) and Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael

    2010-05-01

    With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most

  5. M-dwarf binaries as tracers of star and brown dwarf formation

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Janson, Markus; Kroupa, Pavel; Leigh, Nathan; Thies, Ingo

    2015-09-01

    The separation distribution for M-dwarf binaries in the AstraLux survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here, a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which `star-like' binaries with late-type primaries (≲1.5 M⊙) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate `BD-like' population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late AstraLux sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-dwarfs in Multiples (MinMS) data. We note that the latter survey is potentially in tension with the early AstraLux data. Concluding, the AstraLux and MinMS data are unable to unambiguously distinguish whether or not BDs are a continuous extension of the stellar IMF. Future observational efforts are needed to fully answer this interesting question. The DPS model predicts that binaries outside the sensitivity range of the AstraLux survey remain to be detected. For application to future data, we present a means to observationally measure the overlap of the putative BD-like branch and the stellar branch. We discuss the meaning of universal star formation and distribution functions.

  6. A Very Cool Pair of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them

  7. How Typical Are the Local Group Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Dalcanton, Julianne J.; Skillman, Evan D.; Holtzman, Jon; Williams, Benjamin F.; Gilbert, Karoline M.; Seth, Anil C.; Cole, Andrew; Gogarten, Stephanie M.; Rosema, Keith; Karachentsev, Igor D.; McQuinn, Kristen B. W.; Zaritsky, Dennis

    2011-12-01

    We compare the cumulative star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D <~ 4 Mpc), in order to understand how typical the LG dwarf galaxies are relative to those in the nearby universe. The SFHs were derived in a uniform manner from high-quality optical color-magnitude diagrams constructed from Hubble Space Telescope imaging. We find that the mean cumulative SFHs of the LG dwarfs are comparable to the mean cumulative SFHs of the ANGST sample for the three different morphological types (dwarf spheroidals/ellipticals: dSph/dE; dwarf irregulars: dI; transition dwarfs: dTrans). We also discuss effects such as population gradients and systematic uncertainties in the stellar models that may influence the derived SFHs. Both the ANGST and LG dwarf galaxies show a consistent and strong morphology-density relationship, emphasizing the importance of environment in the evolution of dwarf galaxies. Specifically, we confirm that dIs are found at lower densities and higher luminosities than dSphs, within this large sample. We also find that dTrans are located in similar environments to those occupied by dwarf irregular galaxies, but have systematically lower luminosities that are more comparable to those of dwarf spheroidals. The similarity of the SFHs and morphology-density relationships of the LG and ANGST dwarf galaxies suggests that the LG dwarfs are a good representation of dwarf galaxies in the local universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Thermal Stability of Ice on Ceres with Rough Topography

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Aharonson, Oded

    2015-11-01

    The dwarf planet Ceres may have an ice-rich crust, and subsurface ice exposed by impacts or endogenic activity would be subject to sublimation. The “bright spots” recently discovered by the Dawn mission on the illuminated surface of Ceres have prompted speculation regarding their possible icy composition and the youthful age this might imply. Furthermore, sublimation of ice at the surface or in the interior of Ceres could explain water vapor observed on more than one occasion in the exosphere. We investigated the possible distribution and lifetimes of water ice and other volatiles on Ceres using detailed thermal models, including realistic thermophysical properties and surface roughness.Topographic shadowing creates polar cold traps where a small, but non-negligible fraction (~0.4%) of Ceres' surface is perennially below the ~110 K criterion for 1 Gyr of H2O ice stability. These areas are found above 60° latitude. Other molecules (CH3OH, NH3, SO2, CO2) may be cold-trapped in smaller abundances. A model for the transport, gravitational escape and photoionization of H2O molecules suggests net accumulation in the cold traps. At latitudes 0° - 30°, ice is stable under solar illumination only briefly (~10-100 yr), unless it has high albedo and thermal inertia, in which case lifetimes of > 104 yr are possible.Buried ice is stable within a meter for > 1 Gyr at latitudes higher than ~50°. An illuminated polar cap of water ice would be stable within a few degrees of the poles only if it maintained a high albedo (> 0.5) at present obliquity. If the obliquity exceeded 5° in the geologically recent past, then a putative polar cap would have been erased. Finally, a small hemispheric asymmetry exists due to the timing of Ceres' perihelion passage, which would lead to a detectable enhancement of ice in the northern hemisphere if the orbital elements vary slowly relative to the ice accumulation rate. Our model results are potentially testable during the Dawn science

  9. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  10. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  11. Formation of Brown Dwarfs LTSA 2001

    NASA Technical Reports Server (NTRS)

    Luhman, Kevin L.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goals of the work funded by this grant are: (1) The measurement of the mass function and minimum mass of free-floating brown dwarfs down to the mass of Jupiter; (2) The measurement of the frequency of wide brown dwarf and planetary companions down to the mass of Jupiter as function of primary mass (0.02-2 Msun), age (1-10 Myr), and environment (clusters vs. dispersed regions). For the first objective, we have completed the design of guaranteed SIRTF observations of nearby star-forming regions and now await the launch of the mission in April 2003. In support of these upcoming observations, in the fall of 2002 we obtained optical spectroscopy at the MMT and the 1.5-meter telescope at Fred Lawrence Whipple Observatory for candidate young low-mass stars and brown dwarfs in the IC348 and Taurus star-forming regions. Two papers that include these data in new measurements of the mass functions in these regions are near completion and will be submitted for publication to the Astrophysical Journal in January. We have also proposed deep optical and near-IR imaging of the SIRTF fields in the IC348, Chamaeleon, and Ophiuchus star-forming regions with the MMT, Magellan, and Gemini North telescopes in early 2003. For the second objective, we have used deep HST WFPC2 images to search for young giant planets and brown dwarfs around approximately 100 low-mass stars and brown dwarfs in the nearby cluster IC 348. We have completed all data reduction and have checked these data for candidate companions. We are in the process of writing a paper that describes these candidate companions and presents the companion detection limits that were achieved with HST. We will attempt followup spectroscopy of the most promising candidate companions to confirm their nature as cool companions rather than background field stars during the commissioning of the facility adaptive optics system for the Gemini North telescope early in 2003. In addition, in SIRTF guaranteed time observations we plan to

  12. TiNy Titans: The Role of Dwarf-Dwarf Interactions in Low-mass Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Besla, G.; Patton, D.; Johnson, K.; Kallivayalil, N.; Putman, M.; Privon, G.; Ross, G.

    2015-05-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the spectroscopic portion of the Sloan Digital Sky Survey and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M*,1/M*,2 < 10, projected separations <50 kpc, and pair member masses of 7 < log({{M}*}/{{M}⊙ }) < 9.7. The dwarf-dwarf merger sequence, as defined by TNT at z = 0, demonstrates conclusively and for the first time that the star formation enhancement observed for massive galaxy pairs also extends to the dwarf mass range. Star formation is enhanced in paired dwarfs in otherwise isolated environments by a factor of 2.3 (±0.7) at pair separations <50 kpc relative to unpaired analogs. The enhancement decreases with increasing pair separation and extends out to pair separations as large as 100 kpc. Starbursts, defined by Hα EQW >100 Å, occur in 20% of the TNT dwarf pairs, regardless of environment, compared to only 6%-8% of the matched unpaired dwarfs. Starbursts can be triggered throughout the merger (i.e., out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation and triggered starbursts, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs of the same stellar mass. Thus, there may be significant reservoirs of diffuse, non-star-forming neutral gas surrounding the dwarf pairs, or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas\\lt 0.4) and the only dwarfs, either paired or unpaired, with Hα EQW < 2 Å are found near massive galaxy hosts. We conclude that dwarf-dwarf interactions are significant drivers of galaxy evolution at the low-mass end, but

  13. HUBBLE SPACE TELESCOPE IMAGING AND SPECTRAL ANALYSIS OF TWO BROWN DWARF BINARIES AT THE L DWARF/T DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Bardalez-Gagliuffi, Daniella C.; Gizis, John E.

    2011-03-15

    We present a detailed examination of the brown dwarf multiples 2MASS J08503593+1057156 and 2MASS J17281150+3948593, both suspected of harboring components that straddle the L dwarf/T dwarf transition. Resolved photometry from Hubble Space Telescope/NICMOS shows opposite trends in the relative colors of the components, with the secondary of 2MASS J0850+1057 being redder than its primary, while that of 2MASS J1728+3948 is bluer. We determine near-infrared component types by matching combined-light, near-infrared spectral data to binary templates, with component spectra scaled to resolved NICMOS and K{sub p} photometry. Combinations of L7 + L6 for 2MASS J0850+1057 and L5 + L6.5 for 2MASS J1728+3948 are inferred. Remarkably, the primary of 2MASS J0850+1057 appears to have a later-type classification compared to its secondary, despite being 0.8-1.2 mag brighter in the near-infrared, while the primary of 2MASS J1728+3948 is unusually early for its combined-light optical classification. Comparison to absolute magnitude/spectral type trends also distinguishes these components, with 2MASS J0850+1057A being {approx}1 mag brighter and 2MASS J1728+3948A {approx} 0.5 mag fainter than equivalently classified field counterparts. We deduce that thick condensate clouds are likely responsible for the unusual properties of 2MASS J1728+3948A, while 2MASS J0850+1057A is either an inflated young brown dwarf or a tight unresolved binary, making it potentially part of a wide, low-mass, hierarchical quintuple system.

  14. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development.

    PubMed

    Lawit, Shai J; Wych, Heidi M; Xu, Deping; Kundu, Suman; Tomes, Dwight T

    2010-11-01

    DELLA proteins are nuclear-localized negative regulators of gibberellin signaling found ubiquitously throughout higher plants. Dominant dwarfing mutations of DELLA proteins have been primarily responsible for the dramatic increases in harvest index of the 'green revolution'. Maize contains two genetic loci encoding DELLA proteins, dwarf plant8 (d8) and dwarf plant 9 (d9). The d8 gene and three of its dominant dwarfing alleles have been previously characterized at the molecular level. Almost 20 years after the initial description of the mutant, this investigation represents the first molecular characterization of d9 and its gibberellin-insensitive mutant, D9-1. We have molecularly, subcellularly and phenotypically characterized the gene products of five maize DELLA alleles in transgenic Arabidopsis. In dissecting the molecular differences in D9-1, a critical residue for normal DELLA function has been uncovered, corresponding to E600 of the D9 protein. The gibberellin-insensitive D9-1 was found to produce dwarfing and, notably, earlier flowering in Arabidopsis. Conversely, overexpression of the D9-1 allele delayed flowering in transgenic maize, while overexpression of the d9 allele led to earlier flowering. These results corroborate findings that DELLA proteins are at the crux of many plant developmental pathways and suggest differing mechanisms of flowering time control by DELLAs in maize and Arabidopsis.

  15. The Dwarf Novae Ty Psc and V436 Cen During Quiescence: Exposed White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Nadalin, I.; Sion, E. M.

    2000-12-01

    The dwarf novae TY Psc and V436 Cen are SU UMa systems with very similar orbital periods, similar recurrence times for normal outbursts ( 23 days) and superoutbursts ( ~ 340 days) and nearly identical outburst amplitudes. We have applied the Massa-Fitzpatrick (2000) flux calibration correction to the archival IUE NEWSIPS SWP spectra of these two systems, obtained during dwarf nova quiescence. We have carried out high gravity model atmosphere using the codes TLUSTY195, SYNSPEC42, ROTIN and accretion disk synthetic spectra from the grid of Wade and Hubeny (1998). We present our results on the physical properties of the underlying white dwarf accreters, including temperature, gravity, chemical abundances estimates, and the accretion rate during quiescence. We discuss our results in the context of the overall picture of accretion physics in dwarf novae and the effects of accretion on the white dwarf. This research was supported in part by NSF grant AST 99-01955, NASA ADP grant NAG5-8388 and by summer research funding from the NASA- Delaware Space Grant Colleges Consortium.

  16. Influence of surface roughness on the adhesion of elastic films.

    PubMed

    Palasantzas, G; De Hosson, J Th M

    2003-02-01

    It is shown that a self-affine roughness at the junction of an elastic film and a hard solid substrate influences considerably the adhesion of the elastic film, especially for small roughness exponents H (H<0.5) and/or large long wavelength roughness ratios w/xi with w being the rms roughness amplitude and xi being the in-plane roughness correlation length. Analytical calculations of the local surface slope allows an estimate of the roughness effects on the adhesion energy more precisely than those presented in earlier works (especially for roughness exponents H<0.5). For weak surface roughness the elastic energy contribution is significant on the film effective surface energy deltagamma(eff) and on pull-off force for elastic modulus E in the range of GPa. Moreover, in the case of partial contact an estimation of the pull-off force shows that it strongly decreases with reducing contact area due to surface.

  17. Effective field model of roughness in magnetic nano-structures

    SciTech Connect

    Lepadatu, Serban

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domain wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.

  18. Modeling roughness effects in turbulent boundary layers using elliptic relaxation

    NASA Astrophysics Data System (ADS)

    George, Jacob; de Simone, Alejandro; Iaccarino, Gianluca; Jimenez, Javier

    2010-11-01

    We present results from the efforts towards modeling roughness in turbulent boundary layers using elliptic relaxation. This scheme, included in the v^2-f model and first formulated by Durbin (1993, JFM, vol. 249, p.465) for smooth-walls, uses an elliptic partial differential equation to incorporate near-wall turbulence anisotropy and non-local pressure-strain effects. The use of the elliptic PDE is extended to model roughness effects in various transitionally-rough and fully-rough boundary layers consisting of a uniform and sparse distribution of cylinders for which experimental data is available. The roughness effects are incorporated through the elliptic PDE by including the length and time scales that the roughness imposes upon the flow, which the experiment has shown to be constant within the rough-walls. Further modeling of roughness effects is considered by altering the source terms in the elliptic PDE.

  19. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the...

  20. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the...

  1. Effect of surface morphology on drag and roughness sublayer in flows over regular roughness elements

    NASA Astrophysics Data System (ADS)

    Placidi, Marco; Ganapathisubramani, Bharathram

    2014-11-01

    The effects of systematically varied roughness morphology on bulk drag and on the spatial structure of turbulent boundary layers are examined by performing a series of wind tunnel experiments. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO™ bricks are employed. Twelve different patterns are adopted in order to methodically examine the individual effects of frontal solidity (λF, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λP, plan area of roughness elements per unit wall-parallel area), on both the bulk drag and the turbulence structure. A floating element friction balance based on Krogstad & Efros (2010) was designed and manufactured to measure the drag generated by the different surfaces. In parallel, high resolution planar and stereoscopic Particle Image Velocimetry (PIV) was applied to investigate the flow features. This talk will focus on the effects of each solidity parameter on the bulk drag and attempt to relate the observed trends to the flow structures in the roughness sublayer. Currently at City University London.

  2. Rough Evaluation Structure: Application of Rough Set Theory to Generate Simple Rules for Inconsistent Preference Relation

    NASA Astrophysics Data System (ADS)

    Gehrmann, Andreas; Nagai, Yoshimitsu; Yoshida, Osamu; Ishizu, Syohei

    Since management decision-making becomes complex and preferences of the decision-maker frequently becomes inconsistent, multi-attribute decision-making problems were studied. To represent inconsistent preference relation, the concept of evaluation structure was introduced. We can generate simple rules to represent inconsistent preference relation by the evaluation structures. Further rough set theory for the preference relation was studied and the concept of approximation was introduced. One of our main aims of this paper is to introduce a concept of rough evaluation structure for representing inconsistent preference relation. We apply rough set theory to the evaluation structure, and develop a method for generating simple rules for inconsistent preference relations. In this paper, we introduce concepts of totally ordered information system, similarity class of preference relation, upper and lower approximation of preference relations. We also show the properties of rough evaluation structure and provide a simple example. As an application of rough evaluation structure, we analyze questionnaire survey of customer preferences about audio players.

  3. A low-temperature companion to a white dwarf star

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Zuckerman, B.

    1988-01-01

    An infrared object located about 120 AU from the white dwarf GD165 has been discovered. With the exception of the possible brown dwarf companion to Giclas 29-38 reported last year, the companion to GD165 is the coolest (2100 K) dwarf star ever reported and, according to some theoretical models, it should be a substellar brown dwarf with a mass between 0.06 and 0.08 solar mass. These results, together with newly discovered low-mass stellar companions to white dwarfs, change the investigation of very low-mass stars from the study of a few chance objects to that of a statistical distribution. In particular, it appears that very low-mass stars and perhaps even brown dwarfs could be quite common in the Galaxy.

  4. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  5. A new dwarf detection algorithm applied to M101

    NASA Astrophysics Data System (ADS)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija

    2017-01-01

    The Lambda Cold Dark Matter model for structure formation has been very successful at reproducing observations of large scale structures. However, challenges emerge at sub-galactic scales, e.g. the number of dwarfs around the Milky Way show an order of magnitude difference with simulations (the 'missing satellites problem'). There are several theories to explain this apparent discrepancy but further observations of Local Volume galaxies and their substructure is required to constrain these models by better sampling halo to halo scatter. Here we report on a survey of the M101 group from archival data and a novel dwarf detection algorithm. This survey has discovered 26 new dwarf candidates in the M101 system, extending the dwarf luminosity function by two magnitudes, to M=-7.5. These dwarf candidates also show a distinct spatial asymmetry suggestive of an infalling dwarf group.

  6. Albedo over rough snow and ice surfaces

    NASA Astrophysics Data System (ADS)

    Lhermitte, Stef; Abermann, Jakob; Kinnard, Christophe

    2014-05-01

    Surface albedo determines the shortwave radiation balance, arguably the largest energy balance component of snow and ice surfaces. Consequently, incorporation of the spatio-temporal variability of albedo is essential when assessing the surface energy balance of snow and ice surfaces. This can be done by using ground-based measurements or albedo data derived from remote sensing, or by modelling albedo based on radiative transfer models or empirically based parameterizations. One decisive factor when incorporating albedo data is the representativeness of surface albedo, certainly over rough surfaces where albedo measurements at a specific location (i.e., apparent albedo) can differ strongly from the material albedo or the true albedo (i.e., effective albedo) depending on the position of the sun/sensor and the surface roughness. This stresses the need for a comprehensive understanding of the effect of surface roughness on albedo and its impact when using albedo data for validation of remote sensing imagery, interpretation of automated weather station (AWS) radiation data or incorporation in energy balance models. To assess the effect of surface roughness on albedo an intra-surface radiative transfer (ISRT) model was combined with albedo measurements on a penitente field on Glaciar Tapado in the semi-arid Andes of Northern Chile. The ISRT model shows albedo reductions between 0.06 and 0.35 relative to flat surfaces with a uniform material albedo. The magnitude of these reductions primarily depends on the penitente geometry, but the shape and spatial variability of the material albedo also play a major role. Secondly, the ISRT model was used to reveal the effect of using apparent albedo to infer the effective albedo over a rough surface. This effect is especially strong for narrow penitentes, resulting in sampling biases up to ±0.05. The sampling biases are more pronounced when the sensor is low above the surface, but remain relatively constant throughout the day

  7. Pulsar searches in nearby dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  8. Evolution and infrared spectra of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Hubbard, William B.; Marley, Mark S.

    1986-01-01

    Self-consistent models are constructed for the structure, evolution, and observable properties of degenerately cooling objects, or 'brown dwarfs'. Model atmospheres composed of a range of likely gaseous and particulate opacity sources are calculated in order to provide a boundary condition for interior temperature-pressure profiles and to determine the emergent spectra for such objects. The radius derived from the interior models is combined with the emergent fluxes calculated from the atmosphere model to fit the data of McCarthy, Probst, and Low (1985) and to derive the luminosity and mass of VB 8B. The latter is found to be most probably an 0.05 solar mass object with effective temperature in the 1200-1500 K range and an atmosphere which very likely contains particulate absorbers. Key changes in chemical oxidation state and condensation of major constituents during the evolution of brown dwarfs are presented.

  9. Electron capture in carbon dwarf supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  10. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  11. An extreme Population II dwarf without lithium

    SciTech Connect

    Hobbs, L.M.; Thorburn, J.A.; Welty, D.E. Chicago, University, IL )

    1991-06-01

    G186 - 26 is an apparently normal, Population II dwarf with Fe/H = {minus} 2.9 and Te = 6220 K. A high-dispersion spectrogram of this extreme halo star recorded at the Li I 6707 line shows no detectable surface lithium, at an abundance upper limit N(Li) = 12 + log (Li/H) not greater than 1.23. In comparison with the uniform lithium abundance N(Li) of about 2.17 found previously in 11 other halo dwarfs with Fe/H less than about {minus}2.6, the minimum deficiency of surface lithium in G 186 {minus} 26 therefore exceeds a factor of 8. 19 refs.

  12. Speckle pattern texture analysis method to measure surface roughness

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I.; Sadovoy, A.; Doronin, A.; Meglinski, I.

    2013-02-01

    Speckle pattern texture analysis method is applied to measure surface roughness of human skin. The method is based on analyzing of a gray level co-occurrence matrix occurred from a speckle image of a rough surface. Paper with different surface roughness is used as a skin phantom. The roughness is controlled by profilometry measurements. The developed methodology could find wide application in dermatology and tissue diagnostics.

  13. Quantifying surface roughness over debris covered ice

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rounce, David; Ross, Andrew

    2016-04-01

    Aerodynamic roughness length (z0) remains a major uncertainty when determining turbulent heat fluxes over glacier surfaces, and can vary by an order of magnitude even within a small area and through the melt season. Defining z0 over debris-covered ice is particularly complex, because the surface may comprise clasts of greatly varying size, and the broader-scale surface relief can be similarly heterogeneous. Several recent studies have used Structure from Motion to data model debris-covered surfaces at the centimetric scale and calculate z0 based on measurements of surface microtopography. However, few have validated these measurements with independent vertical wind profile measurements, or considered how the measurements vary over a range of different surface types or scales of analysis. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post-monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed measured over both sites enable us to derive measurements of aerodynamic roughness that are similar in magnitude, with z0 at the second site exceeding that at the first by < 1 cm. During our observation period, snow covered the second site for three days, but the impact on z0 is small, implying that roughness is predominantly determined by major rock size obstacles rather than the general form of the surface. To complement these aerodynamic measurements we also conducted a Structure from Motion survey across each patch and calculated z0 using microtopographic methods published in a range of recent studies. We compare the outputs of each of these algorithms with each other and with the aerodynamic measurements, assess how they perform over a range of scales, and evaluate the validity of using microtopographic methods where aerodynamic measurements

  14. Parametric Flow Visualization of Dynamic Roughness Effects

    NASA Astrophysics Data System (ADS)

    Jakkali, Vinay

    The ever growing need in the aircraft industry to enhance the performance of a flight vehicle has led to active areas of research which focus on the control of the local boundary layer by both passive and active methods. An effective flow control mechanism can improve the performance of a flight vehicle in various ways, one of which is eliminating boundary layer separation. To be effective the mechanism not only needs to control the boundary layer as desired, but also use less energy than the resulting energy savings. In this study, the effectiveness of an active flow control technique known as dynamic roughness (DR) has been explored to eliminate the laminar separation bubble near the leading edge and also to eliminate the stall on a NACA 0012 airfoil wing. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with displacement amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency. A flow visualization study was conducted on a 2D NACA 0012 airfoil model at different angles of attack, and also varying the Reynolds number and DR actuation frequency with fixed maximum DR amplitude. The experimental results from this study suggests that DR is an effective method of reattaching a totally separated boundary layer. In addition, this study discusses some of the fundamental physics behind the working of DR and proposes some non-dimensional terms that may help to explain the driving force behind the mechanism.

  15. Laser scattering properties of rough spherical surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Chun-ping; Wu, Jian

    2007-12-01

    An approximate model is developed to study the properties of laser scattering from a rough spherical surface based on a random facet model and the electromagnetic scattering theory. For actual spheres, for instance oilcan, its lateral correlation length is much longer than the incident laser wavelength, and its surface distribution is usually isotropic and conforms to Gaussian distribution. Hence, it is feasible to deal with scattering of the rough spherical surface with the random facet model. First, power scattered into a detective system can be denoted for every facet with the scattering model of a coarse plane corresponded to the isotropic Gaussian statistics. Second, total power received by the detective system should correspond to incoherent addition of power scattered into a far-field detector system by all facets. Here, an incident shadow function has been taken into account to exclude the contribution of the facets not being illuminated. Likewise, a scattering shadow function is introduced to exclude the contribution of the scattered light blocked by undulations of spherical surface. An unfolded factor has been taken into account in this model, too. Finally, to verify this model, the angular distribution of the scattering intensity in far field is calculated and analyzed under different cases. The results show that the scattering intensity is stronger in the backward than in other directions if the spherical surface is smooth, but if the spherical surface is rough to some extent, the incident laser power will be scattered to other direction and there is faint scattered intensity in forward direction concomitantly. We can use these properties to make remote sensing for spherical objects.

  16. The field white dwarf mass distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

    2016-09-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

  17. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  18. Polarimetric thermal emission from rough surfaces

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Oneill, K.; Lohanick, A.

    1993-01-01

    Recent theoretical works have suggested the potential of passive polarimetry in the remote sensing of geophysical media. It was shown that the third Stokes parameter U of the thermal emission may become larger for azimuthally asymmetric fields of observation. In order to investigate the potential applicability of passive polarimetry to the remote sensing of ocean surface, measurements of the polarimetric thermal emission from a sinusoidal water surface and a numerical study of the polarimetric thermal emission from randomly rough ocean surfaces were performed. Measurements of sinusoidal water surface thermal emission were performed using a sinusoidal water surface which was created by placing a thin sheet of fiberglass with a sinusoidal profile in two dimensions extended infinitely in the third dimension onto a water surface. The theory of thermal emission from a 'two-layer' periodic surface is derived and the exact solution is performed using both the extended boundary condition method (EBC) and the method of moments (MOM). The theoretical predictions are found to be in good agreement with the experimental results once the effects of the radiometer antenna pattern are included and the contribution of background noise to the measurements is modeled. The experimental results show that the U parameter indicates the direction of periodicity of the water surface and can approach values of up to 30 K for the surface observed. Next, a numerical study of polarimetric thermal emission from randomly rough surfaces was performed. A Monte Carlo technique utilizing an exact method for calculating thermal emission was chosen for the study to avoid any of the limitations of the commonly used approximate methods in rough surface scattering. In this Monte Carlo technique, a set of finite rough surface profiles in two dimensions with desired statistics was generated and extended periodically. The polarimetric thermal emission from each surface of the set was then calculated using

  19. Robust surface roughness indices and morphological interpretation

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery

  20. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  1. Physical Properties of White Dwarfs from Multi-Band Photometry

    NASA Astrophysics Data System (ADS)

    Raddi, R.

    2017-03-01

    We describe a hierarchical Bayesian model to measure the physical parameters (mass, cooling age, distance, interstellar extinction) of single white dwarfs using only multi-band UV to IR photometry. We test our model on a set of known white dwarfs with well-assessed atmospheric parameters, determined via optical spectroscopy. Looking forward to the results of the ESA Gaia mission, we derive the posterior distributions of white dwarf parameters in two different scenarios with known or unknown parallaxes.

  2. Metallicities of Tidal Dwarf Candidates in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Hunsberger, S. D.; Glenn, A. D.; Charlton, J. C.; Ciardullo, R.; Zaritsky, D.

    1998-12-01

    Compact groups are active sites of galaxy interactions/mergers and thus provide an environment in which to study the formation of dwarf galaxies in tidal debris, i.e., tidal dwarfs. Such dwarf galaxies, still within the tidal debris where they were born, are being studied in both field and cluster environments (Duc and Mirabel 1997, Hibbard et al. 1997, Malphrus et al. 1997). In order to evaluate their contribution to the general galaxy population, we need to focus on some property which distinguishes ``tidal'' dwarfs from ``classical'' dwarfs (those galaxies whose origin is primordial). If tidal dwarf galaxies are formed from material stripped from the outer regions of giant galaxies then we expect enhanced metallicities in dwarfs of tidal origin, particularly those produced during the present epoch when the ISM of giant galaxies has been chemically enriched by many generations of stars. Duc and Mirabel (1998) report that their sample of tidal dwarf galaxies are more metal rich than classical dwarfs of the same luminosity. In a survey of 42 Hickson compact groups (HCGs), we detected 47 tidal dwarf candidates (Hunsberger et al. 1996). In two of the groups (HCGs 31 and 92), 15 candidates were also emission-line objects. We obtained long-slit spectra with the Kitt Peak 2.1m and used the line ratio [OII]+[OIII]/[Hβ ] to estimate oxygen abundances. We find higher than expected oxygen abundances based on the metallicity-luminosity relation for ``classical'' dwarfs (Richer and McCall 1995, Skillman et al. 1989). We will present our results and discuss implications for assessing the survivability of tidal dwarfs in compact groups and other environments.

  3. Luminosities and temperatures of M dwarf stars from infrared photometry

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.

    1974-01-01

    Bolometric magnitudes for a large number of M type dwarf stars, obtained by broadband infrared photometry at 1.65, 2.2, and 3.5 microns, are reviewed. The data obtained indicate that one parameter is sufficient to describe the blanketing in all of the UBVRI bands for all types of M dwarfs. In general, late M dwarfs seem to have lower effective temperatures than are predicted by theoretical models.

  4. Parallax and Luminosity Measurements of an L SubDwarf

    DTIC Science & Technology

    2008-01-10

    determination of both parameters would provide a powerful test of interior and evolutionary models for low-mass stars and brown dwarfs. Subject headinggs...stars: chemically peculiar — stars: fundamental parameters — stars: individual (2MASS J05325346+8246465) — stars: low-mass, brown dwarfs — subdwarfs...Online material: color figures 1. INTRODUCTION The lowest luminosity stars and brown dwarfs are among the most useful probes of planetary , stellar

  5. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  6. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  7. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  8. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  9. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  10. Moisture diffusivity of rough rice under infrared radiation drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To design efficient infrared (IR) dryers for rough rice, it is important to understand the drying behavior of rough rice under IR heating. The objective of this study was to determine the moisture diffusivity of rough rice under IR heating followed by cooling. The effects of initial moisture content...

  11. Analysis of Pad Surface Roughness on Copper Chemical Mechanical Planarization

    NASA Astrophysics Data System (ADS)

    Matsumura, Yoshiyuki; Hirao, Takashi; Kinoshita, Masaharu

    2008-04-01

    For Cu high removal rate (RR) chemical mechanical planarization (CMP), the effect of pad surface roughness on Cu RR was investigated. Because surface roughness measured by the stylus profiler and the laser microscope (optical) profiler includes various topographies, it is difficult to conclude which effective roughness parameter affects Cu RR. Accordingly, the measured surface roughness was classified into two types of roughness scales. One is the topography by pores, and the other one is the micro roughness caused by conditioner. These were divided by a wavelength of surface profile. In this result, a stylus profile could not precisely trace two types of roughness scales. On the other hand, an optical magnification of 400 could trace the change in topography by micropores. And an optical magnification of 1000 could trace the change in micro roughness caused by conditioning. In the evaluation of Cu RR and the classified roughness, micro roughness measured by the optical magnification of 1000 was strongly correlated with Cu RR. It is concluded that Cu RR is affected by micro roughness caused by conditioner, and also its roughness is necessary to be measured by an optical profiler at high magnification.

  12. Roughness Effects on Wall-Bounded Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Flack, Karen

    2013-11-01

    The importance of surface roughness is well known for wall-bounded flows. Roughness typically increases drag in turbulent boundary layers due to pressure forces on the roughness elements. While rough-wall flows are ubiquitous in engineering practice, the issues of modeling the roughness in computations and accurately predicting the increase in frictional drag remain elusive goals. In this talk, the effect of roughness on the mean flow, turbulence statistics, and turbulence structure will be discussed. In particular, rough-wall flows will be examined in light of Townsend's Reynolds number similarity hypothesis, which states that the turbulent motions in the outer layer are independent of surface roughness when the Reynolds number is sufficiently high. Additionally, the presentation will include recent work on the estimation of frictional drag due to surface roughness. Detailed experiments have been performed in the transitionally rough and fully rough regimes. This research is part of an effort to determine the relevant predictive scales based solely on the roughness topography. Work supported by the Office of Naval Research.

  13. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  14. Brown Dwarfs: Discovery and Detailed Studies

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    2003-01-01

    The grant supported my research and that of my student (Ben Lane) and post-doctoral fellow (Zapatero Osorio). We were productive as can be seen from the list of publications below. In particular, we note three firsts. Using the exquisite angular resolution provided by the AO system at Keck we were able to directly determine the masses of two objects and show that one was a brown dwarf -- the first direct determination of the mass of a brown dwarf. Next, Mr. Lane reported the first direct demonstration of pulsations of a Cepheid star (this report received attention in the popular press). Finally, Dr. Zapatero Osorio continued her work on the search for young brown dwarfs and planets in young clusters with considerable success -- namely the detection of objects with mass below 10 M_J (these can be plausibly argued to be freely floating planets). Mr. Lane graduated and is now a Pappalardo Fellow at MIT and Dr. Zapatero Osorio obtained a position back in her home country.

  15. Stellar model chromospheres. XIII - M dwarf stars

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S.; Worden, S. P.; Linsky, J. L.

    1982-01-01

    Single-component, homogeneous model chromospheres that are consistent with high-resolution profiles of the Ca II K line calibrated in surface flux units for three dMe and 2 dM stars observed at quiescent times are constructed. The models reveal several systematic trends. Large values of the ratio of T(min) to T(eff) are derived, indicating a large amount of nonradiative heating present in the upper photospheres of M dwarf stars. It is also found that the lower chromospheric temperature gradient is similar for all the M dwarf stars. Since for the models here the chromospheric K line emission strength is most sensitive to the total amount of chromospheric material present within the approximate temperature range T(min)-6000 K, increasing the emission strength is not simply due to increasing chromospheric temperature gradients. It is also found that both the electron density and electron temperature at one thermalization length in the K line below the top of the chromospheres are greater in the dMe stars than in the dM stars. The M dwarf models here have microturbulent velocities between 1 and 2 km/sec, which are much smaller than for solar chromosphere models.

  16. White Dwarf Convection Preceding Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.

    2010-01-01

    In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.

  17. The M Dwarf Eclipsing Binary CU Cancri

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; Pilachowski, C. A.; Terrell, Dirk

    2017-02-01

    Spectral features, radial velocities, elemental abundance estimates, other spectral data, and BVIC light curves are reported for the double-M dwarf eclipsing binary CU Cancri—a good target for a radius check versus the Zero Age Main Sequence (ZAMS) due to the low component masses and corresponding very slow evolutionary expansion. The estimate of [Fe/H] is about 0.4, although continuum placement and other difficulties due to line crowding introduce the usual uncertainties for red dwarfs. Detection of the Li i λ6707 line was attempted, with an estimated upper limit of 50 mÅ. Spectral and photometric indicators of stellar activity are described and illustrated. Other objectives were to measure the stellar radii via simultaneous velocity and light-curve solutions of earlier and new data while also improving the ephemeris by filling gaps in timewise coverage with the new velocities and eclipse data from the new light curves. The radii from our solutions agree within about 2% with those from Ribas, being slightly larger than expected for most estimates of the ZAMS. Some aspects of the red dwarf radius anomaly are briefly discussed. Evolution tracks show only very slight age-related expansion for masses near those in CU Cnc. Such expansion could be significant if CU Cnc were similar in age to the Galaxy, but then its Galactic velocity components should be representative of Population II, and they are not.

  18. White dwarf cosmochronology in the solar neighborhood

    SciTech Connect

    Tremblay, P.-E.; Kalirai, J. S.; Soderblom, D. R.; Cignoni, M.; Cummings, J.

    2014-08-20

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ≲ M {sub initial}/M {sub ☉} ≲ 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ∼10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  19. Open Science Project in White Dwarf Research

    NASA Astrophysics Data System (ADS)

    Vornanen, T.

    2013-01-01

    I will propose a new way of advancing white dwarf research. Open science is a method of doing research that lets everyone who has something to say about the subject take part in the problem solving process. Already now, the amount of information we gather from observations, theory and modeling is too vast for any one individual to comprehend and turn into knowledge. And the amount of information just keeps growing in the future. A platform that promotes sharing of thoughts and ideas allows us to pool our collective knowledge of white dwarfs and get a clear picture of our research field. It will also make it possible for researchers in fields closely related to ours (AGB stars, planetary nebulae etc.) to join the scientific discourse. In the first stage this project would allow us to summarize what we know and what we don't, and what we should search for next. Later, it could grow into a large collaboration that would have the impact to, for example, suggest instrument requirements for future telescopes to satisfy the needs of the white dwarf community, or propose large surveys. A simple implementation would be a wiki page for collecting knowledge combined with a forum for more extensive discussions. These would be simple and cheap to maintain. A large community effort on the whole would be needed for the project to succeed, but individual workload should stay at a low level.

  20. Broken Surface Brightness Profiles in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Hunter, D. A.; Zhang, H. X.; LITTLE THINGS Team

    2011-01-01

    Recently it has been well shown that there are three different surface brightness profile types in spiral galaxies: (I) the minority, where the light falls off with a single exponential; (II) truncated, the majority, where the light falls off with one exponential to a break radius and then falls off more steeply; and (III) anti-truncated, where the light falls off with a more shallow exponential beyond the break radius. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that each type has a characteristic color trend with respect to the break location. In dwarf disk galaxies, however, there is a fourth type which is perhaps a special Type II case: the light profile is flat on the inside and then falls off exponentially beyond the break radius. We will show the different color trends for these four profile types from a large photometric study of dwarf disk galaxies and explore the ramifications of the differences between spirals and dwarfs. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  1. Turbulence and Star Formation in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hollyday, Gigja; Hunter, Deidre Ann; Little Things Team

    2015-01-01

    We are interested in understanding the nature and role of turbulence in the interstellar medium of dwarf irregular galaxies. Turbulence, resulting from a variety of processes, is a potential source for cloud formation, and thus star formation. We have undertaken an indirect analysis of turbulence via the third (skewness) and fourth (kurtosis) moments of the distribution of atomic hydrogen gas densities using the LITTLE THINGS data for a 40-count sample of nearby (<10.3 Mpc) dwarf galaxies. We followed the formulism used by Burkhart et al. (2010) in a study of the SMC. We found that there is evidence of turbulence in dwarf galaxies at a level comparable to that found in the SMC, but we have found no correlation between integrated star formation rates and integrated kurtosis values nor a clear correlation between kurtosis as a function of radius with gas surface density and star formation profiles. We are grateful for a summer internship provided by the Research Experiences for Undergraduates program at Northern Arizona University, run by Dr. Kathy Eastwood and Dr. David Trilling and funded by the National Science Foundation through grant AST-1004107.

  2. The Local Dwarf GALAXIES:BUILDING Blocks of Massive Ones? I.THE Fornax Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T. V.

    A chemical evolution of the Local Group dwarf galaxy Fornax is considered in the framework of the merger scenario. We suppose a galactic stellar halo to be formed as separate fragments which then merge; thus, we can calculate the set of such the fragments to reproduce the observed metallicity distribution function of a galaxy. Accordingly, if dwarf galaxies were such the systems, which, once merged, have formed massive galaxies, we need to obtain only one fragment to reproduce the observed metallicity distribution function of a dwarf galaxy. To test this assumption, the stellar metallicity distribution functions of Fornax was calculated in the framework of the merger scenario. The more than one fragment was obtained for galaxy under consideration; thus, it is unlikely the systems similar to Fornax to be building blocks of massive galaxies.

  3. Accretion phenomena in nearby star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  4. T Dwarf Variability Amplitudes Are Likely Stronger in the Optical

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Metchev, Stanimir; Kellogg, Kendra

    2015-01-01

    We have monitored twelve T dwarfs using an f814w filter (0.7-0.95 microns) to place in context the remarkable 10-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ~17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ~10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  5. Very Low-Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Rebolo, Rafael; Rosa Zapatero-Osorio, Maria

    2001-02-01

    Part I. Searches in Clusters, Stellar Associations and the Field: 1. Open clusters after HIPPARCOS J. S. Mermilliod; 2. Proper motions of very low mass stars and brown dwarfs in open clusters N. C. Hambly; 3. Parallaxes for brown dwarfs in clusters C. G. Tinney; 4. Very low mass stars and brown dwarfs in the Belt of Orion S. J. Wolk and F. M. Walter; 5. Photometric surveys in open clusters M. R. Zapatero Osorio; 6. The mass function of the Pleiades R. F. Jameson et al.; 7. Brown dwarfs and the low-mass initial mass function in young clusters K. L. Luhman; 8. Very low mass stars in globular clusters I. R. King and G. Piotto; 9. The DENIS very low mass star and brown dwarf results X. Delfosse and T. Forveille; 10. Preliminary results from the 2MASS core project J. Liebert et al.; Part II. Spectroscopic Properties, Fundamental Parameters and Modelling: 11. Properties of M dwarfs in clusters and the field S. L. Hawley et al.; 12. Spectroscopy of very low mass stars and brown dwarfs in young clusters E. L. Martin; 13. High resolution spectra of L type stars and brown dwarfs G. Basri et al.; 14. Modelling very low mass stars and brown dwarf atmospheres F. Allard; 15. Dust in very cool dwarfs T. Tsuji; 16. On the interpretation of the optical spectra of very cool dwarfs Ya. V. Pavlenko; 17. Absolute dimensions for M type dwarfs A. Gimenez; 18. Theory of very low mass stars and brown dwarfs I. Baraffe; Part III. Convection, Rotation and Acitivity: 19. Convection in low mass stars F. D'Antona; 20. Rotation law and magnetic field in M dwarf models G. Rudiger and M. Kuker; 21. Doppler imaging of cool dwarf stars K. G. Strassmeier; 22. X-ray Emission from cool dwarfs in clusters S. Randich; 23. X-ray variability for dM stars G. Micela and A. Marino; 24. The coronae of AD Leo and EV Lac S. Sciortino et al.; 25. Prospects of vuture X-ray missions for low mass stars and cluster stars R. Pallavicini.

  6. Satellite Quenching and the Lifecycle of Dwarf Galaxies.

    NASA Astrophysics Data System (ADS)

    Slater, Colin; Bell, Eric F.

    2015-01-01

    In the past ten years the known population of Local Group dwarf galaxies has expanded substantially, both to greater distances from the Milky Way and to lower dwarf masses. This growing sample allows us to study the dwarf system as a population, and ask if we can see in aggregate the signs of processes that would otherwise be difficult to trace in dwarfs individually. Following this strategy I will discuss how the quenching of dwarf galaxies can be modeled and understood at the population-level, and how we use that to constrain how possible quenching mechanisms must work if they are to reproduce the Local Group system that we see. I show that the distribution of quenched satellites can be reproduced by environmental quenching if and only if a single pericenter passage is sufficient to end star formation in low mass dwarfs. I also show that there is a significant transition in the effectiveness of quenching between low mass dwarfs and dwarfs at Magellanic cloud-like masses, with the higher mass dwarfs much more resilient to quenching. I present both ram pressure and delay time models to try to understand the origin of this transition.

  7. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  8. Tidal Evolution of Multiple Planet Systems Around Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Raymond, S. N.; Leconte, J.

    2012-10-01

    The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs' terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit. In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. We study the tidal evolution of planets around BDs using a standard tidal model and test the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both star and planet, and their tidal dissipation factor. We find that the most important parameter is the initial orbital distance with respect to the corotation distance. We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than about 0.1 and are repelled from the star. Some planets initially interior to corotation can survive if their inward tidal evolution is slower than the BD's spin evolution, although most initially close-in planets fall onto the BD. Next we studied multiple planet systems with a N-body code altered to include tidal forces. We present a few interesting case studies for systems of planets orbiting BDs. In one example, a close-in planet pushes a more distant planet outward while locked in resonance. In another example, rapid outward tidal migration destabilizes a system of three planets. In another case, the combination of eccentricity forcing from an outer planet and dissipation within the inner planet drives the inner planet into the BD despite being exterior to the corotation radius. We thank the CNRS’s PNP program for funding.

  9. Bridging the Brown Dwarf/Jupiter Temperature Gap with a Very Cold Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Liu, Michael

    2011-10-01

    Residing at the extremes of low mass, luminosity and temperature, brown dwarfs serve as laboratories for understanding gas-giant extrasolar planets. Still, until a few months ago, the coolest brown dwarf known was ~4 times warmer than Jupiter. We have now identified the nearby T9.5 dwarf CFBDSIR J1458+10 as a 0.11" physical binary. As established by our near-IR parallax to the system, the very blue secondary component is the coldest and least luminous object outside the solar system directly imaged. With an estimated temperature of ~350-400 K, it is the coolest known brown dwarf by ~150 K and the least luminous by a factor of 4-5. As such, CFBDSIR J1458+10B provides a gateway for measuring the properties of substellar objects at previously unexplored extremes.We propose to use HST to obtain far-red and near-IR medium-band photometry of CFBDSIR J1458+10B and to measure its 0.8-1.6 micron spectral energy distribution. Theoretical models predict this wavelength range to be highly sensitive to completely new physical processes not yet seen in brown dwarfs, including the formation of photospheric water clouds and the disappearance of the very broad potassium line that dominates the far-red spectra of T dwarfs. The impact of these changes on the emergent spectrum, however, depends on very uncertain input physics. Our observations will sensitively probe these processes, with the A and B components providing a pure temperature probe at constant metallicity and age.

  10. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    SciTech Connect

    Brown, Alexander; Ayres, Thomas R.; Neff, James E.; Wells, Mark A.; Kowalski, Adam; Berdyugina, Svetlana; Harper, Graham M.; Korhonen, Heidi; Piskunov, Nikolai; Saar, Steven; Walkowicz, Lucianne

    2015-02-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4 year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.

  11. Significant increase in titer of Raspberry bushy dwarf virus when present in combination with Raspberry leaf mottle virus and its effect on raspberry plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry crumbly fruit is a virus-induced disease widespread in the Pacific Northwest (PNW). Raspberry bushy dwarf virus (RBDV) has been attributed as the causal agent of the disease. Recently, the identification of two new viruses: Raspberry leaf mottle virus (RLMV) and Raspberry latent virus (RpL...

  12. Ultrasonic wall loss monitoring of rough surfaces

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2015-03-01

    Permanently installed ultrasonic thickness monitoring techniques have been shown to be capable of achieving below 100 nanometre standard deviation repeatability under laboratory conditions, far exceeding that of conventional manual ultrasonic inspection techniques. However, it has also been shown that uneven surface conditions that reflect the ultrasonic waves (internal wall roughness) may limit the accuracy of monitoring in practice. Previous studies have reported the uncertainty of ultrasonic measurements taken on different independent realisations of rough surfaces with the same statistical properties. While this is indicative of potential uncertainties, it is important to recognise that real life defect growth (such as corrosion) does not occur in independent instances, but it manifests itself by small random perturbations of the same under-lying surface. Furthermore, in real life applications the accuracy of trend prediction is often more important than thickness accuracy. This paper therefore introduces a new model for simulating the evolution of gradual backwall morphology changes (as would be encountered due to corrosion processes). This model is used to simulate ultrasonic signals for a large number of changing backwall surfaces. The thickness and thickness trend is then extracted from these signals using a number of common signal processing methods. The mean thickness slope and uncertainty in the extracted slope is then evaluated and compared to the actual values. A new signal processing method is also proposed, which is shown to be an order of magnitude more accurate in estimating wall loss trends than any other evaluated method.

  13. Ordered roughness effects on NACA 0026 airfoil

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.

    2016-10-01

    The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.

  14. How Tongue Size and Roughness Affect Lapping

    NASA Astrophysics Data System (ADS)

    Hubbard, M. J.; Hay, K. M.

    2012-10-01

    The biomechanics of domestic cat lapping (Felis catus) and domestic dog lapping (Canis familiaris) is currently under debate. Lapping mechanics in vertebrates with incomplete cheeks, such as cats and dogs, is a balance of inertia and the force of gravity likely optimized for ingestion and physical necessities. Physiology dictates vertebrate mass, which dictates vertebrate tongue size, which dictates lapping mechanics to achieve optimum liquid ingestion; with either touch lapping, scooping, or a hybrid lapping method. The physics of this optimized system then determines how high a column of liquid can be raised before it collapses due to gravity, and therefore, lapping frequency. Through tongue roughness model variation experiments it was found that pore-scale geometrical roughness does not appear to affect lapping or liquid uptake. Through tongue size model variation experiments it was found that there is a critical tongue radius in the range of 25 mm to 35 mm above which touch lapping is no longer an efficient way to uptake liquid. Vertebrates with incomplete cheeks may use a touch lapping method to ingest water if their tongue radius is less than this critical radius and use an alternative ingestion method if their tongue radius is larger.

  15. Rail roughness and rolling noise in tramways

    NASA Astrophysics Data System (ADS)

    Chiacchiari, L.; Thompson, DJ; Squicciarini, G.; Ntotsios, E.; Loprencipe, G.

    2016-09-01

    Companies which manage railway networks have to cope continually with the problem of operating safety and maintenance intervention issues related to rail surface irregularities. A lot of experience has been gained in recent years in railway applications but the case of tramways is quite different; in this field there are no specific criteria to define any intervention on rail surface restoration. This paper shows measurements carried out on some stretches of a tram network with the CAT equipment (Corrugation Analysis Trolley) for the principal purpose of detecting different states of degradation of the rails and identifying a level of deterioration to be associated with the need for maintenance through rail grinding. The measured roughness is used as an input parameter into prediction models for both rolling noise and ground vibration to show the potential effect that high levels of roughness can have in urban environment. Rolling noise predictions are also compared with noise measurements to illustrate the applicability of the modelling approach. Particular attention is given to the way the contact filter needs to be modelled in the specific case of trams that generally operate at low speed. Finally an empirical approach to assess vibration levels in buildings is presented.

  16. Enhancing capillary rise on a rough surface

    NASA Astrophysics Data System (ADS)

    Chow, Melissa; Wexler, Jason; Jacobi, Ian; Stone, Howard

    2014-11-01

    Liquid-infused surfaces have been proposed as a robust alternative to traditional air-cushioned superhydrophobic surfaces. However, if these surfaces are held vertically the lubricating oil can drain from the surface, and cause the surface to lose its novel properties. To examine this failure mode, we measure the drainage from a surface with model roughness that is scaled-up to allow for detailed measurements. We confirm that the bulk fluid drains from the surface until it reaches the level of the capillary rise height, although the detailed dynamics vary even in simple surface geometries. We then test different substrate architectures to explore how the roughness can be designed to retain greater amounts of oil. Supported under MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja), PREM CSUN Prime # NSF 1205734 and ONR MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr. Ki-Han Kim).

  17. Inspecting wood surface roughness using computer vision

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng

    1995-01-01

    Wood surface roughness is one of the important indexes of manufactured wood products. This paper presents an attempt to develop a new method to evaluate manufactured wood surface roughness through the utilization of imaging processing and pattern recognition techniques. In this paper a collimated plane of light or a laser is directed onto the inspected wood surface at a sharp angle of incidence. An optics system that consists of lens focuses the image of the surface onto the objective of a CCD camera, the CCD camera captures the image of the surface and using a CA6300 board digitizes the image. The digitized image is transmitted into a microcomputer. Through the use of the methodology presented in this paper, the computer filters the noise and wood anatomical grain and gives an evaluation of the nature of the manufactured wood surface. The preliminary results indicated that the method has the advantages of non-contact, 3D, high-speed. This method can be used in classification and in- time measurement of manufactured wood products.

  18. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  19. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  20. Soil surface roughness characterization for microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Rieke-Zapp, D.; Ludwig, R.

    2012-04-01

    With this poster we present a simple and efficient method to measure soil surface roughness in an agricultural environment. Micro scale soil surface roughness is a crucial parameter in many environmental applications. In recent studies it is strongly recognized that soil surface roughness significantly influences the backscatter of agricultural surface, especially on bare fields. Indeed, while different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscattering. In this study, we introduce a photogrammetric system which consists of a customized consumer grade Canon EOS 5d camera and a reference frame providing ground control points. With the system one can generate digital surface models (DSM) with a minimum size of 1 x 2.5 m2, extendable to any desired size, with a ground x,y- resolution of 2 mm. Using this approach, we generated a set of DSM with sizes ranging from 2.5 m2 to 22 m2, acquired over different roughness conditions representing ploughed, harrowed as well as crusted fields on different test sites. For roughness characterization we calculated in microwave remote sensing common roughness indices such as the RMS- height s and the autocorrelation length l. In an extensive statistical investigation we show the behavior of the roughness indices for different acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated out of the dataset, that using a three dimensional measuring device, the calculated roughness indices are more robust in their estimation. In addition, a strong directional dependency of the proposed roughness indices was observed which could be related to the orientation of the seedbed rows to the acqusition direction. In a geostatistical analysis, we decomposed the acquired roughness indices into different scales, yielding a roughness quantity

  1. Abundances in Blue Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Dewolfe, O. M.; Salzer, J. J.

    1994-12-01

    The nebular abundances in dwarf galaxies provide valuable clues to their star-formation histories. We have been engaged in an extensive observational study of actively star-forming blue compact dwarf galaxies (BCDs). Our program combines optical and NIR imaging, optical spectroscopy, and HI and CO radio data in an attempt to understand the status of star-formation and chemical evolution in these systems. Luminosities of the BCDs in our sample lie in the range M_B = -13 -- -16. We have obtained high-quality optical spectra of 21 BCDs for the purpose of deriving nebular abundances. We present values for the abundances of He, N, O, S, Ne, and Ar for this sample. In addition, we have estimated O and N abundances for a sample of 7 non-dwarf starburst galaxies of higher luminosity. For the BCD sample, we find that the N/O ratio remains constant at a mean value of 0.032 +/- 0.004 with increasing O/H. This result, which extends over a factor of more than 10 in O/H, is indicative of the N being chiefly of primary origin in these systems. The value of N/O is observed to increase in the sample of larger starburst galaxies for log(O/H) above -3.5, consistent with previous studies. S/O and Ne/O are also both constant with increasing O/H, and have mean values of 0.032 +/- 0.007 and 0.135 +/- 0.013 respectively. The BCD and starburst O/H values were used to calibrate an abundance sequence for a number of key emission-line diagnostic ratios which allow us to estimate metallicities for a large sample of emission-line galaxies (ELGs) to an accuracy of 0.1 -- 0.2 dex. The calibrations were applied to spectral data from two large published samples of ELGs from the Michigan and Case surveys. We use these data, representing nearly 200 individual galaxies, to investigate the existence of a metallicity-luminosity relationship for actively star-forming galaxies. We find the ELGs exhibit a relationship very similar to that found for more quiescent dwarf and Magellanic irregular galaxies by

  2. Reconnaissance of Young M Dwarfs: Locating the Elusive Majority of Nearby Moving Groups

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan; Liu, Michael; Riaz, Basmah; Gizis, John; Shkolnik, Evgenya

    2014-02-01

    With ages between ~8-120 Myr and distances ≲80 pc, young moving group members make excellent targets for detailed studies of pre-main sequence evolution and exoplanet imaging surveys. We propose to finish a low-resolution spectroscopic program started in 2013B to confirm our sample of ~1300 X-ray-selected active M dwarfs, about one-third of which are expected to be members of young moving groups. Our larger program consists of three parts: an initial reconnaissance phase of low-resolution spectroscopy to vet unlikely association members, radial velocity observations to confirm group membership, and deep adaptive optics imaging to study the architecture and demographics of giant planets around low-mass stars. Our observations in 2014A will finish the phase of low-resolution spectroscopy covering the second half of the sky. We will also exploit our rich sample to study the evolution of chromospheric and coronal activity in low-mass stars with unprecedented precision. Altogether, this program will roughly double the population of M dwarfs in young moving groups, providing new targets for a broad range of star and planet formation studies in the near-future.

  3. Reconnaissance of Young M Dwarfs: Locating the Elusive Majority of Nearby Moving Groups

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan; Liu, Michael; Riaz, Basmah; Gizis, John; Shkolnik, Evgenya

    2013-08-01

    With ages between ~8-120 Myr and distances lsim;80 pc, young moving group members make excellent targets for detailed studies of pre-main sequence evolution and exoplanet imaging surveys. We propose a multi-semester spectroscopic program to confirm our sample of ~1300 X-ray-selected active M dwarfs, about one-third of which are expected to be members of young moving groups. Our program consists of three parts: a reconnaissance phase of low-resolution spectroscopy to vet unlikely association members, radial velocity observations to confirm group membership, and deep adaptive optics imaging to study the architecture and demographics of giant planets around low-mass stars. We will also exploit our rich sample to study the evolution of chromospheric and coronal activity in low-mass stars with unprecedented precision. Altogether, this program will roughly double the population of M dwarfs in young moving groups, providing new targets for a broad range of star and planet formation studies in the near-future.

  4. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Sicardy, B.; Braga-Ribas, F.; Alvarez-Candal, A.; Lellouch, E.; Duffard, R.; Pinilla-Alonso, N.; Ivanov, V. D.; Littlefair, S. P.; Camargo, J. I. B.; Assafin, M.; Unda-Sanzana, E.; Jehin, E.; Morales, N.; Tancredi, G.; Gil-Hutton, R.; de La Cueva, I.; Colque, J. P.; da Silva Neto, D. N.; Manfroid, J.; Thirouin, A.; Gutiérrez, P. J.; Lecacheux, J.; Gillon, M.; Maury, A.; Colas, F.; Licandro, J.; Mueller, T.; Jacques, C.; Weaver, D.; Milone, A.; Salvo, R.; Bruzzone, S.; Organero, F.; Behrend, R.; Roland, S.; Vieira-Martins, R.; Widemann, T.; Roques, F.; Santos-Sanz, P.; Hestroffer, D.; Dhillon, V. S.; Marsh, T. R.; Harlingten, C.; Campo Bagatin, A.; Alonso, M. L.; Ortiz, M.; Colazo, C.; Lima, H. J. F.; Oliveira, A. S.; Kerber, L. O.; Smiljanic, R.; Pimentel, E.; Giacchini, B.; Cacella, P.; Emilio, M.

    2012-11-01

    Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 +/- 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 +/- 9 km (1σ) and 1,502 +/- 45 km, implying a V-band geometric albedo pV = 0.77 +/- 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 +/- 0.3 g cm-3 is inferred from the data.

  5. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation.

    PubMed

    Ortiz, J L; Sicardy, B; Braga-Ribas, F; Alvarez-Candal, A; Lellouch, E; Duffard, R; Pinilla-Alonso, N; Ivanov, V D; Littlefair, S P; Camargo, J I B; Assafin, M; Unda-Sanzana, E; Jehin, E; Morales, N; Tancredi, G; Gil-Hutton, R; de la Cueva, I; Colque, J P; Da Silva Neto, D N; Manfroid, J; Thirouin, A; Gutiérrez, P J; Lecacheux, J; Gillon, M; Maury, A; Colas, F; Licandro, J; Mueller, T; Jacques, C; Weaver, D; Milone, A; Salvo, R; Bruzzone, S; Organero, F; Behrend, R; Roland, S; Vieira-Martins, R; Widemann, T; Roques, F; Santos-Sanz, P; Hestroffer, D; Dhillon, V S; Marsh, T R; Harlingten, C; Bagatin, A Campo; Alonso, M L; Ortiz, M; Colazo, C; Lima, H J F; Oliveira, A S; Kerber, L O; Smiljanic, R; Pimentel, E; Giacchini, B; Cacella, P; Emilio, M

    2012-11-22

    Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

  6. Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Koester, D.; Zuckerman, B.; Vican, L.; Gänsicke, B. T.; Smith, N.; Walth, G.; Breedt, E.

    2016-12-01

    The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s-1, and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.

  7. Effect of truncated cone roughness element density on hydrodynamic drag

    NASA Astrophysics Data System (ADS)

    Womack, Kristofer; Schultz, Michael; Meneveau, Charles

    2016-11-01

    An experimental study was conducted on rough-wall, turbulent boundary layer flow. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 57%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and Yang et al. (2015). The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. Office of Naval Research.

  8. Evaluate the Invasion of dwarf bamboo to alpine snow-meadow in northern Japan based on ground measurement and L-band microwave backscatter

    NASA Astrophysics Data System (ADS)

    Yonemori, Maino; Buho, Hoshino; Kudo, Gaku; Kaneko, Masami; Yabuki, Tetsuo

    Dwarf bamboo (Sasa kurilensis) is extensively increasing the distribution area in the alpine snow-meadow within the wilderness area of the Taisetsu Mountains, northern Japan. This rapid change may be related to the soil desiccation and expansion of annual growing period caused by the recent acceleration of snowmelt time (Kudo et al., 2010). Control the expansion of the dwarf bamboo, first it is necessary to identify spatial distribution of the soil moisture. However, Soil moisture is highly variable both spatially and temporally. In order to estimate soil moisture, extrapolation of much point's ground measurements has been necessary (Wood et al., 1993, Hall, 1996). The theoretical basis for measuring soil moisture by backscattering coefficient (dB) of microwave satellite is based on the large contrast between the dielectric properties of liquid water and of dry soil (Hoshino et al., 2009). The following variables affect the measurement of soil moisture: surface roughness, soil texture, vegetation canopy effects and instrument parameters such as incidence angle, frequency and polarization. With this study, we made a correlation model between backscattering coefficient (dB) and Volumetric Water Content (VWC, %) based extrapolation of point's ground measurements and PALSAR L-band backscatter. However, it did not shows good correlation in the place where dwarf bamboo high density area. Probably it is because the dwarf bamboo cover (surface roughness) plays a dominant role compared to the soil moisture in this case. The degree to which vegetation, both dwarf bamboo and alpine, affects the determination of soil moisture depends on the mass of vegetation and the wavelength. The effect of a rough surface is to increase the surface emissivity and thus to decrease the sensitivity to soil moisture, and, as mentioned earlier, whether or not a surface is smooth depends on the wavelength. But, the microwave backscatter very effectively method for the Taisetuzan Mountains area

  9. [Application of the rough set theory in the prognostication of the diabetic nephropathy prevalence. Preliminary communication].

    PubMed

    Urban, M; Baszun-Stepaniuk, E; Stepaniuk, J

    1998-01-01

    The following aspects were evaluated by rough set methods in 107 patients aged 5-22 and suffering from insulin dependent diabetes for 2-13 years: sex, age at which the disease was diagnosed, time of disease, family anamnesis, criteria of the metabolic balance, type of the applied insulin therapy and presence or absence of microalbuminuria. Mathematical analysis showed that the most significant aspects were: age at which the disease began, HbA1c and time of the disease lasting. The above aspects influence incidence of microalbuminuria in children suffering from diabetes type I.

  10. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    SciTech Connect

    Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2015-05-01

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  11. Identification and molecular tagging of two complementary dominant resistance genes to maize dwarf mosaic virus.

    PubMed

    Wu, Jian-Yu; Ding, Jun-Qiang; Du, Yan-Xiu; Chen, Wei-Cheng

    2002-12-01

    Maize dwarf mosaic is one of the devastating and widespread viral diseases in the world. So far, only a few genes were identified and mapped in the resistant materials. A new resistant elite inbred line Siyi was identified with resistance to maize dwarf mosaic virus strain B at early and adult stage. Two complementary dominant genes conditioned the resistance, with a new genetic model, of the maize inbred line were found at adult stage by the genetic analysis based on parents, F1, F2 and backcrosses in two years. The microsatellite analysis of a F2 population from the cross between Siyi and Mo17 was used to identify the two resistance genes on chromosome 3 and 6 respectively by 87 pairs of microsatellite markers. The linkage distance between phi029 and the one resistance gene on chromosome 3 is 14.5 cM, and phi126 to the other on chromosome 6 is 7.2 cM.

  12. Activity and Kinematics of Cool and Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah Jane

    The ages of cool and ultracool dwarfs are particularly important. For cool M dwarfs, accurate ages combined with their ubiquity in the stellar disk could lead to a new level of precision in age dating the Galaxy. A better understanding of the chromospheres of M dwarfs could provide important clues about the relationship between activity and age in these low mass stars. Ultracool (late-M and L) dwarfs have the distinction of including both warm, young brown dwarfs and stars with mean ages more representative of the stellar disk. Kinematics are a source of mean ages and could provide or confirm discriminating features between stars and brown dwarfs. This thesis is composed of several different projects, each investigating the activity or kinematics of cool or ultracool dwarfs. First, a sample of nearly 500 L dwarfs selected from SDSS DR7 photometry and spectroscopy is examined; we discovered 200 new L dwarfs and found evidence of a bias towards red J - KS colors in the entire population of previously known L dwarfs. Using the three-dimensional kinematics of 300 SDSS DR7 L dwarfs, we find that their kinematics are consistent with those of the stellar disk and include a previously undetected thick disk component. We also confirmed a relationship between age and J - KS color (due to our large sample of UVW motions and unbiased J - KS colors), with blue L dwarfs having hotter kinematics (consistent with older ages) and redder L dwarfs having colder, younger kinematics. The DR7 L dwarf sample showed no distinct kinematic difference between young brown dwarfs and disk-age stars, perhaps due to a bias towards early spectral types. In order to probe the kinematic distribution of L dwarfs in a volume-limited sample, we began a survey of radial velocities of nearby (d<20pc) L dwarfs using the TripleSpec instrument on the ARC 3.5-m telescope at APO. While several reduction packages were tested on the TripleSpec data, none were found to provide reductions of sufficient quality

  13. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  14. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  15. Adjustment of roughness sublayer in turbulent flows over two-dimensional idealised roughness elements

    NASA Astrophysics Data System (ADS)

    HO, Yat-Kiu; LIU, Chun-Ho

    2015-04-01

    The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to

  16. Light depolarization in off-specular reflection on submicro rough metal surfaces with imperfectly random roughness.

    PubMed

    Liu, Linsheng; Li, Xuefeng; Nonaka, Kazuhiro

    2015-02-01

    Depolarization at a rough surface relates to its roughness and irregularity (e.g., sags and crests) besides the material property. However, there is still lack of general theory to clearly describe the relationship between depolarization ratios and surface conditions, and one important reason is that the mechanism of depolarization relates to geometric parameters such as microcosmic height/particle distributions of sub-micro to nm levels. To study the mechanism in more detail, a compact laser instrument is developed, and depolarization information of a linearly polarized incident light is used for analyzing the roughness, during which a He-Ne laser source (λ = 632.8 nm) is used. Three nickel specimens with RMS roughness (Rq) less than λ/4 are fabricated and tested. Six different areas in each specimen are characterized in detail using an AFM. Rq are in the range of 34.1-155.0 nm, and the heights are non-Gaussian distribution in the first specimen and near-Gaussian distribution in the others. Off-specular inspection is carried out exactly on these 18 characterized areas, and results show that the cross-polarization ratios match quite well with Rq values of the first sample that has Rq ≤ λ/10 (or Rt ≤ λ), while they match well with maximum height, Rt, values of the other two that have Rt > λ (the maximum derivation is 11%). In addition, since this instrument is simple, portable, stable, and low-cost, it has great potential for practical online roughness testing after a linear calibration.

  17. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  18. Contact angle measurement on rough surfaces.

    PubMed

    Meiron, Tammar S; Marmur, Abraham; Saguy, I Sam

    2004-06-15

    A new method for the measurement of apparent contact angles at the global energy minimum on real surfaces has been developed. The method consists of vibrating the surface, taking top-view pictures of the drop, monitoring the drop roundness, and calculating the contact angle from the drop diameter and weight. The use of the new method has been demonstrated for various rough surfaces, all having the same surface chemistry. In order to establish the optimal vibration conditions, the proper ranges for the system parameters (i.e., drop volume, vibration time, frequency of vibration, and amplitude of vibration) were determined. The reliability of the method has been demonstrated by the fact that the ideal contact angles of all surfaces, as calculated from the Wenzel equation using the measured apparent contact angles, came out to be practically identical. This ideal contact angle has been compared with three methods of calculation from values of advancing and receding contact angles.

  19. Theory of adhesion: role of surface roughness.

    PubMed

    Persson, B N J; Scaraggi, M

    2014-09-28

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ∼ u(-n), n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  20. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  1. Manning's roughness coefficient for Illinois streams

    USGS Publications Warehouse

    Soong, David T.; Prater, Crystal D.; Halfar, Teresa M.; Wobig, Loren A.

    2012-01-01

    Manning's roughness coefficients for 43 natural and constructed streams in Illinois are reported and displayed on a U.S. Geological Survey Web site. At a majority of the sites, discharge and stage were measured, and corresponding Manning's coefficients—the n-values—were determined at more than one river discharge. The n-values discussed in this report are computed from data representing the stream reach studied and, therefore, are reachwise values. Presentation of the resulting n-values takes a visual-comparison approach similar to the previously published Barnes report (1967), in which photographs of channel conditions, description of the site, and the resulting n-values are organized for each site. The Web site where the data can be accessed and are displayed is at URL http://il.water.usgs.gov/proj/nvalues/.

  2. Rough differential equations with unbounded drift term

    NASA Astrophysics Data System (ADS)

    Riedel, S.; Scheutzow, M.

    2017-01-01

    We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.

  3. Structure and stellar content of dwarf galaxies. VII. B and R photometry of 25 southern field dwarfs and a disk parameter analysis of the complete sample of nearby irregulars

    NASA Astrophysics Data System (ADS)

    Parodi, B. R.; Barazza, F. D.; Binggeli, B.

    2002-06-01

    We present B and R band surface photometry of 25 Southern field dwarf galaxies within a distance of 10 Mpc. For each galaxy we give the essential model-free photometric parameters and, by fitting exponentials to the surface brightness profiles, the central extrapolated surface brightness and the exponential scale length, in both colour bands. Surface brightness and colour profiles are shown. One of the objects, a very faint dwarf elliptical in the vicinity of NGC 2784, has been discovered in the course of this work. Drawing on the data from this and all previous papers of this series, we construct a complete sample of 72 late-type (``irregular'') dwarf galaxies in nearby groups and the field within the 10 Mpc volume, to study the exponential-disk parameter relations of these galaxies with respect to galaxy environment. We confirm our previous finding of statistically lower scale lengths/higher central surface brightnesses for field and group galaxies as compared to cluster galaxies. However, using a clear-cut definition of ``group'' versus ``field'' environment, we find no significant difference in the photometric structure of group and field irregulars. A difference in the star formation history may partly account for this structure-environment relation: for a given luminosity cluster dwarfs are on average redder than field and group galaxies. We also report evidence for the colour gradients of dwarf irregulars being roughly inversely proportional to the disk scale lengths. Supplementing our photometric data with kinematic data from the literature, we study possible relations with kinematic properties of the inner disk. Applying the dark matter scaling relations for a Burkert halo we show that for field and group galaxies of a given luminosity faster-than-mean disk rotational velocities at a radius of about two scale lengths are correlated with larger-than-mean disk scale lengths. Based on observations collected at the European Southern Observatory, La Silla

  4. Enhanced thermoelectric performance of rough silicon nanowires.

    PubMed

    Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz; Liang, Wenjie; Garnett, Erik C; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-01-10

    Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  5. CHARACTERIZING A DRAMATIC ΔV ∼ –9 FLARE ON AN ULTRACOOL DWARF FOUND BY THE ASAS-SN SURVEY

    SciTech Connect

    Schmidt, Sarah J.; Stanek, K. Z.; Shappee, Benjamin J.; Kochanek, C. S.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, John F.; Prieto, Jose L.; Morrell, Nidia; Bardalez Gagliuffi, Daniella C.; Szczygieł, D. M.; Pojmanski, G.; Brimacombe, J.; Dubberley, M.; Elphick, M.; Foale, S.; Hawkins, E.; Mullins, D.; Rosing, W.; and others

    2014-02-01

    We analyze a ΔV ∼ –9 magnitude flare on the newly identified M8 dwarf SDSS J022116.84+194020.4 (hereafter SDSSJ0221) detected as part of the All-Sky Automated Survey for Supernovae. Using infrared and optical spectra, we confirm that SDSSJ0221 is a relatively nearby (d ∼ 76 pc) M8 dwarf with strong quiescent Hα emission. Based on kinematics and the absence of features consistent with low-gravity (young) ultracool dwarfs, we place a lower limit of 200 Myr on the age of SDSSJ0221. When modeled with a simple, classical flare light curve, this flare is consistent with a total U-band flare energy E{sub U} ∼ 10{sup 34} erg, confirming that the most dramatic flares are not limited to warmer, more massive stars. Scaled to include a rough estimate of the emission line contribution to the V band, we estimate a blackbody filling factor of ∼10%-30% during the flare peak and ∼0.5%-1.6% during the flare decay phase. These filling factors correspond to flare areas that are an order of magnitude larger than those measured for most mid-M dwarf flares.

  6. WISE Y dwarfs as probes of the brown dwarf-exoplanet connection

    SciTech Connect

    Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Dodson-Robinson, Sally; Marley, Mark S.; Morley, Caroline V.; Wright, E. L.

    2014-03-10

    We have determined astrometric positions for 15 WISE-discovered late-type brown dwarfs (six T8-9 and nine Y dwarfs) using the Keck-II telescope, the Spitzer Space Telescope, and the Hubble Space Telescope. Combining data from 8 to 20 epochs we derive parallactic and proper motions for these objects, which puts the majority within 15 pc. For ages greater than a few Gyr, as suggested from kinematic considerations, we find masses of 10-30 M {sub Jup} based on standard models for the evolution of low-mass objects with a range of mass estimates for individual objects, depending on the model in question. Three of the coolest objects have effective temperatures ∼350 K and inferred masses of 10-15 M {sub Jup}. Our parallactic distances confirm earlier photometric estimates and direct measurements and suggest that the number of objects with masses below about 15 M {sub Jup} must be flat or declining, relative to higher mass objects. The masses of the coldest Y dwarfs may be similar to those inferred for recently imaged planet-mass companions to nearby young stars. Objects in this mass range, which appear to be rare in both the interstellar and protoplanetary environments, may both have formed via gravitational fragmentation—the brown dwarfs in interstellar clouds and companion objects in a protoplanetary disk. In both cases, however, the fact that objects in this mass range are relatively infrequent suggests that this mechanism must be inefficient in both environments.

  7. A Spectral Analysis of a Rare "Dwarf Eat Dwarf" Cannibalism Event

    NASA Astrophysics Data System (ADS)

    Theakanath, Kuriakose; Toloba, E.; Guhathakurta, P.; Romanowsky, A. J.; Ramachandran, N.; Arnold, J.

    2014-01-01

    We have used Keck/DEIMOS to conduct the first detailed spectroscopic study of the recently discovered stellar stream in the Large Magellanic Cloud analog NGC 4449. Martinez-Delgado et al. (2012), using the tip of the red giant branch (TRGB), found that both objects, the stream and NGC 4449, are at the same distance, which suggests that this stream is the remnant of the first ongoing dwarf-dwarf cannibalism event known so far. Learning about the orbital properties of this event is a powerful tool to constrain the physical conditions involved in dwarf-dwarf merger events. The low surface-brightness of this structure makes impossible to obtain integrated light spectroscopic measurements, and its distance (3.8 Mpc) is too large as to observe stars individually. In the color-magnitude diagram of the stellar stream there is an excess of objects brighter than the TRGB which are potential star blends. We designed our DEIMOS mask to contain as many of these objects as possible and, while some of them turned out to be background galaxies, a handful happened to be star blends in the stream. Our velocity measurements along the stream prove that it is gravitationally bound to NGC 4449 and put strong constraints on the orbital properties of the infall. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Science Foundation for funding support. ET was supported by a Fulbright fellowship.

  8. Interpretation of the Spectra of Strongly Magnetised White Dwarfs

    NASA Astrophysics Data System (ADS)

    Wunner, G.

    Quite recently tremendous progress has been made in analysing the spectra of magnetic DA white dwarfs with field strengths above ≡50 Megagauss. One particular white dwarf has played the rôle of a "Rosetta Stone" in this development, and it is therefore worthwhile to briefly retell the story of this object.

  9. A new Y dwarf search probing the limits of WISE

    NASA Astrophysics Data System (ADS)

    Leggett, Sandy; Pinfield, David; Ruiz, Maria Teresa; Marley, Mark; Saumon, Didier; Faherty, Jackie; Smart, Ricky; Gomes, Joana; Day-Jones, Avril

    2013-08-01

    We propose to use FLAMINGOS-2, GNIRS and NIRI to follow-up candidate Y dwarfs from a new search of the WISE catalog. Our method uses WISE multiple measurements and photometric profile fit information to identify non-variable point sources which are detected only in the W2-band, the band most sensitive to very cool brown dwarfs. This search identifies 121 previously unknown candidates down to a S/N=8 limit and probes the lowest Teff that WISE is sensitive to. Initial near-IR followup produced photometry for 13 sources, of which 9 are T8 and earlier T types, three are new 500K T9 dwarfs and one is a new 400K Y0 dwarf. When followup is complete we should approximately double the known number of WISE brown dwarfs cooler than 500K. In 13B we request time to obtain J-band photometry for 85 sources, which make up 75% of our remaining unmatched sample. We expect to find 8 new Y dwarfs, for which we will also obtain H-band photometry. For the brightest new Y dwarfs we will obtain spectra. We expect there will be up to three more semesters where we request time for this project, to image and followup the remaining 25% of our sample, and confirm and characterize new Y dwarfs.

  10. An ISOCAM based search for brown dwarfs in the Hyades

    NASA Technical Reports Server (NTRS)

    Ali, B.; Forrest, W.; Leggett, S.; Stauffer, J.

    2000-01-01

    Brwon dwarfs in open cluster in general and in Hyades in particular are valuable as the age, distance and chemical composition of these dwarfs are well-constrained. The cooled environment of ISO allowed us to survey the low-mass component of the Hyades cluster with flux sensitivity unavailable from ground-based telescopes.

  11. The Formation of Brown Dwarfs as Ejected Stellar Embryos

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Clarke, Cathie

    2001-07-01

    We conjecture that brown dwarfs are substellar objects because they have been ejected from small newborn multiple systems that have decayed in dynamical interactions. In this view, brown dwarfs are stellar embryos for which the star formation process was aborted before the hydrostatic cores could build up enough mass to eventually start hydrogen burning. The disintegration of a small multiple system is a stochastic process, which can be described only in terms of the half-life of the decay. A stellar embryo competes with its siblings in order to accrete infalling matter, and the one that grows slowest is most likely to be ejected. With better luck, a brown dwarf would therefore have become a normal star. This interpretation of brown dwarfs readily explains the rarity of brown dwarfs as close companions to normal stars, the absence of wide brown dwarf binaries, and the flattening of the low-mass end of the initial mass function. Possible observational tests of this scenario include statistics of brown dwarfs near Class 0 sources and the kinematics of brown dwarfs in star-forming regions, while they still retain a kinematic signature of their expulsion. Because the ejection process limits the amount of gas brought along in a disk, it is predicted that substellar equivalents to the classical T Tauri stars should be rather short-lived.

  12. The Meaning of Disfigurement in Wilhelm Hauff's "Dwarf Nose."

    ERIC Educational Resources Information Center

    Blamires, David

    2002-01-01

    Notes that Wilhelm Hauff's fairy tale "Dwarf Nose" tells of a boy who is turned into a squirrel for seven years, then regains human form as a dwarf with a long nose before finally achieving normal adult proportions. Discusses how the story includes details that suggest a sexual interpretation. (SG)

  13. A DARK SPOT ON A MASSIVE WHITE DWARF

    SciTech Connect

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon; Wisniewski, John P.; Bell, Keaton J.; Winget, D. E.; Winget, K. I.; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.

  14. The solar neighborhood. XXXV. Distances to 1404 M dwarf systems within 25 PC in the southern sky

    SciTech Connect

    Winters, Jennifer G.; Jao, Wei-Chun; Dieterich, Sergio B. E-mail: jao@astro.gsu.edu; and others

    2015-01-01

    We present trigonometric, photometric, and photographic distances to 1748 southern (δ⩽0{sup ∘}) M dwarf systems with μ⩾0{sub ⋅}{sup ′′}18 yr{sup −1}, of which 1404 are believed to lie within 25 pc of the Sun. The stars have 6.67⩽V{sub J}⩽21.38 and 3.50⩽(V{sub J}−K{sub s})⩽9.27, covering the entire M dwarf spectral sequence from M0.0 V through M9.5 V. This sample therefore provides a comprehensive snapshot of our current knowledge of the southern sky for the nearest M dwarfs that dominate the stellar population of the Galaxy. Roughly one-third of the 1748 systems, each of which has an M dwarf primary, have published high quality parallaxes, including 179 from the REsearch Consortium On Nearby Stars astrometry program. For the remaining systems, we offer photometric distance estimates that have well-calibrated errors. The bulk of these (∼700) are based on new V{sub J}R{sub KC}I{sub KC} photometry acquired at the CTIO/SMARTS 0.9 m telescope, while the remaining 500 primaries have photographic plate distance estimates calculated using SuperCOSMOS B{sub J}R{sub 59F}I{sub IVN} photometry. Confirmed and candidate subdwarfs in the sample have been identified, and a census of companions is included.

  15. Forming isolated brown dwarfs by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use Smoothed Particle Hydrodynamics to explore the circumstances under which an isolated very low mass pre-stellar core can be formed by colliding turbulent flows and collapse to form a brown dwarf. Our simulations suggest that the flows need not be very fast, but do need to be very strongly convergent, i.e. the gas must flow in at comparable speeds from all sides, which seems rather unlikely. We therefore revisit the object Oph-B11, which André et al. have identified as a pre-stellar core with mass between ˜0.020 M⊙ and ˜0.030 M⊙. We re-analyse the observations using a Markov-chain Monte Carlo method that allows us (i) to include the uncertainties on the distance, temperature and dust mass opacity, and (ii) to consider different Bayesian prior distributions of the mass. We estimate that the posterior probability that Oph-B11 has a mass below the hydrogen-burning limit at ˜0.075 M⊙, is between 0.66 and 0.86 . We conclude that, if Oph-B11 is destined to collapse, it probably will form a brown dwarf. However, the flows required to trigger this appear to be so contrived that it is difficult to envisage this being the only way, or even a major way, of forming isolated brown dwarfs. Moreover, Oph-B11 could easily be a transient, bouncing, prolate core, seen end-on; there could, indeed should, be many such objects masquerading as very low mass pre-stellar cores.

  16. A Magellanic origin of the DES dwarfs

    NASA Astrophysics Data System (ADS)

    Jethwa, P.; Erkal, D.; Belokurov, V.

    2016-09-01

    We establish the connection between the Magellanic Clouds (MCs) and the dwarf galaxy candidates discovered in the Dark Energy Survey (DES) by building a dynamical model of the MC satellite populations, based on an extensive suite of tailor-made numerical simulations. Our model takes into account the response of the Galaxy to the MCs infall, the dynamical friction experienced by the MCs and the disruption of the MC satellites by their hosts. The simulation suite samples over the uncertainties in the MC's proper motions, the masses of the MW and the Clouds themselves, and allows for flexibility in the intrinsic volume density distribution of the MC satellites. As a result, we can accurately reproduce the DES satellites' observed positions and kinematics. Assuming that Milky Way (MW) dwarfs follow the distribution of sub-haloes in Λ cold dark matter, we further demonstrate that, of 14 observed satellites, the MW halo contributes fewer than 4(8) of these with 68(95) per cent confidence and that 7(12) DES dwarfs have probabilities greater than 0.7(0.5) of belonging to the Large Magellanic Cloud (LMC). Marginalizing over the entire suite, we constrain the number of Magellanic satellites in the range -7 < MV < -1 which exceed the DES surface brightness threshold at ˜70, and the mass of the LMC around 1011 M⊙. The data also strongly support a first-infall scenario for the LMC. Finally, we give predictions for the line-of-sight velocities and the proper motions of the satellites discovered in the vicinity of the LMC.

  17. Brown dwarfs and Jovian planets: A comparison

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Hubbard, W. B.; Marley, M.

    1986-01-01

    The recent detection of a subluminous companion to the M dwarf star VB8 has renewed interest in the characteristics of objects spanning the mass range from Jupiter to hydrogen burning stars. Atmospheric and interior models were constructed for objects in this mass regime, up to 30 Jupiter masses, with emphasis on understanding the relationship of brown dwarfs such as the VB8 companion to the better-studied Jovian planets. The atmospheric model solves the equation of radiative transfer assuming frequency dependent molecular opacity sources H2, He, H2O, CO, and CH4 which are important by virtue of the high cosmic abundance of their constituent atoms. Condensation of cosmochemically important materials, iron and silicates, in the atmosphere is possible, and the effect of such grains as opacity sources is assessed. The luminosity of the object is presumed due to degenerate cooling following a collapse phase and possibly deuterium burning and an interior model is constructed using as an outer boundary condition the temperature and pressure level at which the atmosphere becomes convective. The interior model is analogous to Jupiter, with a large liquid metallic-hydrogen core and a thinner molecular-hydrogen envelope. The oxidation state of carbon in the outer envelope of a brown dwarf of similar age to Jupiter is a function of the object's mass. This makes the wavelength dependence of the atmospheric opacity sensitive to the carbon to oxygen ratio, since the abundance of the primary source of molecular opacity, H2O, decreases as more oxygen is tied up as CO.

  18. A Survey for Hα Emission from Late L Dwarfs and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg; Kirkpatrick, J. Davy; Cotter, Garret; Kao, Melodie M.; Mooley, Kunal

    2016-07-01

    Recently, studies of brown dwarfs have demonstrated that they possess strong magnetic fields and have the potential to produce radio and optical auroral emissions powered by magnetospheric currents. This emission provides the only window on magnetic fields in the coolest brown dwarfs and identifying additional benchmark objects is key to constraining dynamo theory in this regime. To this end, we conducted a new red optical (6300-9700 Å) survey with the Keck telescopes looking for Hα emission from a sample of late L dwarfs and T dwarfs. Our survey gathered optical spectra for 29 targets, 18 of which did not have previous optical spectra in the literature, greatly expanding the number of moderate-resolution (R ˜ 2000) spectra available at these spectral types. Combining our sample with previous surveys, we confirm an Hα detection rate of 9.2±{}2.13.5% for L and T dwarfs in the optical spectral range of L4-T8. This detection rate is consistent with the recently measured detection rate for auroral radio emission from Kao et al., suggesting that geometrical selection effects due to the beaming of the radio emission are small or absent. We also provide the first detection of Hα emission from 2MASS 0036+1821, previously notable as the only electron cyclotron maser radio source without a confirmed detection of Hα emission. Finally, we also establish optical standards for spectral types T3 and T4, filling in the previous gap between T2 and T5. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. ROSAT Pointed Observations of Cool Magnetic White Dwarfs

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Porter, J. G.; Davis, J. M.

    1995-01-01

    Observational evidence for the existence of a chromosphere on the cool magnetic white dwarf GD 356 has been reported. In addition, there has been theoretical speculations that cool magnetic white dwarfs may be sources of coronal X-ray emission. This emission, if it exists, would be distinct from the two types of X-ray emission (deep photospheric and shocked wind) that have already been observed from hot white dwarfs. We have used the PSPC instrument on ROSAT to observe three of the most prominent DA white dwarf candidates for coronal X-ray emission: GD 356, KUV 2316+123, and GD 90. The data show no significant emission for these stars. The derived upper limits for the X-ray luminosities provide constraints for a revision of current theories of the generation of nonradiative energy in white dwarfs.

  20. Fate of accreting white dwarfs: Type I supernovae vs collapse

    SciTech Connect

    Nomoto, Ken'ichi

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs.