Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
Mask roughness induced LER: a rule of thumb -- paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClinton, Brittany; Naulleau, Patrick
2010-03-12
Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness ofmore » 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.« less
Correlation of bond strength with surface roughness using a new roughness measurement technique.
Winkler, M M; Moore, B K
1994-07-01
The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.
Field theoretic approach to roughness corrections
NASA Astrophysics Data System (ADS)
Wu, Hua Yao; Schaden, Martin
2012-02-01
We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.
Quantifying surface roughness effects on phonon transport in silicon nanowires.
Lim, Jongwoo; Hippalgaonkar, Kedar; Andrews, Sean C; Majumdar, Arun; Yang, Peidong
2012-05-09
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.
The effect of surface waviness on friction between Neolite and quarry tiles.
Chang, Wen-Ruey; Grönqvist, Raoul; Hirvonen, Mikko; Matz, Simon
2004-06-22
Friction is widely used as an indicator of surface slipperiness in preventing accidents in slips and falls. Surface texture affects friction, but it is not clear which surface characteristics are better correlated with friction. Highly correlated surface characteristics could be used as potential interventions to prevent slip and fall accidents. The dynamic friction between quarry tiles and a commonly used sole testing material, Neolite, using three different mixtures of glycerol and water as contaminants at the interface was correlated with the surface parameters of the tile surfaces. The surface texture was quantified with various surface roughness and surface waviness parameters using three different cut-off lengths to filter the measured profiles for obtaining the profiles of either surface roughness or surface waviness. The correlation coefficients between the surface parameters and the measured friction were affected by the glycerol contents and cut-off lengths. Surface waviness parameters could potentially be better indicators of friction than commonly used surface roughness parameters, especially when they were measured with commonly used cut-off lengths or when the viscosity of the liquid contaminant was high.
Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.
NASA Astrophysics Data System (ADS)
Shindler, Joseph Daniel
X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.
Optical measurements of degradation in aircraft boundary layers
NASA Technical Reports Server (NTRS)
Kelsall, D.
1980-01-01
Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.
Effects of plaque lengths on stent surface roughness.
Syaifudin, Achmad; Takeda, Ryo; Sasaki, Katsuhiko
2015-01-01
The physical properties of the stent surface influence the effectiveness of vascular disease treatment after stent deployment. During the expanding process, the stent acquires high-level deformation that could alter either its microstructure or the magnitude of surface roughness. This paper constructed a finite element simulation to observe the changes in surface roughness during the stenting process. Structural transient dynamic analysis was performed using ANSYS, to identify the deformation after the stent is placed in a blood vessel. Two types of bare metal stents are studied: a Palmaz type and a Sinusoidal type. The relationship between plaque length and the changes in surface roughness was investigated by utilizing three different length of plaque; plaque length longer than the stent, shorter than the stent and the same length as the stent. In order to reduce computational time, 3D cyclical and translational symmetry was implemented into the FE model. The material models used was defined as a multilinear isotropic for stent and hyperelastic for the balloon, plaque and vessel wall. The correlation between the plastic deformation and the changes in surface roughness was obtained by intermittent pure tensile test using specimen whose chemical composition was similar to that of actual stent material. As the plastic strain is achieved from FE simulation, the surface roughness can be assessed thoroughly. The study found that the plaque size relative to stent length significantly influenced the critical changes in surface roughness. It was found that the length of stent which is equal to the plaque length was preferable due to the fact that it generated only moderate change in surface roughness. This effect was less influential to the Sinusoidal stent.
NASA Astrophysics Data System (ADS)
Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.
2016-08-01
Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.
Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns
Murphy, Jeffrey N.; Harris, Kenneth D.; Buriak, Jillian M.
2015-01-01
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion. PMID:26207990
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Rodriquez, Ernesto
1998-01-01
In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.
Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California
Cheng, R.T.; Ling, C.-H.; Gartner, J.W.; Wang, P.-F.
1999-01-01
A field investigation of the hydrodynamics and the resuspension and transport of participate matter in a bottom boundary layer was carried out in South San Francisco Bay (South Bay), California, during March-April 1995. Using broadband acoustic Doppler current profilers, detailed measurements of turbulent mean velocity distribution within 1.5 m above bed have been obtained. A global method of data analysis was used for estimating bottom roughness length zo and bottom shear stress (or friction velocities u*). Field data have been examined by dividing the time series of velocity profiles into 24-hour periods and independently analyzing the velocity profile time series by flooding and ebbing periods. The global method of solution gives consistent properties of bottom roughness length zo and bottom shear stress values (or friction velocities u*) in South Bay. Estimated mean values of zo and u* for flooding and ebbing cycles are different. The differences in mean zo and u* are shown to be caused by tidal current flood-ebb inequality, rather than the flooding or ebbing of tidal currents. The bed shear stress correlates well with a reference velocity; the slope of the correlation defines a drag coefficient. Forty-three days of field data in South Bay show two regimes of zo (and drag coefficient) as a function of a reference velocity. When the mean velocity is >25-30 cm s-1, the ln zo (and thus the drag coefficient) is inversely proportional to the reference velocity. The cause for the reduction of roughness length is hypothesized as sediment erosion due to intensifying tidal currents thereby reducing bed roughness. When the mean velocity is <25-30 cm s-1, the correlation between zo and the reference velocity is less clear. A plausible explanation of scattered values of zo under this condition may be sediment deposition. Measured sediment data were inadequate to support this hypothesis, but the proposed hypothesis warrants further field investigation.
Origins and nature of non-Fickian transport through fractures
NASA Astrophysics Data System (ADS)
Wang, L.; Cardenas, M. B.
2014-12-01
Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.
Tantalum films with well-controlled roughness grown by oblique incidence deposition
NASA Astrophysics Data System (ADS)
Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.
2005-08-01
We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces
Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo
2013-01-01
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708
a Comparison of Uav and Tls Data for Soil Roughness Assessment
NASA Astrophysics Data System (ADS)
Milenković, M.; Karel, W.; Ressl, C.; Pfeifer, N.
2016-06-01
Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric techniques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM differences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12 cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the correlation length.
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
Allowable SEM noise for unbiased LER measurement
NASA Astrophysics Data System (ADS)
Papavieros, George; Constantoudis, Vassilios; Gogolides, Evangelos
2018-03-01
Recently, a novel method for the calculation of unbiased Line Edge Roughness based on Power Spectral Density analysis has been proposed. In this paper first an alternative method is discussed and investigated, utilizing the Height-Height Correlation Function (HHCF) of edges. The HHCF-based method enables the unbiased determination of the whole triplet of LER parameters including besides rms the correlation length and roughness exponent. The key of both methods is the sensitivity of PSD and HHCF on noise at high frequencies and short distance respectively. Secondly, we elaborate a testbed of synthesized SEM images with controlled LER and noise to justify the effectiveness of the proposed unbiased methods. Our main objective is to find out the boundaries of the method in respect to noise levels and roughness characteristics, for which the method remains reliable, i.e the maximum amount of noise allowed, for which the output results cope with the controllable known inputs. At the same time, we will also set the extremes of roughness parameters for which the methods hold their accuracy.
Surface roughness scattering of electrons in bulk mosfets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less
On universality of scaling law describing roughness of triple line.
Bormashenko, Edward; Musin, Albina; Whyman, Gene; Barkay, Zahava; Zinigrad, Michael
2015-01-01
The fine structure of the three-phase (triple) line was studied for different liquids, various topographies of micro-rough substrates and various wetting regimes. Wetting of porous and pillar-based micro-scaled polymer surfaces was investigated. The triple line was visualized with the environmental scanning electron microscope and scanning electron microscope for the "frozen" triple lines. The value of the roughness exponent ζ for water (ice)/rough polymer systems was located within 0.55-0.63. For epoxy glue/rough polymer systems somewhat lower values of the exponent, 0.42 < ζ < 0.54, were established. The obtained values of ζ were close for the Cassie and Wenzel wetting regimes, different liquids, and different substrates' topographies. Thus, the above values of the exponent are to a great extent universal. The switch of the exponent, when the roughness size approaches to the correlation length of the defects, is also universal.
Scale Effects in the Flow of a Shear-Thinning Fluid in Geological Fractures
NASA Astrophysics Data System (ADS)
Meheust, Y.; Roques, C.; Le Borgne, T.; Selker, J. S.
2017-12-01
Subsurface flow processes involving non-Newtonian fluids play a major role in many engineering applications, from in-situ remediation to enhanced oil recovery. The fluids of interest in such applications (f.e., polymers in remediation) often present shear-thinning properties, i.e., their viscosity decreases as a function of the local shear rate. We investigate how fracture wall roughness impacts the flow of a shear-thinning fluid. Numerical simulations of flow in 3D geological fractures are carried out by solving a modified Navier-Stokes equation incorporating the Carreau viscous-shear model. The numerical fractures consist of two isotropic self-affine surfaces which are correlated with each other above a characteristic scale (thecorrelation length of Méheust et al. PAGEOPH 2003). Perfect plastic closing is assumed when the surfaces are in contact. The statistical parameters describing a fracture are the standard deviation of the wall roughness, the mean aperture, the correlation length, and the fracture length, the Hurst exponent being fixed (equal to 0.8). The objective is to investigate how varying the correlation length impacts the flow behavior, for different degrees of closure, and how this behavior diverges from what is known for Newtonian fluids. The results from the 3D simulations are also compared to 2D simulations based on the lubrication theory, which we have developed as an extension of the Reynolds equation for Newtonian fluids. These 2D simulations run orders of magnitude faster, which allows considering a significant statistics of fractures of identical statistical parameters, and therefore draw general conclusions despite the large stochasticity of the media. We also discuss the implications of our results for solute transport by such flows. References:Méheust, Y., & Schmittbuhl, J. (2003). Scale effects related to flow in rough fractures. Pure and Applied Geophysics, 160(5-6), 1023-1050.
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.
Speckle-field propagation in 'frozen' turbulence: brightness function approach
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Speckle-field propagation in 'frozen' turbulence: brightness function approach.
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
NASA Astrophysics Data System (ADS)
Alekseychik, P. K.; Korrensalo, A.; Mammarella, I.; Vesala, T.; Tuittila, E.-S.
2017-06-01
Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAIs) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z0). z0 can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z0 were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAIs was found to be well correlated with z0 and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.
Surface and mass fractals in vapor-phase aggregates
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Schaefer, Dale W.; Martin, James E.
1987-03-01
Several types of fumed-silica aggregates with differing surface areas were studied over a wide range of spatial resolution by employing both light and neutron scattering. At intermediate length scales, between 100 and 1000 Å, the aggregates are mass fractals with Dm~=1.7-2.0, in basic agreement with simulations of aggregating clusters. At short length scales below 100 Å where the nature of the surfaces of the primary particles dominates the scattering, some of the samples appear to be fractally rough. In particular, a higher surface area seems to be correlated not with smaller primary particles in the aggregates, as previously assumed, but with fractally rough surfaces having Ds as high as 2.5. These may be the first materials discovered to have both mass and surface fractal structure.
NASA Technical Reports Server (NTRS)
Bavassano, B.; Mariani, F.
1983-01-01
Magnetic field data from HELIOS 1 and 2 are used to test a stochastic model for Alfvenic fluctuations recently proposed. A reasonable matching between observations and predictions is found. A rough estimate of the correlation length of the observed fluctuations is inferred.
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.
2001-01-01
A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.
NASA Technical Reports Server (NTRS)
Sams, E. W.
1952-01-01
An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.
Rough surface scattering based on facet model
NASA Technical Reports Server (NTRS)
Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.
1974-01-01
A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.
NASA Technical Reports Server (NTRS)
King, James; Nickling, W. G.; Gilliles, J. A.
2006-01-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
NASA Astrophysics Data System (ADS)
King, James; Nickling, W. G.; Gillies, J. A.
2006-12-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
The effect of self-assembled monolayers on graphene conductivity and morphology
NASA Astrophysics Data System (ADS)
Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.
2009-03-01
Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.
1990-09-01
The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.
2009-01-01
In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956
Wake characteristics of buildings in disturbed boundary layers
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Chang, J.
1980-01-01
Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. Field measurements of velocity and turbulence in the wake of a block building 3.2 m high and 26.8 m long are presented which show an apparent increase in momentum flow above the upwind value. Velocity-deficit and turbulence-excess decay characteristics of the disturbed or nonequilibrium layer are correlated with power law exponents and apparent roughness length at various distances downstream of the disturbance. Model wake profiles from the simulated building are compared at various stations for equilibrium and nonequilibrium upstream profiles. Empirical correlations relating building wake profiles to upstream nonequilibrium parameters are presented. The relationship of the data to the smooth-rough transition is discussed, and a flow model is presented.
Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Naher, S.; Brabazon, D.
2011-05-01
This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
The effects of lumber length on part yields in gang-rip-first rough mills
Peter C. Hamner; Brian H. Bond; Janice K. Wiedenbeck
2002-01-01
The lumber processed in most rough mills typically arrives from vendors in packages of random width boards with lengths ranging from 8 to 16 feet. However, little attention has been given to analyzing how differences in board lengths affect rough mill yield given varying part-prioritization strategies and cutting bill scenarios. The objective of this study was to...
Decorrelation of the static and dynamic length scales in hard-sphere glass formers.
Charbonneau, Patrick; Tarjus, Gilles
2013-04-01
We show that, in the equilibrium phase of glass-forming hard-sphere fluids in three dimensions, the static length scales tentatively associated with the dynamical slowdown and the dynamical length characterizing spatial heterogeneities in the dynamics unambiguously decorrelate. The former grow at a much slower rate than the latter when density increases. This observation is valid for the dynamical range that is accessible to computer simulations, which roughly corresponds to that accessible in colloidal experiments. We also find that, in this same range, no one-to-one correspondence between relaxation time and point-to-set correlation length exists. These results point to the coexistence of several relaxation mechanisms in the dynamically accessible regime of three-dimensional hard-sphere glass formers.
Hydraulic resistance of submerged flexible vegetation
NASA Astrophysics Data System (ADS)
Stephan, Ursula; Gutknecht, Dieter
2002-12-01
The main research objective consisted in analysing the influence of roughness caused by aquatic vegetation (av), in particular submerged macrophytes, on the overall flow field. These plants are highly flexible and behave differently depending on the flow situation. They also react substantially to the flow field and thus, the roughness becomes variable and dynamic. Conventional flow formulas, such as the Manning or the Strickler formula, are one-dimensional and based on integral flow parameters. They are not suitable for quantifying the roughness of av, because the flow is complex and more dimensional due to the variable behaviour of the plants. Therefore, the present investigation concentrates on the definition of a characteristic hydraulic roughness parameter to quantify the resistance of av. Within this investigation laboratory experiments were carried out with three different types of av, chosen with respect to varying plant structures as well as stem lengths. Velocity measurements above these plants were conducted to determine the relationship between the hydraulic roughness and the deflected plant height. The deflected plant height is used as the geometric roughness parameter, whereas the equivalent sand roughness based on the universal logarithmic law modified by Nikuradse was used as hydraulic roughness parameter. The influence of relative submergence on the hydraulic roughness was also analysed. The analysis of the velocity measurements illustrates that equivalent sand roughness and zero plane displacement of the logarithmic law are correlated to the deflected plant height and are equally to this height.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
Optical surface evaluation by soft X-ray scattering
NASA Technical Reports Server (NTRS)
Green, James C.; Finley, David S.; Bowyer, Stuart; Malina, Roger F.
1986-01-01
During the fabrication of the mirrors for the Extreme Ultraviolet Explorer (EUVE), methods for evaluating the surface quality of the optics have been developed. Measurement of soft X-ray scattering profiles allows for the determination of the surface roughness and correlation lengths for highly polished metal surfaces. With this method, the surface parameters for one of the Wolter Schwarzschild type I mirrors that had been fabricated for the EUVE mission have been determined. The techniques employed, the theoretical basis for the method, and the data that had been taken are presented. The measurements show that the best mirrors have a surface roughness of 20A rms or less.
Correlation Length of Energy-Containing Structures in the Base of the Solar Corona
NASA Astrophysics Data System (ADS)
Abramenko, V.; Zank, G. P.; Dosch, A. M.; Yurchyshyn, V.
2013-12-01
An essential parameter for models of coronal heating and fast solar wind acceleration that relay on the dissipation of MHD turbulence is the characteristic energy-containing length of the squared velocity and magnetic field fluctuations transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale defines directly the heating rate. Rather surprisingly, almost nothing is known observationally about this critical parameter. Currently, only a very rough estimate of characteristic length was obtained based on the fact that the network spacing is about 30000 km. We attempted estimation of this parameter from observations of photospheric random motions and magnetic fields measured in the photosphere inside coronal holes. We found that the characteristic length scale in the photosphere is about 600-2000 km, which is much smaller than that adopted in previous models. Our results provide a critical input parameter for current models of coronal heating and should yield an improved understanding of fast solar wind acceleration. Fig. 1-- Plotted is the natural logarithm of the correlation function of the transverse velocity fluctuations u^2 versus the spatial lag r for the two CHs. The color code refers to the accumulation time intervals of 2 (blue), 5 (green), 10 (red), and 20 (black) minutes. The values of the Batchelor integral length λ the correlation length ς and the e-folding length L in km are shown. Fig. 2-- Plot of the natural logarithm of the correlation function of magnetic fluctuations b^2 versus the spatial lag r. The insert shows this plot with linear axes.
Topographic modelling of haptic properties of tissue products
NASA Astrophysics Data System (ADS)
Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.
2014-03-01
The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).
Singh, Surendra; Basu, Saibal
2009-02-04
Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.
Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.
2012-01-01
Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.
NASA Astrophysics Data System (ADS)
Zhao, Leihong; Qu, Xiaolu; Lin, Hongjun; Yu, Genying; Liao, Bao-Qiang
2018-03-01
Simulation of randomly rough bioparticle surface is crucial to better understand and control interface behaviors and membrane fouling. Pursuing literature indicated a lack of effective method for simulating random rough bioparticle surface. In this study, a new method which combines Gaussian distribution, Fourier transform, spectrum method and coordinate transformation was proposed to simulate surface topography of foulant bioparticles in a membrane bioreactor (MBR). The natural surface of a foulant bioparticle was found to be irregular and randomly rough. The topography simulated by the new method was quite similar to that of real foulant bioparticles. Moreover, the simulated topography of foulant bioparticles was critically affected by parameters correlation length (l) and root mean square (σ). The new method proposed in this study shows notable superiority over the conventional methods for simulation of randomly rough foulant bioparticles. The ease, facility and fitness of the new method point towards potential applications in interface behaviors and membrane fouling research.
NASA Astrophysics Data System (ADS)
Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong
2017-07-01
In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.
NASA Technical Reports Server (NTRS)
Nikuradse, J
1950-01-01
An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.
Scaling law analysis of paraffin thin films on different surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotto, M. E. R.; Camargo, S. S. Jr.
2010-01-15
The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less
Discrete sonic jets used as boundary-layer trips at Mach numbers of 6 and 8.5
NASA Technical Reports Server (NTRS)
Stone, D. R.; Cary, A. M., Jr.
1972-01-01
The effect of discrete three-dimensional sonic jets used to promote transition on a sharp-leading-edge flat plate at Mach numbers of 6 and 8.5 and unit Reynolds numbers as high as 2.5 x 100,000 per cm in the Langley 20-inch hypersonic tunnels is discussed. An examination of the downstream flow-field distortions associated with the discrete jets for the Mach 8.5 flow was also conducted. Jet trips are found to produce lengths of turbulent flow comparable to those obtained for spherical-roughness-element trips while significantly reducing the downstream flow distortions. A Reynolds number based upon secondary jet penetration into a supersonic main flow is used to correlate jet-trip effectiveness just as a Reynolds number based upon roughness height is used to correlate spherical-trip effectiveness. Measured heat-transfer data are in agreement with the predictions.
1985-05-01
interpolates between a pair of points based on a list of supplied values (C-2). () ALP estimates the ambient wind profile power a by minimizing the integral...Typical Values of Surface Roughness 7 1.2. Representative Konin-Obukhov Lengths arnd Power Law Exponents for Different Atmospheric Stabilities 8 IV.1...a constant in power law wind profile 0 constant in a correlation r gama function ratio of (p - pa)/Cc 6 constant in a correlation y AMonin-Obukhov
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2010-06-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Intermode light diffusion in multimode optical waveguides with rough surfaces.
Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R
2005-06-01
A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.
NASA Astrophysics Data System (ADS)
Dupuis, Hélène; Weill, Alain; Katsaros, Kristina; Taylor, Peter K.
1995-10-01
Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.
Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization
NASA Astrophysics Data System (ADS)
Wang, Yingjun; Xie, Guofeng
2015-12-01
The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction-dependent phonon-boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron-length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.
Lava flow topographic measurements for radar data interpretation
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Garvin, James B.
1993-01-01
Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.
NASA Astrophysics Data System (ADS)
Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw
2011-04-01
Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.
Estimation of effective aerodynamic roughness with altimeter measurements
NASA Technical Reports Server (NTRS)
Menenti, M.; Ritchie, J. C.
1992-01-01
A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.
Effective field model of roughness in magnetic nano-structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk
2015-12-28
An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less
Probing cooperative force generation in collective cancer invasion
NASA Astrophysics Data System (ADS)
Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo
2017-08-01
Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.
Rough Mill Simulations Reveal That Productivity When Processing Short Lumber Can Be High
Janice K. Wiedenbeck; Philip A. Araman
1995-01-01
Handling rates and costs associated with using short-length lumber (less than 8 ft. long) in furniture and cabinet industry rough mills have been assumed to be prohibitive. Discrete-event systems simulation models of both a crosscut-first and gang-rip-first rough mill were built to measure the effect of lumber length on equipment utilization and the volume and value of...
Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach
NASA Astrophysics Data System (ADS)
Di Palma, P. R.; Guyennon, N.; Heße, F.; Romano, E.
2017-04-01
Macroscopic properties of flow through porous media can be directly computed by solving the Navier-Stokes equations at the scales related to the actual flow processes, while considering the porous structures in an explicit way. The aim of this paper is to investigate the effects of the pore-scale spatial distribution on seepage velocity through numerical simulations of 3D fluid flow performed by the lattice Boltzmann method. To this end, we generate multiple random Gaussian fields whose spatial correlation follows an assigned semi-variogram function. The Exponential and Gaussian semi-variograms are chosen as extreme-cases of correlation for short distances and statistical properties of the resulting porous media (indicator field) are described using the Matèrn covariance model, with characteristic lengths of spatial autocorrelation (pore size) varying from 2% to 13% of the linear domain. To consider the sensitivity of the modeling results to the geostatistical representativeness of the domain as well as to the adopted resolution, porous media have been generated repetitively with re-initialized random seeds and three different resolutions have been tested for each resulting realization. The main difference among results is observed between the two adopted semi-variograms, indicating that the roughness (short distances autocorrelation) is the property mainly affecting the flux. However, computed seepage velocities show additionally a wide variability (about three orders of magnitude) for each semi-variogram model in relation to the assigned correlation length, corresponding to pore sizes. The spatial resolution affects more the results for short correlation lengths (i.e., small pore sizes), resulting in an increasing underestimation of the seepage velocity with the decreasing correlation length. On the other hand, results show an increasing uncertainty as the correlation length approaches the domain size.
Drop splashing induced by target roughness and porosity: The size plays no role.
Roisman, Ilia V; Lembach, Andreas; Tropea, Cameron
2015-08-01
Drop splash as a result of an impact onto a dry substrate is governed by the impact parameters, gas properties and the substrate properties. The splash thresholds determine the boundaries between various splash modes. Various existing models for the splash threshold are reviewed in this paper. It is shown that our understanding of splash is not yet complete. The most popular, widely used models for splash threshold do not describe well the available experimental data. The scientific part of this paper is focused on the description of drop prompt splash on rough and porous substrates. It is found that the absolute length scales of the substrate roughness, like Ra or Rz, do not have any significant effect on the splash threshold. It is discovered that on rough substrates the main influencing splash parameters are the impact Weber number and the characteristic slope of the roughness of the substrate. The drop deposition without splash on porous substrates is enhanced by the liquid modified Reynolds number. Surprisingly, it is not influenced by the pore size, at least for the impact parameters used in the experiments. Finally, an empirical correlation for the prompt splash on rough and porous substrates is proposed, based on a rather amount of experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.
1993-01-01
This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil moisture range of 16 to 60 percent for the C-band case. The next case investigated is to vary both soil moisture and rms height while keeping the correlation length fixed. For this case, C-band backscattering coefficients are not sufficient for retrieving two parameters because the Kirchhoff approximation gives the same HH and VV backscattering coefficients. Therefore, the backscattering coefficients at two different frequency bands are necessary to find both the soil moisture and rms height. Finally, the neural nets are also applied to simultaneously invert soil moisture, rms height, and correlation length. Overall, the soil moisture retrieved from the neural network agrees very well with the desired soil moisture. This suggests that the neural network shows potential for retrieval of soil parameters from remote sensing data.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
NASA Astrophysics Data System (ADS)
Basart, Sara; Jorba, Oriol; Pérez García-Pando, Carlos; Prigent, Catherine; Baldasano, Jose M.
2014-05-01
Aeolian aerodynamic roughness length in arid regions is a key parameter to predict the vulnerability of the surface to wind erosion, and, as a consequence, the related production of mineral aerosol (e.g. Laurent et al., 2008). Recently, satellite-derived roughness length at the global scale have emerged and provide the opportunity to use them in advanced emission schemes in global and regional models (i.e. Menut et al., 2013). A global map of the aeolian aerodynamic roughness length at high resolution (6 km) is derived, for arid and semi-arid regions merging PARASOL and ASCAT data to estimate aeolian roughness length. It shows very good consistency with the existing information on the properties of these surfaces. The dataset is available to the community, for use in atmospheric dust transport models. The present contribution analyses the behaviour of the NMMB/BSC-Dust model (Pérez et al., 2011) when the ASCAT/PARASOL satellite-derived global roughness length (Prigent et al, 2012) and the State Soil Geographic database Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) is used. We explore the sensitivity of the drag partition scheme (a critical component of the dust emission scheme) and the dust vertical fluxes (intensity and spatial patterns) to the roughness length. An annual evaluation of NMMB/BSC-Dust (for the year 2011) over Northern Africa and the Middle East using observed aerosol optical depths (AODs) from Aerosol Robotic Network sites and aerosol satellite products (MODIS and MISR) will be discussed. Laurent, B., Marticorena, B., Bergametti, G., Leon, J. F., and Mahowald, N. M.: Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database, J. Geophys. Res., 113, D14218, doi:10.1029/2007JD009484, 2008. Menut, L., C. Pérez, K. Haustein, B. Bessagnet, C. Prigent, and S. Alfaro, Impact of surface roughness and soil texture on mineral dust emission fluxes modeling, J. Geophys. Res. Atmos., 118, 6505-6520, doi:10.1002/jgrd.50313, 2013. Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M. and Thomson, M. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model-Part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001-13027, 2011. Prigent, C., Jiménez, C., and Catherinot, J.: Comparison of satellite microwave backscattering (ASCAT) and visible/near-infrared reflectances (PARASOL) for the estimation of aeolian aerodynamic roughness length in arid and semi-arid regions, Atmos. Meas. Tech., 5, 2703-2712, doi:10.5194/amt-5-2703-2012, 2012.
Dust lifting in GEM-Mars using a roughness length map
NASA Astrophysics Data System (ADS)
Daerden, F.; Neary, L.; Whiteway, J. A.; Hébrard, E.
2013-09-01
Lifting of size distributed dust due to surface wind stress and dust devils has been implemented in the GEM-Mars 3D-GCM. It turned out that a detailed surface roughness length map was necessary to bring the simulated dust opacities in accordance with observations.
Roughness Length as a Measure of the Effects of a Vegetative Windbreak
NASA Astrophysics Data System (ADS)
Kenny, W.; Maurer, K.; Bohrer, G.
2012-12-01
Vegetative windbreaks are often used as barriers to block the dispersion of particulate matter, particularly around agricultural facilities. Windbreaks and narrow forest strips alter the wind pattern and affect dispersion of particles and aerosols that are carried across. Our observations during two field campaigns, conducted near animal feeding lots where large flumes of dust are advected across edge-of-field windbreaks, suggest that sensible heat flux greatly affects the interaction between the flow and the windbreak. We used measurements at multiple heights upwind and downwind of the windbreak to calculate the background roughness length and the effective roughness length of the windbreak. While the flow is not fully adjusted at the wake of the windbreak, we use measurements at different times of the day as a sensitivity analysis to the strength of the buoyancy term within the theoretical surface similarity equation that includes the effects of the wind break. Clearly, calculated roughness length downwind of the windbreak is much greater than upwind of the windbreak, but as SHF increases, the difference in roughness length across the windbreak decreases indicating a decrease in the overall effect of the windbreak on flow. Our findings indicate that as SHF increases, windbreaks may not be able to play much of a role in affecting the dispersion of particulate matter, as the overall effects of windbreaks diminish.
Helicopter rotor noise investigation during ice accretion
NASA Astrophysics Data System (ADS)
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, R. M.; Geisz, J. F.; Steiner, M. A.
Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
Research on effect of rough surface on FMCW laser radar range accuracy
NASA Astrophysics Data System (ADS)
Tao, Huirong
2018-03-01
The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
NASA Astrophysics Data System (ADS)
Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.
2017-03-01
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.
2017-03-15
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less
Impact of Surface Roughness and Soil Texture on Mineral Dust Emission Fluxes Modeling
NASA Technical Reports Server (NTRS)
Menut, Laurent; Perez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, Stephane
2013-01-01
Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
Properties of Self-Assembled Monolayers Revealed via Inverse Tensiometry.
Chen, Jiahao; Wang, Zhengjia; Oyola-Reynoso, Stephanie; Thuo, Martin M
2017-11-28
Self-assembled monolayers (SAMs) have emerged as a simple platform technology and hence have been broadly studied. With advances in state-of-the-art fabrication and characterization methods, new insights into SAM structure and related properties have been delineated, albeit with some discrepancies and/or incoherencies. Some discrepancies, especially between experimental and theoretical work, are in part due to the misunderstanding of subtle structural features such as phase evolution and SAM quality. Recent work has, however, shown that simple techniques, such as the measurement of static contact angles, can be used to delineate otherwise complex properties of the SAM, especially when complemented by other more advanced techniques. In this article, we highlight the effect of nanoscale substrate asperities and molecular chain length on the SAM structure and associated properties. First, surfaces with tunable roughness are prepared on both Au and Ag, and their corresponding n-alkanethiolate SAMs are characterized through wetting and spectroscopy. From these data, chain-length- and substrate-morphology-dependent limits to the odd-even effect (structure and properties vary with the number of carbons in the molecules and the nature of the substrate), parametrization of gauche defect densities, and structural phase evolution (liquidlike, waxy, crystalline interfaces) are deduced. An evaluation of the correlation between the effect of roughness and the components of surface tension (polar-γ p and dispersive-γ d ) reveals that wetting, at nanoscale rough surfaces, evolves proportionally with the ratio of the two components of surface tension. The evolution of conformational order is captured over a range of molecular lengths and parametrized through a dimensionless number, χ c . By deploying a well-known tensiometry technique (herein the liquid is used to characterize the solid, hence the term inverse tensiometry) to characterize SAMs, we demonstrate that complex molecular-level phenomena in SAMs can be understood through simplicity.
X-33 Hypersonic Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
NASA Technical Reports Server (NTRS)
King, James; Nickling, William G.; Gillies, John A.
2005-01-01
The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.
NASA Astrophysics Data System (ADS)
Holzman, Burt
The E917 experiment studied Au+Au collisions at beam energies of 6, 8, and 10.8 GeV per nucleon at the Alternating Gradient Synchrotron at Brookhaven National Laboratory in New York. Hanbury-Brown and Twiss correlations between pion pairs were investigated in order to determine the spatiotemporal structure of the collision region which serves as the source for these produced particles. Three separate correlation analyses were carried out in this work. One-dimensional correlation radii and their dependence on beam energy are measured. No systematic trends with energy are observed, and the overall radius roughly corresponds to the geometric size of the collision zone. In a simple model, three-dimensional correlation radii which assume an azimuthally asymmetric source are determined at the full beam energy of 10.8 GeV/u. The radius transverse to the beam direction along the reaction plane is compared to the transverse radius orthogonal to the reaction plane. A small difference is observed between the two radii. In a state-of-the-art model, it is possible to determine the ``lengths of homogeneity'' of the collision zone without invoking the assumptions inherent in the simple model, six-dimensional correlation radii are determined at the full beam energy of 10.8 GeV/u, and consequently the in-plane length of homogeneity, out-of- plane length, longitudinal length, and emission duration of the source are determined. Additionally, the magnitude of the tilt of the collision region in the reaction plane is measured and found to be -31° +/- 32°. The measurement of the in-plane and out-of-plane homogeneity lengths is not sensitive enough to distinguish between an oblate or prolate source, but provides a blueprint for future statistics-rich analyses to follow.
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene
2011-11-01
The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.
2008-07-01
Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S.
2015-01-01
Here, we employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition betweenmore » ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaotong; Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn
We carefully examine the depolarization feature of blazars in the optical and near-infrared bands using the sample of Mead et al. Magnetohydrodynamics turbulence could be one possible reason for the depolarization of optical/infrared blazars when we apply the theoretical analysis of Lazarian and Pogosyan. We further identify in the sample that the depolarization results shown in most blazars roughly obey the form of the three-dimensional anisotropic Kolmogorov scaling. The effective Faraday rotation window length scale is not small enough to resolve the polarization correlation length scale in the blazar sample. The depolarization and the related turbulent features show diversities inmore » different blazar sources. We suggest more simultaneous observations in both the optical/infrared and the high-energy bands for the study of the blazar polarization.« less
NASA Astrophysics Data System (ADS)
Weston, Michael; Chaouch, Naira; Valappil, Vineeth; Temimi, Marouane; Ek, Michael; Zheng, Weizhong
2018-06-01
Atmospheric models are known to underestimate land surface temperature and, by association, 2 m air temperature over dry arid regions during the day due to the treatment of the thermal roughness length also known as roughness length of heat. The thermal roughness length can be controlled by the Zilitinkevich parameter, known as Czil, which is a tunable parameter within the models. Three different scenarios with the WRF model are run to test the impact of the Czil parameter on the simulations using two land surface models: the Noah and Noah-MP models. In this study, a modified version of the Noah-MP model is tested, in which the Czil parameter, and, therefore, the thermal roughness length varies depending on the land cover and vegetation height. The model domain is over the United Arab Emirates (UAE) where the major land cover type is desert. The following configurations are tested: the Noah model with Czil = 0.1, Noah model with Czil = 0.5 and the Noah-MP model with Czil = 0.5 over desert. Results of 2 m air temperature are verified against three stations in the UAE. Mean gross error of the diurnal 2 m temperature was reduced by up to 1.48 and 1.54 °C in the 24 and 48 h forecasts, respectively. This reduced the cold bias in the model. This improvement in air temperature showed to improve the diurnal cycle of relative humidity at the three monitoring stations as well as the duration of the sea breeze in some cases.
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2011-05-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
Potential for yield improvement in combined rip-first and crosscut-first rough mill processing
Ed Thomas; Urs Buehlmann
2016-01-01
Traditionally, lumber cutting systems in rough mills have either first ripped lumber into wide strips and then crosscut the resulting strips into component lengths (rip-first), or first crosscut the lumber into component lengths, then ripped the segments to the required widths (crosscut-first). Each method has its advantages and disadvantages. Crosscut-first typically...
Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L
2006-05-28
Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.
1999-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale
NASA Astrophysics Data System (ADS)
Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm
2016-11-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.
NASA Astrophysics Data System (ADS)
Louie, Daniel C.; Tchvialeva, Lioudmilla; Zeng, Haishan; Lee, Tim K.
2017-02-01
Skin roughness is an important parameter in the characterization of skin and skin lesions, particularly for the purposes of skin cancer detection. Our group had previously constructed a laser speckle device that can detect the roughness in microrelief of the skin. This paper reports on findings made for the further miniaturization of our existing portably-sized device. These findings include the feasibility of adopting a laser diode without temperature control, and the use of a single CCD camera for detection. The coherence length of a laser is a crucial criterion for speckle measurements as it must be within a specific range. The coherence length of a commercial grade 405 nm laser diode was found to be of an appropriate length. Also, after a short warm-up period the coherence length of the laser was found to remain relatively stable, even without temperature control. Although the laser's temperature change during operation may affect its power output and the shape of its spectrum, these are only minor factors in speckle contrast measurements. Our second finding covers a calibration curve to relate speckle measurements to roughness using only parallel polarization from one CCD camera. This was created using experimental data from skin phantoms and tested on in-vivo skin. These improvements are important steps forward in the ongoing development of the laser speckle device, especially towards a clinical device to measure skin roughness and evaluate skin lesions.
Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H
2017-02-16
A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θ a = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.
Effects of vegetation canopy on the radar backscattering coefficient
NASA Technical Reports Server (NTRS)
Mo, T.; Blanchard, B. J.; Schmugge, T. J.
1983-01-01
Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.
NASA Astrophysics Data System (ADS)
Pacchiarotti, Barbara; Fanfoni, Massimo; Tomellini, Massimo
2005-12-01
In this paper the reformulation of Trofimov-Park (TP) model, [V.I. Trofimov, Appl. Surf. Sci. 219 (2003) 93), of thin film roughness evolution during nucleation and growth of islands in case of simultaneous nucleation is presented. The calculation of TP restricted to one-dimensional triangular islands has been extended to both the one-dimensional elliptical case and to the pyramidal two-dimensional one. The kinetics of the interface width, w, and the height-height autocorrelation function G, through which the correlation length ξ has been defined, have been estimated. Moreover, w(Θ) and ξ(Θ), where Θ is the fraction of the covered substrate, if properly rescaled to the density of nuclei N and to the aspect ratio of islands, are universal functions that, for a conspicuous range of Θ, obey a power law with the exponent depending upon island shape.
Response of fractal penetration of magnetic flux to disorder landscape in superconducting films
NASA Astrophysics Data System (ADS)
Ye, Zuxin; Li, Qiang; Si, W. D.; Suenaga, M.; Solovyov, V. F.; Johnson, P. D.
2005-10-01
Magnetic flux front and induction contours in superconducting YBa2Cu3O7-δ films with defect size stilde ξ (superconducting coherence length) and s≫ξ are studied by magneto-optical imaging. Robust self-affine spatial correlation was observed using scaling analysis in the small pinning disorder-dominated ( stilde ξ) films. The roughness exponent α was determined to be ˜0.66 , independent of numbers of defects (or the film thickness). When the disorder landscape also included a distribution of large defects (s≫ξ) , the flux front and induction contours exhibited self-similarity, with a fractal dimension D determined to be ˜1.33 using the box-counting method. The remarkably different flux penetration patterns were shown to be the manifestation of self-organized criticality at different length scales.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces
NASA Astrophysics Data System (ADS)
Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.
2004-06-01
The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.
NASA Astrophysics Data System (ADS)
Demuzere, M.; De Ridder, K.; van Lipzig, N. P. M.
2008-08-01
During the ESCOMPTE campaign (Experience sur Site pour COntraindre les Modeles de Pollution atmospherique et de Transport d'Emissions), a 4-day intensive observation period was selected to evaluate the Advanced Regional Prediction System (ARPS), a nonhydrostatic meteorological mesoscale model that was optimized with a parameterization for thermal roughness length to better represent urban surfaces. The evaluation shows that the ARPS model is able to correctly reproduce temperature, wind speed, and direction for one urban and two rural measurements stations. Furthermore, simulated heat fluxes show good agreement compared to the observations, although simulated sensible heat fluxes were initially too low for the urban stations. In order to improve the latter, different roughness length parameterization schemes were tested, combined with various thermal admittance values. This sensitivity study showed that the Zilitinkevich scheme combined with and intermediate value of thermal admittance performs best.
Turbulent Flow over Rough Turbine Airfoils.
1985-08-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Turbine blades ’ vanes ; surface roughness...turbulent boundary layer over rough turbine vanes or blades is developed. A new formulation of the mixing length model, expressed in the velocity-space...A-163 005 TURBULENT FLOW OVER ROUGH TURBINE AIRFOILS (U) OHIO 1/ STATE UNIV RESEARCH FOUNDATION COLUMBUS L S HAN AUG B5 OSURF-76357/?i4467 AFWL-TR-95
Shape dependence of slip length on patterned hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Chen, Min
2011-08-01
The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.
Measurements of storm-generated bottom stresses on the continental shelf.
Cacchione, D.A.; Drake, D.E.
1982-01-01
Large values of bottom friction velocity, u., and roughness length, zo, determined from burst-averaged speed data taken on the continental shelf in outer Norton Sound, Alaska, with the GEOPROBE tripod during a storm are correlated with extremely large values of near-bottom concentration of total suspended particulate matter (TSM). The values obtained from the 'law of the wall' velocity-depth relationship are diminished substantially throughout the storm period when the turbulence-reducing effects of the vertical cncentration gradient of TSM are considered. The values are compared to those obtained from other workers. -from Authors
NASA Astrophysics Data System (ADS)
Mo, Jingyue; Huang, Tao; Zhang, Xiaodong; Zhao, Yuan; Liu, Xiao; Li, Jixiang; Gao, Hong; Ma, Jianmin
2017-12-01
As a renewable and clean energy source, wind power has become the most rapidly growing energy resource worldwide in the past decades. Wind power has been thought not to exert any negative impacts on the environment. However, since a wind farm can alter the local meteorological conditions and increase the surface roughness lengths, it may affect air pollutants passing through and over the wind farm after released from their sources and delivered to the wind farm. In the present study, we simulated the nitrogen dioxide (NO2) air concentration within and around the world's largest wind farm (Jiuquan wind farm in Gansu Province, China) using a coupled meteorology and atmospheric chemistry model WRF-Chem. The results revealed an edge effect
, which featured higher NO2 levels at the immediate upwind and border region of the wind farm and lower NO2 concentration within the wind farm and the immediate downwind transition area of the wind farm. A surface roughness length scheme and a wind turbine drag force scheme were employed to parameterize the wind farm in this model investigation. Modeling results show that both parameterization schemes yield higher concentration in the immediate upstream of the wind farm and lower concentration within the wind farm compared to the case without the wind farm. We infer this edge effect and the spatial distribution of air pollutants to be the result of the internal boundary layer induced by the changes in wind speed and turbulence intensity driven by the rotation of the wind turbine rotor blades and the enhancement of surface roughness length over the wind farm. The step change in the roughness length from the smooth to rough surfaces (overshooting) in the upstream of the wind farm decelerates the atmospheric transport of air pollutants, leading to their accumulation. The rough to the smooth surface (undershooting) in the downstream of the wind farm accelerates the atmospheric transport of air pollutants, resulting in lower concentration level.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
NASA Astrophysics Data System (ADS)
De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W.
2012-09-01
Increasingly, mesoscale meteorological and climate models are used to predict urban weather and climate. Yet, large uncertainties remain regarding values of some urban surface properties. In particular, information concerning urban values for thermal roughness length and thermal admittance is scarce. In this paper, we present a method to estimate values for thermal admittance in combination with an optimal scheme for thermal roughness length, based on METEOSAT-8/SEVIRI thermal infrared imagery in conjunction with a deterministic atmospheric model containing a simple urbanized land surface scheme. Given the spatial resolution of the SEVIRI sensor, the resulting parameter values are applicable at scales of the order of 5 km. As a study case we focused on the city of Paris, for the day of 29 June 2006. Land surface temperature was calculated from SEVIRI thermal radiances using a new split-window algorithm specifically designed to handle urban conditions, as described inAppendix A, including a correction for anisotropy effects. Land surface temperature was also calculated in an ensemble of simulations carried out with the ARPS mesoscale atmospheric model, combining different thermal roughness length parameterizations with a range of thermal admittance values. Particular care was taken to spatially match the simulated land surface temperature with the SEVIRI field of view, using the so-called point spread function of the latter. Using Bayesian inference, the best agreement between simulated and observed land surface temperature was obtained for the Zilitinkevich (1970) and Brutsaert (1975) thermal roughness length parameterizations, the latter with the coefficients obtained by Kanda et al. (2007). The retrieved thermal admittance values associated with either thermal roughness parameterization were, respectively, 1843 ± 108 J m-2 s-1/2 K-1 and 1926 ± 115 J m-2 s-1/2 K-1.
Results of the Imager for Mars Pathfinder windsock experiment
Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.
2000-01-01
The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad Akram; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene; Physics Of Interfaces; Nanomaterials Team
2011-03-01
The importance of superhydrophobic substrates (contact angle > 150 r withslidingangle 10 r) inmoderntechnologyisundeniable . Wepresentasimplecolloidalroutetomanufacturesuperstructuredarrayswithsingle - andmulti - length - scaledroughnesstoobtainstickyandnon - stickysuperhydrophobicsurfaces . Thelargestlengthscaleisprovidedby (multi -) layersofsilicaspheres (1 μ m, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
Intrinsic suppression of turbulence in linear plasma devices
NASA Astrophysics Data System (ADS)
Leddy, J.; Dudson, B.
2017-12-01
Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Fluctuation dynamo and turbulent induction at small Prandtl number.
Eyink, Gregory L
2010-10-01
We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.
Continuum Statistics of the Bed Topography in a Sandy River
NASA Astrophysics Data System (ADS)
McElroy, B.; Jerolmack, D.; Mohrig, D.
2005-12-01
Temporal and spatial variabilities in the bed geometry of sandy rivers contain information about processes of sediment transport that has not been fully appreciated. This is primarily due to a disparity between the dynamic nature of the sediment-fluid interface and the relatively static methods of surveying bed elevation, e.g. single profiles or point measurements. High resolution topographic data is paramount to understanding the dynamic behavior of sandy beds. We present and analyze a data set collected on a 2cm x 2cm grid at 1 minute intervals and with a vertical precision of ~1mm. This was accomplished by using Lambert-Beer's Law for attenuation of light to transform low-altitude aerial photographs into digital elevation models. Forty successive models were generated for a 20 m by 30 m section of channel bottom of the N. Loup River, Nebraska. To calculate the average, whole bed translation rate, or celerity, cross-correlations between a reference bed topography and its proceeding configurations were determined. Time differences between models were related to the shift lengths that produced correlation maxima for each model pair. The result is a celerity of ~3.8cm/s with a correlation coefficient of 0.992. Bed topography also deforms while it translates, and this can be seen as a secular decrease of correlation maxima. The form of this decrease in correlation is exponential, and from it an interface half-life is defined. In this case, the bed had become extensively reorganized within ~40 minutes, the time necessary to translate the bed one wavelength of the dominant roughness element. Although the bed is continuously deforming, its roughness is statistically stationary. Essentially, a mean roughness is maintained as the bed creates new realizations of itself. The dynamic nature of the whole bed and similarly transient behavior of individual elements suggests the utility of a holistic approach to studying the feedback between bed topography, fluid flow, and sediment transport. Furthermore, it raises questions about the usefulness of detailed analysis of flow and transport over individual forms.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei
2015-11-01
The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.
Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao
2017-08-01
Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.
Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.
Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein
2015-06-01
This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. © 2014 Wiley Periodicals, Inc.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
Carbon nanotube oscillator surface profiling device and method of use
Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC
2011-11-15
The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.
NASA Astrophysics Data System (ADS)
Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.
2018-02-01
By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.
Investigation of the turbulent wind field below 500 feet altitude at the Eastern Test Range, Florida
NASA Technical Reports Server (NTRS)
Blackadar, A. K.; Panofsky, H. A.; Fiedler, F.
1974-01-01
A detailed analysis of wind profiles and turbulence at the 150 m Cape Kennedy Meteorological Tower is presented. Various methods are explored for the estimation of wind profiles, wind variances, high-frequency spectra, and coherences between various levels, given roughness length and either low-level wind and temperature data, or geostrophic wind and insolation. The relationship between planetary Richardson number, insolation, and geostrophic wind is explored empirically. Techniques were devised which resulted in surface stresses reasonably well correlated with the surface stresses obtained from low-level data. Finally, practical methods are suggested for the estimation of wind profiles and wind statistics.
The Long Range Persistence of Wakes Behind a Row of Roughness Elements
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Sescu, Adrian; Duck, Peter W.; Choudhari, Meelan
2010-01-01
We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.
NASA Astrophysics Data System (ADS)
Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda
2017-06-01
The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.
Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...
2015-06-24
Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less
Effect of Variable Chord Length on Transonic Axial Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2002-01-01
During the life of any gas turbine, blade erosion is present, especially for those units that are exposed to unfiltered air, such as aviation turbofan engines. The effect of this erosion is to reduce the blade chord progressively from the midspan to the tip region and to roughen and distort the blade surface. The effects of roughness on rotor performance have been documented by Suder et al. and Roberts. These papers indicate that the penalty for leading-edge roughness and erosion can be significant. Turbofan operators, therefore, restore chord length at routine maintenance intervals to regain performance before deterioration is too severe to salvage blades. As the rotor blades erode, the leading edge becomes rough - blunt and distorted from the nominal shape - and the aerodynamic performance suffers. Nominal performance can be recovered by recontouring the leading edges. This process, which inherently shortens the blade chord, can be used until the blade chord erodes to the stall limit. Below this chord length, which varies among engine-compressor types, a decrease of stall margin is likely. After compressor blade rework that includes leading edge recontouring, the blades have different chord lengths, ranging from blades that are near nominal chord length down to those near the stall chord limit. Furthermore, as blades erode below the stall limit, they must be replaced with new blades that have the full nominal chord length. Consequently, a set of compressor blades with varying chord lengths will be installed into each turbofan engine that goes through a complete maintenance cycle. The question arises, "Does fan or compressor performance depend on the order in which mixed-chord blades are installed into a fan or compressor disk?"
A Study of the Mean Force Structure of Rough-Wall Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Klewicki, Joseph
2011-11-01
Analysis of existing data by Mehdi, Klewicki & White [Physica D 239(2010)] provides evidence that the traditional classifications do not fully account for the combined effects of roughness and Reynolds number. We continue to explore this further, and in the present talk report on experiments that used 24-grit sandpaper and pea gravel for roughness over an 8m fetch. Two-component LDV measurements are used to acquire well-resolved mean velocity and Reynolds stress profiles over a modest range of Reynolds numbers. These data are used to estimate the terms in the appropriate mean statement of dynamics, which directly reveals the operative time-averaged balance of forces. The present results further reinforce the previous observation that the mean viscous force retains dominant order above (and often well-above) the roughness elements. Force balance data are shown to be usefully organized relative to the length scale that defines the region from the wall to where the leading order mean dynamics are described by a balance between mean advection and the mean effect of turbulent inertia. In the smooth-wall flow, this length scale is only a function of Reynolds number. In rough-wall flows, the data indicate it to be a function of roughness and Reynolds number. The support of the ONR (N000140810836, grant monitor Ronald Joslin) is gratefully acknowledged.
Roadmeter roughness testing in Virginia.
DOT National Transportation Integrated Search
1972-01-01
A passenger car mounted PCA roadmeter has been correlated with the BPR roughometer used for road roughness testing in Virginia for many years. The results showed a good correlation and that the roadmeter is capable of excellent reproducibility. Roadm...
Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S.; Dunham, E. M.; Kozdon, J. E.
2012-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.
Simulation for Rough Mill Options
Janice K. Wiedenbeck
1992-01-01
How is rough mill production affected by lumber length? Lumber grade? Cutting quality? Cutting sizes? How would equipment purchase plans be prioritized? How do personnel shifts affect system productivity? What effect would a reduction in machine set-up time have on material flow? Simulation modeling is being widely used in many industries to provide valuable insight...
Influences of roughness on the inertial mechanism of turbulent boundary-layer scale separation
NASA Astrophysics Data System (ADS)
Ebner, Rachel
Measurements and scaling analyses are conducted to clarify the combined effects of roughness and Reynolds number on momentum transport in the rough-wall zero pressure gradient turbulent boundary layer. A series of multi-sensor hot-wire experiments are presented that cover nearly a decade in Reynolds number and nearly three decades in the inner-normalized sand grain roughness. This dissertation utilizes the difference between two velocity-vorticity correlations to represent the turbulent inertia term in the statement of the mean dynamics for turbulent boundary layer flow. Analyses focus on the first term on the right hand side of the equation, because it is physically affiliated with change-of-scale effects (Tennekes and Lumley, 1972). Similarity analysis, streamwise correlations, and spectral methods are performed to elucidate the scaling behaviors of the turbulent inertia term relative to the mean dynamics. The present results reveal complex behaviors in the long-time statistics of the velocity-vorticity correlation that exhibit both Reynolds number and roughness dependencies. The results broadly support the combined roughness-Reynolds number description provided by Mehdi et al, (2013).
Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform
NASA Astrophysics Data System (ADS)
Fabre, David Hanks
The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.
Effect of truncated cone roughness element density on hydrodynamic drag
NASA Astrophysics Data System (ADS)
Womack, Kristofer; Schultz, Michael; Meneveau, Charles
2017-11-01
An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
Discrete Roughness Transition for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.
2007-01-01
The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.
2016-12-01
The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.
NASA Astrophysics Data System (ADS)
Young, Duncan; Blankeship, Donald; Beem, Lucas; Cavitte, Marie; Quartini, Enrica; Lindzey, Laura; Jackson, Charles; Roberts, Jason; Ritz, Catherine; Siegert, Martin; Greenbaum, Jamin; Frederick, Bruce
2017-04-01
The roughness of subglacial interfaces (as measured by airborne radar echo sounding) at length scales between profile line spacing and the footprint of the instrument is a key, but complex, signature of glacial and geomorphic processes, material lithology and integrated history at the bed of ice sheets. Subglacial roughness is also intertwined with assessments of ice thickness uncertainty using radar echo sounding, the utility of interpolation methodologies, and a key aspect of subglacial assess strategies. Here we present an assessment of subglacial roughness estimation in both West and East Antarctica, and compare this to exposed subglacial terrains. We will use recent high resolution aerogeophysical surveys to examine what variations in roughness are a fingerprint for, assess the limits of ice thickness uncertainty quantification and compare strategies for roughness assessment and utilization.
Shuttle orbiter boundary layer transition at flight and wind tunnel conditions
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Bertin, J. J.
1983-01-01
Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.
NASA Astrophysics Data System (ADS)
Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein
2018-05-01
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
Structure of turbulent flow over regular arrays of cubical roughness
NASA Astrophysics Data System (ADS)
Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
Improving lumber yield using a dual system
R. Edward Thomas; Omar Espinoza; Urs Buehlmann
2015-01-01
Rough mills embody the process of cutting up kiln-dried lumber to components used by discrete wood products manufacturers to manufacture products like furniture, kitchen cabinets, flooring, or other items. Rough mills traditionally have either ripped the lumber first (e.g., the lumber is first cut into strips lengthwise) then cut the strips to the required part lengths...
Electropolishing effect on roughness metrics of ground stainless steel: a length scale study
NASA Astrophysics Data System (ADS)
Nakar, Doron; Harel, David; Hirsch, Baruch
2018-03-01
Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.
Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2011-01-01
This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.
Correlation of Windspeed and Antarctic Surface Roughness
NASA Astrophysics Data System (ADS)
Stockham, Mark; Anita Collaboration
2015-04-01
When electromagnetic waves interact with a media interface the transmitted and reflected portions of the incoming wave depend on the incident angle of the wave and wavelength (as well as the material properties of the media). The roughness of the surface of Antarctica affects the radio frequency signals received by airborne experiments, such as the balloon-borne experiment ANITA (ANtarctic Impulsive Transient Antenna) which observes the reflected radio waves from cosmic ray-induced extensive air showers (EAS). Roughness of a given scale can cause decoherence of the reflected signal and is an important effect to understand when estimating the amplitude of the incoming wave based on the reflected wave. It is challenging to get a survey of surface roughness over many of the areas that these experiments are likely to pass over. Correlating historical wind speed records with statistical roughness as observed by the backscatter of satellite [Rémy F, Parouty S. Remote Sensing. 2009] and airborne experiments operating at different frequencies can possibly be used to predict time-dependent surface roughness with surface wind speed as the input. These correlations will be presented for a variety of areas on the Antarctic ice shelf. NASA Grant NNX11AC47G.
Multiple scaling power in liquid gallium under pressure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Renfeng; Wang, Luhong; Li, Liangliang
Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less
Studies of the Combined Effects of Roughness and Reynolds Number in Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Klewicki, Joseph
2010-11-01
Mehdi, Klewicki & White [Physica D 239(2010)] provide evidence from existing studies that the prevalent scheme for classifying roughness regimes is likely to be incomplete. To further pursue these findings, more data are required, and for this purpose, additional rough-wall experiments are being performed. We report on our studies of the combined roughness-Reynolds number problem conducted in a 8m long wind-tunnel. The roughness considered is the randomly distributed type and introduced in the form of 24-grit sandpaper and pea gravel. The primary measurement tool is two-component LDV. The basis of the analysis is the mean equation of dynamics. In this regard, the length scale defining where the mean dynamics become dominated by inertia is of central importance.
Heat transfer in the turbulent boundary layer with a short strip of surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.P.; Chakroun, W.M.
1992-01-01
The effects of a short strip of surface roughness on heat transfer and fluid flow in the turbulent boundary layer are investigated experimentally. This is done by measuring Stanton number and skin friction distributions and mean velocity, turbulence intensity, and mean temperature profiles in a turbulent boundary layer where the first 0.7 m length is smooth, the next 0.2 m is roughened with 1.27 mm hemispheres spaced 2 base diameters apart and the final 1.5 m is smooth. These results are compared with previously published data from experiments wiht a rough leading portion and smooth final portion and from experimentsmore » on an all-smooth surface. The influence of the roughness is large in the neighborhood of the rough strip, but the Stanton number and skin friction distributions are seen to quickly recover smooth-wall behavior downstream of the rough strip. 19 refs.« less
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2007-09-30
whitecap crest length spectral density (Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (Jessup and Phadnis ...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005...Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
crest length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis ...Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a
Rheological State Diagrams for Rough Colloids in Shear Flow.
Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J
2017-10-13
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Rheological State Diagrams for Rough Colloids in Shear Flow
NASA Astrophysics Data System (ADS)
Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.
2017-10-01
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr; Bilgilisoy, Elif; Arı, Ozan
Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, or phase angle, ψ) and atomic force microscopy (AFM) roughness. and ψ values at 3.31 eV, which corresponds to E{sub 1}more » critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data ( and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.« less
Discrete Roughness Effects on Shuttle Orbiter at Mach 6
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Hamilton, H. Harris, II
2002-01-01
Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.
Directional bottom roughness associated with waves, currents, and ripples
Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.
Assessment of the equivalence of a generic to a branded femoral stem
Hothi, H.; Henckel, J.; Shearing, P.; Holme, T.; Cerquiglini, A.; Laura, A. Di; Atrey, A.; Skinner, J.; Hart, A.
2017-01-01
Aims The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters. Results We found that the OptiStems were lighter (p < 0.001), had a rougher trunnion surface (p < 0.001) with a greater spacing and depth of the machined threads (p < 0.001), had greater trunnion cone angles (p = 0.007), and a smaller radius at the top of the trunnion (p = 0.007). There was no difference in stem volume (p = 0.643), CCD angle (p = 0.788), offset (p = 0.993), neck length (p = 0.344), stem length (p = 0.808), shaft width (p = 0.058 to 0.720) or roughness of the polished surface (p = 0.536). Conclusion This preliminary investigation found that whilst there were similarities between the two designs, the generic OptiStem is different to the branded Exeter design. Cite this article: Bone Joint J 2017;99-B:310–16. PMID:28249969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teja, A.S.; King, R.K.; Sun, T.F.
1999-01-01
Two methods are presented for the correlation and prediction of the viscosities and thermal conductivities of refrigerants R11, R12, R22, R32, R124, R125, R134a, R141b, and R152 and their mixtures. The first (termed RHS1) is a modified rough-hard-sphere method based on the smooth hard-sphere correlations of Assael et al. The method requires two or three parameters for characterizing each refrigerant but is able to correlate transport properties over wide ranges of pressure and temperature. The second method (RHS2) is also a modified rough-hard-sphere method, but based on an effective hard-sphere diameter for Lennard-Jones (LJ) fluids. The LJ parameters and themore » effective hard-sphere diameter required in this method are determined from a knowledge of the density-temperature behavior of the fluid at saturation. Comparisons with the rough-hard-sphere method of Assael and co-workers (RHS3) are shown. They also show that the RHS2 method can be used to correlate as well as predict the transport properties of refrigerants.« less
Crack surface roughness in three-dimensional random fuse networks
NASA Astrophysics Data System (ADS)
Nukala, Phani Kumar V. V.; Zapperi, Stefano; Šimunović, Srđan
2006-08-01
Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as Wtilde L0.5 and is consistent with the scaling of localization length ξ˜L0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution.
Abrasive wear of resin composites as related to finishing and polishing procedures.
Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C
2005-07-01
Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.
NASA Astrophysics Data System (ADS)
Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.
1988-01-01
Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.
NASA Technical Reports Server (NTRS)
Miller, L. S.; Hayne, G. S.
1972-01-01
Current work related to geodetic altimetry is summarized. Special emphasis is placed on the effects of pulse length on both altimetry and sea-state estimation. Some discussion is also given of system tradeoff parameters and sea truth requirements to support scattering studies. The problem of analyzing signal characteristics and altimeter waveforms arising from rough surface backscattering is also considered.
Standard-Size Blanks for Furniture and Cabinets
Philip A. Araman
1983-01-01
Blanks are rough-dimension parts of a specific size which may be solid or glued up; quality depends on the final use of the material. Standard-size blanks are blanks made to standard thicknesses, lengths, and widths for each desired quality. Blanks in a few standard sizes can be used to make the thousands of different size rough-dimension parts needed by a furniture or...
Liascukiene, Irma; Steffenhagen, Marie; Asadauskas, Svajus J; Lambert, Jean-François; Landoulsi, Jessem
2014-05-27
The self-assembly of fatty acids (FA) on the surfaces of inorganic materials is a relevant way to control their wetting properties. While the mechanism of adsorption on model flat substrate is well described in the literature, interfacial processes remain poorly documented on nanostructured surfaces. In this study, we report the self-assembly of a variety of FA on a hydroxylated Al surface which exhibits a random nanoscale organization. Our results revealed a peculiar fingerprint due to the FA self-assembly which consists in the formation of aligned nanopatterns in a state of hierarchical nanostructuration, regardless of the molecular structure of the FA (chain length, level of unsaturation). After a significant removal of adsorbed FA using UV/O3 treatment, a complete wetting was reached, and a noticeable disturbance of the surface morphology was observed, evidencing the pivotal role of FA molecules to maintain these nanostructures. The origin of wetting properties was investigated prior to and after conditioning of FA-modified samples taking into account key parameters, namely the surface roughness and its composition. For this purpose, the Wenzel roughness, defined as the third moment of power spectral density, was used, as it is sensitive to high spatial frequency and thus to the obtained hierarchical level of nanostructuration. Our results revealed that no correlation can be made between water contact angles (θ(w)) and the Wenzel roughness. By contrast, θ(w) strongly increased with the amount of -CHx- groups exhibited by adsorbed FA. These findings suggest that the main origin of hydrophobization is the presence of self-assembled molecules and that the surface roughness has only a small contribution to the wettability.
Current-voltage scaling of a Josephson-junction array at irrational frustration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granato, E.
1996-10-01
Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson-junction array at an irrational flux quantum per plaquette are presented. The results are consistent with a scaling analysis that assumes a zero-temperature vortex-glass transition. The thermal-correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature {ital T} roughly as {ital T}{sup 2} in contrast with the {ital T}{sup 3} behavior expected for disordered models. {copyright} {ital 1996 The American Physicalmore » Society.}« less
Does lower Omega allow a resolution of the large-scale structure problem?
NASA Technical Reports Server (NTRS)
Silk, Joseph; Vittorio, Nicola
1987-01-01
The intermediate angular scale anisotropy of the cosmic microwave background, peculiar velocities, density correlations, and mass fluctuations for both neutrino and baryon-dominated universes with Omega less than one are evaluated. The large coherence length associated with a low-Omega, hot dark matter-dominated universe provides substantial density fluctuations on scales up to 100 Mpc: there is a range of acceptable models that are capable of producing large voids and superclusters of galaxies and the clustering of galaxy clusters, with Omega roughly 0.3, without violating any observational constraint. Low-Omega, cold dark matter-dominated cosmologies are also examined. All of these models may be reconciled with the inflationary requirement of a flat universe by introducing a cosmological constant 1-Omega.
Numerical simulation of adverse-pressure-gradient boundary layer with or without roughness
NASA Astrophysics Data System (ADS)
Mottaghian, Pouya; Yuan, Junlin; Piomelli, Ugo
2014-11-01
Large-eddy and direct numerical simulations are carried out on flat-plate boundary layer over smooth and rough surfaces, with adverse pressure gradient.The deceleration is achieved by imposing a wall-normal freestream velocity profile, and is strong enough to cause separation at the wall. The Reynolds number based on momentum thickness and freestream velocity at inlet is 600. Numerical sandgrain roughness is applied based on an immersed boundary method, yielding a flow that is transitionally rough. The turbulence intensity increases before separation, and reaches a higher value for the rough case, indicating stronger mixing. Roughness also causes higher momentum deficit near the wall, leading to earlier separation. This is consistent with previous observation made on rough-wall flow separation over a ramp. In both cases, the turbulent kinetic energy peaks inside the shear layer above the detachment region, with higher values in the rough case; it then decreases approaching the reattachment region. Near the wall inside the separation bubble, the near-zero turbulent intensity indicates that the turbulent structures are lifted up in the separation region. Compared with the smooth case, the shear layer is farther from the wall and the reattachment length is longer on the rough wall.
NASA Technical Reports Server (NTRS)
Driver, David M.; Johnston, James P.
1990-01-01
The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.
Friction and universal contact area law for randomly rough viscoelastic contacts.
Scaraggi, M; Persson, B N J
2015-03-18
We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.
NASA Astrophysics Data System (ADS)
Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos
2018-03-01
The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.
Relation Between Roughness of Interface and Adherence of Porcelain Enamel to Steel
NASA Technical Reports Server (NTRS)
Richmond, J C; Moore, D G; Kirkpatrick, H B; Harrison, W N
1954-01-01
Porcelain-enamel ground coats were prepared and applied under conditions that gave various degrees of adherence between enamel and a low-carbon steel (enameling iron). The variations in adherence were produced by (a) varying the amount of cobalt-oxide addition in the frit, (b) varying the type of metallic-oxide addition in the frit, keeping the amount constant at 0.8 weight percent, (c) varying the surface treatment of the metal before application of the enamel, by pickling, sandblasting, and polishing, and (d) varying the time of firing of the enamel containing 0.8 percent of cobalt oxide. Specimens of each enamel were given the standard adherence test of the Porcelain Enamel Institute. Metallographic sections were made on which the roughness of interface was evaluated by counting the number of anchor points (undercuts) per centimeter of specimen length and also by measuring the length of the interface and expressing results as the ratio of this length to the length of a straight line parallel to the over-all direction of the interface.
Tangler, James L.; Somers, Dan M.
1996-01-01
Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness
NASA Astrophysics Data System (ADS)
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol
2018-04-01
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with <1 1 0> channel orientation are affected more by the IRS than those with the <1 0 0> crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness.
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A; García-Loureiro, Antonio J; Seoane, Natalia; Kalna, Karol
2018-04-11
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando's and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height ([Formula: see text]). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando's model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with [Formula: see text] channel orientation are affected more by the IRS than those with the [Formula: see text] crystal orientation. Finally, Λ and [Formula: see text] are shown to affect the device performance similarly. A change in values by 30% (Λ) or [Formula: see text] ([Formula: see text]) results in an increase (decrease) of up to [Formula: see text] in the drive current.
NASA Technical Reports Server (NTRS)
Wisniewski, Richard J.
1957-01-01
Transition data on highly cooled blunt bodies are correlated in terms of the ratio of wall to local-stream enthalpy, Reynolds number based on displacement thickness, and location of transition. The proposed correlation, although not sensitive enough to predict the exact location of transition does predict the enthalpy ratio below which very early transition on blunt bodies is expected. The correlation is not altered by moderate amounts of surface roughness; however, the location of transition may well be affected by roughness.
Determining the impact of sorting capacity on rip-first rough mill yield
Edward Thomas; John Brown
2003-01-01
The problem of increasing gang-rip-first rough mill yield often amounts to little more than optimizing the fit of needed parts into strips. However, it is rare when a part or combination of parts fits precisely in the area between two defects. Intuition tells us that the more lengths we have to choose from, the greater the chance of completely filling such an area....
Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A
2013-07-24
We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.
NASA Astrophysics Data System (ADS)
Guillén, C.; Herrero, J.
2015-01-01
Metal layers with high roughness and electrical conductivity are required as back-reflector electrodes in several optoelectronic devices. The metal layer thickness and the process temperature should be adjusted to reduce the material and energetic costs for the electrode preparation. Here, Ag thin films with thickness ranging from 30 to 200 nm have been deposited by sputtering at room temperature on glass substrates. The structure, morphology, optical and electrical properties of the films have been analyzed in the as-grown conditions and after thermal treatment in flowing nitrogen at various temperatures in the 150-550 °C range. The surface texture has been characterized by the root-mean-square roughness and the correlation length coefficients, which are directly related to the electrical resistivity and the light-scattering parameter (reflectance haze) for the various samples. The increment in the reflectance haze has been used to detect surface agglomeration processes that are found dependent on both the film thickness and the annealing temperature. A good compromise between light-scattering and electrical conductivity has been achieved with 70 nm-thick Ag films after 350 °C heating.
Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.
Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina
2014-08-12
It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.
NASA Astrophysics Data System (ADS)
Roche, O.; Chedevile, C.
2012-12-01
We carried out scaled experiments on gas-particles flows propagating on a rough substrate in order to investigate the emplacement of pyroclastic flows. The flows were generated from the release of non-fluidized or gas-fluidized columns of fine (80 μm) glass beads of height of 30 cm into a 3 m-long horizontal channel. The base of the channel was either smooth or was made rough by gluing a monodisperse layer of spherical particles of diameter of 80 μm to 3 mm. We defined the substrate roughness as the size of the glued particles, which corresponded to up to several tens of centimeters when scaled to the natural system. The flow front kinematics and the detailed interactions between the base of the flow and the rough substrate were investigated from high speed videos. We measured systematically the run out distance of the flows, and experiments were repeated 8-10 times for each configuration to obtain a mean value. The run out distance increased with the substrate roughness for both initially non-fluidized and fluidized flows. The run out had a minimum value for a smooth base and was about twice that value for the highest roughness of 3 mm. Analysis of the flow kinematics revealed that the increase in run out was caused by higher front velocities essentially at late stages of emplacement, during which the head of the flows stretched considerably. High speed videos made at the base of the flows showed that their head first slid over the substrate before aggregates of particles fell into the interstices between the particles forming the rough substrate, at a mean speed of several centimeters per second. In contrast, complementary experiments on flows of coarse beads of 350 μm showed that the substrate roughness did not influence their run out, and at the flow base their particles bumped into those of the substrate before falling individually into the interstices. These observations suggest that the positive correlation between the flow run out and the substrate roughness for flows of fine particles could result from two mechanisms. The first was the reduction of the contact area between the flow base and the substrate as the roughness increased because of the reduced number of particles per unit length. The second, main mechanism was auto-fluidization generated as the fine particles falling into the interstices expulsed the air upward at a velocity much larger than the minimum fluidization velocity. This promoted at least partial fluidization or additional pore pressure in case of initially non-fluidized or fluidized flows, respectively. This experimental investigation provides some counterintuitive results and has implication for hazards assessment. Other things being equal, the run out distance of fines-rich pyroclastic flows is expected to increase with the roughness of the terrain on which they propagate.
Effects of polishing on surface roughness, gloss, and color of resin composites.
Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M
2011-09-01
This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.
Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation
NASA Astrophysics Data System (ADS)
Cieśliński, Janusz T.; Kaczmarczyk, Tomasz Z.
2014-06-01
The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.
Acquiring Domain Knowledge for Planning by Experimentation
1992-01-01
visel partt holding grinderi visel p=r1 size-of pull LENGTH k size-of part! LENGTH k ufsee-finish pertl side! ROUGH surface-tinish pan] side...prof-not-cached <nodal> <node2>) (current-goal <nodal> ( goali )) (current-goal (node2> <goal2>) (d@.s-top-protection-violat ion <goal2>) (not-does-top
Creating a standardized and simplified cutting bill using group technology
Urs Buehlmann; Janice K. Wiedenbeck; R., Jr. Noble; D. Earl Kline
2008-01-01
From an analytical viewpoint, the relationship between rough mill cutting bill part requirements and lumber yield is highly complex. Part requirements can have almost any length, width, and quantity distribution within the boundaries set by physical limitations, such as maximum length and width of parts. This complexity makes it difficult to understand the specific...
A Meta-Analysis: Acoustic Measurement of Roughness and Breathiness
ERIC Educational Resources Information Center
v. Latoszek, Ben Barsties; Maryn, Youri; Gerrits, Ellen; De Bodt, Marc
2018-01-01
Purpose: Over the last 5 decades, many acoustic measures have been created to measure roughness and breathiness. The aim of this study is to present a meta-analysis of correlation coefficients (r) between auditory-perceptual judgment of roughness and breathiness and various acoustic measures in both sustained vowels and continuous speech. Method:…
Tangler, J.L.; Somers, D.M.
1996-10-08
Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.
Surface Roughness Optimization Using Taguchi Method of High Speed End Milling For Hardened Steel D2
NASA Astrophysics Data System (ADS)
Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.
2017-03-01
The main challenge for any manufacturer is to achieve higher quality of their final products with maintains minimum machining time. In this research final surface roughness analysed and optimized with maximum 0.3 mm flank wear length. The experiment was investigated the effect of cutting speed, feed rate and depth of cut on the final surface roughness using D2 as a work piece hardened to 52-56 HRC, and coated carbide as cutting tool with higher cutting speed 120-240 mm/min. The experiment has been conducted using L9 design of Taguchi collection. The results have been analysed using JMP software.
Time-Distance Helioseismology: Noise Estimation
NASA Astrophysics Data System (ADS)
Gizon, L.; Birch, A. C.
2004-10-01
As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.
Surface roughness measurement in the submicrometer range using laser scattering
NASA Astrophysics Data System (ADS)
Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.
2000-06-01
A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.
Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei
2011-12-01
Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.
NASA Astrophysics Data System (ADS)
Shimizu, Takashi; Kuwahara, Masashi
2014-05-01
We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.
Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method
NASA Astrophysics Data System (ADS)
Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.
2018-06-01
During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.
Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials
NASA Astrophysics Data System (ADS)
Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.
2017-12-01
Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.
Naylor, Andrew; Talwalkar, Sumedh C.; Trail, Ian A.; Joyce, Thomas J.
2016-01-01
The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP) were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa); root mean-square roughness (Sq); skewness (Ssk); and kurtosis (Sku). The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023), whilst Sku correlated positively with radius (p = 0.03). Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics. PMID:27089375
Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C
2017-04-01
The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p < 0.05). Color change (ΔE) was analyzed by one-way analysis of variance and Tukey's tests (p < 0.05). The initial and final data were compared using the Wilcoxon test (p < 0.05). Spearman test checked the correlation between the roughness and gloss (p < 0.05). Regarding surface roughness and gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.
Analysis of Turbulent Boundary-Layer over Rough Surfaces with Application to Projectile Aerodynamics
1988-12-01
12 V. APPLICATION IN COMPONENT BUILD-UP METHODOLOGIES ....................... 12 1. COMPONENT BUILD-UP IN DRAG...dimensional roughness. II. CLASSIFICATION OF PREDICTION METHODS Prediction methods can be classified into two main approache-: 1) Correlation methodologies ...data are availaNe. V. APPLICATION IN COMPONENT BUILD-UP METHODOLOGIES 1. COMPONENT BUILD-UP IN DRAG The new correlation can be used for an engine.ring
Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance.
Beismann, H; Wilhelmi, H; Baillères, H; Spatz, H C; Bogenrieder, A; Speck, T
2000-03-01
The twig bases within the genus Salix were investigated. Brittleness of twig bases as defined in the literature neither correlates with Young's modulus nor with growth strains, which were measured for S. alba, S. fragilis and S. x rubens. For the species S. alba, S. appendiculata, S. eleagnos, S. fragilis, S. purpurea, S. triandra, S. viminalis, and S. x rubens, fracture surfaces of broken twigs were investigated and semiquantitatively described in terms of 'relative roughness' (ratio of rough area of fracture surface over whole area of fracture surface). The relative roughness clearly corresponds with the classification into brittle and nonbrittle species given in the literature. An attempt was made to quantify brittleness with mechanical tests. The absolute values of stress and strain do not correlate with the brittleness of the twig bases as defined by the relative roughness. However, the 'index stress' (ratio of stress at yield over stress at fracture) or the 'index strain' (ratio of strain at yield over strain at fracture), correlate well with the relative roughness. The graphic analysis of index stress against index strain reveals a straight line on which the eight species are ordered according to their brittleness. Depending on growth form and habitat, brittle twig bases of willows may function ecologically as mechanical safety mechanisms and, additionally, as a propagation mechanism.
A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh
Howlader, Mohammad Sajid Ali; Nair, Abhilash; Gopalan, Sujith V.; Merilä, Juha
2015-01-01
A new species of Microhyla frog from the Nilphamari district of Bangladesh is described and compared with its morphologically similar and geographically proximate congeners. Molecular phylogeny derived from mitochondrial DNA sequences revealed that although the new species – designated here as Microhyla nilphamariensis sp. nov. – forms a clade with M. ornate, it is highly divergent from M. ornata and all of its congeners, with 5.7 – 13.2% sequence divergence at the 16S rRNA gene. The new species can be identified phenotypically on the basis of a set of diagnostic (both qualitative and quantitative) characters as follows: head length is 77% of head width, distance from front of eyes to the nostril is roughly six times greater than nostril–snout length, internarial distance is roughly five times greater than nostril–snout length, interorbital distance is two times greater than internarial distance, and distance from back of mandible to back of the eye is 15% of head length. Furthermore, inner metacarpal tubercle is small and ovoid-shaped, whereas outer metacarpal tubercle is very small and rounded. Toes have rudimentary webbing, digital discs are absent, inner metatarsal tubercle is small and round, outer metatarsal tubercle is ovoid-shaped, minute, and indistinct. PMID:25806804
NASA Technical Reports Server (NTRS)
Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.
2017-01-01
We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Kozioziemski, B; Moody, J
2008-06-26
We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less
Optimizing the Determination of Roughness Parameters for Model Urban Canopies
NASA Astrophysics Data System (ADS)
Huq, Pablo; Rahman, Auvi
2018-05-01
We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length z_0 , and friction velocity u_* . Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of z_0 and u_* are identified by the peak in the bivariate histogram of z_0 and u_* . The methodology has been verified against laboratory datasets of flow above model urban canopies.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
Rasmuson, Anna; Pazmino, Eddy; Assemi, Shoeleh; Johnson, William P
2017-02-21
Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.
Comparison of selected approaches for urban roughness determination based on voronoi cells.
Ketterer, Christine; Gangwisch, Marcel; Fröhlich, Dominik; Matzarakis, Andreas
2017-01-01
Wind speed is reduced above urban areas due to their high aerodynamic roughness. This not only holds for above the urban canopy. The local vertical wind profile is modified. Aerodynamic roughness (both roughness length and displacement height) therefore is relevant for many fields within human biometeorology, e.g. for the identification of ventilation paths, the concentration and dispersion of air pollutants at street level or to simulate wind speed and direction in urban environments and everything depending on them. Roughness, thus, also shows strong influence on human thermal comfort. Currently, roughness parameters are mostly estimated using classifications. However, such classifications only provide limited assessment of roughness in urban areas. In order to calculate spatially resolved roughness on the micro-scale, three different approaches were implemented in the SkyHelios model. For all of them, the urban area is divided into reference areas for each of the obstacles using a voronoi diagram. The three approaches are based on building and [+one of them also on] vegetation (trees and forests) data. They were compared for the city of Stuttgart, Germany. Results show that the approach after Bottema and Mestayer (J Wind Eng Ind Aerodyn 74-76:163-173 1998) on the spatial basis of a voronoi diagram provides the most plausible results.
NASA Astrophysics Data System (ADS)
Chu, H.; Baldocchi, D. D.
2017-12-01
FLUXNET - the global network of eddy covariance tower sites provides valuable datasets of the direct and in situ measurements of fluxes and ancillary variables that are used across different disciplines and applications. Aerodynamic roughness (i.e., roughness length, zero plane displacement height) are one of the potential parameters that can be derived from flux-tower data and are crucial for the applications of land surface models and flux footprint models. As aerodynamic roughness are tightly associated with canopy structures (e.g., canopy height, leaf area), such parameters could potentially serve as an alternative metric for detecting the change of canopy structure (e.g., change of leaf areas in deciduous ecosystems). This study proposes a simple approach for deriving aerodynamic roughness from flux-tower data, and tests their suitability and robustness in detecting the seasonality of canopy structure. We run tests across a broad range of deciduous forests, and compare the seasonality derived from aerodynamic roughness (i.e., starting and ending dates of leaf-on period and peak-foliage period) against those obtained from remote sensing or in situ leaf area measurements. Our findings show aerodynamic roughness generally captures the timing of changes of leaf areas in deciduous forests. Yet, caution needs to be exercised while interpreting the absolute values of the roughness estimates.
Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R
2009-01-01
We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.
NASA Astrophysics Data System (ADS)
Labarre, Sébastien; Jacquemoud, Stéphane; Ferrari, Cécile; Delorme, Arthur; Rupnik, Ewelina; Derrien, Allan; Pierrot-Deseilligny, Marc; Grandin, Raphaël; Jalludin, Mohamed
2017-04-01
Surface roughness is a key parameter in soil physics which controls many surface processes at a wide range of scales: microscopic and mesoscopic scales from 10 μm to 1 cm (soil particles or regolith), macroscopic scale from 1 cm to 1 m (clods, aggregates of rock or ice, micro-fractures or lava flows), and topographic scale from 1 m to several kilometers (faults, hills, craters or mountains). While it is recognized that surface roughness is strongly scale-dependent, it is often expressed as an integrated parameter (root-mean-square height, correlation length, tortuosity index), which does not address the full range of spatial features present on the surface. In particular, the Hapke roughness parameter is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the microscopic to the macroscopic scales. Yet its physical meaning is still a question at issue, as the scale at which it occurs is undefined in the model. Photogrammetry has been shown to be an inexpensive and powerful method for topography reconstruction from optical data. We took advantage of a series of 21 Pléiades-1B images (video acquisition mode) to build a global digital elevation model (DEM) over the Asal-Ghoubbet rift, Republic of Djibouti. Additionally, we acquired close range data with a quadcopter equipped with a HD camera. Topography at four scales is available: 1 m with the satellite images (694 km), 1 cm with the drone flying at medium altitude ( 100 m), 1 mm with the drone flying at low altitude ( 10 m), and <1 mm with the handheld camera ( 1.5 m). We have defined twenty-two sites, 20 × 30 m in dimension, corresponding to a wide range of volcanic and sedimentary terrains, from regolith-like structures to very rough lava flows, over which DEMs have been generated at two or more resolutions. In order to investigate the contribution of each scale to the integrated roughness and to test the ability of the Hapke model to retrieve a roughness parameter that depicts well the ground truth, we applied two multiscale methods: fractal analysis and wavelet transform. The latter allows splitting the frequency band of a signal in several sub-bands, each of which corresponding to a spatial scale. By analyzing data acquired at Piton de la Fournaise Volcano, Réunion island, we showed that wavelet transform is a very powerful tool for characterizing roughness regimes over scales and that sub-centimeter surface features mostly explain the integrated roughness for meter-sized surfaces (Labarre et al., 2017, Icarus). This has to be confirmed on Djibouti terrains, for which we have a broader range of resolutions and larger areas.
Theoretical Analysis of Spacing Parameters of Anisotropic 3D Surface Roughness
NASA Astrophysics Data System (ADS)
Rudzitis, J.; Bulaha, N.; Lungevics, J.; Linins, O.; Berzins, K.
2017-04-01
The authors of the research have analysed spacing parameters of anisotropic 3D surface roughness crosswise to machining (friction) traces RSm1 and lengthwise to machining (friction) traces RSm2. The main issue arises from the RSm2 values being limited by values of sampling length l in the measuring devices; however, on many occasions RSm2 values can exceed l values. Therefore, the mean spacing values of profile irregularities in the longitudinal direction in many cases are not reliable and they should be determined by another method. Theoretically, it is proved that anisotropic surface roughness anisotropy coefficient c=RSm1/RSm2 equals texture aspect ratio Str, which is determined by surface texture standard EN ISO 25178-2. This allows using parameter Str to determine mean spacing of profile irregularities and estimate roughness anisotropy.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1980-01-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-front contours. Measurements of surface roughness, surface temperature, average transition-front location, and freestream environment were combined with calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies. Of the available correlating techniques, only one, based on the concept of a constant (critical) roughness Reynolds number for transition, wasmore » found to successfully describe both the wind-tunnel and ballistics-range data, thereby validating the extrapolation of this concept to actual reentry-vehicle materials and environments.« less
Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier
NASA Astrophysics Data System (ADS)
Miles, Evan S.; Steiner, Jakob F.; Brun, Fanny
2017-08-01
The aerodynamic roughness length (z0) is an essential parameter in surface energy balance studies, but few literature values exist for debris-covered glaciers. We use microtopographic and aerodynamic methods to assess the spatial variability of z0 for Lirung Glacier, Nepal. We apply structure from motion to produce digital elevation models for three nested domains: five 1 m2 plots, a 21,300 m2 surface depression, and the lower 550,000 m2 of the debris-mantled tongue. Wind and temperature sensor towers were installed in the vicinity of the plots within the surface depression in October 2014. We calculate z0 according to a variety of transect-based microtopographic parameterizations for each plot, then develop a grid version of the algorithms by aggregating data from all transects. This grid approach is applied to the surface depression digital elevation model to characterize z0 spatial variability. The algorithms reproduce the same variability among transects and plots, but z0 estimates vary by an order of magnitude between algorithms. Across the study depression, results from different algorithms are strongly correlated. Using Monin-Obukov similarity theory, we derive z0 values from the meteorological data. Using different stability criteria, we derive median values of z0 between 0.03 m and 0.05 m, but with considerable uncertainty due to the glacier's complex topography. Considering estimates from these algorithms, results suggest that z0 varies across Lirung Glacier between ˜0.005 m (gravels) to ˜0.5 m (boulders). Future efforts should assess the importance of such variable z0 values in a distributed energy balance model.
NASA Astrophysics Data System (ADS)
Sassi, M. G.; Hoitink, A. J. F.; Vermeulen, B.; Hidayat, null
2011-06-01
Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by sidewall effects that decrease with the width to depth ratio of a channel. A boundary layer model is introduced to convert single-depth velocity data from the H-ADCP to specific discharge. The parameters of the model include the local roughness length and a dip correction factor, which accounts for the sidewall effects. A regression model is employed to translate specific discharge to total discharge. The method was tested in the River Mahakam, representing a large river of complex bathymetry, where part of the flow is intrinsically three-dimensional and discharge rates exceed 8000 m3 s-1. Results from five moving boat ADCP campaigns covering separate semidiurnal tidal cycles are presented, three of which are used for calibration purposes, whereas the remaining two served for validation of the method. The dip correction factor showed a significant correlation with distance to the wall and bears a strong relation to secondary currents. The sidewall effects appeared to remain relatively constant throughout the tidal cycles under study. Bed roughness length is estimated at periods of maximum velocity, showing more variation at subtidal than at intratidal time scales. Intratidal variations were particularly obvious during bidirectional flow conditions, which occurred only during conditions of low river discharge. The new method was shown to outperform the widely used index velocity method by systematically reducing the relative error in the discharge estimates.
Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R
2008-11-01
A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds are faster than when the wind blows perpendicular to the row direction.
NASA Astrophysics Data System (ADS)
Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.
2017-09-01
This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength
NASA Astrophysics Data System (ADS)
Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.
2017-09-01
Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.
2015-01-01
Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.
Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.
Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul
2014-10-01
The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p<0.05). The difference among Ra values of 300 μs, 600 μs, and air-particle abrasion groups were not statistically significant (p>0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.
Ereifej, N S; Oweis, Y G; Eliades, G
2013-01-01
The aim of this study was to compare surface roughness and gloss of resin composites polished using different polishing systems. Five resin composites were investigated: Filtek Silorane (FS), IPS Empress Direct (IP), Clearfil Majesty Posterior (CM), Premise (PM), and Estelite Sigma (ES). Twenty-five disk specimens were prepared from each material, divided into five groups, each polished with one of the following methods: Opti1Step (OS), OptiDisc (OD), Kenda CGI (KD), Pogo (PG), or metallurgical polishing (ML). Gloss and roughness parameters (Sa, Sz, Sq, and St) were evaluated by 60°-angle glossimetry and white-light interferometric profilometry. Two-way analysis of variance was used to detect differences in different materials and polishing techniques. Regression and correlation analyses were performed to examine correlations between roughness and gloss. Significant differences in roughness parameters and gloss were found according to the material, type of polishing, and material/polishing technique (p< 0.05). The highest roughness was recorded when KD was used (Sa: 581.8 [62.1] for FS/KD, Sq: 748.7 [55.6] for FS/KD, Sz: 17.7 [2.7] for CM/KD, and St: 24.6 [6.8] for FS/KD), while the lowest was recorded after ML (Sa: 133.6 [68.9] for PM/ML, Sq: 256.5 [53.5] for ES/ML, Sz: 4.0 [1.3] for ES/ML, and St: 7.1 [0.7] for ES/ML). The highest gloss was recorded for PM/ML (88.4 [2.3]) and lowest for FS/KD (30.3 [5.7]). All roughness parameters were significantly correlated with gloss (r= 0.871, 0.846, 0.713, and 0.707 for Sa, Sq, Sz, St, and gloss, respectively). It was concluded that the polishing procedure and the type of composite can have significant impacts on surface roughness and gloss of resin composites.
The Effects of Fresh Detox Juices on Color Stability and Roughness of Resin-Based Composites.
Yikilgan, İhsan; Akgul, Sinem; Hazar, Ahmet; Kedıcı Alp, Cemile; Baglar, Serdar; Bala, Oya
2018-02-27
To evaluate the effects of three fresh detox juices, including an orange, green, and red beverage, on the color stability and surface roughness of three anterior esthetic resin-based composites (RBCs). Disk-shaped specimens were prepared with three different esthetic RBCs (Amaris, G-aenial Anterior, Clearfil Majesty ES-2) according to the manufacturers' instructions. Forty specimens were prepared for each RBC, and all specimens were stored in artificial saliva at 37°C for 24 hours. The initial color values and surface roughness measurements of the specimens were taken using a spectrophotometer and a profilometer. The specimens were then divided into 4 subgroups (n = 10). All specimens except the control specimens were immersed in their designated fresh detox juices (green, red, or orange) for 10 minutes twice a day. Color and surface roughness measurements were taken on day 15 and day 30, and the results were analyzed by one-way ANOVA and Tukey HSD test. The association between color change and surface roughness was evaluated by Spearman's Rank Correlation analysis. Color changes and surface roughness increased upon exposure to fresh detox juices for 15 and 30 days for all of the RBCs. All of the G-aenial and Amaris groups displayed color changes above the threshold of acceptability, whereas Clearfil Majesty ES-2 displayed a color change above the threshold of acceptability only after exposure to the red beverage for 30 days (ΔE > 3.7). With regard to surface roughness, Clearfil Majesty ES-2 outperformed the other RBCs (p < 0.001). According to Spearman's Rank Correlation analysis, there was no correlation between color change and surface roughness (p > 0.001). Exposure to the fresh detox juices used in this study led to similar color changes in the RBCs used in this study. © 2018 by the American College of Prosthodontists.
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.
Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,
A note on ``critical roughness height'' and ``transitional roughness''
NASA Astrophysics Data System (ADS)
Bradshaw, P.
2000-06-01
An unrigorous but plausible analysis suggests that the concept of a critical roughness height, below which roughness does not affect a turbulent wall flow, is erroneous. The Oseen approximation implies that the effect of roughness on the additive constant in the logarithmic law of the wall should vary as the square of the roughness Reynolds number (specifically the roughness height in "wall units"). This is an important point in determining whether surfaces used in experiments at high unit Reynolds number can be regarded as hydraulically smooth. Attention is also called to the qualitative difference between Nikuradse's measurements of friction factor in pipe flow with uniform-size sand-grain roughness in the "transitional" range of Reynolds number and the data correlation in the Moody chart of 1944; the latter was derived from tests on miscellaneous real-life rough surfaces in the 1930s. Nearly all textbooks on elementary fluid dynamics present, but practically none discuss, this difference. Nikuradse's monodisperse roughness is a very rare case with untypical behavior in the transitional range.
NASA Astrophysics Data System (ADS)
Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.
2018-06-01
A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.
NASA Astrophysics Data System (ADS)
Que, Like
Wear is one of the major causes of artificial total knee arthroplasty (TKA) failure. Wear debris can cause adverse reactions to the surrounding tissue which can ultimately lead to loosening of the prosthesis. The wear behavior of UHMWPE tibial components have been studied extensively, but relatively little attention has been paid to the CoCrMo femoral component. The goal of the present study was to investigate the wear mechanisms of CoCrMo femoral components, to study the effect of CoCrMo alloy surface roughness on the wear of UHMWPE, and to determine the effect of heat treatments on the wear resistance of the CoCrMo implant alloys. The surface roughness of twenty-seven retrieved CoCrMo femoral components was analyzed. A multiple station wear testing machine and a wear fixture attached to an MTS 858 bionix system were built and used for in vitro wear studies of the CoCrMo/UHMWPE bearing couple. Solution and aging treatments were applied to the CoCrMo alloys. A white light interference surface profilometer (WLISP) and a scanning electron microscope (SEM) were used to measure the surface roughness and to study wear mechanisms of CoCrMo alloy. An optical microscope was used for alloy microstructure study. X-ray diffraction tests were performed to identify alloy phase transformation after aging. The micro-structure, hardness, and wear resistance of the alloys were studied. Surface roughness was used to quantify alloy wear, and the minimum number of surface roughness measurements required to obtain a reliable and repeatable characterization of surface roughness for a worn alloy surface was determined. The surfaces of the retrieved CoCrMo femoral components appeared to be damaged by metal particles embedded in the UHMWPE tibial component and metal-on-metal wear due to UHMWPE tibial component through-wear. Surface roughness of the femoral components was not correlated with patient age, weight, sex, or length of implantation. In vitro wear tests showed that when the CoCrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.
Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I
2012-12-01
Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.
Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks
2012-09-30
transportation system to losses in es - tablished routes or assets? That is, what is the nature and length of system capability degradation due to these...Multimodal Rough-Cut Capacity Planning is mod- eled using the Resource Constrained Shortest Path Problem. We demonstrate how this approach supports...of non-zero ele - ments and the 0 entries depict appropriately dimensioned blocks of 0 entries.∣∣∣∣∑ k Ck ∣∣∣∣ Σ 0 0 0 0 Σ 0 0
Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2004-01-01
Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley
NASA Technical Reports Server (NTRS)
Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.
1978-01-01
Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.
NASA Astrophysics Data System (ADS)
Laube, G.; Schmidt, C.; Fleckenstein, J. H.
2014-12-01
The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on Hyporheic Flow in Gravelly Rivers." Groundwater, 2013. doi:10.1111/gwat.12048.
Perceptual structure of adductor spasmodic dysphonia and its acoustic correlates.
Cannito, Michael P; Doiuchi, Maki; Murry, Thomas; Woodson, Gayle E
2012-11-01
To examine the perceptual structure of voice attributes in adductor spasmodic dysphonia (ADSD) before and after botulinum toxin treatment and identify acoustic correlates of underlying perceptual factors. Reliability of perceptual judgments is considered in detail. Pre- and posttreatment trial with comparison to healthy controls, using single-blind randomized listener judgments of voice qualities, as well as retrospective comparison with acoustic measurements. Oral readings were recorded from 42 ADSD speakers before and after treatment as well as from their age- and sex-matched controls. Experienced judges listened to speech samples and rated attributes of overall voice quality, breathiness, roughness, and brokenness, using computer-implemented visual analog scaling. Data were adjusted for regression to the mean and submitted to principal components factor analysis. Acoustic waveforms, extracted from the reading samples, were analyzed and measurements correlated with perceptual factor scores. Four reliable perceptual variables of ADSD voice were effectively reduced to two underlying factors that corresponded to hyperadduction, most strongly associated with roughness, and hypoadduction, most strongly associated with breathiness. After treatment, the hyperadduction factor improved, whereas the hypoadduction factor worsened. Statistically significant (P<0.01) correlations were observed between perceived roughness and four acoustic measures, whereas breathiness correlated with aperiodicity and cepstral peak prominence (CPPs). This study supported a two-factor model of ADSD, suggesting perceptual characterization by both hyperadduction and hypoadduction before and after treatment. Responses of the factors to treatment were consistent with previous research. Correlations among perceptual and acoustic variables suggested that multiple acoustic features contributed to the overall impression of roughness. Although CPPs appears to be a partial correlate of perceived breathiness, a physical basis of this percept remained less clear. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Barnett, J. M.
2015-11-01
Clause 6.4.4 in the American National Standards Institute / Health Physics Society (ANSI/HPS) N13.1 standard, Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities, addresses the internal smoothness of sample transport lines present between the nozzle and the analyzer (or collector). This paper evaluates the appropriateness of this clause by comparing roughness length of various materials against the required relative roughness, and by conducting computational fluid dynamic modeling. The results indicate that the inclusion of numerical criteria for the relative roughness of pipe by the ANSI Standard N13.1 (Section 6.4.4) is not appropriate.more » Recommended alternatives would be elimination of the numerical criteria, or modification of the standard to include a variable criteria for relative roughness.« less
NASA Astrophysics Data System (ADS)
He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji
2017-01-01
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
Matsumura, Keisuke; Sato, Yuji; Kitagawa, Noboru; Shichita, Toshiharu; Kawata, Daisuke; Ishikawa, Mariko
2018-05-04
Dental calculi formation on dentures can worsen the oral cavity environment by complicating oral hygiene. However, few studies have investigated the effect of how patients use and manage their dentures, denture surface roughness, and host factors such as oral cavity dryness and saliva properties on denture cleanliness and denture dental calculi formation. Accordingly, we conducted the present survey to evaluate these factors to clarify the strength of the influence of each factor. We enrolled 53 patients who had used dentures for at least 3 months and used a dental prosthesis that covered at least the six front teeth including the left and right mandibular canines. After staining the dentures, we divided the participants into a group that was positive for dental calculi (DCP group) and a group that was negative for dental calculi (DCN group). After removing all the stains, we evaluated the surface roughness of the dentures. A questionnaire was used to survey how the participants used and managed their dentures. Oral cavity dryness was evaluated, and resting saliva samples were collected to assess saliva properties. Correlations between the presence or absence of dental calculi and denture use and management were evaluated using a chi-square test. Correlations with denture surface roughness, oral cavity dryness, and saliva properties were evaluated using the Mann-Whitney U test. Correlations between the presence or absence of dental calculi and all factors were analyzed using multivariate analysis (quantification II). Surface roughness was significantly greater in the DCP group (p < 0.01), and the DCP group members wore their dentures during sleep significantly more often and used a denture cleaner when storing their dentures significantly less often (both p < 0.01). No significant differences were observed for oral cavity dryness or saliva properties. The multivariate analysis showed significant correlations of dental calculi formation with denture surface roughness and items related to denture use and management, but not for oral cavity dryness or saliva properties. Our findings indicate that dental calculi formation is influenced by how dentures are used and managed and by denture surface roughness, but not by oral cavity dryness and saliva properties.
NASA Astrophysics Data System (ADS)
Chen, R.; Wen, C. Y.; Lorente, S.; Bejan, A.
2016-07-01
Here, we show that during their half-century history, helicopters have been evolving into geometrically similar architectures with surprisingly sharp correlations between dimensions, performance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the constructal law, which accounts for the engine efficiency trend and the proportionality between "motor" size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoretical body of research the evolutionary design of all technologies [A. Bejan, The Physics of Life: The Evolution of Everything (St. Martin's Press, New York, 2016)].
NASA Astrophysics Data System (ADS)
Ghannam, K.; Katul, G. G.; Chamecki, M.
2016-12-01
The scale-wise properties of turbulent flow statistics are conventionally quantified using the structure function D_ss (r)= <〖(Δs)〗^2 > describing velocity (s=u) or scalar (s=c) concentration increments Δs=s(x+r)-s(x) at various scales or separation distances r, where <.> is Reynolds averaging over coordinates of statistical homogeneity. For locally homogeneous and isotropic turbulence, the structure function can unfold statistical invariance of the form D_ss (βr)=β^p D_ss (r) as has been demonstrated by Kolmogorov's theory for the inertial subrange in the absence of intermittency corrections. For scales larger than inertial, scale invariance need not hold though universal scaling properties can still emerge provided an appropriate length and velocity scales are identified. One recent study on the structure function of the streamwise velocity (s=u) in smooth and rough wall-bounded flows argued that a logarithmic scaling of the form D_ss/(u_*^2 )=A+B ln(r/l_ɛ ) exists at any height z above the wall (or roughness elements), with,l_ɛ,〖 u〗_*, A and B being a dissipation length scale, the friction velocity, and two similarity constants to be determined. Whether this scaling is valid across all atmospheric stability regimes in the roughness sublayer (RSL) and the possible co-existence of length scales other than l_ɛ that collapse D_ss (r) for velocity and temperature frames the scope of this work. Using year-round field measurements within and above an Amazonian canopy, the work here explores the aforementioned scaling for the streamwise (s=u) and vertical velocity (s=w) components, along with its extension to active scalars (s=T, the air temperature) inside canopies and in the RSL above canopies. While the premise is that a length scale such as l_ɛ may serve as a master closure length scale for turbulent momentum and heat flux budgets, the role of the vorticity thickness, the Obukhov length, the adjustment length scale, and height z are also explored for various scale (or r) regimes. Because the RSL blends D_ss (r) from its form inside the canopy to its form in the well-studied atmospheric surface layer, the scaling laws derived here offer a new perspective on the thickness of the RSL for momentum and scalars and its variations with atmospheric stability.
Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications
NASA Astrophysics Data System (ADS)
Vassilakis, Pantelis N.; Kendall, Roger A.
2010-02-01
The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
NASA Astrophysics Data System (ADS)
Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao
2015-05-01
Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.
Relation between skin micro-topography, roughness, and skin age.
Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J
2015-02-01
The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sugawara, Hirofumi; Inagaki, Atsushi; Roth, Matthias; Kanda, Manabu
2016-11-01
Scintillometer measurements of turbulent fluxes of momentum and sensible heat in the roughness sublayer over a regular array of cubes in an outdoor environment were tested with direct measurement from sonic anemometers. The dissipation rate, ɛ, and temperature structure parameter, C T 2 , obtained from the scintillometer agreed well with those from four sonic anemometers located along the scintillometer path. The fluxes measured by the scintillometer also corresponded well to those from the line-averaged eddy covariance approach, although this agreement was greatly influenced by the choice of the zero-plane displacement length and the form of the similarity function used in the scintillometer software. A guide for choosing the appropriate similarity function for the urban roughness sublayer is proposed.
Interfacial properties in a discrete model for tumor growth
NASA Astrophysics Data System (ADS)
Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.
2013-03-01
We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β=0.32(2) that governs the early time regime, (ii) the roughness exponent α=0.49(2) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z=α/β≃1.49(2), which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ∝t1/z, where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
NASA Astrophysics Data System (ADS)
Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo
2018-01-01
Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.
NASA Technical Reports Server (NTRS)
Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.
1991-01-01
Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.
Some considerations in the evaluation of Seasat-A scatterometer /SASS/ measurements
NASA Technical Reports Server (NTRS)
Halberstam, I.
1980-01-01
A study is presented of the geophysical algorithms relating the Seasat-A scatterometer (SASS) backscatter measurements with a wind parameter. Although these measurements are closely related to surface features, an identification with surface layer parameters such as friction velocity or the roughness length is difficult. It is shown how surface truth in the form of wind speeds and coincident stability can be used to derive friction velocity or the equivalent neutral wind at an arbitrary height; it is also shown that the derived friction velocity values are sensitive to contested formulations relating friction velocity to the roughness length, while the derived values of the equivalent neutral wind are not. Examples of geophysical verification are demonstrated using values obtained from the Gulf of Alaska Seasat Experiment; these results show very little sensitivity to the type of wind parameter employed, suggesting that this insensitivity is mainly due to a large scatter in the SASS and surface truth data.
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1978-01-01
Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
NASA Astrophysics Data System (ADS)
Marzahn, P.; Ludwig, R.
2016-06-01
In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1979-11-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.
Barucci-Pfister, Nadine; Göhring, Till N
2009-04-01
To correlate measurements of specular gloss and surface roughness of resin composite materials with subjective perception of luster before and after artificial aging. Polished specimens of eight composites were compared with human enamel (HE): microfilled SR Adoro (SR); microhybrid Artemis (AR), Enamel HFO (EHFO), Miris (MI), Tetric Ceram (TC), Venus (VE); and nanohybrid CeramX (CX) and nanofilled Filtek Supreme (FS). Before, during and after artificial aging (6000 thermal changes between 5 degrees C and 50 degrees C in an artificial oral environment, 240 hours storage in a container with ethanol, 300 minutes of toothbrushing), specular gloss and surface roughness were measured. Initial and endpoint gloss results were correlated with subjective luster rankings of 10 individuals. Artificial aging resulted in minor (EHFO, CX, FS), moderate (SR, MI, TC, VE) to high (AR) increases in surface roughness. Specular gloss decreased linearly for SR and FS, but decreased after an initial increase for all other materials. Subjectively, AR and FS were rated more and TC, VE and CX less lustrous than HE at baseline. After aging, luster of EHFO and FS was ranked higher and AR, TC, and VE lower than HE. Surface roughness was consistent with subjective perceptions (correlation coefficient: initial r = 0.913; endpoint r = 0.944, P < or = 0.0006), whereas specular gloss was consistent with subjective perceptions only after artificial aging (initial r = 0.616, P = 0.1084; endpoint r = 0.834, P = 0.0072).
1984-08-01
found in References 1-3. 2. Modeling of Roughness Effects on Turbulent Flow In turbulent flow analysis , use of time-averaged equations leads to the...eddy viscosity and the mixing length which are important parameters used in current algebraic modeling of the turbulence shear term. Two different ...surfaces with three-dimensional (distributed) roughness elements. Calculations using the present model have been compared with experimental data from
NASA Astrophysics Data System (ADS)
Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.
2008-12-01
The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.
2012-04-01
Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.
Use of optimization to predict the effect of selected parameters on commuter aircraft performance
NASA Technical Reports Server (NTRS)
Wells, V. L.; Shevell, R. S.
1982-01-01
An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spizzo, F.; Ronconi, F.; Ferrero, C.
We deposited nanogranular Co/Cu multilayers made of thin fragmented Co layers separated by thicker Cu layers to study how the structure and the microstructure of magnetic nanogranular samples change as the average particle size is reduced and how these changes affect the giant magnetoresistive response of the samples. Indeed, thanks to the vertical periodicity of the structure, namely, to the fact that Co/Cu interfaces display an ordered stacking and are not randomly distributed within the samples as in conventional granular materials, their self-correlation and cross correlation can be investigated. In this way, the characteristic length scale of the Co/Cu interfacialmore » roughness that is strictly related to the giant magnetoresistive response of the samples and the universality class of the growth mechanism that affects the systems structure can be both accessed. The Co/Cu nanogranular multilayers were characterized using different x-ray techniques, from specular reflectivity, which allows to probe the multilayer development in the vertical direction, to grazing incidence small angle diffuse scattering, which provides information on the self-correlation and cross correlation of the Co/Cu interfaces. Furthermore, diffraction measurements indicate that the degree of structural disorder increases by decreasing the thickness of the Co layers. Magnetoresistive and magnetization measurements are as well presented and discussed with the results of the structural characterization.« less
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.
2017-09-01
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Requirements for a reliable millennium temperature reconstruction
NASA Astrophysics Data System (ADS)
Christiansen, Bo; Ljungqvist, Fredrik
2014-05-01
Quantitative temperature reconstructions are hampered by several problems. Proxy records are sparse which is witnessed by the fact that roughly half of all available high-resolution millennia-long proxy data have been published in the last five years. Moreover, proxies are inhomogeneously distributed around the globe and they often have coarse temporal resolution. The period of overlap between proxies and instrumental observations - the calibration period - is brief and dominated by a strong warming trend. Furthermore, proxies are often only weakly correlated to temperature and it is common that some form of screening procedure is applied to select only informative proxies. We study the influence of these limitations on the reliability of temperature reconstructions for the previous millennium. This influence depends on the spatial and temporal correlation structure of the surface temperature field. It also depends on the reconstruction methodology. We use gridded surface temperature data from GISTEMP and HadCRUT4 to investigate the geographical distribution of the spatial decorrelation length and of the temporal decorrelation time. The spatial decorrelation length varies with more than a factor of 5 with the largest values in the region dominated by the El Nino-Southern Oscillation. The temporal decorrelation time varies less with typical values of 1-2 years over land and 2-5 years over ocean. We also investigate the correlations between proxies and local temperatures (using the 91 proxies from Christiansen and Ljungqvist 2012) and between local temperatures and the NH mean temperature. These correlations have typical values around 0.3 but cover a wide range from weakly negative to larger than 0.8. The results outlined above allow us to identify regions where the effect of the lack of proxies is most important. They also inform us on the consequences of the short calibration period and on the influence of the recent trend. Finally, we demonstrate the effect of a weak proxy/temperature relationship on three different simple reconstruction methodologies. We show that the size and strength of this effect depends strongly on the chosen methodology.
A comparison of roughness parameters and friction coefficients of aesthetic archwires.
Rudge, Philippa; Sherriff, Martyn; Bister, Dirk
2015-02-01
Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.
Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R
2016-12-01
Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.
Effect of Stability on Mixing in Open Canopies. Chapter 4
NASA Technical Reports Server (NTRS)
Lee, Young-Hee; Mahrt, L.
2005-01-01
In open canopies, the within-canopy flux from the ground surface and understory can account for a significant fraction of the total flux above the canopy. This study incorporates the important influence of within-canopy stability on turbulent mixing and subcanopy fluxes into a first-order closure scheme. Toward this goal, we analyze within-canopy eddy-correlation data from the old aspen site in the Boreal Ecosystem - Atmosphere Study (BOREAS) and a mature ponderosa pine site in Central Oregon, USA. A formulation of within-canopy transport is framed in terms of a stability- dependent mixing length, which approaches Monin-Obukhov similarity theory above the canopy roughness sublayer. The new simple formulation is an improvement upon the usual neglect of the influence of within-canopy stability in simple models. However, frequent well-defined cold air drainage within the pine subcanopy inversion reduces the utility of simple models for nocturnal transport. Other shortcomings of the formulation are discussed.
A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow
NASA Astrophysics Data System (ADS)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.
Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.
The use of Rz roughness parameter for evaluation of materials behavior to cavitation erosion
NASA Astrophysics Data System (ADS)
Bordeasu, I.; Popoviciu, M. O.; Ghera, C.; Micu, L. M.; Pirvulescu, L. D.; Bena, T.
2018-01-01
It is well known that the cavitation eroded surfaces have a porous appearance with a pronounced roughness. The cause is the pitting resulted from the impact with the micro jets as well as the shock waves both determined by the implosion of cavitation bubbles. The height and the shape of roughness is undoubtedly an expression of the resistance of the surface to the cavitation stresses. The paper put into evidence the possibility of using the roughness parameter Rz for estimating the material resistance to cavitation phenomena. For this purpose, the mean depth erosion penetration (MDE-parameter, recommended by the ASTM G32-2010 Standard) was compared with the roughness of three different materials (an annealed bronze, the same bronze subjected to quenching and an annealed alloyed steel), both measured at four cavitation erosion exposure (30, 75, 120 and 165 minutes). The roughness measurements were made in 18 different zones, disposed after two perpendicular diameters, along a measuring lengths of 4 mm. The results confirm the possibility of using the parameter Rz for estimating the cavitation erosion resistance of a material. The differences between the measured values of Rz and those of the characteristic parameter MDE are of the same order of magnitude as those obtained for MDE determination, using more samples of the same material.
Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility
NASA Astrophysics Data System (ADS)
Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John
2016-11-01
The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.
NASA Astrophysics Data System (ADS)
Tal, Yuval; Hager, Bradford H.
2018-02-01
We study the response to slow tectonic loading of rough faults governed by velocity weakening rate and state friction, using a 2-D plane strain model. Our numerical approach accounts for all stages in the seismic cycle, and in each simulation we model a sequence of two earthquakes or more. We focus on the global behavior of the faults and find that as the roughness amplitude, br, increases and the minimum wavelength of roughness decreases, there is a transition from seismic slip to aseismic slip, in which the load on the fault is released by more slip events but with lower slip rate, lower seismic moment per unit length, M0,1d, and lower average static stress drop on the fault, Δτt. Even larger decreases with roughness are observed when these source parameters are estimated only for the dynamic stage of the rupture. For br ≤ 0.002, the source parameters M0,1d and Δτt decrease mutually and the relationship between Δτt and the average fault strain is similar to that of a smooth fault. For faults with larger values of br that are completely ruptured during the slip events, the average fault strain generally decreases more rapidly with roughness than Δτt.
NASA Astrophysics Data System (ADS)
June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander
2018-05-01
Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.
NASA Astrophysics Data System (ADS)
Decker, K. T.; Everett, M. E.
2009-12-01
The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well-understood. In most settings, fracture lengths and displacements occur in power-law distributions. Fracture distribution plays an important role in determining electrical and hydraulic current flowpaths. 1-D synthetic models of the controlled-source electromagnetic (CSEM) response for layered models with a fractured layer at depth described by the roughness parameter βV, such that 0≤βV<1, associated with the power-law length-scale dependence of electrical conductivity are developed. A value of βV = 0 represents homogeneous, continuous media, while a value of 0<βV<1 shows that roughness exists. The Seco Creek frequency-domain helicopter electromagnetic survey data set is analyzed by introducing the similarly defined roughness parameter βH to detect lateral roughness along survey lines. Fourier transforming the apparent resistivity as a function of position along flight line into wavenumber domain using a 256-point sliding window gives the power spectral density (PSD) plot for each line. The value of βH is the slope of the least squares regression for the PSD in each 256-point window. Changes in βH with distance along the flight line are plotted. Large values of βH are found near well-known large fractures and maps of βH produced by interpolating values of βH along survey lines suggest previously undetected structure at depth.
Estimation of stature from sternal lengths. A correlation meta-analysis.
Yammine, Kaissar; Assi, Chahine
2017-01-01
Methods based on the positive linear relationship existing between stature and long bones are most commonly used to estimate living stature in forensic anthropology. The length of the sternum and its parts has been advanced as a plausible alternative to estimate stature when such long bones are missing or damaged. This meta-analysis aims to quantify evidence on the correlation between the sternum/sternal parts length and stature. Nine studies were included with 1118 sternal bones. Analyses showed that the length of the meso-sternum (manubrium + body) yielded the best correlation with stature; 53.5% and 55.42% for men and women, respectively. The second best variable is the total sternal length with correlations of 44.3% and 55% for men and women, respectively. Subgroup analysis of autopsy studies demonstrated even a higher correlation of 58.2% for the meso-sternal length. Manubrium and body lengths showed the least correlation values. Except for the body length, females exhibit a better correlation than man between all other sternal lengths and stature. While the meso-sternal length is found to be the most correlated variable with stature, all sternal lengths are to be considered with caution when estimating stature. The relatively low values of the weighted correlation results should raise the question of reliability and limit the use of sternal length when long bones are available. Future research using larger samples from different populations and taking into account the fusion status of the sternum are needed.
Modeling of Ceiling Fire Spread and Thermal Radiation.
1981-10-01
under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8
Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro
2014-12-24
Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.
Gayen, Bishakhdatta; Alam, Meheboob
2011-08-01
From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.
NASA Astrophysics Data System (ADS)
Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.
2018-02-01
Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The evaluated parameters were most influenced by epoxy coating followed by PTFE and rhodium coating. A positive correlation was detected between surface roughness and biofilm adhesion.
NASA Astrophysics Data System (ADS)
Sazonov, D. S.
2017-12-01
A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
An intermittency model for predicting roughness induced transition
NASA Astrophysics Data System (ADS)
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Bynum, Michael; Kegerise, Michael; King, Rudolph
2015-01-01
Computations are performed to study laminar-turbulent transition due to isolated roughness elements in boundary layers at Mach 3.5 and 5.95, with an emphasis on flow configurations for which experimental measurements from low disturbance wind tunnels are available. The Mach 3.5 case corresponds to a roughness element with right-triangle planform with hypotenuse that is inclined at 45 degrees with respect to the oncoming stream, presenting an obstacle with spanwise asymmetry. The Mach 5.95 case corresponds to a circular roughness element along the nozzle wall of the Purdue BAMQT wind tunnel facility. In both cases, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The linear amplification characteristics of the wake flow are examined towards the eventual goal of developing linear growth correlations for the onset of transition.
Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martini, R., E-mail: roberto.martini@imec.be; imec, Kapeldreef 75, 3001 Leuven; Kepa, J.
2014-10-27
We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process.more » A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert
In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow conditionmore » of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.« less
Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.
2013-01-01
Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979
Modification of surface morphology of Ti6Al4V alloy manufactured by Laser Sintering
NASA Astrophysics Data System (ADS)
Draganovská, Dagmar; Ižariková, Gabriela; Guzanová, Anna; Brezinová, Janette; Koncz, Juraj
2016-06-01
The paper deals with the evaluation of relation between roughness parameters of Ti6Al4V alloy produced by DMLS and modified by abrasive blasting. There were two types of blasting abrasives that were used - white corundum and Zirblast at three levels of air pressure. The effect of pressure on the value of individual roughness parameters and an influence of blasting media on the parameters for samples blasted by white corundum and Zirblast were evaluated by ANOVA. Based on the measured values, the correlation matrix was set and the standard of correlation statistic importance between the monitored parameters was determined from it. The correlation coefficient was also set.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates
NASA Astrophysics Data System (ADS)
Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut
2016-02-01
This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.
Electrospinning of nickel oxide nanofibers: Process parameters and morphology control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Abdullah, E-mail: akhalil@masdar.ac.ae; Hashaikeh, Raed, E-mail: rhashaikeh@masdar.ac.ae
2014-09-15
In the present work, nickel oxide nanofibers with varying morphology (diameter and roughness) were fabricated via electrospinning technique using a precursor composed of nickel acetate and polyvinyl alcohol. It was found that the diameter and surface roughness of individual nickel oxide nanofibers are strongly dependent upon nickel acetate concentration in the precursor. With increasing nickel acetate concentration, the diameter of nanofibers increased and the roughness decreased. An optimum concentration of nickel acetate in the precursor resulted in the formation of smooth and continuous nickel oxide nanofibers whose diameter can be further controlled via electrospinning voltage. Beyond an optimum concentration ofmore » nickel acetate, the resulting nanofibers were found to be ‘flattened’ and ‘wavy’ with occasional cracking across their length. Transmission electron microscopy analysis revealed that the obtained nanofibers are polycrystalline in nature. These nickel oxide nanofibers with varying morphology have potential applications in various engineering domains. - Highlights: • Nickel oxide nanofibers were synthesized via electrospinning. • Fiber diameter and roughness depend on nickel acetate concentration used. • With increasing nickel acetate concentration the roughness of nanofibers decreased. • XRD and TEM revealed a polycrystalline structure of the nanofibers.« less
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
Salazar, Félix; Barrientos, Alberto
2013-01-01
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488
Surface roughness measurement on a wing aircraft by speckle correlation.
Salazar, Félix; Barrientos, Alberto
2013-09-05
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.
Compressor cascade performance deterioration caused by sand ingestion
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Balan, C.
1982-01-01
Airfoil cascade erosion and performance deterioration was investigated in a gas particle cascade tunnel. The cascade blades were made of 2024 aluminum alloy and the solid particles used were quartz sand. The results of the experimental measurements are presented to show the change in the blade surface erosion, pressure distribution and the total loss coefficient with erosion. The surface quality of the blades exposed to particulate flows are changing the material surfaces. With time, the surface roughness increases and leads to a decrease in engine performance. It was found that the surface roughness values increase asymptotically to a maximum value with increased erosion. The experimental results indicate that the roughness parameters correlate well against the mass of particles impacting unit area of the surface. Such a correlation is useful in aerodynamics and performance computations in turbomachinery.
NASA Astrophysics Data System (ADS)
Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.
2018-05-01
Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.
Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders
NASA Astrophysics Data System (ADS)
Kiu, K. Y.; Stappenbelt, B.; Thiagarajan, K. P.
2011-09-01
The present study was motivated by a desire to understand the vortex-induced vibration (VIV) of cylindrical offshore structures such as spars in strong currents. In particular, the consequences of marine growth on the surface as well as natural surface roughness that occurs with years in service are studied. Of special interest is the effect of surface roughness on the response amplitudes and the forces experienced by these structures while undergoing VIV. The experimental apparatus employed for the present study consisted of an elastically mounted rigid vertical cylinder with no end plates, towed along the length of a water tank. The cylinder was attached to a parallel linkage mechanism allowing motion in the transverse direction only. The cylinder surface was covered by sandpapers with known mean particle diameters, thus providing controlled values of roughness coefficient from 0.28×10 -3 to 1.38×10 -2. The tests covered the subcritical range of Reynolds number from 1.7×10 4 to 8.3×10 4, and a reduced velocity range from 4 to 16. It was found that as the roughness of the cylinder was increased the maximum response amplitude and the maximum mean drag coefficient decreased, levelling off to constant values. The onset of lock-in was progressively delayed for rougher cylinders, and the width of the lock-in region showed remarkable reduction at higher roughness values. The Strouhal number was found to display a modest increase with roughness. The dynamic mean drag of the rough cylinders was also found to be lower than that for a smooth cylinder. It is felt that uniform roughness such as caused in marine environments may act favorably to lower VIV incidence and effects in the range of Reynolds number tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsakiroglou, C.D.; Payatakes, A.C.
The mercury intrusion/retraction curves of many types of porous materials (e.g., sandstones) have sections of finite slope in the region of high and very high pressure. This feature is attributed to the existence of microroughness on the pore walls. In the present work pore-wall roughness features are added to a three-dimensional primary network of chambers-and-throats using ideas of fractal geometry. The roughness of the throats is modeled with a finite number of self-similar triangular prisms of progressively smaller sizes. The roughness of the chambers is modeled in a similar way using right circular cones instead of prisms. Three parameters sufficemore » for the complete characterization of the model of fractal roughness, namely, the number of features per unit length, the common angle of sharpness, and the number of layers (which is taken to be the same for throats and chambers). Analytical relations that give the surface area, pore volume, and mercury saturation of the pore network as functions of the fractal roughness parameters are developed for monolayer and multilayer arrangements. The chamber-and-throat network with fractal pore-wall roughness is used to develop an extended version of the computer-aided simulator of mercury porosimetry that has been reported in previous publications. This new simulator is used to investigate the effects of the roughness features on the form of mercury intrusion/retraction curves. It turns out that the fractal model of the porewall roughness gives an adequate representation of real porous media, and capillary pressure curves which are similar to the experimental ones for many typical porous materials such as sandstones. The method is demonstrated with the analysis of a Greek sandstone.« less
Thermodynamics of rough colloidal surfaces
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael
1991-03-01
In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V. N.; Iafrate, G. J.
2014-02-07
A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planarmore » and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.« less
SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong
2017-01-10
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.
Fully Resolved Simulations of Particle-Bed-Turbulence Interactions in Oscillatory Flows
NASA Astrophysics Data System (ADS)
Apte, S.; Ghodke, C.
2017-12-01
Particle-resolved direct numerical simulations (DNS) are performed to investigate the behavior of an oscillatory flow field over a bed of closely packed fixed spherical particles for a range of Reynolds numbers in transitional and rough turbulent flow regime. Presence of roughness leads to a substantial modification of the underlying boundary layer mechanism resulting in increased bed shear stress, reduction in the near-bed anisotropy, modification of the near-bed sweep and ejection motions along with marked changes in turbulent energy transport mechanisms. Characterization of such resulting flow field is performed by studying statistical descriptions of the near-bed turbulence for different roughness parameters. A double-averaging technique is employed to reveal spatial inhomogeneities at the roughness scale that provide alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Spatio-temporal characteristics of unsteady particle forces by studying their spatial distribution, temporal auto-correlations, frequency spectra, cross-correlations with near-bed turbulent flow variables and intermittency intermittency in the forces using the concept of impulse are investigated in detail. These first principle simulations provide substantial insights into the modeling of incipient motion of sediments.
Early Onset of Kinetic Roughening due to a Finite Step Width in Hematin Crystallization
NASA Astrophysics Data System (ADS)
Olafson, Katy N.; Rimer, Jeffrey D.; Vekilov, Peter G.
2017-11-01
The structure of the interface of a growing crystal with its nutrient phase largely determines the growth dynamics. We demonstrate that hematin crystals, crucial for the survival of malaria parasites, transition from faceted to rough growth interfaces at increasing thermodynamic supersaturation Δ μ . Contrary to theoretical predictions and previous observations, this transition occurs at moderate values of Δ μ . Moreover, surface roughness varies nonmonotonically with Δ μ , and the rate constant for rough growth is slower than that resulting from nucleation and spreading of layers. We attribute these unexpected behaviors to the dynamics of step growth dominated by surface diffusion and the loss of identity of nuclei separated by less than the step width w . We put forth a general criterion for the onset of kinetic roughening using w as a critical length scale.
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2016-02-01
Superhydrophobic surfaces can significantly reduce hydrodynamic skin drag by accommodating large slip velocity near the surface due to entrapment of air bubbles within their micro-scale roughness elements. While there are many Stokes flow solutions for flows near superhydrophobic surfaces that describe the relation between effective slip length and surface geometry, such relations are not fully known in the turbulent flow limit. In this work, we present a phenomenological model for the kinematics of flow near a superhydrophobic surface with periodic post-patterns at high Reynolds numbers. The model predicts an inverse square root scaling with solid fraction, and a cube root scaling of the slip length with pattern size, which is different from the reported scaling in the Stokes flow limit. A mixed model is then proposed that recovers both Stokes flow solution and the presented scaling, respectively, in the small and large texture size limits. This model is validated using direct numerical simulations of turbulent flows over superhydrophobic posts over a wide range of texture sizes from L+ ≈ 6 to 310 and solid fractions from ϕs = 1/9 to 1/64. Our report also embarks on the extension of friction laws of turbulent wall-bounded flows to superhydrophobic surfaces. To this end, we present a review of a simplified model for the mean velocity profile, which we call the shifted-turbulent boundary layer model, and address two previous shortcomings regarding the closure and accuracy of this model. Furthermore, we address the process of homogenization of the texture effect to an effective slip length by investigating correlations between slip velocity and shear over pattern-averaged data for streamwise and spanwise directions. For L+ of up to O(10), shear stress and slip velocity are perfectly correlated and well described by a homogenized slip length consistent with Stokes flow solutions. In contrast, in the limit of large L+, the pattern-averaged shear stress and slip velocity become uncorrelated and thus the homogenized boundary condition is unable to capture the bulk behavior of the patterned surface.
NASA Technical Reports Server (NTRS)
Van Speybroeck, L.; Mckinnon, P. J.; Murray, S. S.; Primini, F. A.; Schwartz, D. A.; Zombeck, M. V.; Dailey, C. C.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.
1986-01-01
The AXAF Technology Mirror Assembly (TMA) was characterized prior to X-ray testing by properties measured mechanically or with visible light; these include alignment offsets, roundness and global-axial-slope errors, axial-figure errors with characteristic lengths greater than about five mm, and surface roughness with scale lengths between about 0.005 and 0.5 mm. The X-ray data of Schwartz et al. (1985) are compared with predictions based upon the mechanical and visible light measurements.
Scattering of Internal Tides by Irregular Bathymetry of Large Extent
NASA Astrophysics Data System (ADS)
Mei, C.
2014-12-01
We present an analytic theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on the linearized approximation, the idealized case of constant mean sea depth and Brunt-Vaisala frequency is considered. The depth fluctuation is assumed to be a stationary random function of space characterized by small amplitude and correlation length comparable to the typical wavelength. For both one- and two-dimensional topography the effects of scattering on wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Buhler-& Holmes-Cerfon(2011) computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases. In thi talk we shall apply the perturbation technique of multiple scales to treat analytically the random scattering of internal tides by gently sloped bathymetric irregularities.The basic assumptions are: incompressible fluid, infinitestimal wave amplitudes, constant Brunt-Vaisala frequency, and constant mean depth. In addition, the depth disorder is assumed to be a stationary random function of space with zero mean and small root-mean-square amplitude. The correlation length can be comparable in order of magnitude as the dominant wavelength. Both one- and two-dimensional disorder will be considered. Physical effects of random scattering on the mean wave phase i.e., spatial attenuation and wavenumber shift will be calculated and discussed for one mode of incident wave. For two dimensional topographies, statistically isotropic and anisotropic examples will be presented.
Characterization of Ice Roughness From Simulated Icing Encounters
NASA Technical Reports Server (NTRS)
Anderson, David N.; Shin, Jaiwon
1997-01-01
Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.
Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1992-01-01
Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.
Gliding Swifts Attain Laminar Flow over Rough Wings
Lentink, David; de Kat, Roeland
2014-01-01
Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089
Separating local topography from snow effects on momentum roughness in mountain regions
NASA Astrophysics Data System (ADS)
Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.
2013-12-01
Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2007-09-30
2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have been reported. Our effort seeks to...Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup , A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
Development , Implementation and Evaluation of a Physics-Base Windblown Dust Emission Model
A physics-based windblown dust emission parametrization scheme is developed and implemented in the CMAQ modeling system. A distinct feature of the present model includes the incorporation of a newly developed, dynamic relation for the surface roughness length, which is important ...
Branch length similarity entropy-based descriptors for shape representation
NASA Astrophysics Data System (ADS)
Kwon, Ohsung; Lee, Sang-Hee
2017-11-01
In previous studies, we showed that the branch length similarity (BLS) entropy profile could be successfully used for the shape recognition such as battle tanks, facial expressions, and butterflies. In the present study, we proposed new descriptors, roundness, symmetry, and surface roughness, for the recognition, which are more accurate and fast in the computation than the previous descriptors. The roundness represents how closely a shape resembles to a circle, the symmetry characterizes how much one shape is similar with another when the shape is moved in flip, and the surface roughness quantifies the degree of vertical deviations of a shape boundary. To evaluate the performance of the descriptors, we used the database of leaf images with 12 species. Each species consisted of 10 - 20 leaf images and the total number of images were 160. The evaluation showed that the new descriptors successfully discriminated the leaf species. We believe that the descriptors can be a useful tool in the field of pattern recognition.
Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S
2015-07-01
We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anurose, T. J.; Bala Subrahamanyam, D.
2014-06-01
The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM) is carried out by comparing the model-simulated sensible heat flux (H) with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E), a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH) and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h) in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB) under extremely unstable, near-neutral and stable stratification of the atmosphere.
On the modeling of wave-enhanced turbulence nearshore
NASA Astrophysics Data System (ADS)
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA
NASA Astrophysics Data System (ADS)
Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.
2017-12-01
Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA
Neutron Scattering Studies on Large Length Scale Sample Structures
NASA Astrophysics Data System (ADS)
Feng, Hao
Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.
Modeling earthquake magnitudes from injection-induced seismicity on rough faults
NASA Astrophysics Data System (ADS)
Maurer, J.; Dunham, E. M.; Segall, P.
2017-12-01
It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Long-Range Memory in Literary Texts: On the Universal Clustering of the Rare Words.
Tanaka-Ishii, Kumiko; Bunde, Armin
2016-01-01
A fundamental problem in linguistics is how literary texts can be quantified mathematically. It is well known that the frequency of a (rare) word in a text is roughly inverse proportional to its rank (Zipf's law). Here we address the complementary question, if also the rhythm of the text, characterized by the arrangement of the rare words in the text, can be quantified mathematically in a similar basic way. To this end, we consider representative classic single-authored texts from England/Ireland, France, Germany, China, and Japan. In each text, we classify each word by its rank. We focus on the rare words with ranks above some threshold Q and study the lengths of the (return) intervals between them. We find that for all texts considered, the probability SQ(r) that the length of an interval exceeds r, follows a perfect Weibull-function, SQ(r) = exp(-b(β)rβ), with β around 0.7. The return intervals themselves are arranged in a long-range correlated self-similar fashion, where the autocorrelation function CQ(s) of the intervals follows a power law, CQ(s) ∼ s-γ, with an exponent γ between 0.14 and 0.48. We show that these features lead to a pronounced clustering of the rare words in the text.
NASA Astrophysics Data System (ADS)
Gryanik, Vladimir M.; Lüpkes, Christof
2018-02-01
In climate and weather prediction models the near-surface turbulent fluxes of heat and momentum and related transfer coefficients are usually parametrized on the basis of Monin-Obukhov similarity theory (MOST). To avoid iteration, required for the numerical solution of the MOST equations, many models apply parametrizations of the transfer coefficients based on an approach relating these coefficients to the bulk Richardson number Rib. However, the parametrizations that are presently used in most climate models are valid only for weaker stability and larger surface roughnesses than those documented during the Surface Heat Budget of the Arctic Ocean campaign (SHEBA). The latter delivered a well-accepted set of turbulence data in the stable surface layer over polar sea-ice. Using stability functions based on the SHEBA data, we solve the MOST equations applying a new semi-analytic approach that results in transfer coefficients as a function of Rib and roughness lengths for momentum and heat. It is shown that the new coefficients reproduce the coefficients obtained by the numerical iterative method with a good accuracy in the most relevant range of stability and roughness lengths. For small Rib, the new bulk transfer coefficients are similar to the traditional coefficients, but for large Rib they are much smaller than currently used coefficients. Finally, a possible adjustment of the latter and the implementation of the new proposed parametrizations in models are discussed.
Fractal characterization and wettability of ion treated silicon surfaces
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.
2017-02-01
Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2011-09-30
crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of...Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microscale breaking waves
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2010-01-01
Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks...and K.R. Phadnis , 2005: Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a PIV algorithm
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2013-09-30
Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks...16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-01-01
microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form ApprovedOMB No. 0704...sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2009-01-01
length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic
Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement
2008-01-01
et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
..., to the extent appropriate, safety, bridge, pavement, and congestion management systems for roads...; Pavement features such as number of lanes, length, width, surface type, functional classification, and shoulder information; and pavement condition information such as roughness, distress, rutting, and surface...
Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi
2012-06-01
Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.
Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy
Özdemir, Mucize Eriç; Uzun, Işıl; Karahasanoğlu, Ayşe; Aygün, Mehmet; Akın, Hale; Yazıcıoğlu, Fehmi
2014-01-01
Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm) = y = (1.348 X gestational age)−12.265), where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001). Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements. PMID:25667783
Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian
2011-01-01
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364
NASA Astrophysics Data System (ADS)
Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian
2011-10-01
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Road roughness correlation study.
DOT National Transportation Integrated Search
1970-06-01
The Research and Development Section of the Louisiana Department of Highways has been using a PCA Road Meter to gather information concerning Present Serviceability Indices for the AASHO Correlation Study. the PCA Road Meter has replaced the Chloe Pr...
Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography
NASA Astrophysics Data System (ADS)
Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.
2005-02-01
Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.
Philip M. Wargo
1978-01-01
Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Wilder, Michael C.; Prabhu, Dinesh K.
2010-01-01
Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence.
NASA Astrophysics Data System (ADS)
Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin
2017-04-01
We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer
NASA Astrophysics Data System (ADS)
Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano
2016-11-01
A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar
The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Comparison of two metrological approaches for the prediction of human haptic perception
NASA Astrophysics Data System (ADS)
Neumann, Annika; Frank, Daniel; Vondenhoff, Thomas; Schmitt, Robert
2016-06-01
Haptic perception is regarded as a key component of customer appreciation and acceptance for various products. The prediction of customers’ haptic perception is of interest both during product development and production phases. This paper presents the results of a multivariate analysis between perceived roughness and texture related surface measurements, to examine whether perceived roughness can be accurately predicted using technical measurements. Studies have shown that standardized measurement parameters, such as the roughness coefficients (e.g. Rz or Ra), do not show a one-dimensional linear correlation with the human perception (of roughness). Thus, an alternative measurement method was compared to standard measurements of roughness, in regard to its capability of predicting perceived roughness through technical measurements. To estimate perceived roughness, an experimental study was conducted in which 102 subjects evaluated four sets of 12 different geometrical surface structures regarding their relative perceived roughness. The two different metrological procedures were examined in relation to their capability to predict the perceived roughness of the subjects stated within the study. The standardized measurements of the surface roughness were made using a structured light 3D-scanner. As an alternative method, surface induced vibrations were measured by a finger-like sensor during robot-controlled traverse over a surface. The presented findings provide a better understanding of the predictability of human haptic perception using technical measurements.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to...1986: Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2009-09-30
2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort...in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-01-01
spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have...observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2011-09-30
Phillips et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R
Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement
2010-09-30
al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our...observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2011-09-30
18 2 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our...open sea, J. Phys. Oceanogr., 16, 290-297. Jessup, A.T. and K.R. Phadnis , 2005: Measurement of the geometric and kinematic properties of microsacle
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2007-09-30
microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form ApprovedOMB No. 0704...whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2013-09-30
Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks to...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties
Spider Silk Glue Proteins BAA 8.1
2017-09-14
protein expression. 3. The genes were then used in flask fermentation expression studies to insure that protein of the correct size was being...one of the lengths (3X, roughly a 140kD protein) for initial studies. We were able to detect protein production in these fermentations but we saw
NASA Technical Reports Server (NTRS)
Markey, Melvin F; Carpini, Thomas D
1957-01-01
A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.
Laser altimeter observations from MESSENGER's first Mercury flyby.
Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K
2008-07-04
A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.
Best Stent Length Predicted by Simple CT Measurement Rather than Patient Height.
Barrett, Keith; Foell, Kirsten; Lantz, Andrea; Ordon, Michael; Lee, Jason Y; Pace, Kenneth T; Honey, R John D'A
2016-09-01
Ureteral stent length is important, as stents that are too long might worsen symptoms and too short are at higher risk of migration. The purpose of this study was to determine if patient or radiologic parameters correlate with directly measured ureteral length and if directly measured ureteral length predicts proper stent positioning. During stent placement, ureteral length (ureteropelvic junction to ureterovesical junction distance) was directly measured by endoscopically viewing a ureteral catheter (with 1-cm marking) emanating from the ureteral orifice. A 22, 24, or 26 cm stent was chosen to be closest to the measured ureteral length. For ureters >26 cm, a 26 cm stent was chosen. Ends of an "ideally positioned" stent were fully curled in the renal pelvis and bladder, without crossing the bladder midline. Rates of ideal stent position were compared between patients with matching stent and ureteral lengths and those with stent lengths differing by ≥1 cm (mismatched). The measured ureteral length was correlated with patient height, L1-L5 height, and length measured on CT. Fifty-nine ureters from 57 patients were included. Height was reasonably correlated with L1-L5 height (Spearman correlation coefficient [rho] = 0.79), although both were poorly correlated with directly measured ureteral length (rho = 0.18 for height and 0.32 for lumbar height). Ureteral lengths measured on CT correlated well with direct measurement (rho = 0.63 for axial cuts and rho = 0.64 for coronal cuts). Matched stent length was associated with higher rates of ideal stent position than mismatched (100% vs 70.9%, p = 0.006). CT measurements, rather than height, correlate well with measured length and could be used to choose the appropriate stent length. Stents matching directly measured ureteral lengths are associated with high rates of ideal stent position.
Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen
2013-07-01
To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae
2016-11-01
Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
Coatings for FEL optics: preparation and characterization of B4C and Pt
Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz
2018-01-01
Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30–100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B4C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments. PMID:29271760
Coatings for FEL optics: preparation and characterization of B4C and Pt.
Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz
2018-01-01
Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30-100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B 4 C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2017-01-01
An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
Abraham, Kirubaharan S; Jagdish, Nithya; Kailasam, Vignesh; Padmanabhan, Sridevi
2017-05-01
To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016" and 0.016" × 0.022" NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.
Sandeep, Chitta Sai; Senetakis, Kostas
2018-01-31
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.
NASA Astrophysics Data System (ADS)
Alfieri, J. G.; Kustas, W. P.; Gao, F.; Nieto, H.; Prueger, J. H.; Hipps, L.
2017-12-01
Because the judicious application of water is key to ensuring berry quality, information regarding evapotranspiration (ET) is critical when making irrigation and other crop management decisions for vineyards. Increasingly, wine grape producers seek to use remote sensing-based models to monitor ET and inform management decisions. However, the parameterization schemes used by these models do not fully account for the effects of the highly-structured canopy architecture on either the roughness characteristics of the vineyard or the turbulent transport and exchange within and above the vines. To investigate the effects of vineyard structure on the roughness length (zo) and displacement height (do) of vineyards, data collected from 2013 to 2016 as a part of the Grape Remote Sensing Atmospheric Profiling and Evapotranspiration Experiment (GRAPEX), an ongoing multi-agency field campaign conducted in the Central Valley of California, was used. Specifically, vertical profiles (2.5 m, 3.75 m, 5 m, and 8 m, agl) of wind velocity collected under near-neutral conditions were used to estimate do and zo and characterize how these roughness parameters vary in response changing environmental conditions. The roughness length was found to vary as a function of wind direction. It increased sigmoidally from a minimum near 0.15 m when the wind direction was parallel to the vine rows to a maximum between 0.3 m and 0.4 m when the winds were perpendicularly to the rows. Similarly, do was found responds strongly to changes in vegetation density as measured via leaf area index (LAI). Although the maximum varied from year-to-year, do increased rapidly after bud break in all cases and then remained constant for the remainder of the growing season. A comparison of the model output from the remote sensing-based two-source energy balance (TSEB) model using the standard roughness parameterization scheme and the empirical relationships derived from observations indicates a that the modeled ET estimates decrease by 10% to 40%. These results not only demonstrate the unique effects of highly-structured canopies on aerodynamic characteristics, they also provide well-behaved relationships that may be used to improve the accuracy of the model parameterization of do and zo, thus the turbulent fluxes including ET, within vineyards.
Effects of boundary layer forcing on wing-tip vortices
NASA Astrophysics Data System (ADS)
Shaw-Ward, Samantha
The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot-wire measurements in the 2D wing wake revealed the potential origin of dominant length-scales observed in the vortex power spectra. At angles above 5 degrees, the 2D wing wake had both higher velocity deficits and higher levels of total wake kinetic energy for the rough wing as compared to the smooth wing.
Determining Correlation and Coherence Lengths in Turbulent Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Dan
2012-01-01
Wall pressure data acquired during flight tests at several flight conditions are analysed and the correlation and coherence lengths of the data reported. It is found that the correlation and coherence lengths are influenced by the origin of the structure producing the pressure and the frequency bandwidth over which the analyses are performed. It is shown how the frequency bandwidth biases the correlation length and how the convection of the pressure field might reduce the coherence measured between sensors. A convected form of the cross correlation and cross spectrum is introduced to compensate for the effects of convection. Coherence lengths measured in the streamwise direction appear much longer than expected. Coherent structures detected using the convected cross correlation do not exhibit an exponential coherent power decay.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Roughness Perception of Haptically Displayed Fractal Surfaces
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)
2000-01-01
Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.
Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors
NASA Astrophysics Data System (ADS)
Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin
2018-05-01
Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2012-11-01
The behavior of disease-linked mutations of membrane proteins is especially simple in rhodopsin, where they are well-studied, as they are responsible for retinitis pigmentosa, RP (retinal degeneration). Here we show that the frequency of occurrence of single RP mutations is strongly influenced by their transportational survival rates, and that this survival correlates well (82%) with a long-range, non-local hydropathic measure of the roughness of the water interfaces of ex-membrane rhodopsin based on self-organized criticality (SOC). It is speculated that this concept may be generally useful in studying survival rates of many mutated proteins.
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
Nanoscale morphogenesis of nylon-sputtered plasma polymer particles
NASA Astrophysics Data System (ADS)
Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan
2018-05-01
Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α = 0.78, the growth exponent β = 0.35, and the dynamic exponent 1/z = 0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.
NASA Astrophysics Data System (ADS)
Zhu, Xiaowei; Iungo, G. Valerio; Leonardi, Stefano; Anderson, William
2017-02-01
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, z_0, is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of z_0 based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies - the topic of this study - exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic z_0 models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and z_0) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting z_0. We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1-041203-10, 2010), who demonstrate that z_0 can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.
Adductor spasmodic dysphonia: Relationships between acoustic indices and perceptual judgments
NASA Astrophysics Data System (ADS)
Cannito, Michael P.; Sapienza, Christine M.; Woodson, Gayle; Murry, Thomas
2003-04-01
This study investigated relationships between acoustical indices of spasmodic dysphonia and perceptual scaling judgments of voice attributes made by expert listeners. Audio-recordings of The Rainbow Passage were obtained from thirty one speakers with spasmodic dysphonia before and after a BOTOX injection of the vocal folds. Six temporal acoustic measures were obtained across 15 words excerpted from each reading sample, including both frequency of occurrence and percent time for (1) aperiodic phonation, (2) phonation breaks, and (3) fundamental frequency shifts. Visual analog scaling judgments were also obtained from six voice experts using an interactive computer interface to quantify four voice attributes (i.e., overall quality, roughness, brokenness, breathiness) in a carefully psychoacoustically controlled environment, using the same reading passages as stimuli. Number and percent aperiodicity and phonation breaks correlated significanly with perceived overall voice quality, roughness, and brokenness before and after the BOTOX injection. Breathiness was correlated with aperidocity only prior to injection, while roughness also correlated with frequency shifts following injection. Factor analysis reduced perceived attributes to two principal components: glottal squeezing and breathiness. The acoustic measures demonstrated a strong regression relationship with perceived glottal squeezing, but no regression relationship with breathiness was observed. Implications for an analysis of pathologic voices will be discussed.
Wise, L M; Wang, Z; Grynpas, M D
2007-10-01
Fractography has not been fully developed as a useful technique in assessing failure mechanisms of bone. While fracture surfaces of osteonal bone have been explored, this may not apply to conventional mechanical testing of mouse bone. Thus, the focus of this work was to develop and evaluate the efficacy of a fractography protocol for use in supplementing the interpretation of failure mechanisms in mouse bone. Micro-computed tomography and three-point bending were performed on femora of two groups of 6-month-old mice (C57BL/6 and a mixed strain background of 129SV/C57BL6). SEM images of fracture surfaces were collected, and areas of "tension", "compression" and "transition" were identified. Percent areas of roughness were identified and estimated within areas of "tension" and "compression" and subsequently compared to surface roughness measurements generated from an optical profiler. Porosity parameters were determined on the tensile side. Linear regression analysis was performed to evaluate correlations between certain parameters. Results show that 129 mice exhibit significantly increased bone mineral density (BMD), number of "large" pores, failure strength, elastic modulus and energy to failure compared to B6 mice (p<0.001). Both 129 and B6 mice exhibit significantly (p<0.01) more percent areas of tension (49+/-1%, 42+/-2%; respectively) compared to compression (26+/-2%, 31+/-1%; respectively). In terms of "roughness", B6 mice exhibit significantly less "rough" areas (30+/-4%) compared to "smooth" areas (70+/-4%) on the tensile side only (p<0.001). Qualitatively, 129 mice demonstrate more evidence of bone toughening through fiber bridging and loosely connected fiber bundles. The number of large pores is positively correlated with failure strength (p=0.004), elastic modulus (p=0.002) and energy to failure (p=0.041). Percent area of tensile surfaces is positively correlated with failure strength (p<0.001), elastic modulus (p=0.016) and BMD (p=0.037). Percent area of rough compressive surfaces is positively correlated with energy to failure (p=0.039). Evaluation of fracture surfaces has helped to explain why 129 mice have increased mechanical properties compared to B6 mice, namely via toughening mechanisms on the compressive side of failure. Several correlations exist between fractography parameters and mechanical behavior, supporting the utility of fractography with skeletal mouse models.
Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W
2010-04-01
Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.
Direct Numerical Simulation of Flow Over Passive Geometric Disturbances
NASA Astrophysics Data System (ADS)
Vizard, Alexander
It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.
Feather roughness reduces flow separation during low Reynolds number glides of swifts.
van Bokhorst, Evelien; de Kat, Roeland; Elsinga, Gerrit E; Lentink, David
2015-10-01
Swifts are aerodynamically sophisticated birds with a small arm and large hand wing that provides them with exquisite control over their glide performance. However, their hand wings have a seemingly unsophisticated surface roughness that is poised to disturb flow. This roughness of about 2% chord length is formed by the valleys and ridges of overlapping primary feathers with thick protruding rachides, which make the wing stiffer. An earlier flow study of laminar-turbulent boundary layer transition over prepared swift wings suggested that swifts can attain laminar flow at a low angle of attack. In contrast, aerodynamic design theory suggests that airfoils must be extremely smooth to attain such laminar flow. In hummingbirds, which have similarly rough wings, flow measurements on a 3D printed model suggest that the flow separates at the leading edge and becomes turbulent well above the rachis bumps in a detached shear layer. The aerodynamic function of wing roughness in small birds is, therefore, not fully understood. Here, we performed particle image velocimetry and force measurements to compare smooth versus rough 3D-printed models of the swift hand wing. The high-resolution boundary layer measurements show that the flow over rough wings is indeed laminar at a low angle of attack and a low Reynolds number, but becomes turbulent at higher values. In contrast, the boundary layer over the smooth wing forms open laminar separation bubbles that extend beyond the trailing edge. The boundary layer dynamics of the smooth surface varies non-linearly as a function of angle of attack and Reynolds number, whereas the rough surface boasts more consistent turbulent boundary layer dynamics. Comparison of the corresponding drag values, lift values and glide ratios suggests, however, that glide performance is equivalent. The increased structural performance, boundary layer robustness and equivalent aerodynamic performance of rough wings might have provided small (proto) birds with an evolutionary window to high glide performance. © 2015. Published by The Company of Biologists Ltd.
Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.
2011-01-01
Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.
DeWitt, Jamie C; Millsap, Deborah S; Yeager, Ronnie L; Heise, Steve S; Sparks, Daniel W; Henshel, Diane S
2006-02-01
Necropsy-observable cardiac deformities were evaluated from 283 nestling passerines collected from one reference site and five polychlorinated biphenyl (PCB)-contaminated sites around Bloomington and Bedford, Indiana, USA. Hearts were weighed and assessed on relative scales in three dimensions (height, length, and width) and for externally visible deformities. Heart weights normalized to body weight (heart somatic index) were decreased significantly at the more contaminated sites in both house wren (Troglodytes aedon) and tree swallow (Tachycineta bicolor). Heart somatic indices significantly correlated with log PCB concentrations in Carolina chickadee (Parus carolinesis) and tree swallow and with log 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent values in tree swallow alone. Ventricular length was increased significantly in eastern bluebirds (Sialia sialis) and decreased significantly in Carolina chickadee and tree swallow from contaminated sites versus the reference site. Heart length regressed significantly against the log PCB concentrations (Carolina chickadee and tree swallow) or the square of the PCB concentrations (red-winged blackbird [Agelaius phoeniceus]) in a sibling bird. The deformities that were observed most at the contaminated sites included abnormal tips (pointed, rounded, or flattened), center rolls, macro- and microsurface roughness, ventricular indentations on the ventral or dorsal surface, lateral ventricular notches, visibly thin ventricular walls, and changes in overall heart shape. A pooled heart deformity index regressed significantly against the logged contaminant concentrations for all species except red-winged blackbird. These results indicate that developmental changes in heart morphometrics and shape abnormalities are quantifiable and may be sensitive and useful indicators of PCB-related developmental impacts across many avian species.
Morphology and Length Correlated in Terminal Flushes of Longleaf Pine Saplings
R.M. Allen; N.M. Scarbrough
1970-01-01
In longleafpine (Pinuspalustris Mill.) saplings growing in southern Mississippi the length of the first or spring flush was significantly correlated with that of the second flush; the correlation of length between flushes two and three was also statistically significant. The correlations were due more to similarities in internode elongation than to node number. Flush...
Integration of length and curvature in haptic perception.
Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L
2014-01-24
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.
Optical mapping of surface roughness by implementation of a spatial light modulator
NASA Astrophysics Data System (ADS)
Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.
2017-08-01
It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.
The trend of production rates with heliocentric distance for comet P/Halley
NASA Technical Reports Server (NTRS)
Fink, Uwe
1994-01-01
Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r(exp -1.0) with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.
Structural, morphological and optical studies of ripple-structured ZnO thin films
NASA Astrophysics Data System (ADS)
Navin, Kumar; Kurchania, Rajnish
2015-11-01
Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.
NASA Astrophysics Data System (ADS)
Filimonenko, D. S.; Khairullina, A. Ya.; Yasinskii, V. M.; Kozlova, N. M.; Zubritskaja, G. P.; Slobozhanina, E. I.
2011-07-01
Changes in the surface structure of lymphocyte membranes exposed to various concentrations of zinc ions are studied. It is found by atomic force microscopy that increasing the concentration of zinc ions leads to a reduction in the correlation length of the autocorrelation function of the roughness profile of a lymphocyte compared to control samples; this may indicate the existence of fine structure in the membrane surface. Fluorescence markers are used to observe a reduction in the microviscosity of the lipids in the outer monolayer of the lipid bilayer after lymphocytes are exposed to Zn ions, as well as the exposure of phosphatidylserine on the surface membrane, and the oxidation of HS-groups of membrane proteins. Calculations of the absorption coefficients of lymphocytes modified with zinc reveal the existence of absorption bands owing to the formation of metal-protein complexes and zinc oxide nanoparticles. These results indicate significant changes in the structural and functional state of lymphocyte membranes exposed to zinc ions.
Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E
2013-10-01
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haas, Florian; Heckmann, Tobias; Klein, Thomas; Becht, Michael
2010-05-01
In high mountain regions, rockfall plays a major role as a geomorphic process, both in terms of sediment budget and natural hazard. During the last two years, high-resolution Terrestrial Laserscanning (TLS) was applied to study (a) detachment zones and sizes of rock fall events within steep rockfaces, (b) characteristics of rockfall deposits such as surface roughness, size distribution and fragment morphology, and (c) their influence on rockfall run-out length. The investigations were carried out in three study areas located in the Northern, Central and Southern Alps (Val di Funes, Northern Dolomites/Italy; Horlachtal, Central Alps/Austria; Höllental, Northern Calcareous Alps/Germany). Within this project (funded by the German Science Foundation, DFG), rockfaces and corresponding talus cones were scanned twice a year with two scanning resolutions. Larger events were investigated by scanning large areas of rockfaces and talus cones from a great distance (~500 m). In contrast, detailed scans from shorter distances (<250m) were used to investigate the capability of the approach to detect smaller events. With this approach, it was possible to record three large and several smaller events in the three catchments. The largest event occurred in the Dolomite Alps (Val di Funes/Italy) with a volume of nearly 3300 cubic meters (8900 tons). Both the detachment zone and the depositional zones could be defined very well by a cut-and-fill analysis of the digital elevation models generated from the TLS data. In addition, ground based LIDAR data are also a very helpful tool to characterize the surface properties of talus cones and the runout distances of large boulders. The surface roughness of talus cones in all three catchments was derived from the TLS point clouds by a GIS approach according to the roughness-length method. The resulting detailed rougness maps of the talus cones will help in the future to improve existing process models which are able to model runout distances on the talus cones using friction parameters. It has often been mentioned that not only the surface roughness of the talus cone, but also the shape of the boulders itself have an influence on the runout distance. The interrelationship between rock fragment morphology (characterised by shape parameters) and runout distance was analysed at the site of a large rockfall event (>10 000 cubic meters) from the year 2003 in the northern Dolomite Alps. For these analyses, the axial ratio of 618 rocks (>50 cm long axis) in the depositional zone and their corresponding runout distance were measured using TLS data and the software RiscanPro. Results show a significant correlation between the axial ratio of the particles and their runout distance. Rocks with a "round" shape (axial ratio around 1) have a longer runout distance than elongated or irregularly shaped particles (axial ratio greater than 1).
Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces
Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk
2014-01-01
Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265
NASA Astrophysics Data System (ADS)
Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel
2018-04-01
The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.
Nanjundan, Kavitha; Vimala, G
2016-01-01
To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS) brackets (n = 40) and Transcend 6000 polycrystalline alumina (PCA) brackets (n = 40) as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10) and were immersed in vinegar (pH = 3.5 ± 0.5), Pepsi ® (pH = 2.46), Colgate Phos-Flur mouth rinse (pH = 5.1), and artificial saliva (control group pH = 7) for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra) with surface profilometer (single bracket and single wire from each subgroup), and frictional resistance using universal testing machine were evaluated. Highest mean (standard deviation) static frictional force of 2.65 (0.25) N was recorded in Pepsi ® followed by 2.57 (0.25) N, 2.40 (0.22) N, and 2.36 (0.17) N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both) and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both). Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during orthodontic treatment.
Optimal Weighting for Exam Composition
ERIC Educational Resources Information Center
Ganzfried, Sam; Yusuf, Farzana
2018-01-01
A problem faced by many instructors is that of designing exams that accurately assess the abilities of the students. Typically, these exams are prepared several days in advance, and generic question scores are used based on rough approximation of the question difficulty and length. For example, for a recent class taught by the author, there were…
Landing characteristics in waves of three dynamic models of flying boats
NASA Technical Reports Server (NTRS)
Benson, James M; Havens, Robert F; Woodward, David R
1952-01-01
Powered models of three different flying boats were landed in oncoming waves of various heights and lengths. The effects of varying the trim at landing, the deceleration after landing, and the size of the waves were determined. Data are presented on the motions and accelerations obtained during landings in rough water.
The relation of turbulence to diffusion in open-channel flows
Keefer, Thomas N.
1971-01-01
The exponent in the power-law equation describing the decay of scalar quantities downstream of a jet is a linear function of the shear velocity of the channel. The length of the core region of a jet is a power-law function of the jet strength with the exponent depending on boundary roughness.
Why do rough surfaces appear glossy?
Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu
2014-05-01
The majority of work on the perception of gloss has been performed using smooth surfaces (e.g., spheres). Previous studies that have employed more complex surfaces reported that increasing mesoscale roughness increases perceived gloss [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010), Curr. Biol.22, 1909 (2012)]. We show that the use of realistic rendering conditions is important and that, in contrast to [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010)], after a certain point increasing roughness further actually reduces glossiness. We investigate five image statistics of estimated highlights and show that for our stimuli, one in particular, which we term "percentage of highlight area," is highly correlated with perceived gloss. We investigate a simple model that explains the unimodal, nonmonotonic relationship between mesoscale roughness and percentage highlight area.
Determination of surface layer parameters at the edge of a suburban area
NASA Astrophysics Data System (ADS)
Likso, T.; Pandžić, K.
2012-05-01
Vertical wind and air temperature profile related parameters in the surface layer at the edge of suburban area of Zagreb (Croatia) have been considered. For that purpose, adopted Monin-Obukhov similarity theory and a set of observations of wind and air temperature at 2 and 10 m above ground, recorded in 2005, have been used. The root mean square differences (errors) principle has been used as a tool to estimate the effective roughness length as well as standard deviations of wind speed and wind gusts. The results of estimation are effective roughness lengths dependent on eight wind direction sectors unknown before. Gratefully to that achievement, representativeness of wind data at standard 10-m height can be clarified more deeply for an area of at least about 1 km in upwind direction from the observation site. Extrapolation of wind data for lower or higher levels from standard 10-m height are thus properly representative for a wider inhomogeneous suburban area and can be used as such in numerical models, flux and wind energy estimation, civil engineering, air pollution and climatological applications.
A sensitivity analysis of a surface energy balance model to LAI (Leaf Area Index)
NASA Astrophysics Data System (ADS)
Maltese, A.; Cannarozzo, M.; Capodici, F.; La Loggia, G.; Santangelo, T.
2008-10-01
The LAI is a key parameter in hydrological processes, especially in the physically based distribution models. It is a critical ecosystem attribute since physiological processes such as photosynthesis, transpiration and evaporation depend on it. The diffusion of water vapor, momentum, heat and light through the canopy is regulated by the distribution and density of the leaves, branches, twigs and stems. The LAI influences the sensible heat flux H in the surface energy balance single source models through the calculation of the roughness length and of the displacement height. The aerodynamic resistance between the soil and within-canopy source height is a function of the LAI through the roughness length. This research carried out a sensitivity analysis of some of the most important parameters of surface energy balance models to the LAI time variation, in order to take into account the effects of the LAI variation with the phenological period. Finally empirical retrieved relationships between field spectroradiometric data and the field LAI measured via a light-sensitive instrument are presented for a cereal field.
Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.
Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P
2014-01-01
The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.
A dimensional comparison between embedded 3D-printed and silicon microchannels
NASA Astrophysics Data System (ADS)
O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.
2014-07-01
The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.
Surface roughness effects on contact line motion with small capillary number
NASA Astrophysics Data System (ADS)
Yang, Feng-Chao; Chen, Xiao-Peng; Yue, Pengtao
2018-01-01
In this work, we investigate how surface roughness influences contact line dynamics by simulating forced wetting in a capillary tube. The tube wall is decorated with microgrooves and is intrinsically hydrophilic. A phase-field method is used to capture the fluid interface and the moving contact line. According to the numerical results, a criterion is proposed to judge whether the grooves are entirely wetted or not at vanishing capillary numbers. When the contact line moves over a train of grooves, the apparent contact angle exhibits a periodic nature, no matter whether the Cassie-Baxter or the Wenzel state is achieved. The oscillation amplitude of apparent contact angle is analyzed and found to be inversely proportional to the interface area. The contact line motion can be characterized as stick-jump-slip in the Cassie-Baxter state and stick-slip in the Wenzel state. By comparing to the contact line dynamics on smooth surfaces, equivalent microscopic contact angles and slip lengths are obtained. The equivalent slip length in the Cassie-Baxter state agrees well with the theoretical model in the literature. The equivalent contact angles are, however, much greater than the predictions of the Cassie-Baxter model and the Wenzel model for equilibrium stable states. Our results reveal that the pinning of the contact line at surface defects effectively enhances the hydrophobicity of rough surfaces, even when the surface material is intrinsically hydrophilic and the flow is under the Wenzel state.
Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, Brian; Lundquist, Julie K.
2016-03-01
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
Vanderwende, Brian; Lundquist, Julie K.
2015-11-07
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
NASA Astrophysics Data System (ADS)
Yen, Tsu-Hsu
2015-12-01
Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwende, Brian; Lundquist, Julie K.
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study
Sigilião, Lara Carvalho Freitas; Marquezan, Mariana; Elias, Carlos Nelson; Ruellas, Antônio Carlos; Sant'Anna, Eduardo Franzotti
2015-01-01
Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding. Methods: A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L), 12-blade bur at high speed (G12H), 30-blade bur at low speed (G30L), DU10CO ORTHO polisher (GDU), Renew System (GR) and Diagloss polisher (GD). Mean roughness (Ra) and mean roughness depth (Rz) of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz) were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM). Results: In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05) was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz); Ra and (∆Ra, ∆Rz); Rz (r = - 0.445, r = - 0.475, p < 0.01). Conclusion: All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness. PMID:26560825
Role of roughness parameters on the tribology of randomly nano-textured silicon surface.
Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S
2011-10-01
This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
NASA Astrophysics Data System (ADS)
Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin
2015-01-01
The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.
Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator
Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.
2017-01-01
The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990
Scale growth of structures in the turbulent boundary layer with a rod-roughened wall
NASA Astrophysics Data System (ADS)
Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa
2016-01-01
Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.
Seabed roughness parameters from joint backscatter and reflection inversion at the Malta Plateau.
Steininger, Gavin; Holland, Charles W; Dosso, Stan E; Dettmer, Jan
2013-09-01
This paper presents estimates of seabed roughness and geoacoustic parameters and uncertainties on the Malta Plateau, Mediterranean Sea, by joint Bayesian inversion of mono-static backscatter and spherical wave reflection-coefficient data. The data are modeled using homogeneous fluid sediment layers overlying an elastic basement. The scattering model assumes a randomly rough water-sediment interface with a von Karman roughness power spectrum. Scattering and reflection data are inverted simultaneously using a population of interacting Markov chains to sample roughness and geoacoustic parameters as well as residual error parameters. Trans-dimensional sampling is applied to treat the number of sediment layers and the order (zeroth or first) of an autoregressive error model (to represent potential residual correlation) as unknowns. Results are considered in terms of marginal posterior probability profiles and distributions, which quantify the effective data information content to resolve scattering/geoacoustic structure. Results indicate well-defined scattering (roughness) parameters in good agreement with existing measurements, and a multi-layer sediment profile over a high-speed (elastic) basement, consistent with independent knowledge of sand layers over limestone.
Percolation characteristics of solvent invasion in rough fractures under miscible conditions
NASA Astrophysics Data System (ADS)
Korfanta, M.; Babadagli, T.; Develi, K.
2017-10-01
Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.
Fransisca, Lilia; Feng, Hao
2012-02-01
Surface roughness has been reported as one of the factors affecting microbial attachment and removal. Seed surfaces are complex, and different seed varieties have different surface topographies. As a result, a sanitizer effective in eliminating pathogenic bacteria on one seed may not be as effective when applied to another seed. The objectives of this research were (i) to investigate the efficacy of malic acid and thiamine dilaurylsulfate (TDS) combined treatments for inactivation of E. coli O157:H7 strain 87-23 on alfalfa, broccoli, and radish seeds, (ii) to quantify surface roughness of the seeds, and (iii) to determine the correlation between microbial removal and surface roughness. The surface roughness of each seed type was measured by confocal laser scanning microscopy (CLSM) and surface profilometry. Surface roughness (Ra) values of the seeds were then calculated from CLSM data. Seeds inoculated with E. coli O157:H7 87-23 were washed for 20 min in malic acid and TDS solutions and rinsed for 10 min in tap water. Radish seeds had the highest Ra values, followed by broccoli and alfalfa seeds. A combination of 10% malic acid and 1% TDS was more effective than 20,000 ppm of Ca(OCl)(2) for inactivation of E. coli O157:H7 87-23 on broccoli seeds, while the inactivation on radish and alfalfa seeds was not significantly different compared with the 20,000-ppm Ca(OCl)(2) wash. Overall, a negative correlation existed between the seeds' Ra values and microbial removal. Different seeds had different surface roughness, contributing to discrepancies in the ability of the sanitizers to eliminate E. coli O157:H7 87-23 on the seeds. Therefore, the effectiveness of one sanitizer on one seed type should not be translated to all seed varieties.
Inner-outer interactions in a turbulent boundary layer overlying complex roughness
NASA Astrophysics Data System (ADS)
Pathikonda, Gokul; Christensen, Kenneth T.
2017-04-01
Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.
Antenna Mechanism of Length Control of Actin Cables
Mohapatra, Lishibanya; Goode, Bruce L.; Kondev, Jane
2015-01-01
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control. PMID:26107518
Antenna Mechanism of Length Control of Actin Cables.
Mohapatra, Lishibanya; Goode, Bruce L; Kondev, Jane
2015-06-01
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.
Roughness of stylolites: implications of 3D high resolution topography measurements.
Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R
2004-12-03
Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.
Influence of fatigue crack wake length and state of stress on crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.; Fisher, D. M.
1986-01-01
The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.
Influence of fatigue crack wake length and state of stress on crack closure
NASA Technical Reports Server (NTRS)
Telesman, Jack; Fisher, Douglas M.
1988-01-01
The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.
Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J
2016-08-01
To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.
Dynamics of viscous drops confined in a rough medium
NASA Astrophysics Data System (ADS)
Keiser, Ludovic; Gas, Armelle; Jaafar, Khalil; Bico, Jose; Reyssat, Etienne
2017-11-01
We focus on the dynamics of viscous and non-wetting ``pancake'' droplets of oil conned in a vertical Hele-Shaw cell filled with a less viscous surfactant solution. These dense drops settle at constant velocity driven by gravity. The surfactant solution completely wets the walls, and a thin lubrication film separates the drops from the walls. With smooth walls, two main dynamical regimes are characterized as the gap between the walls is varied. Viscous dissipation is found to dominate either in the droplet or in the lubrication film, depending on the ratio of viscosities and length scales. A sharp transition between both regimes is observed and successfully captured by asymptotic models. With rough walls, that transition is dramatically altered. Drops are generally much slower in a rough Hele-Shaw cell, in comparison with a similar smooth cell. Building up on the seminal works of Seiwert et al. (J.F.M. 2011) on film deposition by dip coating on a rough surface, we shed light on the non-trivial friction processes resulting from the interplay of viscous dissipation at the front of the drop, in the lubrication film and in the bulk of the drop. We acknowledge funding from Total S.A.
Atmospheric stability analysis over statically and dynamically rough surfaces
NASA Astrophysics Data System (ADS)
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
Thermal contact conductance as a method of rectification in bulk materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Robert A.
2016-08-01
A thermal rectifier that utilizes thermal expansion to directionally control interfacial conductance between two contacting surfaces is presented. The device consists of two thermal reservoirs contacting a beam with one rough and one smooth end. When the temperature of reservoir in contact with the smooth surface is raised, a similar temperature rise will occur in the beam, causing it to expand, thus increasing the contact pressure at the rough interface and reducing the interfacial contact resistance. However, if the temperature of the reservoir in contact with the rough interface is raised, the large contact resistance will prevent a similar temperaturemore » rise in the beam. As a result, the contact pressure will be marginally affected and the contact resistance will not change appreciably. Owing to the decreased contact resistance of the first scenario compared to the second, thermal rectification occurs. A parametric analysis is used to determine optimal device parameters including surface roughness, contact pressure, and device length. Modeling predicts that rectification factors greater than 2 are possible at thermal biases as small as 3 K. Lastly, thin surface coatings are discussed as a method to control the temperature bias at which maximum rectification occurs.« less
NASA Astrophysics Data System (ADS)
Johnson, Erika; Cowen, Edwin
2013-11-01
The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belushkin, A. V., E-mail: belushk@nf.jinr.ru; Manoshin, S. A., E-mail: manoshin@nf.jinr.ru; Rikhvitskiy, V. S.
2016-09-15
The applicability of the modified kinematic approximation to describe the off-specular neutron scattering from interfaces between media is analyzed. It is demonstrated that in some cases one can expect not only a qualitative but also a quantitative agreement between the data and the results of experiments and calculations based on more accurate techniques. Diffuse scattering from rough surfaces and thin films with correlated and noncorrelated roughness of the upper and lower interfaces and the neutron diffraction by stripe magnetic domains and magnetic domains with a random size distribution (magnetic roughness) are considered as examples.
Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
Zhao, Xuezeng
2017-01-01
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
NASA Astrophysics Data System (ADS)
Karima, F.; Eriwati, Y. K.; Triaminingsih, S.
2017-08-01
The purpose of this study was to analyze the effect of Belimbing Wuluh Gel Extract to surface roughness of enamel. Thirty-six premolars teeth that divided into 4 groups (n = 9), were exposed to 37% phosphoric acid gel (pH = 1) for 15 seconds as a control group, and belimbing wuluh extract gel with a concentration of 80% (pH = 1.8) for 15 seconds, 20 seconds, and 25 seconds as the treatment groups. The statistical analysis of paired and unpaired T-test shows that all treatment groups experienced a significant change (p <0.05). The greatest changes in surface roughness of enamel occurred after exposed by belimbing extract gel with an exposure duration of 25 seconds, but the roughness of 37% phosphoric acid gel is still greater. There was a correlation between roughness on the surface of tooth enamel with prolonged exposure belimbing wuluh extract gel with a concentration of 80%.
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-01-01
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391
Apparatus for measuring surface movement of an object that is subjected to external vibrations
Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1997-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Furnace control apparatus using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Polarizing optical interferometer having a dual use optical element
Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-04-04
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Process control system using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1994-02-15
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Polarizing optical interferometer having a dual use optical element
Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Process control system using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1994-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Furnace control apparatus using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-03-28
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Method and apparatus for measuring surface movement of an object using a polarizing interfeometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Method and apparatus for measuring surface movement of an object using a polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-05-09
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-04-25
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
Apparatus for measuring surface movement of an object that is subjected to external vibrations
Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1997-04-22
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.
Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L
2010-01-01
The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A scattering model for defoliated vegetation is developed by treating a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length over an irregular ground surface. Both polarized and depolarized backscattering are computed and their behavior versus the volume fraction, the incidence angle, the frequency, the angular distribution and the cylinder size are illustrated. It is found that both the angular distribution and the cylinder size have significant effects on the backscattered signal. The present theory is compared with measurements from defoliated vegetations.
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin
2016-01-01
Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851
Long-Range Memory in Literary Texts: On the Universal Clustering of the Rare Words
2016-01-01
A fundamental problem in linguistics is how literary texts can be quantified mathematically. It is well known that the frequency of a (rare) word in a text is roughly inverse proportional to its rank (Zipf’s law). Here we address the complementary question, if also the rhythm of the text, characterized by the arrangement of the rare words in the text, can be quantified mathematically in a similar basic way. To this end, we consider representative classic single-authored texts from England/Ireland, France, Germany, China, and Japan. In each text, we classify each word by its rank. We focus on the rare words with ranks above some threshold Q and study the lengths of the (return) intervals between them. We find that for all texts considered, the probability SQ(r) that the length of an interval exceeds r, follows a perfect Weibull-function, SQ(r) = exp(−b(β)rβ), with β around 0.7. The return intervals themselves are arranged in a long-range correlated self-similar fashion, where the autocorrelation function CQ(s) of the intervals follows a power law, CQ(s) ∼ s−γ, with an exponent γ between 0.14 and 0.48. We show that these features lead to a pronounced clustering of the rare words in the text. PMID:27893737
Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography
NASA Astrophysics Data System (ADS)
Yoshizawa, Masaki; Moriya, Shigeru
2000-07-01
At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.
NASA Astrophysics Data System (ADS)
Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.
2011-12-01
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.
Jamzad, Amoon; Setarehdan, Seyed Kamaledin
2014-04-01
The twinkling artifact is an undesired phenomenon within color Doppler sonograms that usually appears at the site of internal calcifications. Since the appearance of the twinkling artifact is correlated with the roughness of the calculi, noninvasive roughness estimation of the internal stones may be considered as a potential twinkling artifact application. This article proposes a novel quantitative approach for measurement and analysis of twinkling artifact data for roughness estimation. A phantom was developed with 7 quantified levels of roughness. The Doppler system was initially calibrated by the proposed procedure to facilitate the analysis. A total of 1050 twinkling artifact images were acquired from the phantom, and 32 novel numerical measures were introduced and computed for each image. The measures were then ranked on the basis of roughness quantification ability using different methods. The performance of the proposed twinkling artifact-based surface roughness quantification method was finally investigated for different combinations of features and classifiers. Eleven features were shown to be the most efficient numerical twinkling artifact measures in roughness characterization. The linear classifier outperformed other methods for twinkling artifact classification. The pixel count measures produced better results among the other categories. The sequential selection method showed higher accuracy than other individual rankings. The best roughness recognition average accuracy of 98.33% was obtained by the first 5 principle components and the linear classifier. The proposed twinkling artifact analysis method could recognize the phantom surface roughness with average accuracy of 98.33%. This method may also be applicable for noninvasive calculi characterization in treatment management.
NASA Astrophysics Data System (ADS)
Ulrich, Thomas; Gabriel, Alice-Agnes
2017-04-01
Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.
The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms
NASA Astrophysics Data System (ADS)
Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert
2018-01-01
We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.
Limitations of lumber-yield nomograms for predicting lumber requirements
Kristen Hoff
2000-01-01
Lumber yield nomograms developed during the last 30 years have limited use when predicting the volume of rough lumber required to fill a particular cutting bill. Inaccuracies occur when nomogram yields are applied to situations in which processing technologies differ from those used during data collection, and when a variety of lengths and widths are specified in the...
Solar Energy: Instructor Guides, Labs and Tests. First Edition.
ERIC Educational Resources Information Center
Orsak, Charles G., Jr.; And Others
Instructor guides are provided for each of 11 courses in a 2-year associate degree program in solar technology. The semester-length solar courses are broken down into modules which correspond roughly to a 1- to 2-week block of instruction. Each guide presents a course description, course objectives, references for further information, and a…
Predicting fire behavior in palmetto-gallberry fuel complexes
W A. Hough; F. A. Albini
1978-01-01
Rate of spread, fireline intensity, and flame length can be predicted with reasonable accuracy for backfires and low-intensity head fires in the palmetto-gallberry fuel complex of the South. This fuel complex was characterized and variables were adjusted for use in Rothermel's (1972) spread model. Age of rough, height of understory, percent of area covered by...
An Optoelectronics Research Center
2006-03-08
compared with a -2 mm wide slab, -200 nrn thick silicon (SOl) top-only-gate planar MOSFET with otherwise similar doping profiles, gate length and...acoustic phonons, impurity doping profile and surface roughness influences the transport process in the channel regions. The electron mobility in the...application areas including: nanoscale epitaxial growth for semiconductor heterostructures; nanofluidics for biological separations; nanomagnetics for
Meeting the Solid Wood Needs of the Furniture and Cabinet Industries: Standard-Size Hardwood Blanks
Philip A. Araman; Charles J Gatchell; Hugh W. Reynolds
1982-01-01
Standard-size, kiln-dried hardwood blanks (panels) of specified lengths, widths, thicknesses, and qualities can be used instead of lumber to produce rough dimension furniture parts. Standard sizes were determined by analyzing thousands of part requirements from 20 furniture and 12 kitchen cabinet companies. The International Woodworking Machinery and Furniture Supply...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab
2016-09-22
In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) modelmore » used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also simultaneously leading to low roughness surface with high removal rates.« less
NASA Astrophysics Data System (ADS)
Guo, X.; Yang, K.; Yang, W.; Li, S.; Long, Z.
2011-12-01
We present a field investigation over a melting valley glacier on the Tibetan Plateau. One particular aspect lies in that three melt phases are distinguished during the glacier's ablation season, which enables us to compare results over snow, bare-ice, and hummocky surfaces [with aerodynamic roughness lengths (z0M) varying on the order of 10-4-10-2 m]. We address two issues of common concern in the study of glacio-meteorology and micrometeorology. First, we study turbulent energy flux estimation through a critical evaluation of three parameterizations of the scalar roughness lengths (z0T for temperature and z0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach (Andreas 1987, Boundary-Layer Meteorol 38:159-184) is based on surface-renewal models and has been very widely applied in glaciated areas; the second (Yang et al. 2002, Q J Roy Meteorol Soc 128:2073-2087) has never received application over an ice/snow surface, despite its validity in arid regions; the third approach (Smeets and van den Broeke 2008, Boundary-Layer Meteorol 128:339-355) is proposed for use specifically over rough ice defined as z0M > 10-3 m or so. This empirical z0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives underestimated z0T and z0q. The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively (relative errors often > 30%). Overall, the second approach produces fairly low errors in energy flux estimates; it thus emerges as a practically useful choice to parameterize z0T and z0q over an ice/snow surface. Our evaluation of z0T and z0q parameterizations hopefully serves as a useful source of reference for physically based modeling of land-ice surface energy budget and mass balance. Second, we explore how scalar turbulence behaves in the glacier winds, based on the turbulent fluctuations of temperature (T'), and water vapor (q') and CO2 (c') concentrations. This dataset is advantageous to analyses of turbulent scalar similarity, because the source/sink distribution of scalars is uniform over an ice/snow surface. New pieces of knowledge are: (1) T' and q' can be highly correlated, even when sensible heat and latent heat fluxes are in opposite directions. - The same direction of scalar fluxes is not a necessary condition for high scalar correlation. (2) The vertical transport efficiency of T' is always higher than that of q'. - The Bowen ratio (|β| > 1) is one factor underlying the T'-to-q' transport efficiency in stable conditions as well. (3) We provide confirmatory evidence of Detto and Katul's (Boundary-Layer Meteorol 122:205-216) original argument: density effect correction to q' and c' is necessitated for eddy-covariance analyses of turbulence structure.
Henry, Gerard; Karpman, Edward; Brant, William; Jones, LeRoy; Khera, Mohit; Kohler, Tobias; Christine, Brian; Rhee, Eugene; Kansas, Bryan; Bella, Anthony J.
2017-01-01
Background “Prospective Registry of Outcomes with Penile Prosthesis for Erectile Restoration” (PROPPER) is a large, multi-institutional, prospective clinical study to collect, analyze, and report real-world outcomes for men implanted with penile prosthetic devices. We prospectively correlated co-morbid conditions and demographic data with implanted penile prosthesis size to enable clinicians to better predict implanted penis size following penile implantation. We present many new data points for the first time in the literature and postulate that radical prostatectomy (RP) is negatively correlated with penile corporal length. Methods Patient demographics, medical history, baseline characteristics and surgical details were compiled prospectively. Pearson correlation coefficient was generated for the correlation between demographic, etiology of ED, duration of ED, co-morbid conditions, pre-operative penile length (flaccid and stretched) and length of implanted penile prosthesis. Multivariate analysis was performed to define predictors of implanted prosthesis length. Results From June 2011 to June 2017, 1,135 men underwent primary implantation of penile prosthesis at a total of 11 study sites. Malleable (Spectra), 2-piece Ambicor, and 3-piece AMS 700 CX/LGX were included in the analysis. The most common patient comorbidities were CV disease (26.1%), DM (11.1%), and PD (12.4%). Primary etiology of ED: RP (27.4%), DM (20.3%), CVD (18.0%), PD (10.3%), and Priapism (1.4%), others (22.6%). Mean duration of ED is 6.2¡À4.1 years. Implant length was weakly negatively correlated with White/Caucasian (r=−0.18; P<0.01), history of RP (r=−0.13; P<0.01), PD as comorbidity (r=−0.16; P<0.01), venous leak (r=−0.08; P<0.01), and presence of stress incontinence (r=−0.13; P<0.01). Analyses showed weak positive correlations with Black/AA (r=0.32; P<0.01), CV disease as primary ED etiology (r=0.08; P<0.01) and pre-operative stretched penile length (r=0.18; P<0.01). There is a moderate correlation with pre-operative flaccid penile length (r=0.30; P<0.01). Conclusions Implanted penile prosthesis length is negatively correlated with some ethnic groups, prostatectomy, and incontinence. Positive correlates include CV disease, preoperative stretched penile length, and flaccid penile length. PMID:29354506
Experiments on integral length scale control in atmospheric boundary layer wind tunnel
NASA Astrophysics Data System (ADS)
Varshney, Kapil; Poddar, Kamal
2011-11-01
Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.
Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing
Fry, Karl E.; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc
2016-01-01
Background: Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. Hypotheses: The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Study Design: Prospective cohort study. Level of Evidence: Level 3. Methods: Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Results: Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated (P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. Conclusions: There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Clinical Relevance: Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs. PMID:27864504
Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing.
Fry, Karl E; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc
Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Prospective cohort study. Level 3. Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated ( P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs.
SAW correlator spread spectrum receiver
Brocato, Robert W
2014-04-01
A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.
Prediction of anthropometric measurements from tooth length--A Dravidian study.
Sunitha, J; Ananthalakshmi, R; Sathiya, Jeeva J; Nadeem, Jeddy; Dhanarathnam, Shanmugam
2015-12-01
Anthropometric measurement is essential for identification of both victims and suspects. Often, this data is not readily available in a crime scene situation. The availability of one data set should help in predicting the other. This study was hypothesised on the basis of a correlation and geometry between the tooth length and various body measurements. To correlate face, palm, foot and stature measurements with tooth length. To derive a regression formula to estimate the various measurements from tooth length. The present study was conducted on Dravidian dental students in the age group 18 - 25 with a sample size of 372. All of the dental and physical parameters were measured using standard anthropometric equipments and techniques. The data was analysed using SPSS software and the methods used for statistical analysis were linear regression analysis and Pearson correlation. The parameters (incisor height (IH), face height (FH), palm length (PL), foot length (FL) and stature (S) showed nil to mild correlation (R = 0.2 ≤ 0.4) except for palm length (PL) and foot length (FL). (R>0.6). It is concluded that odontometric data is not a reliable source for estimating the face height (FH), palm length (PL), foot length (FL) and stature (S).
Sella size and jaw bases - Is there a correlation???
Neha; Mogra, Subraya; Shetty, Vorvady Surendra; Shetty, Siddarth
2016-01-01
Sella turcica is an important cephalometric structure and attempts have been made in the past to correlate its dimensions to the malocclusion. However, no study has so far compared the size of sella to the jaw bases that determine the type of malocclusion. The present study was undertaken to find out any such correlation if it exists. Lateral cephalograms of 110 adults consisting of 40 Class I, 40 Class II, and 30 Class III patients were assessed for the measurement of sella length, width, height, and area. The maxillary length, mandibular ramus height, and body length were also measured. The sella dimensions were compared among three malocclusion types by one-way ANOVA. Pearson correlation was calculated between the jaw size and sella dimensions. Furthermore, the ratio of jaw base lengths and sella area were calculated. Mean sella length, width and area were found to be greatest in Class III, followed by Class I and least in Class II though the results were not statistically significant. 3 out of 4 measured dimensions of sella, correlated significantly with mandibular ramus and body length each. However, only one dimension of sella showed significant correlation with maxilla. The mandibular ramus and body length show a nearly constant ratio to sella area (0.83-0.85, 0.64-0.65, respectively) in all the three malocclusions. Thus, mandible has a definite and better correlation to the size of sella turcica.
NASA Astrophysics Data System (ADS)
Jacobse, Leon; Huang, Yi-Fan; Koper, Marc T. M.; Rost, Marcel J.
2018-03-01
Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a `nucleation and early growth' regime of nanoisland formation, and a `late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the `late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the `nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.
Gettings, Mark E.
2002-01-01
High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2017-08-01
We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-03-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
Magnetic exchange coupling through superconductors: A trilayer study
NASA Astrophysics Data System (ADS)
Sá de Melo, C. A.
2000-11-01
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.
NASA Astrophysics Data System (ADS)
Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team
2018-07-01
The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.
Yuan, Judy Chia-Chun; Barão, Valentim Adelino Ricardo; Wee, Alvin G; Alfaro, Maria F; Afshari, Fatemeh S; Sukotjo, Cortino
2017-09-29
The effects of toothbrushing (B) and thermocycling (TC) on the surface texture of different materials with various fabrication processes have been investigated. However, studies of computer-aided design and computer-aided manufacturing (CAD-CAM) ceramic restorations are limited. The purpose of this in vitro study was to evaluate the effect of B and TC on the color stability and surface roughness of extrinsically characterized and glazed CAD-CAM ceramic restorations. Lithium disilicate CAD ceramic (n=90) and zirconia ceramic (n=90) were studied. All specimens were crystallized/sintered, characterized, and glazed following the manufacturer's recommendation. The specimens were divided into 9 different groups: B, TC, and a combination of B plus TC (B+TC). Brushing was performed at 50 000, 100 000, and 150 000 cycles, simulating an oral environment of 5, 10, and 15 years. Thermocycling was performed at 6000, 12 000, and 18 000 cycles, simulating an oral environment of 5, 10, and 15 years. Brushing plus TC was performed with the combination of the 50 000 cycles of B, then 6000 cycles of TC, and 10 000 cycles of B, then 12 000 cycles of TC, and 15 000 cycles of B, then 18 000 cycles of TC. The color and surface roughness of each specimen were measured before and after all interventions with simulated cycles. Color differences (ΔE) and surface roughness (ΔR a ) data were analyzed using 2-way ANOVA, followed by the least significant difference test (α=.05). The correlation between ΔE and ΔR a was statistically analyzed using the Pearson correlation analysis. Within the lithium disilicate CAD groups, intervention did not result in any significant differences in color change (P>.05). Within the zirconia groups, a 15-year clinical simulation revealed significantly higher ΔE values than a simulated 5-year exposure (P=.017). Increased simulated cycles showed significantly higher R a values for all groups. Within the zirconia groups, B revealed significantly smoother surfaces than TC (P<.001) and B+TC interventions (P<.001). For the zirconia, simulating B+TC for15 years revealed significantly higher R a values than the groups of B+TC for 5 years (P<.001) and B+TC for 10 years (P=.003). No correlation (lithium disilicate CAD, r=.079; P=.462; zirconia, r=.001; P=.989) was found between the color change and surface roughness. For both lithium disilicate CAD and zirconia, color changes were below the selected clinical perceptible threshold (ΔE=2.6) after all intervention and simulated cycles. All mean surface roughness measurements were below 0.2 μm. Generally, the surface of both lithium disilicate CAD and zirconia became rougher. No correlation was found between color difference and surface roughness for either material. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
NASA Astrophysics Data System (ADS)
Barros, Julio; Schultz, Michael; Flack, Karen
2016-11-01
Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.
Ghodrati, Sajjad; Kandi, Saeideh Gorji; Mohseni, Mohsen
2018-06-01
In recent years, various surface roughness measurement methods have been proposed as alternatives to the commonly used stylus profilometry, which is a low-speed, destructive, expensive but precise method. In this study, a novel method, called "image profilometry," has been introduced for nondestructive, fast, and low-cost surface roughness measurement of randomly rough metallic samples based on image processing and machine vision. The impacts of influential parameters such as image resolution and filtering approach for elimination of the long wavelength surface undulations on the accuracy of the image profilometry results have been comprehensively investigated. Ten surface roughness parameters were measured for the samples using both the stylus and image profilometry. Based on the results, the best image resolution was 800 dpi, and the most practical filtering method was Gaussian convolution+cutoff. In these conditions, the best and worst correlation coefficients (R 2 ) between the stylus and image profilometry results were 0.9892 and 0.9313, respectively. Our results indicated that the image profilometry predicted the stylus profilometry results with high accuracy. Consequently, it could be a viable alternative to the stylus profilometry, particularly in online applications.
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
Estimation of tool wear length in finish milling using a fuzzy inference algorithm
NASA Astrophysics Data System (ADS)
Ko, Tae Jo; Cho, Dong Woo
1993-10-01
The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.
On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamitaheri, Hossein; Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk
The thermal conductivity of low-dimensional materials and graphene nanoribbons, in particular, is limited by the strength of line-edge-roughness scattering. One way to characterize the roughness strength is the dependency of the thermal conductivity on the channel's width in the form W{sup β}. Although in the case of electronic transport, this dependency is very well studied, resulting in W{sup 6} for nanowires and quantum wells and W{sup 4} for nanoribbons, in the case of phonon transport it is not yet clear what this dependence is. In this work, using lattice dynamics and Non-Equilibrium Green's Function simulations, we examine the width dependencemore » of the thermal conductivity of ultra-narrow graphene nanoribbons under the influence of line edge-roughness. We show that the exponent β is in fact not a single well-defined number, but it is different for different parts of the phonon spectrum depending on whether phonon transport is ballistic, diffusive, or localized. The exponent β takes values β < 1 for semi-ballistic phonon transport, values β ≫ 1 for sub-diffusive or localized phonons, and β = 1 only in the case where the transport is diffusive. The overall W{sup β} dependence of the thermal conductivity is determined by the width-dependence of the dominant phonon modes (usually the acoustic ones). We show that due to the long phonon mean-free-paths, the width-dependence of thermal conductivity becomes a channel length dependent property, because the channel length determines whether transport is ballistic, diffusive, or localized.« less
Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2013-12-01
The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.
Supersonic turbulent boundary layers with periodic mechanical non-equilibrium
NASA Astrophysics Data System (ADS)
Ekoto, Isaac Wesley
Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.