Automated lung volumetry from routine thoracic CT scans: how reliable is the result?
Haas, Matthias; Hamm, Bernd; Niehues, Stefan M
2014-05-01
Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563
Brokinkel, Benjamin; Ewelt, Christian; Holling, Markus; Hesselmann, Volker; Heindel, Walter Leonard; Stummer, Walter; Fischer, Bernhard Robert
2013-01-01
To evaluate timing of scheduled CT-scans after burr hole trepanation for chronic subdural hematoma (cSDH). 131 patients with primary cSDH were included. Scheduled CT-scans were performed after burr hole trepanation and placement of a subdural drain. The influence of CT-scanning with or without indwelling drain was analysed regarding subsequent surgery and CT-scans, duration of hospitalization, short- and middle-term follow up by single factor analyses. Subgroup analyses were performed for patients receiving anticoagulant drugs. Median age was 74 years. Routine CT-scans with indwelling drainage were not shown to be beneficial regarding subsequent burr hole trepanations (p=0.243), craniotomies (p=1.000) and outcome at discharge (p=0.297). Mean duration of hospitalization (11 vs. 8 days, p=0.013) was significantly longer and number of subsequent CT-scans was higher when CT scan was performed with indwelling drain (2.3 vs. 1.4, p=0.001). In middle-term follow-up, beneficial effects of CT-scanning with inlaying drainage could neither be shown. Moreover, advantageous effects of CT-scans with indwelling drains could neither be shown for patients receiving anticoagulant drugs. Scheduled postoperative cranial imaging with indwelling drains was not shown to be beneficial and misses information of intracranial damage inflicted by removal of drains. We thus recommend CT-scanning after drainage removal.
Rehm, C G; Ross, S E
1995-05-01
This article assessed the value of routine head computerized axial tomographic (CT) scans for diagnosis of unsuspected facial fractures and its clinical implications in the multiply injured patient who is intubated, unconscious, or sedated at the time of initial assessment and requires a head CT scan to assess for brain injury. At a level I trauma center from June 1, 1992 to June 1, 1993 all intubated blunt trauma patients who required routine CT scan evaluation at initial assessment were studied prospectively. Routine scanning started at the foramen magnum and included the maxilla. Patients who died within the first 24 hours were excluded. The study population included 116 patients (85 male, 21 female) aged 12 to 85 years (mean, 28 years) with injury severity scores ranging from 1 to 50 (mean, 23). The mechanism of injury was: motor vehicle accidents (n = 74), motorcycling (n = 5), pedestrians accidents (n = 13), falls (n = 10), bicycling (n = 5), assaults (n = 8), and boating accident (n = 1). There were 19 suspected facial fractures; 18 required surgical repair. There were 27 unsuspected facial fractures; 13 required surgical care. Three suspected fractures were ruled out. Routine head CT scans to assess for brain injury in the multiply injured patient are also very useful in the diagnosis of unsuspected facial fractures, almost half of which will require surgical intervention.
Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W
2006-02-01
The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.
Sun, Z; Al Ghamdi, KS; Baroum, IH
2012-01-01
Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059
High pitch third generation dual-source CT: Coronary and Cardiac Visualization on Routine Chest CT
Sandfort, Veit; Ahlman, Mark; Jones, Elizabeth; Selwaness, Mariana; Chen, Marcus; Folio, Les; Bluemke, David A.
2016-01-01
Background Chest CT scans are frequently performed in radiology departments but have not previously contained detailed depiction of cardiac structures. Objectives To evaluate myocardial and coronary visualization on high-pitch non-gated CT of the chest using 3rd generation dual-source computed tomography (CT). Methods Cardiac anatomy of patients who had 3rd generation, non-gated high pitch contrast enhanced chest CT and who also had prior conventional (low pitch) chest CT as part of a chest abdomen pelvis exam was evaluated. Cardiac image features were scored by reviewers blinded to diagnosis and pitch. Paired analysis was performed. Results 3862 coronary segments and 2220 cardiac structures were evaluated by two readers in 222 CT scans. Most patients (97.2%) had chest CT for oncologic evaluation. The median pitch was 2.34 (IQR 2.05, 2.65) in high pitch and 0.8 (IQR 0.8, 0.8) in low pitch scans (p<0.001). High pitch CT showed higher image visualization scores for all cardiovascular structures compared with conventional pitch scans (p<0.0001). Coronary arteries were visualized in 9 coronary segments per exam in high pitch scans versus 2 segments for conventional pitch (p<0.0001). Radiation exposure was lower in the high pitch group compared with the conventional pitch group (median CTDIvol 10.83 vs. 12.36 mGy and DLP 790 vs. 827 mGycm respectively, p <0.01 for both) with comparable image noise (p=0.43). Conclusion Myocardial structure and coronary arteries are frequently visualized on non-gated 3rd generation chest CT. These results raise the question of whether the heart and coronary arteries should be routinely interpreted on routine chest CT that is otherwise obtained for non-cardiac indications. PMID:27133589
Is the routine CT head scan justified for psychiatric patients? A prospective study.
Ananth, J; Gamal, R; Miller, M; Wohl, M; Vandewater, S
1993-01-01
Thirty-four psychiatric patients, assessed for a physical illness that was missed during diagnosis, underwent a CT scan. After investigation, the diagnosis of 14 patients changed from a functional to an organic illness. In nine patients, the CT scan was reported to be abnormal, and yet only two were diagnosed as having an organic syndrome. In seven patients, the CT scan was normal but the patients had an undisputed organic brain syndrome. These findings indicate that the use of CT scans should be restricted to cases in which the diagnosis is seriously in question. The clinical findings should dictate the use of CT scans either to clarify or to complement them. PMID:8461285
Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki
2012-10-01
To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan
Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less
CT scans for pulmonary surveillance may be overused in lower-grade sarcoma.
Miller, Benjamin J; Carmody Soni, Emily E; Reith, John D; Gibbs, C Parker; Scarborough, Mark T
2012-01-01
Chest CT scans are often used to monitor patients after excision of a sarcoma. Although sensitive, CT scans are more expensive than chest radiographs and are associated with possible health risks from a higher radiation dose. We hypothesized that a program based upon limited CT scans in lower-grade sarcoma could be efficacious and less expensive. We retrospectively assigned patients to a high-risk or low-risk hypothetical protocol. Eighty-three low- or intermediate-grade soft tissue sarcomas met our inclusion criteria. Eight patients had pulmonary metastasis. A protocol based on selective CT scans for high-risk patients would have identified seven out of eight lesions. The incremental cost-effectiveness ratio for routine CT scans was $731,400. A program based upon selective CT scans for higher-risk patients is accurate, spares unnecessary radiation to many patients, and is less expensive.
Caruso, Riccardo; Pesce, Alessandro; Martines, Valentina
2017-10-01
The patient is a 79-year-old male, suffering from advanced metastatic prostate cancer, who developed a progressively worsening ideomotor slowing and was therefore referred to the emergency department of our institution. A plain axial computed tomography (CT) scan revealed a vast hemispheric subdural fluid collection, apparently a subdural hematoma. On closer inspection, and most of all, in hindsight, a tenuously isohyperdense signal irregularity at the frontal aspect of the fluid collection appears. Because of the declined general medical conditions and the paucity of the neurologic impairment, a high-dose, corticosteroid-based conservative strategy was performed. The total body CT scan for the routine oncologic follow-up of the prostate cancer scan fell at 20 days from the first CT of the emergency department. A second contrast-enhanced axial CT scan demonstrated the presence of 2 subdural metastases, presumably the initial pathogenesis of the subdural fluid collection. Copyright © 2017 Elsevier Inc. All rights reserved.
Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R
2012-04-01
To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.
Näsvall, P; Wikner, F; Gunnarsson, U; Rutegård, J; Strigård, K
2014-10-01
Since there are no reliable investigative tools for imaging parastomal hernia, new techniques are needed. The aim of this study was to assess the validity of intrastomal three-dimensional ultrasonography (3D) as an alternative to CT scanning for the assessment of stomal complaints. Twenty patients with stomal complaints, indicating surgery, were examined preoperatively with a CT scan in the supine position and 3D intrastomal ultrasonography in the supine and erect positions. Comparison with findings at surgery, considered to be the true state, was made. Both imaging methods, 3D ultrasonography and CT scanning, showed high sensitivity (ultrasound 15/18, CT scan 15/18) and specificity (ultrasound 2/2, CT scan 1/2) when judged by a dedicated radiologist. Corresponding values for interpretation of CT scans in routine clinical practice was for sensitivity 17/18 and for specificity 1/2. 3D ultrasonography has a high validity and is a promising alternative to CT scanning in the supine position to distinguish a bulge from a parastomal hernia.
Johannesdottir, Fjola; Allaire, Brett; Bouxsein, Mary L
2018-05-30
This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures. CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment. CT-based techniques provide a robust approach for osteoporosis diagnosis and fracture prediction. It remains to be seen if further technical advances will improve fracture prediction compared to DXA aBMD. Future work should include more standardization in CT analyses, establishment of treatment intervention thresholds, and more studies to determine whether routine CT scans can be efficiently used to expand the number of individuals who undergo evaluation for fracture risk.
CT radiation profile width measurement using CR imaging plate raw data
Yang, Chang‐Ying Joseph
2015-01-01
This technical note demonstrates computed tomography (CT) radiation profile measurement using computed radiography (CR) imaging plate raw data showing it is possible to perform the CT collimation width measurement using a single scan without saturating the imaging plate. Previously described methods require careful adjustments to the CR reader settings in order to avoid signal clipping in the CR processed image. CT radiation profile measurements were taken as part of routine quality control on 14 CT scanners from four vendors. CR cassettes were placed on the CT scanner bed, raised to isocenter, and leveled. Axial scans were taken at all available collimations, advancing the cassette for each scan. The CR plates were processed and raw CR data were analyzed using MATLAB scripts to measure collimation widths. The raw data approach was compared with previously established methodology. The quality control analysis scripts are released as open source using creative commons licensing. A log‐linear relationship was found between raw pixel value and air kerma, and raw data collimation width measurements were in agreement with CR‐processed, bit‐reduced data, using previously described methodology. The raw data approach, with intrinsically wider dynamic range, allows improved measurement flexibility and precision. As a result, we demonstrate a methodology for CT collimation width measurements using a single CT scan and without the need for CR scanning parameter adjustments which is more convenient for routine quality control work. PACS numbers: 87.57.Q‐, 87.59.bd, 87.57.uq PMID:26699559
Is appendiceal CT scan overused for evaluating patients with right lower quadrant pain?
Safran, D B; Pilati, D; Folz, E; Oller, D
2001-05-01
Reports citing excellent sensitivity, specificity, and predictive accuracy of focused appendiceal computed tomography (CT) and showing an overall reduction in resource use and nontherapeutic laparotomies have led to increasing use of that imaging modality. Diagnostic algorithms have begun to incorporate appendiceal CT for patients presenting to the emergency department with right lower quadrant pain. We present a series of 4 cases in which use of appendiceal CT ultimately led to increased cost, resource use, and complexity in patient care. The results of these cases support an argument against unbridled use of appendiceal CT scanning and reinforce the need for clinical evaluation by the operating surgeon before routine performance of appendiceal CT scan.
Kashcheev, Valery V; Pryakhin, Evgeny A; Menyaylo, Alexander N; Chekin, Sergey Yu; Ivanov, Viktor K
2014-06-01
The current study has two aims: the first is to quantify the difference between radiation risks estimated with the use of organ or effective doses, particularly when planning pediatric and adult computed tomography (CT) examinations. The second aim is to determine the method of calculating organ doses and cancer risk using dose-length product (DLP) for typical routine CT examinations. In both cases, the radiation-induced cancer risks from medical CT examinations were evaluated as a function of gender and age. Lifetime attributable risk values from CT scanning were estimated with the use of ICRP (Publication 103) risk models and Russian national medical statistics data. For populations under the age of 50 y, the risk estimates based on organ doses usually are 30% higher than estimates based on effective doses. In older populations, the difference can be up to a factor of 2.5. The typical distributions of organ doses were defined for Chest Routine, Abdominal Routine, and Head Routine examinations. The distributions of organ doses were dependent on the anatomical region of scanning. The most exposed organs/tissues were thyroid, breast, esophagus, and lungs in cases of Chest Routine examination; liver, stomach, colon, ovaries, and bladder in cases of Abdominal Routine examination; and brain for Head Routine examinations. The conversion factors for calculation of typical organ doses or tissues at risk using DLP were determined. Lifetime attributable risk of cancer estimated with organ doses calculated from DLP was compared with the risk estimated on the basis of organ doses measured with the use of silicon photodiode dosimeters. The estimated difference in LAR is less than 29%.
Todd, A W; Anderson, E M
2009-05-01
National audit data allow crude comparison between centres and indicate that most Scottish hospitals fail to meet current guidelines for CT scanning of the brain in stroke patients. This study identifies some of the reasons for delay in performing CT scans in a largely rural population. This audit study assesses the delays from onset of symptoms, time of admission and request received to CT scan in stroke patients for three different in-patient groups as well as those managed in the community. The reasons for delay in CT scanning varied between different patient groups but for one group of in-patients, changes in booking procedure and introduction of a second CT scanner increased the proportion scanned within 48 hours of request from 65% to 96%. Further developments including the introduction of Saturday and Sunday routine CT scanning, radiologist reporting from home and additional CT scanners placed in remote hospitals may be expected to improve these figures further. Target times of three hours from onset of symptoms to scan to allow thrombolysis may however be impossible to meet for all stroke patients in rural areas.
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana
2017-12-01
Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.
McAllister, E; Perez, M; Albrink, M H; Olsen, S M; Rosemurgy, A S
1994-09-01
We devised a protocol to prospectively manage stab wounds to the back with the hypothesis that the triple contrast computed tomographic (CT) scan is an effective means of detecting occult injury in these patients. All wounds to the back in hemodynamically stable adults were locally explored. All patients with muscular fascial penetration underwent triple contrast CT scanning utilizing oral, rectal, and IV contrast. Patients did not undergo surgical exploration if their CT scan was interpreted as negative or if the CT scan demonstrated injuries not requiring surgical intervention. Fifty-three patients were entered into the protocol. The time to complete the triple contrast CT scan ranged from 3 to 6 hours at a cost of $1050 for each scan. In 51 patients (96%), the CT scan either had negative findings (n = 31) or showed injuries not requiring exploration (n = 20). These patients did well with nonsurgical management. Two CT scans documented significant injury and led to surgical exploration and therapeutic celiotomies. Although triple contrast CT scanning was able to detect occult injury in patients with stab wounds to the back it did so at considerable cost and the results rarely altered clinical care. Therefore, its routine use in these patients is not recommended.
Mild brain injury and anticoagulants: Less is enough.
Campiglio, Laura; Bianchi, Francesca; Cattalini, Claudio; Belvedere, Daniela; Rosci, Chiara Emilia; Casellato, Chiara Livia; Secchi, Manuela; Saetti, Maria Cristina; Baratelli, Elena; Innocenti, Alessandro; Cova, Ilaria; Gambini, Chiara; Romano, Luca; Oggioni, Gaia; Pagani, Rossella; Gardinali, Marco; Priori, Alberto
2017-08-01
Despite the higher theoretical risk of traumatic intracranial hemorrhage (ICH) in anticoagulated patients with mild head injury, the value of sequential head CT scans to identify bleeding remains controversial. This study evaluated the utility of 2 sequential CT scans at a 48-hour interval (CT1 and CT2) in patients with mild head trauma (Glasgow Coma Scale 13-15) taking oral anticoagulants. We retrospectively evaluated the clinical records of all patients on chronic anticoagulation treatment admitted to the emergency department for mild head injury. A total of 344 patients were included, and 337 (97.9%) had a negative CT1. CT2 was performed on 284 of the 337 patients with a negative CT1 and was positive in 4 patients (1.4%), but none of the patients developed concomitant neurologic worsening or required neurosurgery. Systematic routine use of a second CT scan in mild head trauma in patients taking anticoagulants is expensive and clinically unnecessary.
Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.
2016-01-01
Abstract. The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment. PMID:27493982
Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A
2015-09-01
To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.
Yu, Lifeng; Li, Zhoubo; Manduca, Armando; Blezek, Daniel J.; Hough, David M.; Venkatesh, Sudhakar K.; Brickner, Gregory C.; Cernigliaro, Joseph C.; Hara, Amy K.; Fidler, Jeff L.; Lake, David S.; Shiung, Maria; Lewis, David; Leng, Shuai; Augustine, Kurt E.; Carter, Rickey E.; Holmes, David R.; McCollough, Cynthia H.
2015-01-01
Purpose To determine if lower-dose computed tomographic (CT) scans obtained with adaptive image-based noise reduction (adaptive nonlocal means [ANLM]) or iterative reconstruction (sinogram-affirmed iterative reconstruction [SAFIRE]) result in reduced observer performance in the detection of malignant hepatic nodules and masses compared with routine-dose scans obtained with filtered back projection (FBP). Materials and Methods This study was approved by the institutional review board and was compliant with HIPAA. Informed consent was obtained from patients for the retrospective use of medical records for research purposes. CT projection data from 33 abdominal and 27 liver or pancreas CT examinations were collected (median volume CT dose index, 13.8 and 24.0 mGy, respectively). Hepatic malignancy was defined by progression or regression or with histopathologic findings. Lower-dose data were created by using a validated noise insertion method (10.4 mGy for abdominal CT and 14.6 mGy for liver or pancreas CT) and images reconstructed with FBP, ANLM, and SAFIRE. Four readers evaluated routine-dose FBP images and all lower-dose images, circumscribing liver lesions and selecting diagnosis. The jackknife free-response receiver operating characteristic figure of merit (FOM) was calculated on a per–malignant nodule or per-mass basis. Noninferiority was defined by the lower limit of the 95% confidence interval (CI) of the difference between lower-dose and routine-dose FOMs being less than −0.10. Results Twenty-nine patients had 62 malignant hepatic nodules and masses. Estimated FOM differences between lower-dose FBP and lower-dose ANLM versus routine-dose FBP were noninferior (difference: −0.041 [95% CI: −0.090, 0.009] and −0.003 [95% CI: −0.052, 0.047], respectively). In patients with dedicated liver scans, lower-dose ANLM images were noninferior (difference: +0.015 [95% CI: −0.077, 0.106]), whereas lower-dose FBP images were not (difference −0.049 [95% CI: −0.140, 0.043]). In 37 patients with SAFIRE reconstructions, the three lower-dose alternatives were found to be noninferior to the routine-dose FBP. Conclusion At moderate levels of dose reduction, lower-dose FBP images without ANLM or SAFIRE were noninferior to routine-dose images for abdominal CT but not for liver or pancreas CT. © RSNA, 2015 Online supplemental material is available for this article. PMID:26020436
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Beyer, Florian; Butzbach, Arnauld; Zierott, Livia; Heindel, Walter
2006-03-01
The purpose of the presented study was to determine the impact of two different CAD systems used as concur-rent reader for detection of actionable nodules (>4 mm) on the interpretation of chest CT scans during routine reporting. Fifty consecutive MDCT scans (1 mm or 1.25 mm slice thickness, 0.8 mm reconstruction increment) were se-lected from clinical routine. All cases were read by a resident and a staff radiologist, and a written report was available in the radiology information system (RIS). The RIS report mentioned at least one actionable pulmonary nodule in 18 cases (50%) and did not report any pulmonary nodule in the remaining 32 cases. Two different recent CAD systems were independently applied to the 50 CT scans as concurrent reader with two radiologists: Siemens LungCare NEV and MEDIAN CAD-Lung. Two radiologists independently reviewed the CAD results and determined if a CAD result was a true positive or a false positive finding. Patients were classified into two groups: in group A if at least one actionable nodule was detected and in group B if no actionable nodules were found. The effect of CAD on routine reporting was simulated as set union of the findings of routine reporting and CAD thus applying CAD as concurrent reader. According to the RIS report group A (patients with at least one actionable nodule) contained 18 cases (36% of all 50 cases), and group B contained 32 cases. Application of a CAD system as concurrent reader resulted in detec-tion of additional CT scans with actionable nodules and reclassification into group A in 16 resp. 18 cases (radi-ologist 1 resp. radiologist 2) with Siemens NEV and in 19 resp. 18 cases with MEDIAN CAD-Lung. In seven cases MEDIAN CAD-Lung and in four cases Siemens NEV reclassified a case into group A while the other CAD system missed the relevant finding. Sensitivity on a nodule (>4 mm) base was .45 for Siemens NEV and .55 for MEDIAN CAD-Lung; the difference was not yet significant (p=.077). In our study use of CAD as second reader in routine reporting doubled the percentage of patients with actionable nodules larger than 4 mm.
Borgatti, Antonella; Winter, Amber L; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P; Anderson, Kari L; Feeney, Daniel A; Vallera, Daniel A; Koopmeiners, Joseph S; Modiano, Jaime F; Froelich, Jerry
2017-01-01
Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers.
Winter, Amber L.; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P.; Anderson, Kari L.; Feeney, Daniel A.; Vallera, Daniel A.; Koopmeiners, Joseph S.; Modiano, Jaime F.; Froelich, Jerry
2017-01-01
Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers. PMID:28222142
Merriam, Tim; Kaufmann, Rolf; Ebert, Lars; Figi, Renato; Erni, Rolf; Pauer, Robin; Sieberth, Till
2018-06-01
Today, post-mortem computed tomography (CT) is routinely used for forensic identification. Mobile energy-dispersive X-ray fluorescence (EDXRF) spectroscopy of a dentition is a method of identification that has the potential to be easier and cheaper than CT, although it cannot be used with every dentition. In challenging cases, combining both techniques could facilitate the process of identification and prove to be advantageous over chemical analyses. Nine dental restorative material brands were analyzed using EDXRF spectroscopy. Their differentiability was assessed by comparing each material's x-ray fluorescence spectrum and then comparing the spectra to previous research investigating differentiability in CT. To verify EDXRF's precision and accuracy, select dental specimens underwent comparative electron beam excited x-ray spectroscopy (EDS) scans, while the impact of the restorative surface area was studied by scanning a row of dental specimens with varying restorative surface areas (n = 10). EDXRF was able to differentiate all 36 possible pairs of dental filling materials; however, dual-energy CT was only able to differentiate 33 out of 36. The EDS scans showed correlating x-ray fluorescence peaks on the x-ray spectra compared to our EDXRF. In addition, the surface area showed no influence on the differentiability of the dental filling materials. EDXRF has the potential to facilitate corpse identification by differentiating and comparing restorative materials, providing more information compared to post-mortem CT alone. Despite not being able to explicitly identify a brand without a control sample or database, its fast and mobile use could accelerate daily routines or mass victim identification processes. To achieve this goal, further development of EDXRF scanners for this application and further studies evaluating the method within a specific routine need to be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, K; Aldoohan, S; Collier, J
Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measuremore » CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.« less
Routine Use of Contrast Swallow After Total Gastrectomy and Esophagectomy: Is it Justified?
El-Sourani, Nader; Bruns, Helge; Troja, Achim; Raab, Hans-Rudolf; Antolovic, Dalibor
2017-01-01
After gastrectomy or esophagectomy, esophagogastrostomy and esophagojejunostomy are commonly used for reconstruction. Water-soluble contrast swallow is often used as a routine screening to exclude anastomotic leakage during the first postoperative week. In this retrospective study, the sensitivity and specificity of oral water-soluble contrast swallow for the detection of anastomotic leakage and its clinical symptoms were analysed. Records of 104 consecutive total gastrectomies and distal esophagectomies were analysed. In all cases, upper gastrointestinal contrast swallow with the use of a water-soluble contrast agent was performed on the 5 th postoperative day. Extravasation of the contrast agent was defined as anastomotic leakage. When anastomotic insufficiency was suspected but no extravasation was present, a computed tomography (CT) scan and upper endoscopy were performed. Oral contrast swallow detected 7 anastomotic leaks. Based on CT-scans and upper endoscopy, the true number of anastomotic leakage was 15. The findings of the oral contrast swallow were falsely positive in 4 and falsely negative in 12 patients, respectively. The sensitivity and specificity of the oral contrast swallow was 20% and 96%, respectively. Routine radiological contrast swallow following total gastrectomy or distal esophagectomy cannot be recommended. When symptoms of anastomotic leakage are present, a CT-scan and endoscopy are currently the methods of choice.
Liu, Guo-Chen; Zhang, Xu; Xie, E; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong
2015-11-01
Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy.Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed.Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively.The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative.
Routine repeat head CT may not be necessary for patients with mild TBI
Rosen, Claire B; Luy, Diego D; Deane, Molly R; Scalea, Thomas M; Stein, Deborah M
2018-01-01
Background Routine repeat cranial CT (RHCT) is standard of care for CT-verified traumatic brain injury (TBI). Despite mixed evidence, those with mild TBI are subject to radiation and expense from serial CT scans. Thus, we investigated the necessity and utility of RHCT for patients with mild TBI. We hypothesized that repeat head CT in these patients would not alter patient care or outcomes. Methods We retrospectively studied patients suffering from mild TBI (Glasgow Coma Scale (GCS) score 13–15) and treated at the R Adams Cowley Shock Trauma Center from November 2014 through January 2015. The primary outcome was the need for surgical intervention. Outcomes were compared using paired Student’s t-test, and stratified by injury on initial CT, GCS change, demographics, and presenting vital signs (mean ± SD). Results Eighty-five patients met inclusion criteria with an average initial GCS score=14.6±0.57. Our center sees about 2800 patients with TBI per year, or about 230 per month. This includes patients with concussions. This sample represents about 30% of patients with TBI seen during the study period. Ten patients required operation (four based on initial CT and others for worsening GCS, headaches, large unresolving injury). There was progression of injury on repeat CT scan in only two patients that required operation, and this accompanied clinical deterioration. The mean brain Abbreviated Injury Scale (AIS) score was 4.8±0.3 for surgical patients on initial CT scan compared with 3.4±0.6 (P<0.001) for non-surgical patients. Initial CT subdural hematoma size was 1.1±0.6 cm for surgical patients compared with 0.49±0.3 cm (P=0.05) for non-surgical patients. There was no significant difference between intervention groups in terms of other intracranial injuries, demographics, vital signs, or change in GCS. Overall, 75 patients that did not require surgical intervention received RHCT. At $340 per CT, $51 000 was spent on unnecessary imaging ($367 000/year, extrapolated). Discussion In an environment of increased scrutiny on healthcare expenditures, it is necessary to question dogma and eliminate unnecessary cost. Our data questions the use of routine repeat head CT scans in every patient with anatomic TBI and suggests that clinically stable patients with small injury can simply be followed clinically. Level of evidence Level III. PMID:29766124
Gorlin-Goltz syndrome: incidental finding on routine ct scan following car accident.
Kalogeropoulou, Christina; Zampakis, Petros; Kazantzi, Santra; Kraniotis, Pantelis; Mastronikolis, Nicholas S
2009-11-25
Gorlin-Goltz syndrome is a rare hereditary disease. Pathogenesis of the syndrome is attributed to abnormalities in the long arm of chromosome 9 (q22.3-q31) and loss or mutations of human patched gene (PTCH1 gene). Multiple basal cell carcinomas (BCCs), odontogenic keratocysts, skeletal abnormalities, hyperkeratosis of palms and soles, intracranial ectopic calcifications of the falx cerebri and facial dysmorphism are considered the main clinical features. Diagnosis is based upon established major and minor clinical and radiological criteria and ideally confirmed by DNA analysis. Because of the different systems affected, a multidisciplinary approach team of various experts is required for a successful management. We report the case of a 19 year-old female who was involved in a car accident and found to present imaging findings of Gorlin-Goltz syndrome during a routine whole body computed tomography (CT) scan in order to exclude traumatic injuries. Radiologic findings of the syndrome are easily identifiable on CT scans and may prompt to early verification of the disease, which is very important for regular follow-up and better survival rates from the co-existent diseases.
Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela
2013-08-01
Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.
Quantification of pleural effusion on CT by simple measurement.
Hazlinger, Martin; Ctvrtlik, Filip; Langova, Katerina; Herman, Miroslav
2014-01-01
To find the simplest method for quantifying pleural effusion volume from CT scans. Seventy pleural effusions found on chest CT examination in 50 consecutive adult patients with the presence of free pleural effusion were included. The volume of pleural effusion was calculated from a three-dimensional reconstruction of CT scans. Planar measurements were made on CT scans and their two-dimensional reconstructions in the sagittal plane and at three levels on transversal scans. Individual planar measurements were statistically compared with the detected volume of pleural effusion. Regression equations, averaged absolute difference between observed and predicted values and determination coefficients were found for all measurements and their combinations. A tabular expression of the best single planar measurement was created. The most accurate correlation between the volume and a single planar measurement was found in the dimension measured perpendicular to the parietal pleura on transversal scan with the greatest depth of effusion. Conversion of this measurement to the appropriate volume is possible by regression equation: Volume = 0.365 × b(3) - 4.529 × b(2) + 159.723 × b - 88.377. We devised a simple method of conversion of a single planar measurement on CT scan to the volume of pleural effusion. The tabular expression of our equation can be easily and effectively used in routine practice.
The presurgical workup before third molar surgery: how much is enough?
Better, Hadar; Abramovitz, Itzhak; Shlomi, Biniamin; Kahn, Adrian; Levy, Yaakov; Shaham, Amit; Chaushu, Gavriel
2004-06-01
We sought to assess the indications for patient referral for computed tomography (CT) scan before third molar extraction. The influence of the data obtained from the CT scans on the surgical outcome and morbidity was also evaluated. There were 189 patients in the study (120 females and 69 males). Sixty-five patients were referred to receive CT and formed the study group. The remaining patients were included in the control group. There were no statistically significant differences between the groups with regard to demographic data and tooth and root angulations. Indications for tooth extraction such as pain, swelling, pericoronitis, caries, endodontic problems, pathology, and prosthetic considerations were similar. The proximity of the tooth root to the inferior alveolar canal was the only statistically significant difference between the 2 groups (P <.001). The treatment plan outcomes for extraction, surgical extraction, and follow-up were comparable. The surgeon changed the initial decision from "surgical extraction" to "follow-up" in only 1 case after CT scan. Within the limits of the present study, it can be concluded that the main reason for CT scan referral is the proximity of the third molar root to the inferior alveolar canal (<1 mm). The data obtained from the CT scan had minimal effect on the final surgical outcome. The routine use of CT scan in cases of third molar extractions cannot be recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheville, Andrea L., E-mail: Cheville.andrea@mayo.edu; Brinkmann, Debra H.; Ward, Shelly B.
2013-03-15
Background: This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. Methods: SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the secondmore » (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Results: Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. Conclusions: The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema.« less
Cheville, Andrea L; Brinkmann, Debra H; Ward, Shelly B; Durski, Jolanta; Laack, Nadia N; Yan, Elizabeth; Schomberg, Paula J; Garces, Yolanda I; Suman, Vera J; Petersen, Ivy A
2013-03-15
This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the second (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema. Copyright © 2013 Elsevier Inc. All rights reserved.
Chan, Victoria O; McDermott, Shaunagh; Buckley, Orla; Allen, Sonya; Casey, Michael; O'Laoide, Risteard; Torreggiani, William C
2012-11-01
To determine the relationship of increasing body mass index (BMI) and abdominal fat on the effective dose acquired from computed tomography (CT) abdomen and pelvis scans. Over 6 months, dose-length product and total milliamp-seconds (mAs) from routine CT abdomen and pelvis scans of 100 patients were recorded. The scans were performed on a 64-slice CT scanner by using an automatic exposure control system. Effective dose (mSv) based on dose-length product, BMI, periumbilical fat thickness, and intra-abdominal fat were documented for each patient. BMI, periumbilical fat thickness, and intra-abdominal fat were compared with effective dose. Thirty-nine men and 61 women were included in the study (mean age, 56.3 years). The mean BMI was 26.2 kg/m(2). The mean effective dose was 10.3 mSv. The mean periumbilical fat thickness was 2.4 cm. Sixty-five patients had a small amount of intra-abdominal fat, and 35 had a large amount of intra-abdominal fat. The effective dose increased with increasing BMI (P < .001) and increasing amounts of intra-abdominal fat (P < .001). For every kilogram of weight, there is a 0.13 mSv increase in effective dose, which is equal to 6.5 chest radiographs per CT examination. For an increase in BMI by 5 kg/m(2), there is a 1.95 mSv increase in effective dose, which is equal to 97.5 chest radiographs per CT examination. Increasing BMI and abdominal fat significantly increases the effective dose received from CT abdomen and pelvis scans. Copyright © 2012 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
SU-F-I-32: Organ Doses from Pediatric Head CT Scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liu, Q; Qiu, J
Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less
Hybrid detection of lung nodules on CT scan images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.
Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less
The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.
Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan
2018-06-08
Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Computed tomography angiography reveals the crime instrument – case report
Banaszek, Anna; Guziński, Maciej; Sąsiadek, Marek
2010-01-01
Summary Background: The development of multislice CT technology enabled imaging of post-traumatic brain lesions with isotropic resolution, which led to unexpected results in the presented case Case Report: An unconscious, 49-year-old male with a suspected trauma underwent a routine CT examination of the head, which revealed an unusual intracerebral bleeding and therefore was followed by CT angiography (CTA). The thorough analysis of CTA source scans led to the detection of the bleeding cause. Conclusions: The presented case showed that a careful analysis of a CT scan allows not only to define the extent of pathological lesions in the intracranial space but it also helps to detect the crime instrument, which is of medico-legal significance. PMID:22802784
Mirza, Waseem; McHugh, Kieran; Aslam, Mubashir; Sajjad, Zafar; Abid, Waqas; Youssef, Talaat; Ali, Arif; Fadoo, Zahra
2015-10-01
Wilms tumor and hepatoblastoma are the most common intra-abdominal solid organ childhood tumors. CT examination is one of the routinely performed procedures in hospitals for children with these tumors inspite of high radiation exposure associated with CT scans. Sixty patients (Wilms tumor = 45, hepatoblastoma = 16) were evaluated retrospectively. Higher proportion (44.4%) of metastatic disease was identified at presentation in the Wilms tumor subset as compared to hepatoblastoma (6.3%) [p=0.006]. Metastatic disease was noted in 6 patients having Wilms tumor on follow-up while it was also low in hepatoblastoma which was noted in only 2 patients (p > 0.05). No significant difference was identified in pelvic extension of disease at presentation in both studied population (p > 0.05). Pelvic metastasis was noted in 1 patient only with Wilms tumor on follow-up while no pelvic metastasis was seen in the hepatoblastoma patients (p-value > 0.05).
Tang, Hui; Yu, Nan; Jia, Yongjun; Yu, Yong; Duan, Haifeng; Han, Dong; Ma, Guangming; Ren, Chenglong; He, Taiping
2018-01-01
To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm. 30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists. For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher. In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.
Gorlin-Goltz syndrome: incidental finding on routine ct scan following car accident
2009-01-01
Introduction Gorlin-Goltz syndrome is a rare hereditary disease. Pathogenesis of the syndrome is attributed to abnormalities in the long arm of chromosome 9 (q22.3-q31) and loss or mutations of human patched gene (PTCH1 gene). Multiple basal cell carcinomas (BCCs), odontogenic keratocysts, skeletal abnormalities, hyperkeratosis of palms and soles, intracranial ectopic calcifications of the falx cerebri and facial dysmorphism are considered the main clinical features. Diagnosis is based upon established major and minor clinical and radiological criteria and ideally confirmed by DNA analysis. Because of the different systems affected, a multidisciplinary approach team of various experts is required for a successful management. Case presentation We report the case of a 19 year-old female who was involved in a car accident and found to present imaging findings of Gorlin-Goltz syndrome during a routine whole body computed tomography (CT) scan in order to exclude traumatic injuries. Conclusion Radiologic findings of the syndrome are easily identifiable on CT scans and may prompt to early verification of the disease, which is very important for regular follow-up and better survival rates from the co-existent diseases. PMID:20062724
Spotting L3 slice in CT scans using deep convolutional network and transfer learning.
Belharbi, Soufiane; Chatelain, Clément; Hérault, Romain; Adam, Sébastien; Thureau, Sébastien; Chastan, Mathieu; Modzelewski, Romain
2017-08-01
In this article, we present a complete automated system for spotting a particular slice in a complete 3D Computed Tomography exam (CT scan). Our approach does not require any assumptions on which part of the patient's body is covered by the scan. It relies on an original machine learning regression approach. Our models are learned using the transfer learning trick by exploiting deep architectures that have been pre-trained on imageNet database, and therefore it requires very little annotation for its training. The whole pipeline consists of three steps: i) conversion of the CT scans into Maximum Intensity Projection (MIP) images, ii) prediction from a Convolutional Neural Network (CNN) applied in a sliding window fashion over the MIP image, and iii) robust analysis of the prediction sequence to predict the height of the desired slice within the whole CT scan. Our approach is applied to the detection of the third lumbar vertebra (L3) slice that has been found to be representative to the whole body composition. Our system is evaluated on a database collected in our clinical center, containing 642 CT scans from different patients. We obtained an average localization error of 1.91±2.69 slices (less than 5 mm) in an average time of less than 2.5 s/CT scan, allowing integration of the proposed system into daily clinical routines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Avoiding CT scans in children with single-suture craniosynostosis.
Schweitzer, T; Böhm, H; Meyer-Marcotty, P; Collmann, H; Ernestus, R-I; Krauß, J
2012-07-01
During the last decades, computed tomography (CT) has become the predominant imaging technique in the diagnosis of craniosynostosis. In most craniofacial centers, at least one three-dimensional (3D) computed tomographic scan is obtained in every case of suspected craniosynostosis. However, with regard to the risk of radiation exposure particularly in young infants, CT scanning and even plain radiography should be indicated extremely carefully. Our current diagnostic protocol in the management of single-suture craniosynostosis is mainly based on careful clinical examination with regard to severity and degree of the abnormality and on ophthalmoscopic surveillance. Imaging techniques consist of ultrasound examination in young infants while routine plain radiographs are usually postponed to the date of surgery or the end of the first year. CT and magnetic resonance imaging (MRI) are confined to special diagnostic problems rarely encountered in isolated craniosynostosis. The results of this approach were evaluated retrospectively in 137 infants who were referred to our outpatient clinic for evaluation and/or treatment of suspected single suture craniosynostosis or positional deformity during a 2-year period (2008-2009). In 133 (97.1%) of the 137 infants, the diagnosis of single-suture craniosynostosis (n = 110) or positional plagiocephaly (n = 27) was achieved through clinical analysis only. Two further cases were classified by ultrasound, while the remaining two cases needed additional digital radiographs. In no case was CT scanning retrospectively considered necessary for establishing the diagnosis. Yet in 17.6% of cases, a cranial CT scan had already been performed elsewhere (n = 16) or had been definitely scheduled (n = 8). CT scanning is rarely necessary for evaluation of single-suture craniosynostosis. Taking into account that there is a quantifiable risk of developing cancer in further lifetime, every single CT scan should be carefully indicated.
Suzawa, Naohisa; Ichikawa, Yasutaka; Ishida, Masaki; Tomita, Yoya; Nakayama, Ryohei; Sakuma, Hajime
2016-12-01
To demonstrate the feasibility of respiratory gating during whole-body scan for lung lesions in routine 18 F-FDG PET/CT examinations using a time-of-flight (TOF)-capable scanner to determine the effect of respiratory gating on reduction of both misregistration (between CT and PET) and image blurring, and on improvement of the maximum standardized uptake value (SUVmax). Patients with lung lesions who received FDG PET/CT were prospectively studied. Misregistration, volume of PET (Vp), and SUVmax were compared between ungated and gated images. The difference in respiratory gating effects was compared between lesions located in the upper or middle lobes (UML) and the lower lobe (LL). The correlation between three parameters (% change in misregistration, % change in Vp, and lesion size) and % change in SUVmax was analyzed. The study population consisted of 60 patients (37 males, 23 females; age 68 ± 12 years) with lung lesions (2.5 ± 1.7 cm). Fifty-eight out of sixty respiratory gating studies were successfully completed with a total scan time of 20.9 ± 1.9 min. Eight patients' data were not suitable for analysis, while the remaining 50 patients' data were analyzed. Respiratory gating reduced both misregistration by 21.4 % (p < 0.001) and Vp by 14.2 % (p < 0.001). The SUVmax of gated images improved by 14.8 % (p < 0.001). The % change in misregistration, Vp, and SUVmax by respiratory gating tended to be larger in LL lesions than in UML lesions. The correlation with % change in SUVmax was stronger in % change in Vp (r = 0.57) than % change in misregistration (r = 0.35). There was no statistically significant correlation between lesion size and % change in SUVmax (r = -0.20). Respiratory gating during whole-body scan in routine TOF PET/CT examinations is feasible and can reduce both misregistration and PET image blurring, and improve the SUVmax of lung lesions located primarily in the LL.
The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis.
Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M
2017-01-01
The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a "routine" PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures.
Weinberg, Richard L; Morgenstern, Rachelle; DeLuca, Albert; Chen, Jennifer; Bokhari, Sabahat
2017-12-01
Sarcoidosis is an inflammatory disorder of unknown etiology that can involve the heart. While effective in imaging cardiac sarcoidosis, F-18 fluorodeoxyglucose (FDG) PET/CT often shows non-specific myocardial uptake. F-18 sodium fluoride (NaF) has been used to image inflammation in coronary artery plaques and has low background myocardial uptake. Here, we evaluated whether F-18 NaF can image myocardial inflammation due to clinically suspected cardiac sarcoidosis. We performed a single institution pilot study testing if F-18 NaF PET/CT can detect myocardial inflammation in patients with suspected cardiac sarcoidosis. Patients underwent cardiac PET/CT with F-18 FDG as part of their routine care and subsequently received an F-18 NaF PET/CT scan. Three patients underwent F-18 FDG and F-18 NaF imaging. In all patients, there was F-18 FDG uptake consistent with cardiac sarcoidosis. The F-18 NaF PET/CT scans showed no myocardial uptake. In this small preliminary study, PET/CT scan using F-18 NaF does not appear to detect myocardial inflammation caused by suspected cardiac sarcoidosis.
Dhakal, Ajay; Chen, Hongbin; Dexter, Elisabeth U
2017-12-01
A 51-year-old woman was found to have a new 14 × 6 mm soft tissue mass under the right serratus muscle on a CT scan of the chest performed for routine surveillance due to her history of stage I lung cancer. A follow-up CT scan performed 4 months later showed that the mass had increased in size to 22 × 8 mm. The patient presents to the oncology clinic to discuss the results of the CT scan. She has no pain or swelling on the right lateral chest and no cough, fever, or shortness of breath. She is at her baseline health with good appetite and functional status. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
68Ga-DOTATATE uptake in pineal gland, a rare physiological variant: case series.
Riaz, Saima; Syed, Rizwan; Skoura, Evangelia; Alshammari, Alshaima; Gaze, Mark; Sajjan, Rakesh; Halsey, Richard; Bomanji, Jamshed
2015-11-01
(68)Ga-DOTATATE PET-CT is widely used for the evaluation of neuroendocrine tumours. Knowledge of the physiological distribution of the radiotracer is of critical importance in characterizing focal areas of uptake. In this case series, we report three paediatric cases (average age 4.7 years ± 0.6 SD) with diagnosed advanced stage IV Neuroblastoma. Two had (68)Ga-DOTATATE PET-CT scans and one underwent (68)Ga-DOTATATE PET-MRI scan to assess for suitability of molecular therapy. Focal increased tracer uptake in the pineal gland was noted in all cases with no morphological abnormality on the corresponding CT and MRI scans. The uptake within the gland was thought to be a physiological variant rather than metastases owing to the heterogeneity of somatostatin receptors expression. The pineal gland has been reported to express somatostatin receptors. The physiological distribution of (68)Ga-DOTATATE uptake in the pineal gland is not routinely seen. Furthermore, the possibility of pineal meningioma is very unlikely as pineal meningiomas are very rare and there was no convincing morphological evidence of meningiomas on CT/MRI scan.
Complications in CT-guided procedures: do we really need postinterventional CT control scans?
Nattenmüller, Johanna; Filsinger, Matthias; Bryant, Mark; Stiller, Wolfram; Radeleff, Boris; Grenacher, Lars; Kauczor, Hans-Ullrich; Hosch, Waldemar
2014-02-01
The aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans. Retrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only. The complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21). Complications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.
Use of the initial trauma CT scan to aid in diagnosis of open pelvic fractures.
Scolaro, John A; Wilson, David J; Routt, Milton Lee Chip; Firoozabadi, Reza
2015-10-01
Open pelvic disruptions represent high-energy injuries. The prompt identification and management of these injuries decreases their associated morbidity and mortality. Computed tomography (CT) scans are routinely obtained in the initial evaluation of patients with pelvic injuries. The purpose of this study is to identify the incidence and source of air densities noted on computed tomography (CT) scans of the abdominal and pelvic region in patients with pelvic fractures and evaluate the use of initial CT imaging as an adjunctive diagnostic tool to identify open injuries. A retrospective review of a prospectively collected database was performed at a single institution. Seven hundred and twenty-two consecutive patients with a pelvic disruption over a two-year period were included. Review of initial injury CT scans was performed using bone and lung viewing algorithms to identify the presence of extra-luminal air. The primary outcome was the presence, location and source of air identified on pre-operative CT scans. Secondary measurements were identification of air by plain radiograph and correlation between identified air densities on CT and clinically diagnosed open pelvic fractures. Ninety-eight patients were identified as having extra-luminal air densities on CT scans. Eighty-one patients were included in the final analysis following application of inclusion and exclusion criteria. Air was noted by the radiologist in forty-five (55.6%) instances. Six patients (7.4%) were clinically diagnosed with an open pelvic ring disruption; in two patients (2.4%) this diagnosis was delayed. In all patients, the CT was able to track air from its origin. In patients with pelvic disruptions, the injury CT should also be evaluated for the presence and source of extra-luminal air. In some patients, this finding may represent an open pelvic ring disruption. A complete physical exam and CT evaluation should be used to decrease the missed or delayed diagnosis of an open pelvic ring injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automating the expert consensus paradigm for robust lung tissue classification
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; Bostani, M
Purpose: The aim of this study was to collect CT dose index data from adult head exams to establish benchmarks based on either: (a) values pooled from all head exams or (b) values for specific protocols. One part of this was to investigate differences in scan frequency and CT dose index data for inpatients versus outpatients. Methods: We collected CT dose index data (CTDIvol) from adult head CT examinations performed at our medical facilities from Jan 1st to Dec 31th, 2014. Four of these scanners were used for inpatients, the other five were used for outpatients. All scanners used Tubemore » Current Modulation. We used X-ray dose management software to mine dose index data and evaluate CTDIvol for 15807 inpatients and 4263 outpatients undergoing Routine Brain, Sinus, Facial/Mandible, Temporal Bone, CTA Brain and CTA Brain-Neck protocols, and combined across all protocols. Results: For inpatients, Routine Brain series represented 84% of total scans performed. For outpatients, Sinus scans represented the largest fraction (36%). The CTDIvol (mean ± SD) across all head protocols was 39 ± 30 mGy (min-max: 3.3–540 mGy). The CTDIvol for Routine Brain was 51 ± 6.2 mGy (min-max: 36–84 mGy). The values for Sinus were 24 ± 3.2 mGy (min-max: 13–44 mGy) and for Facial/Mandible were 22 ± 4.3 mGy (min-max: 14–46 mGy). The mean CTDIvol for inpatients and outpatients was similar across protocols with one exception (CTA Brain-Neck). Conclusion: There is substantial dose variation when results from all protocols are pooled together; this is primarily a function of the differences in technical factors of the protocols themselves. When protocols are analyzed separately, there is much less variability. While analyzing pooled data affords some utility, reviewing protocols segregated by clinical indication provides greater opportunity for optimization and establishing useful benchmarks.« less
Clinical Utility of Preoperative Computed Tomography in Patients With Endometrial Cancer.
Bogani, Giorgio; Gostout, Bobbie S; Dowdy, Sean C; Multinu, Francesco; Casarin, Jvan; Cliby, William A; Frigerio, Luigi; Kim, Bohyun; Weaver, Amy L; Glaser, Gretchen E; Mariani, Andrea
2017-10-01
The aim of this study was to determine the clinical utility of routine preoperative pelvic and abdominal computed tomography (CT) examinations in patients with endometrial cancer (EC). We retrospectively reviewed records from patients with EC who underwent a preoperative endometrial biopsy and had surgery at our institution from January 1999 through December 2008. In the subset with an abdominal CT scan obtained within 3 months before surgery, we evaluated the clinical utility of the CT scan. Overall, 224 patients (18%) had a preoperative endometrial biopsy and an available CT scan. Gross intra-abdominal disease was observed in 10% and 20% of patients with preoperative diagnosis of endometrioid G3 and type II EC, respectively, whereas less than 5% of patients had a preoperative diagnosis of hyperplasia or low-grade EC. When examining retroperitoneal findings, we observed that a negative CT scan of the pelvis did not exclude the presence of pelvic node metastasis. Alternately, a negative CT scan in the para-aortic area generally reduced the probability of finding para-aortic dissemination but with an overall low sensitivity (42%). However, the sensitivity for para-aortic dissemination was as high as 67% in patients with G3 endometrioid cancer. In the case of negative para-aortic nodes in the CT scan, the risk of para-aortic node metastases decreased from 18.8% to 7.5% in patients with endometrioid G3 EC. Up to 15% of patients with endometrioid G3 cancer had clinically relevant incidental findings that necessitated medical or surgical intervention. In patients with endometrioid G3 and type II EC diagnosed by the preoperative biopsy, CT scans may help guide the operative plan by facilitating preoperative identification of gross intra-abdominal disease and enlarged positive para-aortic nodes that are not detectable during physical examinations. In addition, CT may reveal other clinically relevant incidental findings.
Crosbie, Robin A; Nairn, Jonathan; Kubba, Haytham
2016-08-01
Paediatric periorbital cellulitis is a common condition. Accurate assessment can be challenging and appropriate use of CT imaging is essential. We audited admissions to our unit over a four year period, with reference to CT scanning and adherence to our protocol. Retrospective audit of paediatric patients admitted with periorbital cellulitis, 2012-2015. Total of 243 patients included, mean age 4.7 years with slight male predominance, the median length of admission was 2 days. 48/243 (20%) underwent CT during admission, 25 (52%) of these underwent surgical drainage. As per protocol, CT brain performed with all orbital scans; no positive intracranial findings on any initial scan. Three children developed intracranial complications subsequently; all treated with antibiotics. Our re-admission rate within 30 days was 2.5%. Our audit demonstrates benefit of standardising practice and the low CT rate, with high percentage taken to theatre and no missed abscesses, supports the protocol. There may be an argument to avoid CT brain routinely in all initial imaging sequences in those children without neurological signs or symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette
2015-07-08
The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.
NASA Astrophysics Data System (ADS)
Sodickson, Aaron D.
2017-03-01
CT technology has advanced rapidly in recent years, yet not all innovations translate readily into clinical practice. Technology advances must meet certain key requirements to make it into routine use: They must provide a well-defined clinical benefit. They must be easy to use and integrate readily into existing workflows, or better still, further streamline these workflows. These requirements heavily favor fully integrated or automated solutions that remove the human factor and provide a reproducible output independent of operator skill level. Further, to achieve these aims, collaboration with the ultimate end users is needed as early as possible in the development cycle, not just at the point of product testing. Technology innovators are encouraged to engage such collaborators even at early stages of feature or product definition. This manuscript highlights these concepts through exploration of challenging areas in CT imaging in an Emergency Department setting. Technique optimization for pulmonary embolus CT is described as an example of successful integration of multiple advances in radiation dose reduction and imaging speed. The typical workflow of a trauma "pan-scan" (incorporating scans from head through pelvis) is described to highlight workflow challenges and opportunities for improvement. Finally, Dual Energy CT is discussed to highlight the undeniable clinical value of the material characterization it provides, yet also its surprisingly slow integration into routine use beyond early adopters.
Ferrero, Andrea; Montoya, Juan C; Vaughan, Lisa E; Huang, Alice E; McKeag, Ian O; Enders, Felicity T; Williams, James C; McCollough, Cynthia H
2016-12-01
Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphologic features from dual-energy computed tomography (CT) images and assess their relationship to stone fragility. Thirty-three calcified urinary stones were scanned with micro-CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low- and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. The average stone volume was 300 mm 3 (range: 134-674 mm 3 ). The average comminution time measured ex vivo was 32 seconds (range: 7-115 seconds). Stone volume, dual-energy CT number ratio, and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R 2 = 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R 2 of 0.54. Dual-energy CT number ratios, volume, and morphologic metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Ferrero, Andrea; Montoya, Juan C.; Vaughan, Lisa E.; Huang, Alice E.; McKeag, Ian O.; Enders, Felicity T.; Williams, James C.; McCollough, Cynthia H.
2016-01-01
Rationale and Objectives Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphological features from dual-energy CT images and assess their relationship to stone fragility. Materials and Methods Thirty-three calcified urinary stones were scanned with micro CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low-and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. Results The average stone volume was 300 mm3 (range 134–674 mm3). The average comminution time measured ex vivo was 32 s (range 7–115 s). Stone volume, dual-energy CT number ratio and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R2= 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R2 of 0.54. Conclusion Dual-energy CT number ratios, volume, and morphological metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy. PMID:27717761
Emergency physicians' attitudes toward and use of clinical decision rules for radiography.
Graham, I D; Stiell, I G; Laupacis, A; O'Connor, A M; Wells, G A
1998-02-01
1) To assess Canadian emergency physicians' (EPs') use of and attitudes toward 2 radiographic clinical decision rules that have recently been developed and to identify physician characteristics associated with decision rule use; 2) to determine the use of CT head and cervical spine radiography by EPs and their beliefs about the appropriateness of expert recommendations supporting the routine use of these radiographic procedures; and 3) to determine the potential acceptance of clinical decision rules for CT scan in patients with minor head injury and cervical spine radiography in trauma patients. A cross-sectional anonymous mail survey of a random sample of 300 members of the Canadian Association of Emergency Physicians using Dillman's Total Design Method for mail surveys. Of 288 eligible physicians, 232 (81%) responded. More than 95% of the respondents stated they currently used the Ottawa Ankle Rules and were willing to consider using the newly developed Ottawa Knee Rule. Physician characteristics related to frequent use of the Ottawa Ankle Rules were younger age, fewer years since graduating from medical school, part time or resident employment status, working in a hospital without a CT scanner, and believing that decision rules are not oversimplified cookbook medicine or too rigid to apply. Eighty-five percent did not agree that all patients with minor head injuries should receive a CT head scan and only 3.5% stated they always refer such patients for CT scan. Similarly, 78.5% of the respondents did not agree that all trauma patients should receive cervical spine radiography and only 13.2% said they always refer such patients for cervical spine radiography. Ninety-seven and 98% stated they would be willing to consider using well-validated decision rules for CT scan of the head and cervical spine radiography, respectively. Fifty-two percent and 67% of the respondents required the proposed CT and C-spine to be 100% sensitive for identifying serious injuries, respectively. Canadian EPs are generally supportive of clinical decision rules and, in particular, have very positive attitudes toward the Ottawa Ankle and Knee Rules. Furthermore, EPs disagree with recommendations for routine use of CT head and cervical spine radiography and strongly support the development of well-validated decision rules for the use of CT head and cervical spine radiography. Most EPs expected the latter rules to be 100% sensitive for acute clinically significant lesions.
Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.
Tomita, Naofumi; Cheung, Yvonne Y; Hassanpour, Saeed
2018-07-01
Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists. Copyright © 2018 Elsevier Ltd. All rights reserved.
Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity
Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe
2015-01-01
Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893
Neuroblastoma with intracranial involvement: an ENSG Study.
Shaw, P J; Eden, T
1992-01-01
We report the experience of the European Neuroblastoma Study Group (ENSG) with central nervous system (CNS) involvement of neuroblastoma. Among this series of intensively treated patients, CNS neuroblastoma was diagnosed by computerised tomography (CT) scanning, rather than by autopsy. Cranial disease occurred in 5% of ENSG patients. Of 11 patients with intracranial disease, 4 had disease in the posterior fossa, a site rarely reported previously. Furthermore, 5 cases had CNS metastases at a time when there was no detectable disease elsewhere, rather than as part of extensive relapse. The pattern of disease we observed, at least for those with parenchymal disease, is in keeping with arterial spread. Although CT scanning is the optimal modality for identifying CNS disease, 2 cases had normal head CT scans prior to the onset of CNS disease. As most patients had symptoms of raised intracranial pressure (RICP) at the time the CNS disease was diagnosed, there does not seem to be any indication for routine CT scanning of the head at diagnosis, but this should be performed as soon as any symptoms or signs appear. With patients living longer with their disease, vigilance must be maintained during follow-up.
Volumetric applications for spiral CT in the thorax
NASA Astrophysics Data System (ADS)
Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.
1994-05-01
Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.
Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Warren G.; Jirasek, Andrew, E-mail: jirasek@uvic.ca; Wells, Derek M.
2014-11-01
Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. Tomore » address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. Conclusions: This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.« less
Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters.
Campbell, Warren G; Wells, Derek M; Jirasek, Andrew
2014-11-01
The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm(2) square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky-Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.
Wahby, M; Salama, A F; Elezaby, A F; Belgrami, F; Abd Ellatif, M E; El-Kaffas, H F; Al-Katary, M
2013-11-01
The current standard of care is to perform a postoperative gastrografin study following laparoscopic sleeve gastrectomy (LSG) to detect leakage or obstruction. This study evaluated the usefulness of this routine procedure. A retrospective chart review was performed in December 2012. All patients had routine intraoperative methylene blue testing to check for possible leakage from the staple line, and any leaking points were oversewn. We also performed postoperative contrast study (gastrografin) routinely in the first 24-48 h for all patients. From June 2007 to December 2012, 712 cases underwent LSG during the study period. Patients included in this study were 556 women (78.1%) and 156 men (21.9%). The mean age was 35 years. The mean BMI was 48 kg/m2. The operative time was 107 ± 29 min, and there were no conversions to open surgery. Intraoperative methylene blue test detected leakage in 28 cases (3.93%). Postoperative contrast study (gastrografin) was negative for leakage in all cases. Computed tomography (CT) scan with oral contrast study detected leakage in 1.4% (ten cases); none of these cases were detected by regular contrast study. Our study showed that intraoperative methylene blue test for leakage is a very sensitive and effective method for detecting leakage during sleeve gastrectomy and should be done routinely in all cases. Routine postoperative contrast study is not needed to detect leakage unless clinically indicated in selected cases, and in such cases contrast-enhanced CT scans are the modality of choice.
SU-F-207-03: Dosimetric Effect of the Position of Arms in Torso CT Scan with Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Institute, Troy, NY; Gao, Y
Purpose: To evaluate the patient organ dose differences between the arms-raised and arms-lowered postures in Torso multidetector computed tomography (MDCT) scan protocols with tube current modulation (TCM). Methods: Patient CT organ doses were simulated using the Monte Carlo method with human phantoms and a validated CT scanner model. A set of adult human phantoms with arms raised and arms lowered postures were developed using advanced BREP-based mesh surface geometries. Organ doses from routine Torso scan protocols such as chest, abdomen-pelvis, and CAP scans were simulated. The organ doses differences caused by two different posutres were investigated when tube current modulationmore » (TCM) were applied during the CT scan. Results: With TCM applied, organ doses of all the listed organs of arms-lowered posture phantom are larger than those of arms raised phantom. The dose difference for most of the organs or tissues are larger than 50%, and the skin doses difference for abdomen-pelvis scan even reaches 112.03%. This is due to the fact that the tube current for patient with arms-lowered is much higher than for the arms raised posture. Conclusion: Considering CT scan with TCM, which is commonly applied clinically, patients who could not raise their arms will receive higher radiation dose than the arms raised patient, with dose differences for some tissues such as the skin being larger than 100%. This is due to the additional tube current necessary to penetrate the arms while maintaining consistent image quality. National Nature Science Foundation of China(No.11475047)« less
Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT
NASA Astrophysics Data System (ADS)
Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin
2011-05-01
Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.
68 Ga-PSMA-PET/CT staging prior to definitive radiation treatment for prostate cancer.
Hruby, George; Eade, Thomas; Emmett, Louise; Ho, Bao; Hsiao, Ed; Schembri, Geoff; Guo, Linxin; Kwong, Carolyn; Hunter, Julia; Byrne, Keelan; Kneebone, Andrew
2018-04-16
To explore the utility of prostate specific membrane antigen (PSMA)-positron emission tomography (PET)/computed tomography (CT) in addition to conventional imaging prior to definitive external beam radiation treatment (EBRT) for prostate cancer. All men undergoing PSMA-PET/CT prior to definitive EBRT for intermediate and high-risk prostate cancer were included in our ethics approved prospective database. For each patient, clinical and pathological results, in addition to scan results including site of PSMA positive disease and number of lesions, were recorded. Results of conventional imaging (bone scan, CT and multiparametric magnetic resonance imaging [MRI]) were reviewed and included. One hundred nine men underwent staging PSMA-PET/CT between May 2015 and June 2017; all patients had national comprehensive cancer network (NCCN) intermediate or high-risk prostate cancer and 87% had Gleason score (GS) 4 + 3 or higher. There was positive uptake corresponding to the primary in 108, equivocal in one. All patients with image detected nodal or bony lesions had GS 4 + 3 or more disease. Compared to conventional imaging with bone scan, CT and multiparametric MRI, PSMA-PET/CT upstaged an additional 7 patients (6.4%) from M0 to M1, 16 from N0M0 to N1M0 (14.7%) and downstaged 3 (2.8%) from M1 to M0 disease. PSMA-PET/CT identified the primary in 99% of patients, and altered staging in 21% of men with intermediate or high-risk prostate cancer referred for definitive EBRT compared to CT, bone scan and multiparametric MRI. Following this audit, we recommend the routine use of PSMA-PET/CT prior to EBRT in this patient group. © 2018 John Wiley & Sons Australia, Ltd.
Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier
2018-06-14
To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.
Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.
Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz
2017-11-21
X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.
Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter
2003-01-01
The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix
NASA Astrophysics Data System (ADS)
Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.
2017-12-01
As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.
Fontes, Ricardo B V; Smith, Adam P; Muñoz, Lorenzo F; Byrne, Richard W; Traynelis, Vincent C
2014-08-01
Early postoperative head CT scanning is routinely performed following intracranial procedures for detection of complications, but its real value remains uncertain: so-called abnormal results are frequently found, but active, emergency intervention based on these findings may be rare. The authors' objective was to analyze whether early postoperative CT scans led to emergency surgical interventions and if the results of neurological examination predicted this occurrence. The authors retrospectively analyzed 892 intracranial procedures followed by an early postoperative CT scan performed over a 1-year period at Rush University Medical Center and classified these cases according to postoperative neurological status: baseline, predicted neurological change, unexpected neurological change, and sedated or comatose. The interpretation of CT results was reviewed and unexpected CT findings were classified based on immediate action taken: Type I, additional observation and CT; Type II, active nonsurgical intervention; and Type III, surgical intervention. Results were compared between neurological examination groups with the Fisher exact test. Patients with unexpected neurological changes or in the sedated or comatose group had significantly more unexpected findings on the postoperative CT (p < 0.001; OR 19.2 and 2.3, respectively) and Type II/III interventions (p < 0.001) than patients at baseline. Patients at baseline or with expected neurological changes still had a rate of Type II/III changes in the 2.2%-2.4% range; however, no patient required an immediate return to the operating room. Over a 1-year period in an academic neurosurgery service, no patient who was neurologically intact or who had a predicted neurological change required an immediate return to the operating room based on early postoperative CT findings. Obtaining early CT scans should not be a priority in these patients and may even be cancelled in favor of MRI studies, if the latter have already been planned and can be performed safely and in a timely manner. Early postoperative CT scanning does not assure an uneventful course, nor should it replace accurate and frequent neurological checks, because operative interventions were always decided in conjunction with the neurological examination.
Fisher, Brian M; Cowles, Steven; Matulich, Jennifer R; Evanson, Bradley G; Vega, Diana; Dissanaike, Sharmila
2013-12-01
Guidelines are in place directing the clearance of the cervical spine in patients who are awake, alert, and oriented, but a gold standard has not been recognized for patients who are obtunded. Our study is designed to determine if magnetic resonance imaging (MRI) detects clinically significant injuries not seen on computed tomographic (CT) scans. The trauma registry was used to identify and retrospectively review medical records of blunt trauma patients from January 1, 2005, to March 30, 2012. Only obtunded patients with a CT scan and MRI of the cervical spine were included. The study cohort consisted of 277 patients. In 13 (5%) patients, MRI detected clinically significant cervical spine injuries that were missed by CT scans, and in 7 (3%) these injuries required intervention. The number needed to screen with MRI to prevent 1 missed injury was 21. The findings suggest that the routine use of MRI in clearing the cervical spine in the obtunded blunt trauma patient. Copyright © 2013 Elsevier Inc. All rights reserved.
Design of a practical model-observer-based image quality assessment method for CT imaging systems
NASA Astrophysics Data System (ADS)
Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana
2014-03-01
The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.
Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-10-01
To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.
Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-01-01
Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823
Levator claviculae muscle discovered during physical examination for cervical lymphadenopathy.
Rosenheimer, J L; Loewy, J; Lozanoff, S
2000-01-01
During a routine physical examination of an adult female with a history of breast cancer and cervical lymphadenopathy, a mass was noted in the right supraclavicular region. The mass was unilateral and easily palpable along the superior border near the median aspect of the clavicle. Plain film radiography, performed to determine whether the mass represented an enlarged jugulo-omohyoid lymph node, revealed an elongated opaque mass in this region. Computed tomographic (CT) and magnetic resonance (MR) images were subsequently obtained. Sequential axial CT scans revealed a cylindrical mass that appeared to be independent of contiguous muscles, including the sternocleidomastoid, anterior, and middle scalene muscles. This mass attached inferiorly to the clavicle and superiorly to the transverse process of the sixth cervical vertebra. Sagittal, coronal, and axial MR scans confirmed the presence of a well-defined superficial mass. It is concluded that the mass represents a levator claviculae (cleidocervical) muscle. This observation underscores the importance of understanding soft tissue variants that may be encountered during a routine physical examination. Copyright 2000 Wiley-Liss, Inc.
Yamamoto, L G
1995-03-01
The feasibility of wireless portable teleradiology and facsimile (fax) transmission using a pocket cellular phone and a notebook computer to obtain immediate access to consultants at any location was studied. Modems specially designed for data and fax communication via cellular systems were employed to provide a data communication interface between the cellular phone and the notebook computer. Computed tomography (CT) scans, X-rays, and electrocardiograms (ECGs) were transmitted to a wireless unit to measure performance characteristics. Data transmission rates ranged from 520 to 1100 bytes per second. Typical image transmission times ranged from 1 to 10 minutes; however, using joint photographic experts group or fractal image compression methods would shorten typical transmission times to less than one minute. This study showed that wireless teleradiology and fax over cellular communication systems are feasible with current technology. Routine immediate cellular faxing of ECGs to cardiologists may expedite thrombolytic therapy decisions in questionable cases. Routine immediate teleradiology of CT scans may reduce operation room preparation times in severe head trauma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahbaee, Pooyan, E-mail: psahbae@ncsu.edu; Segars, W. Paul; Samei, Ehsan
2014-07-15
Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor)more » were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient anatomy, a first order approximation of organ and effective doses from routine CT scan protocols can be reasonably estimated using size specific factors. Estimation accuracy is generally poor for organ outside the scan range and for neurological protocols. The dose calculator designed in this study can be used to conveniently estimate and report the dose values for a patient across a multiplicity of CT scan protocols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi
Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less
Bujila, Robert; Poludniowski, Gavin; Fransson, Annette
2015-01-01
The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two‐year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service PACS numbers: 87.57.C‐, 87.57.N‐, 87.57.Q‐ PMID:26219012
Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin
2017-06-01
This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.
Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H
2017-09-01
The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Validation of an imaging based cardiovascular risk score in a Scottish population.
Kockelkoren, Remko; Jairam, Pushpa M; Murchison, John T; Debray, Thomas P A; Mirsadraee, Saeed; van der Graaf, Yolanda; Jong, Pim A de; van Beek, Edwin J R
2018-01-01
A radiological risk score that determines 5-year cardiovascular disease (CVD) risk using routine care CT and patient information readily available to radiologists was previously developed. External validation in a Scottish population was performed to assess the applicability and validity of the risk score in other populations. 2915 subjects aged ≥40 years who underwent routine clinical chest CT scanning for non-cardiovascular diagnostic indications were followed up until first diagnosis of, or death from, CVD. Using a case-cohort approach, all cases and a random sample of 20% of the participant's CT examinations were visually graded for cardiovascular calcifications and cardiac diameter was measured. The radiological risk score was determined using imaging findings, age, gender, and CT indication. Performance on 5-year CVD risk prediction was assessed. 384 events occurred in 2124 subjects during a mean follow-up of 4.25 years (0-6.4 years). The risk score demonstrated reasonable performance in the studied population. Calibration showed good agreement between actual and 5-year predicted risk of CVD. The c-statistic was 0.71 (95%CI:0.67-0.75). The radiological CVD risk score performed adequately in the Scottish population offering a potential novel strategy for identifying patients at high risk for developing cardiovascular disease using routine care CT data. Copyright © 2017 Elsevier B.V. All rights reserved.
McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I
2012-08-01
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.
Kaasalainen, Touko; Palmu, Kirsi; Lampinen, Anniina; Reijonen, Vappu; Leikola, Junnu; Kivisaari, Riku; Kortesniemi, Mika
2015-09-01
Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.
Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nattenmüller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de
2013-06-19
PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % inmore » drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.« less
Krifter, R M; Zweiger, C; Lick-Schiffer, W; Mattiassich, G; Schüller-Weidekamm, C; Radl, R
2013-03-01
Imaging for shoulder surgery varies a lot nowadays. Advantages and disadvantages of possible imaging methods according to the pathology and treatment options are described. Digital projection radiography in 3 planes, ultrasonography, MRI, CT scanning and scintigrams. Special axial view to visualize the glenoid situation, as well as 3-D CT scanning for larger defects and classification. Imaging of the glenoid situation, the version and erosion in axial view x-ray is mandatory to plan and control glenoid replacement. Useful application of imaging methods for the daily routine of orthopedic surgeons. Digital 3 plane x-ray imaging in arthroplasty surgery is the minimum requirement. For rotator cuff lesions ultrasonography is good. In order to gain information on fatty infiltration of rotator muscles MRI is needed as well as for intra-articular lesions. For bony defects CT and reconstruction 3-D are recommended.
Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les
2015-12-01
We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Caroli, Paola; Sandler, Israel; Matteucci, Federica; De Giorgi, Ugo; Uccelli, Licia; Celli, Monica; Foca, Flavia; Barone, Domenico; Romeo, Antonino; Sarnelli, Anna; Paganelli, Giovanni
2018-06-19
We studied the usefulness of 68 Ga-prostate-specific membrane antigen (PSMA) PET/CT for detecting relapse in a prospective series of patients with biochemical recurrence (BCR) of prostate cancer (PCa) after radical treatment. Patients with BCR of PCa after radical surgery and/or radiotherapy with or without androgen-deprivation therapy were included in the study. 68 Ga-PSMA PET/CT scans performed from the top of the head to the mid-thigh 60 min after intravenous injection of 150 ± 50 MBq of 68 Ga-PSMA were interpreted by two nuclear medicine physicians. The results were correlated with prostate-specific antigen (PSA) levels at the time of the scan (PSApet), PSA doubling time, Gleason score, tumour stage, postsurgery tumour residue, time from primary therapy to BCR, and patient age. When available, 68 Ga-PSMA PET/CT scans were compared with negative 18 F-choline PET/CT scans routinely performed up to 1 month previously. From November 2015 to October 2017, 314 PCa patients with BCR were evaluated. Their median age was 70 years (range 44-92 years) and their median PSApet was 0.83 ng/ml (range 0.003-80.0 ng/ml). 68 Ga-PSMA PET/CT was positive (one or more suspected PCa lesions detected) in 197 patients (62.7%). Lesions limited to the pelvis, i.e. the prostate/prostate bed and/or pelvic lymph nodes (LNs), were detected in 117 patients (59.4%). At least one distant lesion (LNs, bone, other organs, separately or combined with local lesions) was detected in 80 patients (40.6%). PSApet was higher in PET-positive than in PET-negative patients (P < 0.0001). Of 88 patients negative on choline PET/CT scans, 59 (67%) were positive on 68 Ga-PSMA PET/CT. We confirmed the value of 68 Ga-PSMA PET/CT in restaging PCa patients with BCR, highlighting its superior performance and safety compared with choline PET/CT. Higher PSApet was associated with a higher relapse detection rate.
Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm
2017-09-01
Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.
[CT pulmonary density mapping: surgical utility].
Gavezzoli, D; Caputo, P; Manelli, A; Zuccon, W; Faccini, M; Bonandrini, L
2002-04-01
The present paper considers the technique of CT scan maps of pulmonary isodensity, examining lung density differences as a function of the type of disease and considering their significance for the purposes of refined, useful diagnosis in a surgical context. METHODS. The method is used to examine 3 groups of subjects selected on a clinical/anamnestic basis and a further group already admitted for surgery. For each patient we obtained 2 thoracic density scans during the phase of maximum inspiration and expiration. On each scan we constructed 50 isodensity maps, the equivalent of more than 2500 measurements: the preliminary standard was represented by 100 wide windows to produce total "illumination" of the pulmonary fields. The isodensity windows were then codified differently. Subsequently, the density scans were analysed with the technique of scalar decomposition. The CT scan maps of lung isodensity proved useful for certain lung diseases in which early diagnosis, topographic extent of the pathology and the refined definition of the pathological picture provide important solutions as regards the indication and planning of surgical treatment and for the evaluation of the operative risk and prognosis. We consider that the technique is rapidly performed, not complex and inexpensive and is able to supply detailed information on the lung parenchyma such as to be used not only as a routine technique but also in emergencies.
Boone, John M.; Hendee, William R.; McNitt-Gray, Michael F.
2012-01-01
This article summarizes the proceedings of a portion of the Radiation Dose Summit, which was organized by the National Institute of Biomedical Imaging and Bioengineering and held in Bethesda, Maryland, in February 2011. The current understandings of ways to optimize the benefit-risk ratio of computed tomography (CT) examinations are summarized and recommendations are made for priority areas of research to close existing gaps in our knowledge. The prospects of achieving a submillisievert effective dose CT examination routinely are assessed. © RSNA, 2012 PMID:22966066
Impact of airway morphological changes on pulmonary flows in scoliosis
NASA Astrophysics Data System (ADS)
Farrell, James; Garrido, Enrique; Valluri, Prashant
2016-11-01
The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.
Hershkovitz, Yehuda; Zoarets, Itai; Stepansky, Albert; Kozer, Eran; Shapira, Zahar; Klin, Baruch; Halevy, Ariel; Jeroukhimov, Igor
2014-07-01
Computed tomography (CT) has become an important tool for the diagnosis of intra-abdominal and chest injuries in patients with blunt trauma. The role of CT in conscious asymptomatic patients with a suspicious mechanism of injury remains controversial. This controversy intensifies in the management of pediatric blunt trauma patients, who are much more susceptible to radiation exposure. The objective of this study was to evaluate the role of abdominal and chest CT imaging in asymptomatic pediatric patients with a suspicious mechanism of injury. Forty-two pediatric patients up to 15 years old were prospectively enrolled. All patients presented with a suspicious mechanism of blunt trauma and multisystem injury. They were neurologically intact and had no signs of injury to the abdomen or chest. Patients underwent CT imaging of the chest and abdomen as part of the initial evaluation. Thirty-one patients (74%) had a normal CT scan. Two patients of 11 with an abnormal CT scan required a change in management and were referred for observation in the Intensive Care Unit. None of the patients required surgical intervention. The routine use of CT in asymptomatic pediatric patients with a suspicious mechanism of blunt trauma injury is not justified. Copyright © 2014 Elsevier Inc. All rights reserved.
Routine Cross-Sectional Head Imaging Before Electroconvulsive Therapy: A Tertiary Center Experience.
Sajedi, Payam I; Mitchell, Jason; Herskovits, Edward H; Raghavan, Prashant
2016-04-01
Electroconvulsive therapy (ECT) is generally contraindicated in patients with intracranial mass lesions or in the presence of increased intracranial pressure. The purpose of this study was to determine the prevalence of incidental abnormalities on routine cross-sectional head imaging, including CT and MRI, that would preclude subsequent ECT. This retrospective study involved a review of the electronic medical records of 105 patients (totaling 108 imaging studies) between April 27, 2007, and March 20, 2015, referred for cranial CT or MRI with the primary indication of pre-ECT evaluation. The probability of occurrence of imaging findings that would preclude ECT was computed. A cost analysis was also performed on the practice of routine pre-ECT imaging. Of the 105 patients who presented with the primary indication of ECT clearance (totaling 108 scans), 1 scan (0.93%) revealed findings that precluded ECT. None of the studies demonstrated findings that indicated increased intracranial pressure. A cost analysis revealed that at least $18,662.70 and 521.97 relative value units must be expended to identify one patient with intracranial pathology precluding ECT. The findings of this study demonstrate an extremely low prevalence of findings that preclude ECT on routine cross-sectional head imaging. The costs incurred in identifying a potential contraindication are high. The authors suggest that the performance of pre-ECT neuroimaging be driven by the clinical examination. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I.
2012-01-01
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation. © RSNA, 2012 PMID:22692035
No longer any role for routine follow-up chest x-rays in men with stage I germ cell cancer.
De La Pena, H; Sharma, A; Glicksman, C; Joseph, J; Subesinghe, M; Traill, Z; Verrill, C; Sullivan, M; Redgwell, J; Bataillard, E; Pintus, E; Dallas, N; Gogbashian, A; Tuthill, M; Protheroe, A; Hall, M
2017-10-01
Following radical orchidectomy for testicular cancer, most patients undergo protocolled surveillance to detect tumour recurrences rather than receive adjuvant chemotherapy. Current United Kingdom national and most international guidelines recommend that patients require a chest x-ray (CXR) and serum tumour markers at each follow-up visit as well as regular CT scans; there is however, variation among cancer centres with follow-up protocols. Seminomas often do not cause tumour marker elevation; therefore, CT scans are the main diagnostic tool for detecting relapse. For non-seminomatous tumours, serum beta-HCG (HCG) and AFP levels are a very sensitive harbinger of relapse, but this only occurs in 50% of patients [1], and therefore, imaging remains as important. CXRs are meant to aid in the detection of lung recurrences and before the introduction of modern cross-sectional imaging in the early 1980s, CXRs would have been the only method of identifying lung metastasis. We examined the Thames Valley and Mount Vernon Cancer Centre databases to evaluate the role of CXRs in the 21st century for the follow-up of men with stage I testicular cancer between 2003 and 2015 to assess its value in diagnosing relapsed germ cell tumours. From a total of 1447 patients, we identified 159 relapses. All relapses were detected either by rising tumour markers or planned follow-up CT scans. Not a single relapse was identified on CXR. We conclude that with timely and appropriate modern cross-sectional imaging and tumour marker assays, the CXR no longer has any value in the routine surveillance of stage I testicular cancer and should be removed from follow-up guidelines and clinical practice. Omitting routine CXR from follow-up schedules will reduce anxiety as well as time that patients spend at hospitals and result in significant cost savings. Copyright © 2017. Published by Elsevier Ltd.
Hoshiko, Sumi; Smith, Daniel; Fan, Cathyn; Jones, Carrie R; McNeel, Sandra V; Cohen, Ronald A
2014-05-01
Radiation exposure from medical sources now equals or exceeds that from natural background sources, largely attributable to a 20-fold increase in CT use since 1980. Increasing exposure to children and fetuses is of most concern due to their heightened susceptibility. More recently, CT use may be leveling or decreasing, but it is unclear whether this change is widespread or varies by type of institution. We sought to characterize trends in CT utilization in California hospitals and emergency departments among children and pregnant women, looking at different types of facilities, such as teaching, private, public and nonprofit institutions. We examined frequency of CT examinations by year from 229 facilities reporting CT usage in routinely collected California statewide data for 2005-2012. We modeled trends overall and by facility type. CT scans for pediatric and pregnant patient visits in the emergency department increased initially, then started to decline after 2008. Among hospital admissions, rates declined or leveled after 2005. In the emergency department, CT rates varied between types of facilities, with teaching hospitals reducing use sooner and more sharply than other types of facilities. CT utilization in California among children and pregnant women has begun to level or decline. Still, population exposure remains at historically high levels, warranting consideration of potential public health implications. Further examination of reasons for trends among hospital types, particularly how teaching hospitals have reduced rates of CT utilization, may help identify strategies for CT reduction without compromising patient care.
SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silosky, M; Marsh, R
Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliwal, B; Asprey, W; Yan, Y
Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.
Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-03-21
To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.
High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.
Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard
2013-10-01
The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.
Jedenmalm, Anneli; Noz, Marilyn E; Olivecrona, Henrik; Olivecrona, Lotta; Stark, Andre
2008-04-01
Polyethylene wear is an important cause of aseptic loosening in hip arthroplasty. Detection of significant wear usually happens late on, since available diagnostic techniques are either not sensitive enough or too complicated and expensive for routine use. This study evaluates a new approach for measurement of linear wear of metal-backed acetabular cups using CT as the intended clinically feasible method. 8 retrieved uncemented metal-backed acetabular cups were scanned twice ex vivo using CT. The linear penetration depth of the femoral head into the cup was measured in the CT volumes using dedicated software. Landmark points were placed on the CT images of cup and head, and also on a reference plane in order to calculate the wear vector magnitude and angle to one of the axes. A coordinate-measuring machine was used to test the accuracy of the proposed CT method. For this purpose, the head diameters were also measured by both methods. Accuracy of the CT method for linear wear measurements was 0.6 mm and wear vector angle was 27 degrees . No systematic difference was found between CT scans. This study on explanted acetabular cups shows that CT is capable of reliable measurement of linear wear in acetabular cups at a clinically relevant level of accuracy. It was also possible to use the method for assessment of direction of wear.
Carnie, J; Boden, J; Gao Smith, F
2002-07-01
In this single group observational study on 29 patients, we describe a technique that predicts the depth of the epidural space, calculated from the routine pre-operative chest computerised tomography (CT) scan using Pythagorean triangle trigonometry. We also compared the CT-derived depth of the epidural space with the actual depth of needle insertion. The CT-derived and the actual depths of the epidural space were highly correlated (r = 0.88, R2 = 0.78, p < 0.0001). The mean (95% CI) difference between CT-derived and actual depths was 0.26 (0.03-0.49) cm. Thus, the CT-derived depth tends to be greater than the actual depth by between 0.03 and 0.49 cm. There were no associations between either the CT-derived or the actual depth of the epidural space and age, weight, height or body mass index.
Intravenous volume tomographic pulmonary angiography imaging
NASA Astrophysics Data System (ADS)
Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng
1999-05-01
This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.
Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival
NASA Astrophysics Data System (ADS)
Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.
1997-05-01
Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.
Chymopapain chemonucleolysis: CT changes after treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, L.R.; Turski, P.A.; Strother, C.M.
1985-08-01
Chymopapain chemonucleolysis is now used extensively in this country to treat lumbar disk herniation. Despite increasing experience in patient selection, there continue to be patients who do not respond to treatment and require diagnostic reevaluation. Interpretation of postchemonucleolysis computed tomographic (CT) scans in these patients requires a knowledge of the CT changes that normally occur after treatment with chemonucleolysis. To define these temporal changes, a prospective CT evaluation was performed of 29 treated interspaces in 26 patients who returned for routine postchemonucleolysis follow-up. Despite a successful clinical response in 17 of 21 patients, changes in the size, location, shape, homogeneity,more » and density of the disk herniation were uncommon at the 6 week follow-up. In 24 treated interspaces, the most common changes at 6 week CT follow-up were the development of vacuum phenomenon in three (12.5%) and a slight decrease in the size of two (8.3%) disk herniations. A successful response was noted in 17 of 21 patients scanned at 6 month follow-up, with five (22.7%) of 22 injected interspaces exhibiting vacuum phenomenon and 13 (59.1%) interspaces showing an observable decrease in the size of the disk herniation.« less
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
SU-G-206-08: How Should Focal Spot Be Chosen for Optimized CT Imaging with Dose Modulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Liu, X; Rong, J
Purpose: To choose the preferred focal spot for achieving optimized CT image quality with balanced tube heating considerations. Methods: An anthropomorphic pelvic phantom was scanned using a GE Discovery CT750 HD at 120 and 140kVp, 0.8s rotation time, and pitch of 0.984. “Smart mA” was enabled to simulate a routine abdomen–pelvis CT scan. Permissible mA values at 120 and 140 kVp were obtained from the Serial Load Rating table (for mimicking a busy CT clinical operation) in the scanner Technical Reference Manual. At each kVp station and two Noise Index levels, the mA Upper Limit was set above/below the permissiblemore » mA values. Scanned mA values and focal spot (FS) used were obtained from the DICOM header of each image, and the FS-mA relationship was analyzed. For visual confirmation beyond recorded FS information, a CatPhan with a fat-ring attached for mimicking patient size/shape was scanned at 120kVp. A group of radiologists/physicists compared a pair of CatPhan images qualitatively. Lastly, a number of patient cases were evaluated to confirm the FS-mA relationship. Results: When preset Upper Limit values were above the permissible mA values, the Large FS (labeled 1.2) was used in scans, even if the maximum scanned mA values were much lower than the permissible values at both 120 and 140 kVp. Otherwise the Small FS (labeled 0.7) was used. Visual evaluation of the high contrast module of CatPhan and additional analysis of patient cases further confirmed that the preset Upper Limit determines which focal spot is to be used, not the actual maximum mA value to be scanned. Conclusion: Specific FS can be selected by setting up appropriate mA Upper Limit in a protocol. CT protocols could be optimized by selecting appropriate FS for improving patient image quality, especially benefiting the small size and pediatric patients.« less
Anti-Ma2-associated encephalitis with normal FDG-PET: a case of pseudo-Whipple's disease.
Castle, James; Sakonju, Ai; Dalmau, Josep; Newman-Toker, David E
2006-10-01
A 39-year-old man presented with a history of several months of progressive personality changes, social withdrawal, bradykinesia, mutism, dysphagia, worsening gait, and difficulty with daily living activities. Examination revealed an atypical parkinsonian appearance with incomplete supranuclear ophthalmoplegia and an unusual oculomotor disorder characterized by both low-amplitude, intermittent opsoclonus, and slow, nystagmoid intrusions. Routine laboratory testing, autoimmune and infectious serologies, brain MRI, lumbar puncture, electroencephalogram, whole-body CT scan, paraneoplastic serologies, small bowel biopsy, 18F-fluorodeoxyglucose positron emission tomography CT scan, brain biopsy, and testicular ultrasound. Anti-Ma2 paraneoplastic encephalitis in association with metastatic testicular cancer; initially misdiagnosed as CNS Whipple's disease. Corticosteroids, intravenous immunoglobulins, orchiectomy, muscle relaxants, mycophenolate mofetil, plasmapheresis, and bleomycin, etoposide and platinum chemotherapy.
A routine quality assurance test for CT automatic exposure control systems.
Iball, Gareth R; Moore, Alexis C; Crawford, Elizabeth J
2016-07-08
The study purpose was to develop and validate a quality assurance test for CT automatic exposure control (AEC) systems based on a set of nested polymethylmethacrylate CTDI phantoms. The test phantom was created by offsetting the 16 cm head phantom within the 32 cm body annulus, thus creating a three part phantom. This was scanned at all acceptance, routine, and some nonroutine quality assurance visits over a period of 45 months, resulting in 115 separate AEC tests on scanners from four manufacturers. For each scan the longitudinal mA modulation pattern was generated and measurements of image noise were made in two annular regions of interest. The scanner displayed CTDIvol and DLP were also recorded. The impact of a range of AEC configurations on dose and image quality were assessed at acceptance testing. For systems that were tested more than once, the percentage of CTDIvol values exceeding 5%, 10%, and 15% deviation from baseline was 23.4%, 12.6%, and 8.1% respectively. Similarly, for the image noise data, deviations greater than 2%, 5%, and 10% from baseline were 26.5%, 5.9%, and 2%, respectively. The majority of CTDIvol and noise deviations greater than 15% and 5%, respectively, could be explained by incorrect phantom setup or protocol selection. Barring these results, CTDIvol deviations of greater than 15% from baseline were found in 0.9% of tests and noise deviations greater than 5% from baseline were found in 1% of tests. The phantom was shown to be sensitive to changes in AEC setup, including the use of 3D, longitudinal or rotational tube current modulation. This test methodology allows for continuing performance assessment of CT AEC systems, and we recommend that this test should become part of routine CT quality assurance programs. Tolerances of ± 15% for CTDIvol and ± 5% for image noise relative to baseline values should be used. © 2016 The Authors
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2013-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated 18F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. 18F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. 18F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on 18F-FDG-PET scan when CT criteria for malignant involvement are not met. 18F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. 18F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. 18F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using 18F-FDG-PET to evaluate equivocal CT findings. As high 18F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, 18F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable 18F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET. PMID:23316478
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2012-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated (18)F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. (18)F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. (18)F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on (18)F-FDG-PET scan when CT criteria for malignant involvement are not met. (18)F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. (18)F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. (18)F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3-6 months, using (18)F-FDG-PET to evaluate equivocal CT findings. As high (18)F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, (18)F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable (18)F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET.
Söderberg, Marcus
2016-06-01
Today, computed tomography (CT) systems routinely use automatic exposure control (AEC), which modulates the tube current. However, for optimal use, there are several aspects of an AEC system that need to be considered. The purpose of this study was to provide an overview of the Siemens CARE Dose 4D AEC system, discuss practical tips and demonstrate potential pitfalls. Two adult anthropomorphic phantoms were examined using two different Siemens CT systems. When optimising the CT radiation dose and image quality, the projection angle of the localiser, patient centring, protocol selection, scanning direction and the use of protective devices requires special attention. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gamie, Sherief; El-Maghraby, Tarek
2008-01-01
Bone scintigraphy including Single Photon Emission Computed Tomography (SPECT) is known for its role in the diagnosis of low back pain disorders. Positron Emission Tomography (PET) with (18)F (Flouride-18) as a tracer can be used to carry out bone scans with improved image quality. With the addition of CT, simultaneous PET/CT fused images provide more accurate anatomical details. The objectives of this work are to assess the use of (18)F-PET/CT in patients with back pain and suspected facetogenic pain, and to find the frequency of facet arthropathy versus disc disease abnormalities. 67 patients who presented with back pain underwent routine X-ray, CT and/or MRI, which failed to identify a clear cause, were referred to (18)F-PET/CT. Among the main group, a subset of 25 patients had previous spine surgery consisting of laminectomy or discectomy (17 patients) and lumbar fusion (8 patients). The PET/CT scan was acquired on a GE VCT 64-Slice combined scanner. Imaging started 45-60 minutes after administration of 12-15 mCi (444-555 MBq) of (18)F-Fluoride. The PET scan was acquired from the skull base through the inguinal region in 3D mode at 2 minutes/bed. A lowresolution, non-contrast CT scan was also acquired for anatomic localization and attenuation correction. The (18)F-PET/CT showed abnormal uptake in the spine in 56 patients, with an overall detection ability of 84%. Facet joints as a cause of back pain was much more frequent (25 with abnormal scans). One-third (36%) of the patients showed multiple positive uptake in both facet joints and disc areas (20/56). The patients were further divided into two groups. Group A consisted of 42 patients (63%) with back pain and no previous operative procedures, and the (18)F-PET/CT showed a high sensitivity (88%) in identifying the source of pain in 37/42 patients. Group B included 25 patients (37%) with prior lumbar fusion or laminectomy, in which the PET/CT showed positive uptake in 76% (19/25 patients). (18)F-PET/CT showed positive uptake in all patients (100%) with a history of pain after lumbar fusion, while in the laminectomy subgroup only 11 cases (65%) showed positive focal uptake. (18)F-PET/CT has a potential use in evaluating adult patients with back pain. It has a promising role in identifying causes of persistent back pain following vertebral surgical interventions.
Toelly, Andrea; Bardach, Constanze; Weber, Michael; Gong, Rui; Lai, Yanbo; Wang, Pei; Guo, Yulin; Kirschke, Jan; Baum, Thomas; Gruber, Michael
2017-06-01
Aim To evaluate the differences in phantom-less bone mineral density (BMD) measurements in contrast-enhanced routine MDCT scans at different contrast phases, and to develop an algorithm for calculating a reliable BMD value. Materials and Methods 112 postmenopausal women from the age of 40 to 77 years (mean age: 57.31 years; SD 9.61) who underwent a clinically indicated MDCT scan, consisting of an unenhanced, an arterial, and a venous phase, were included. A retrospective analysis of the BMD values of the Th12 to L4 vertebrae in each phase was performed using a commercially available phantom-less measurement tool. Results The mean BMD value in the unenhanced MDCT scans was 79.76 mg/cm³ (SD 31.20), in the arterial phase it was 85.09 mg/cm³ (SD 31.61), and in the venous phase it was 86.18 mg/cm³ (SD 31.30). A significant difference (p < 0.001) was found between BMD values on unenhanced and contrast-enhanced MDCT scans. There was no significant difference between BMD values in the arterial and venous phases (p = 0.228). The following conversion formulas were calculated using linear regression: unenhanced BMD = -2.287 + 0.964 * [arterial BMD value] and -4.517 + 0.978 * [venous BMD value]. The intrarater agreement of BMD measurements was calculated with an intraclass correlation (ICC) of 0.984 and the interobserver reliability was calculated with an ICC of 0.991. Conclusion Phantom-less BMD measurements in contrast-enhanced MDCT scans result in increased mean BMD values, but, with the formulas applied in our study, a reliable BMD value can be calculated. However, the mean BMD values did not differ significantly between the arterial and venous phases. Key points · BMD can be assessed on routine CT scans using a phantom-less tool.. · i. v. contrast agent significantly elevates BMD values measured on routine CT scans.. · BMD values measured in the arterial and venous phase did not differ significantly.. · Conversion formulas were defined for the calculation of a reliable BMD.. · The phantom-less tool showed good reliability and is a promising method.. Citation Format · Toelly A, Bardach C, Weber M et al. Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool. Fortschr Röntgenstr 2017; 189: 537 - 543. © Georg Thieme Verlag KG Stuttgart · New York.
Role of CT scanning in formation evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergosh, J.L.; Dibona, B.G.
1988-01-01
The use of the computerized tomographic (CT) scanner in formation evaluation of difficult to analyze core samples has moved from the research and development phase to daily, routine use in the core-analysis laboratory. The role of the CT scanner has become increasingly important as geologists try to obtain more representative core material for accurate formation evaluation. The most common problem facing the core analyst when preparing to measure petrophysical properties is the selection of representative and unaltered core samples for routine and special core testing. Recent data have shown that heterogeneous reservoir rock can be very difficult, if not impossible,more » to assess correctly when using standard core examination procedures, because many features, such as fractures, are not visible on the core surface. Another problem is the invasion of drilling mud into the core sample. Flushing formation oil and water from the core can greatly alter the saturation and distribution of fluids and lead to serious formation evaluation problems. Because the quality and usefulness of the core date are directly tied to proper sample selection, it has become imperative that the CT scanner be used whenever possible.« less
Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji
2012-06-01
To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.
Jairam, Pushpa M; de Jong, Pim A; Mali, Willem P Th M; Gondrie, Martijn J A; Jacobs, Peter C A; van der Graaf, Yolanda
2014-08-01
To establish age and gender specific reference values for incidental coronary artery and thoracic aorta calcification scores on routine diagnostic CT scans. These reference values can aid in structured reporting and interpretation of readily available imaging data by chest CT readers in routine practice. A random sample of 1572 (57% male, median age 61 years) was taken from a study population of 12,063 subjects who underwent diagnostic chest CT for non-cardiovascular indications between January 2002 and December 2005. Coronary artery and thoracic aorta calcifications were graded using a validated ordinal score. The 25th, 50th and 75th percentile cut points were calculated for the coronary artery and thoracic aorta calcification scores within each age/gender stratum. The 75th percentile cut points for coronary artery calcification scores were higher for men than for women across all age groups, with the exception of the lowest age group. The 75th percentile cut points for thoracic aorta calcifications scores were comparable for both genders across all age groups. Based on the obtained age and gender reference values a calculation tool is provided, that allows one to enter an individual's age, gender and calcification scores to obtain the corresponding estimated percentiles. The calculation tool as provided in this study can be used in daily practice by CT readers to examine whether a subject has high calcifications scores relative to others with the same age and gender. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nogal, Pawel; Pniewska-Siark, Barbara; Lewinski, Andrzej
2008-12-01
In patients with anorexia nervosa (AN), computer tomography (CT) scanning and/or magnetic resonance imaging (MR) are usually applied to visualise trophic changes of the brain, resulting from considerable malnutrition or general cachexia of the organism. The goal of the study was an evaluation attempt of the degree of trophic changes in the central nervous system (CNS) of girls with AN, following CT scanning of the brain, together with an analysis of selected clinical and diagnostic parameters, related to the trophic changes in question. The study involved fifty-five (55) female patients with AN. Following CT of the brain - scanning of the cortical sulci - four (4) groups of the patients were identified. The following classification of lesions was applied: Group I - width of cortical sulci < 1.5 mm - standard; Group II - the presence of cortical sulci of width < 1.5 mm and 1.5-3 mm; Group III - width of cortical sulci 1.5-3 mm; Group IV - the presence of cortical sulci of width at 1.5-3 mm and > 3 mm. We did not observe any patient with AN in whom the width of all the cortical sulci was bigger than 3 mm (Group V). In all the groups, clinical parameters, as well as routine laboratory tests and selected hormonal tests, were analysed. In the performed CT scanning of the head in patients with AN, trophic changes in the CNS (as evaluated by the width of cortical sulci) were revealed in 67.3% of the patients. Among the studied groups, statistically significant differences were found for: body weight loss (BWL), the percent of BWL (BWL%), the BWL to disease duration ratio (BWL/time) and BWL%/time, serum concentrations of potassium, calcium, glucose, total protein and urea, as well as serum concentrations of LH, E2, cortisol, FT3 and FT4. The most pronounced disturbances were observed in Group IV, while the least ones - in Group I. In CT scanning of the head, trophic changes in the CNS were observed in girls with AN, measured by the width of cortical sulci. The higher severity of trophic changes in the CNS was associated with higher BWL/time ratio, higher hypercortisolemia, more enhanced hypogonadotrophic hypogonadism, disorders in the peripheral metabolism of the thyroid hormones and with the obtained values of routine laboratory tests, indicating some tendency towards hypovolemia.
Mohiy, Hussain Al; Sim, Jenny; Seeram, Euclid; Annabell, Nathan; Geso, Moshi; Mandarano, Giovanni; Davidson, Rob
2012-01-01
AIM: To measure and compare computed tomography (CT) radiation doses delivered to patients in public paediatric hospitals in Australia and Saudi Arabia. METHODS: Doses were measured for routine CT scans of the head, chest and abdomen/pelvis for children aged 3-6 years in all dedicated public paediatric hospitals in Australia and Saudi Arabia using a CT phantom measurement cylinder. RESULTS: CT doses, using the departments’ protocols for 3-6 year old, varied considerably between hospitals. Measured head doses varied from 137.6 to 528.0 mGy·cm, chest doses from 21.9 to 92.5 mGy·cm, and abdomen/pelvis doses from 24.9 to 118.0 mGy·cm. Mean head and abdomen/pelvis doses delivered in Saudi Arabian paediatric CT departments were significantly higher than those in their Australian equivalents. CONCLUSION: CT dose varies substantially across Australian and Saudi Arabian paediatric hospitals. Therefore, diagnostic reference levels should be established for major anatomical regions to standardise dose. PMID:23150767
Moore, Colin W; Wilson, Timothy D; Rice, Charles L
2017-01-01
Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Gebhard; Schmitz, Alexander; Borchardt, Dieter
The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4-10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3-15 pulses/s). Effective doses under CTmore » guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1-3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80-90%.« less
Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A
2015-08-01
Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Stationary digital chest tomosynthesis for coronary artery calcium scoring
NASA Astrophysics Data System (ADS)
Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2016-03-01
The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.
Ali Khawaja, Ranish Deedar; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Lira, Diego; Zhang, Da; Liu, Bob; Primak, Andrew; Xu, George; Kalra, Mannudeep K
2017-08-01
To determine the effect of patient off-centering on point organ radiation dose measurements in a human cadaver scanned with routine abdominal CT protocol. A human cadaver (88 years, body-mass-index 20 kg/m2) was scanned with routine abdominal CT protocol on 128-slice dual source MDCT (Definition Flash, Siemens). A total of 18 scans were performed using two scan protocols (a) 120 kV-200 mAs fixed-mA (CTDIvol 14 mGy) (b) 120 kV-125 ref mAs (7 mGy) with automatic exposure control (AEC, CareDose 4D) at three different positions (a) gantry isocenter, (b) upward off-centering and (c) downward off-centering. Scanning was repeated three times at each position. Six thimble (in liver, stomach, kidney, pancreas, colon and urinary bladder) and four MOSFET dosimeters (on cornea, thyroid, testicle and breast) were placed for calculation of measured point organ doses. Organ dose estimations were retrieved from dose-tracking software (eXposure, Radimetrics). Statistical analysis was performed using analysis of variance. There was a significant difference between the trends of point organ doses with AEC and fixed-mA at all three positions (p < 0.01). Variation in point doses between fixed-mA and AEC protocols were statistically significant across all organs at all Table positions (p < 0.001). There was up to 5-6% decrease in point doses with upward off-centering and in downward off-centering. There were statistical significant differences in point doses from dosimeters and dose-tracking software (mean difference for internal organs, 5-36% for fixed-mA & 7-48% for AEC protocols; p < 0.001; mean difference for surface organs, >92% for both protocols; p < 0.0001). For both protocols, the highest mean difference in point doses was found for stomach and lowest for colon. Measured absorbed point doses in abdominal CT vary with patient-centering in the gantry isocenter. Due to lack of consideration of patient positioning in the dose estimation on automatic software-over estimation of the doses up to 92% was reported. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hojjati, Mojgan; Van Hedent, Steven; Rassouli, Negin; Tatsuoka, Curtis; Jordan, David; Dhanantwari, Amar; Rajiah, Prabhakar
2017-11-01
To evaluate the image quality of routine diagnostic images generated from a novel detector-based spectral detector CT (SDCT) and compare it with CT images obtained from a conventional scanner with an energy-integrating detector (Brilliance iCT), Routine diagnostic (conventional/polyenergetic) images are non-material-specific images that resemble single-energy images obtained at the same radiation, METHODS: ACR guideline-based phantom evaluations were performed on both SDCT and iCT for CT adult body protocol. Retrospective analysis was performed on 50 abdominal CT scans from each scanner. Identical ROIs were placed at multiple locations in the abdomen and attenuation, noise, SNR, and CNR were measured. Subjective image quality analysis on a 5-point Likert scale was performed by 2 readers for enhancement, noise, and image quality. On phantom studies, SDCT images met the ACR requirements for CT number and deviation, CNR and effective radiation dose. In patients, the qualitative scores were significantly higher for the SDCT than the iCT, including enhancement (4.79 ± 0.38 vs. 4.60 ± 0.51, p = 0.005), noise (4.63 ± 0.42 vs. 4.29 ± 0.50, p = 0.000), and quality (4.85 ± 0.32, vs. 4.57 ± 0.50, p = 0.000). The SNR was higher in SDCT than iCT for liver (7.4 ± 4.2 vs. 7.2 ± 5.3, p = 0.662), spleen (8.6 ± 4.1 vs. 7.4 ± 3.5, p = 0.152), kidney (11.1 ± 6.3 vs. 8.7 ± 5.0, p = 0.033), pancreas (6.90 ± 3.45 vs 6.11 ± 2.64, p = 0.303), aorta (14.2 ± 6.2 vs. 11.0 ± 4.9, p = 0.007), but was slightly lower in lumbar-vertebra (7.7 ± 4.2 vs. 7.8 ± 4.5, p = 0.937). The CNR of the SDCT was also higher than iCT for all abdominal organs. Image quality of routine diagnostic images from the SDCT is comparable to images of a conventional CT scanner with energy-integrating detectors, making it suitable for diagnostic purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everitt, Sarah, E-mail: Sarah.Everitt@petermac.or; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria; Hicks, Rodney J.
2009-11-15
Purpose: To establish whether {sup 18}F-3'-deoxy-3'-fluoro-L-thymidine ({sup 18}F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial {sup 18}F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline {sup 18}F-FLT PET/CT scans were compared with routine staging {sup 18}F-FDG PET/CT scans. Two on-treatment {sup 18}F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptakemore » of {sup 18}F-FLT on PET/CT corresponded to staging {sup 18}F-FDG PET/CT abnormalities. {sup 18}F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of {sup 18}F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in {sup 18}F-FLT tumor uptake of 0.58 x baseline. A marked reduction of {sup 18}F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that {sup 18}F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of {sup 18}F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.« less
Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.
2013-01-01
Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001
Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A
2012-08-01
Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Influence of CT automatic tube current modulation on uncertainty in effective dose.
Sookpeng, S; Martin, C J; Gentle, D J
2016-01-01
Computed tomography (CT) scanners are equipped with automatic tube current modulation (ATCM) systems that adjust the current to compensate for variations in patient attenuation. CT dosimetry variables are not defined for ATCM situations and, thus, only the averaged values are displayed and analysed. The patient effective dose (E), which is derived from a weighted sum of organ equivalent doses, will be modified by the ATCM. Values for E for chest-abdomen-pelvis CT scans have been calculated using the ImPACT spreadsheet for patients on five CT scanners. Values for E resulting from the z-axis modulation under ATCM have been compared with results assessed using the same effective mAs values with constant tube currents. Mean values for E under ATCM were within ±10 % of those for fixed tube currents for all scanners. Cumulative dose distributions under ATCM have been simulated for two patient scans using single-slice dose profiles measured in elliptical and cylindrical phantoms on one scanner. Contributions to the effective dose from organs in the upper thorax under ATCM are 30-35 % lower for superficial tissues (e.g. breast) and 15-20 % lower for deeper organs (e.g. lungs). The effect on doses to organs in the abdomen depends on body shape, and they can be 10-22 % higher for larger patients. Results indicate that scan dosimetry parameters, dose-length product and effective mAs averaged over the whole scan can provide an assessment in terms of E that is sufficiently accurate to quantify relative risk for routine patient exposures under ATCM. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Puig, J; Wägner, A; Caballero, A; Rodríguez-Espinosa, J; Webb, S M
1999-01-01
Establish the minimal biochemical and radiological examinations necessary and their cost-effectiveness to accurately diagnose the etiology of Cushing's syndrome (CS). In 71 patients with CS followed between 1982 and 1997 biochemical studies (basal ACTH, 8 mg dexamethasone suppression test-HDST-, metyrapone stimulation test-MST-, or inferior petrosal sinus catheterization-IPSC-) and radiological investigations (abdominal CT scan, pituitary CT scan or MRI) were performed. Once pathology confirmed the diagnosis (48 pituitary Cushing's disease-CD, 17 adrenal neoplasms, 2 bilateral macronodular hyperplasia-BMH-, and 4 ectopic ACTH syndrome-ES-), the sensitivity, specificity, positive and negative predictive value of the different studies was calculated to establish the most accurate and cost-effective diagnostic protocol. In ACTH-independent CS (ACTH < or = 9 pg/ml; normal 9 to 54) a unilateral tumor was identified on abdominal CT scanning in 17, and BMH in 1; the other BMH had detectable ACTH (43.2 pg/ml). In ACTH-dependent CS, ACTH was > 9 pg/ml and IPSC (performed in 22) correctly identified 20 patients with CD and differentiated them from 2 with an ES (100% specificity and sensitivity). Pituitary MRI or CT did not disclose an adenoma in 41.7% of patients with CD, and was reported to exhibit a microadenoma in 2 of the 4 patients with ES. HDST and MST were of no additional use in the differentiation between CD and ES. Once CS is diagnosed low ACTH and an abdominal CT scan correctly identified all patients of adrenal origin. In ACTH-dependent CS IPSC was the best predictive test to differentiate CD from ES. BMH may behave as ACTH-dependent or independent. The other biochemical and radiological studies performed are not cost-effective and may even be misleading, and should not be routinely performed.
Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu; Kang, Shin-Hyuk
2012-12-01
The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. A total of 16 patients with large skull defects (>100 cm(2)) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters
Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-01-01
Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624
Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...
Shpilberg, Katya A; Daniel, Simon C; Doshi, Amish H; Lawson, William; Som, Peter M
2015-06-01
The purpose of this study was to determine the incidence of sinonasal anatomic variants and to assess their relation to sinonasal mucosal disease. A retrospective evaluation of 192 sinus CT examinations of patients with a clinical history of rhinosinusitis was conducted. The CT scans were evaluated for the presence of several anatomic variants of the sinonasal cavities, and the prevalence of each variant was calculated. Prevalences of all sinonasal anatomic variants were compared between patients who had minimal to no apparent imaging evidence of rhinosinusitis and those who had radiologic evidence of clinically significant rhinosinusitis. The most common normal variants were nasal septal deviation, Agger nasi cells, and extension of the sphenoid sinuses into the posterior nasal septum. We found no statistically significant difference in the prevalence of any of the studied anatomic variants between patients with minimal and those with clinically significant paranasal sinus or nasal cavity disease. Analysis of every routine CT scan of the paranasal sinuses obtained for sinusitis or rhinitis for the presence of different anatomic variants is of questionable value unless surgery is planned.
d'Amico, Andrea; Gorczewska, Izabela; Gorczewski, Kamil; Turska-d'Amico, Maria; Di Pietro, Marco
2014-01-01
In evaluating uterine cervical cancer with ¹⁸F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), there may be overlap between the FDG activity at tumor sites and nonspecific radioactivity in the urine. We evaluated the efficacy of furosemide premedication with routine hydration to obtain better contrast and less overlap between cervical cancer and the urinary bladder. We retrospectively evaluated 166 patients who had primary or relapsed cervical cancer and underwent FDG PET/CT scanning with (133 patients) or without (33 patients) furosemide premedication (10 mg intravenous, slowly injected 30 min before the scan). We calculated bladder and tumor maximum and median standardized uptake value (SUVmax and SUVmed), and overlap between tumor and urinary activity was detected visually. Overlap between urinary and tumor radioactivity was observed in 8 of 133 scans (6%) in patients who receive furosemide and in 3 of 33 scans (9%) in patients who did not receive furosemide. The SUVmax and SUVmed for the bladder were significantly lower in patients who were pretreated with furosemide (SUVmax, 6.3; SUVmed, 4.6) than patients who were not pretreated with furosemide (SUVmax, 8.8 [P ≤ 0.008]; SUVmed, 6.5 [P ≤ 0.002]). The tumor SUVmax and SUVmed were similar between the patient groups. Furosemide premedication before FDG PET/CT scanning may enable improved evaluation of activity and extension of cervical cancer.
TLD assessment of mouse dosimetry during microCT imaging
Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.
2008-01-01
Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837
Escalante, Carmen P; Gladish, Gregory W; Qiao, Wei; Zalpour, Ali; Assylbekova, Binara; Gao, Shuwei; Olejeme, Kelechi A; Richardson, Marsha N; Suarez-Almazor, Maria E
2017-05-01
Venous thromboembolism (VTE) is a major complication of cancer with recent increasing reports of incidental VTE. The objectives are to estimate the prevalence of incidental VTE in cancer patients on staging CT scans, identify common symptoms, and determine VTE recurrence in a prospective study. One thousand ninety patients were studied. Adult cancer patients scheduled for outpatient staging CT scans were eligible. VTE cases were followed for 6 months. Fisher's exact test for group comparisons of categorical variables and generalized linear modeling to estimate the prevalence of incidental VTE was used. The mean age was 58 years (range 18-87 years); 50% were male. The prevalence of incidental VTE was 1.8% (CI 1.15-2.87%). Significant symptoms in patients with VTE included fatigue (p = 0.004), stress (p = 0.0195), depression (p = 0.019), poorer quality of life (p = 0.0194), and poorer physical well-being (p = 0.0007). All the patients with VTE had at least one comorbidity (p = 0.03). No patient had recurrence within 6 months. The prevalence of incidental VTE on staging CT scans is lower than previously reported. Symptoms were associated with VTE; however, further work is needed to understand whether these are clinically relevant. No VTE recurrences were noted following 6 months.
Changizi, Vahid; Alizadeh, Mohammad Hossein; Mousavi, Akbar
2015-01-01
CT scan and nuclear medicine exams deliver a great part of medical exposures. This study examined professional radiation hazards in CT scan and nuclear medicine workers. In a cross sectional study 30 occupationally exposed workers and 7 controls (all from personnel of a laboratory) were selected. Physical dosimetry was performed for exposed workers. Blood samples were obtained from the experimental and control groups. Three culture mediums for each one were prepared in due to routine chromosome analysis using G-banding and solid stain. There were significant increased incidence of chromatid gap (ctg) and chromatid break (ctb) with mean±SD frequencies of 3±0.84 and 3.1±1.40 per 100 cells respectively in the nuclear medicine workers versus controls with mean±SD frequencies of 1.9±0.69 and 1.3±0.84 for ctg and ctb, respectively. Chromosome gaps (chrg) were higher significantly in the nuclear medicine population (2.47±0.91) than in controls (1.4±0.9) (p< 0.05). In CT scan group the ctg and ctb were increased with a mean±SD frequency of 2.7±0.79 and 2.6±0.91 per 100 cells respectively compared with control group. The mean±SD frequencies of the chrb were 2.0±0.75 and 0.86±0.690 per 100 cells for exposed workers and control group, respectively. This study showed chromosome aberrations in peripheral lymphocytes using solid stain method are reasonable biomarker reflecting personnel radiation damage.
2014-01-01
Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging. PMID:24942656
NASA Astrophysics Data System (ADS)
Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara
2018-01-01
Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.
X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU
NASA Astrophysics Data System (ADS)
Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.
2017-12-01
We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.
Campbell, Graeme M; Sophocleous, Antonia
2014-01-01
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037
Shome, Debraj; Jain, Vandana; Natarajan, Sundaram; Agrawal, Shyam; Shah, Kiran
2008-01-01
We report a 55-year-old female patient who developed a severe right-sided orbital cellulitis. Past history was significant for a boil on the right upper eyelid 2 days prior. Visual acuity at presentation was perception of light with inaccurate projection. Orbital computed tomography (CT) scan and routine blood investigations, including blood culture, urine examination, and urine culture, were performed. CT scan showed a superonasal orbital mass suggestive of an abscess. Abscess drainage followed by pus culture, sensitivity, and pulsed-field gel electrophoresis revealed community-acquired methicillin-resistant Staphylococcus aureus (CAMRSA) resistant to all antibiotics except vancomycin, cotrimoxazole, and amikacin. The condition completely resolved post antibiotic and steroid therapy. At 3 months follow-up, the vision in the right eye was 6/9. We report this case to highlight CAMRSA as a rare but virulent cause of orbital cellulitis; empiric antibiotic therapy should include coverage for CAMRSA until susceptibilities come back.
Localization of m-lodo(/sup 131/I)benzylguanidine in neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattner, R.S.; Huberty, J.P.; Engelstad, B.L.
1984-08-01
Patient survival and the therapeutic strategy for treatment of neuroblastoma are highly dependent on the stage of the tumor at presentation. For routine staging, the Children's Cancer Study group currently recommends a chest radiograph, abdominal CT scan, radionuclide bone scan, bone marrow biopsy, catecholamine metabolite estimations, and surgical determination of tumor extent. A noninvasive method for detectiton of neuroblastoma that avoids surgery and bone marrow biopsy would be a most welcome addition to the armamentarium of the pediatric oncologist. A case of neuroblastoma demonstrated with m-iodo(/sup 131/I)benzylguanidine (MIBG) scintigraphy is reported.
Chen, Li-Hong; Jin, Chao; Li, Jian-Ying; Wang, Ge-Liang; Jia, Yong-Jun; Duan, Hai-Feng; Pan, Ning; Guo, Jianxin
2018-06-06
To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.
Mastoid bone fracture presenting as unusual delayed onset of facial nerve palsy.
Hsu, Ko-Chiang; Wang, Ann-Ching; Chen, Shyi-Jou
2008-03-01
Delayed-onset facial nerve paralysis is a rather uncommon complication of a mastoid bone fracture for children younger than 10 years. We routinely arrange a cranial computed tomography (CT) for patients encountering initial loss of consciousness, severe headache, intractable vomiting, and/or any neurologic deficit arising from trauma to the head. However, minor symptomatic cranial nerve damage may be missed and the presenting symptom diagnosed as being a peripheral nerve problem. Herein, we report a case of a young boy who presented at our emergency department (ED) 3 days subsequent to his accident, complaining of hearing loss in the right ear and paralysis of the ipsilateral face. Unpredictably, we observed his cranial CT scan revealing a linear fracture of the skull over the right temporal bone involving the right mastoid air cells. The patient was treated conservatively and recovered well without any adverse neurologic consequences. We emphasize that ED physicians should arrange a cranial CT scan for a head-injured child with symptomatic facial nerve palsy, even if there are no symptoms such as severe headache, vomiting, Battle sign, and/or initial loss of consciousness.
Selecting a CT scanner for cardiac imaging: the heart of the matter.
Lewis, Maria A; Pascoal, Ana; Keevil, Stephen F; Lewis, Cornelius A
2016-09-01
Coronary angiography to assess the presence and degree of arterial stenosis is an examination now routinely performed on CT scanners. Although developments in CT technology over recent years have made great strides in improving the diagnostic accuracy of this technique, patients with certain characteristics can still be "difficult to image". The various groups will benefit from different technological enhancements depending on the type of challenge they present. Good temporal and spatial resolution, wide longitudinal (z-axis) detector coverage and high X-ray output are the key requirements of a successful CT coronary angiography (CTCA) scan. The requirement for optimal patient dose is a given. The different scanner models recommended for CTCA all excel in different aspects. The specification data presented here for these scanners and the explanation of the impact of the different features should help in making a more informed decision when selecting a scanner for CTCA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K; Zhao, W; Gomez-Cardona, D
Purpose: Automatic tube current modulation (TCM) has been widely used in modern multi-detector CT to reduce noise spatial nonuniformity and streaks to improve dose efficiency. With the advent of statistical iterative reconstruction (SIR), it is expected that the importance of TCM may diminish, since SIR incorporates statistical weighting factors to reduce the negative influence of photon-starved rays. The purpose of this work is to address the following questions: Does SIR offer the same benefits as TCM? If yes, are there still any clinical benefits to using TCM? Methods: An anthropomorphic CIRS chest phantom was scanned using a state-of-the-art clinical CTmore » system equipped with an SIR engine (Veo™, GE Healthcare). The phantom was first scanned with TCM using a routine protocol and a low-dose (LD) protocol. It was then scanned without TCM using the same protocols. For each acquisition, both FBP and Veo reconstructions were performed. All scans were repeated 50 times to generate an image ensemble from which noise spatial nonuniformity (NSN) and streak artifact levels were quantified. Monte-Carlo experiments were performed to estimate skin dose. Results: For FBP, noise streaks were reduced by 4% using TCM for both routine and LD scans. NSN values were actually slightly higher with TCM (0.25) than without TCM (0.24) for both routine and LD scans. In contrast, for Veo, noise streaks became negligible (<1%) with or without TCM for both routine and LD scans, and the NSN was reduced to 0.10 (low dose) or 0.08 (routine). The overall skin dose was 2% lower at the shoulders and more uniformly distributed across the skin without TCM. Conclusion: SIR without TCM offers superior reduction in noise nonuniformity and streaks relative to FBP with TCM. For some clinical applications in which skin dose may be a concern, SIR without TCM may be a better option. K. Li, W. Zhao, D. Gomez-Cardona: Nothing to disclose; G.-H. Chen: Research funded, General Electric Company Research funded, Siemens AG Research funded, Varian Medical Systems, Research funded, Hologic, Inc.« less
Afshar-Oromieh, Ali; Sattler, Lars Peter; Mier, Walter; Hadaschik, Boris A; Debus, Jürgen; Holland-Letz, Tim; Kopka, Klaus; Haberkorn, Uwe
2017-05-01
Although PET/CT with 68 Ga-PSMA-11 in the diagnosis of prostate cancer (PCa) is routinely performed at 1 h after injection, later scans may be beneficial because most lesions present with higher uptake and contrast. This evaluation aimed to investigate the clinical impact of additional late 68 Ga-PSMA-11 PET/CT. Methods: Between 2011 and 2016, 112 patients with PCa who underwent early (at 1 h after injection) and late (at 3 h after injection) 68 Ga-PSMA-11 PET/CT scans were retrospectively evaluated. The late scans were conducted to clarify unclear findings in early scans or to increase the probability of tumor detection in the case of negative early scans. All patients were asked to drink 1 L of water between early and late scans. In addition, 20 patients received 20 mg of furosemide before late scans. Tumor detection and radioactivity concentration within the urinary bladder were analyzed in both scans. The SUV max and contrast of 149 tumor lesions were measured in 69 patients with pathologic findings. Results: Overall, 134 lesions characteristic for PCa in 57 patients clearly presented at 1 h after injection and 147 lesions in 68 patients at 3 h after injection. Forty-three patients showed no pathologic findings. Eight patients (7.1%) showed 1 unclear finding in early scans, which could be clarified as characteristic for PCa at 3 h after injection. Four patients (3.6%) presented with 1 lesion characteristic for PCa at 3 h after injection only. Twelve patients (10.7%) presented with 12 possible PCa lesions at 1 h after injection, which, however, could not be confirmed as PCa in late scans. Two patients presented with 1 lesion characteristic for PCa at 1 h after injection, which became invisible at 3 h after injection because of low contrast. At 3 h after injection, 62.4% of the lesions demonstrated a higher SUV max and 65.1% a higher contrast than at 1 h after injection. Patients with furosemide presented with lower SUV and radioactivity concentration within the urinary bladder. Conclusion: 68 Ga-PSMA-11 PET/CT at 3 h after injection showed most lesions characteristic for PCa with a higher uptake and contrast. In addition, the radioactivity signal within the urinary bladder was lower at 3 h after injection, especially when furosemide was applied. Consequently, scans at 3 h after injection detected more tumor lesions than at 1 h after injection. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Wide coverage by volume CT: benefits for cardiac imaging
NASA Astrophysics Data System (ADS)
Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane
2005-04-01
With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec. Under the light of this study, LightSpeed VCT lends itself to be a clinically tested unique platform to achieve routine cardiac imaging.
SU-E-P-10: Establishment of Local Diagnostic Reference Levels of Routine Exam in Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, M; Wang, Y; Weng, H
Introduction National diagnostic reference levels (NDRLs) can be used as a reference dose of radiological examination can provide radiation dose as the basis of patient dose optimization. Local diagnostic reference levels (LDRLs) by periodically view and check doses, more efficiency to improve the way of examination. Therefore, the important first step is establishing a diagnostic reference level. Computed Tomography in Taiwan had been built up the radiation dose limit value,in addition, many studies report shows that CT scan contributed most of the radiation dose in different medical. Therefore, this study was mainly to let everyone understand DRL’s international status. Formore » computed tomography in our hospital to establish diagnostic reference levels. Methods and Materials: There are two clinical CT scanners (a Toshiba Aquilion and a Siemens Sensation) were performed in this study. For CT examinations the basic recommended dosimetric quantity is the Computed Tomography Dose Index (CTDI). Each exam each different body part, we collect 10 patients at least. Carried out the routine examinations, and all exposure parameters have been collected and the corresponding CTDIv and DLP values have been determined. Results: The majority of patients (75%) were between 60–70 Kg of body weight. There are 25 examinations in this study. Table 1 shows the LDRL of each CT routine examination. Conclusions: Therefore, this study would like to let everyone know DRL’s international status, but also establishment of computed tomography of the local reference levels for our hospital, and providing radiation reference, as a basis for optimizing patient dose.« less
Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu
2012-01-01
Objective The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods A total of 16 patients with large skull defects (>100 cm2) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects. PMID:23346326
Tran, Baotram; Saxe, Jonathan M; Ekeh, Akpofure Peter
2013-09-01
There are variations in cervical spine (CS) clearance protocols in neurologically intact blunt trauma patients with negative radiological imaging but persistent neck pain. Current guidelines from the current Eastern Association for the Surgery of Trauma include options of maintaining the cervical collar or obtaining either magnetic resonance imaging (MRI) or flexion-extension films (FEF). We evaluated the utility of FEF in the current era of routine computerized tomography (CT) for imaging the CS in trauma. All neurologically intact, awake, nonintoxicated patients who underwent FEF for persistent neck pain after negative CT scan of the CS at our level I trauma center over a 13-mo period were identified. Their charts were reviewed and demographic data obtained. There were 354 patients (58.5% male) with negative cervical CS CT scans who had FEF for residual neck pain. Incidental degenerative changes were seen in 37%--which did not affect their acute management. FEF were positive for possible ligamentous injury in 5 patients (1.4%). Two of these patients had negative magnetic resonance images and the other three had collars removed within 3 wk as the findings were ultimately determined to be degenerative. In the current era, where cervical CT has universally supplanted initial plain films, FEF appear to be of little value in the evaluation of persistent neck pain. Their use should be excluded from cervical spine clearance protocols in neurologically intact, awake patients. Copyright © 2013 Elsevier Inc. All rights reserved.
High (18)F-FDG uptake in urinary calculi on PET/CT: An unrecognized non-malignant accumulation.
Fu, Zhanli; Li, Ziao; Huang, Jia; Zhang, Jin; Liu, Meng; Li, Qian; Li, Yi
2016-08-01
To assess the high (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in urinary calculi on positron-emission tomography/computed tomography (PET/CT). In this study, (18)F-FDG PET/CT examinations were retrospectively reviewed from November 2013 to February 2016 in a single center, and patients with high (18)F-FDG uptake in urinary calculi were identified. The following data were collected from each patient, including age, sex, primary disease, method to verify the urinary calculus, and imaging characteristics of the calculus. A total of 2758 PET/CT studies (2567 patients) were reviewed, and 52 patients with urinary calculi were identified, in which 6 (11.5%, 6/52) patients (5 males, 1 female, age 34-73 years, median age 60.5 years) demonstrated high (18)F-FDG uptake in the urinary calculi. Among the 6 patients, 3 patients had bladder calculi, 2 patients had renal calculi, and 1 patient had both bladder and renal calculi. The size of the urinary calculi varied from sandy to 19mm on CT. The maximal Hounsfield units of the calculi ranged from 153 to 1078. The SUVmax of the calculi on the routine PET/CT scan ranged from 11.7 to 143.0. Delayed PET/CT scans were performed on 4 patients, which showed the calculi SUVmax increasing in 2 patients, while decreasing in the other 2 patients. One patient with bladder calculus underwent a follow-up PET/CT, which showed enlargement of the calculus as well as the increased SUVmax. This study shows an uncommon high (18)F-FDG uptake in urinary calculi. Recognition of this non-malignant accumulation in urinary calculi is essential for correct interpretation of PET/CT findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadava, G; Imai, Y; Hsieh, J
2014-06-15
Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammexmore » Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of Iodine contrast enhancement and potential reduction in injected contrast without using dual-energy scanning. However, in general, dual-energy scanning has unique value in material characterization and quantification, and its value cannot be discounted. GE Healthcare Employee.« less
CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...
CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca
Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is tomore » analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger number of test cases is required before application in the daily clinical routine.« less
Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao
2018-03-01
The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.
The Biomarker S100B and Mild Traumatic Brain Injury: A Meta-analysis.
Oris, Charlotte; Pereira, Bruno; Durif, Julie; Simon-Pimmel, Jeanne; Castellani, Christoph; Manzano, Sergio; Sapin, Vincent; Bouvier, Damien
2018-05-01
The usefulness of S100B has been noted as a biomarker in the management of mild traumatic brain injury (mTBI) in adults. However, S100B efficacy as a biomarker in children has previously been relatively unclear. A meta-analysis is conducted to assess the prognostic value of S100B in predicting intracerebral lesions in children after mTBI. Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, Scopus, and Google Scholar. Studies including children suffering mTBI who underwent S100B measurement and computed tomography (CT) scans were included. Of 1030 articles screened, 8 studies met the inclusion criteria. The overall pooled sensitivity and specificity were 100% (95% confidence interval [CI]: 98%-100%) and 34% (95% CI: 30%-38%), respectively. A second analysis was based on the collection of 373 individual data points from 4 studies. Sensitivity and specificity results, obtained from reference ranges in children with a sampling time <3 hours posttrauma, were 97% (95% CI: 84.2%-99.9%) and 37.5% (95% CI: 28.8%-46.8%), respectively. Only 1 child had a low S100B level and a positive CT scan result without clinically important traumatic brain injury. Only patients undergoing both a CT scan and S100B testing were selected for evaluation. S100B serum analysis as a part of the clinical routine could significantly reduce the number of CT scans performed on children with mTBI. Sampling should take place within 3 hours of trauma. Cutoff levels should be based on pediatric reference ranges. Copyright © 2018 by the American Academy of Pediatrics.
Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang
Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less
CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...
Follow-up segmentation of lung tumors in PET and CT data
NASA Astrophysics Data System (ADS)
Opfer, Roland; Kabus, Sven; Schneider, Torben; Carlsen, Ingwer C.; Renisch, Steffen; Sabczynski, Jörg
2009-02-01
Early response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. We have developed algorithms which allow the user to track both tumor volume and standardized uptake value (SUV) measurements during the therapy from series of CT and PET images, respectively. To prepare for tumor volume estimation we have developed a new technique for a fast, flexible, and intuitive 3D definition of meshes. This initial surface is then automatically adapted by means of a model-based segmentation algorithm and propagated to each follow-up scan. If necessary, manual corrections can be added by the user. To determine SUV measurements a prioritized region growing algorithm is employed. For an improved workflow all algorithms are embedded in a PET/CT therapy monitoring software suite giving the clinician a unified and immediate access to all data sets. Whenever the user clicks on a tumor in a base-line scan, the courses of segmented tumor volumes and SUV measurements are automatically identified and displayed to the user as a graph plot. According to each course, the therapy progress can be classified as complete or partial response or as progressive or stable disease. We have tested our methods with series of PET/CT data from 9 lung cancer patients acquired at Princess Margaret Hospital in Toronto. Each patient underwent three PET/CT scans during a radiation therapy. Our results indicate that a combination of mean metabolic activity in the tumor with the PET-based tumor volume can lead to an earlier response detection than a purely volume based (CT diameter) or purely functional based (e.g. SUV max or SUV mean) response measures. The new software seems applicable for easy, faster, and reproducible quantification to routinely monitor tumor therapy.
Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography
Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.
2013-01-01
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640
Dual energy CT of the chest: how about the dose?
Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C
2010-06-01
New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 mSv/mGy*cm for the Sn140/100 kVp mode and 0.0180 mSv/mGy*cm for the 120 kVp examination. Dual Energy CT is feasible without additional dose. There is no significant difference in image noise, while CNR can be doubled with optimized dual energy CT reconstructions. A restriction in collimation is required for dose-neutrality at 140/80 kVp, whereas this is not necessary at 140 Sn/100 kVp. Thus, CT can be performed routinely in Dual Energy mode without additional dose or compromises in image quality.
Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W
2018-04-01
The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less
Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu
2014-03-07
To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61-0.92 mGy for paranasal sinus CT scans, 1.10-2.45 mGy for head CT scans, and 2.63-5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.2 per 100,000 for boys and 14.2 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans.
Effective doses to patients undergoing thoracic computed tomography examinations.
Huda, W; Scalzetti, E M; Roskopf, M
2000-05-01
The purpose of this study was to investigate how x-ray technique factors and effective doses vary with patient size in chest CT examinations. Technique factors (kVp, mAs, section thickness, and number of sections) were recorded for 44 patients who underwent a routine chest CT examination. Patient weights were recorded together with dimensions and mean Hounsfield unit values obtained from representative axial CT images. The total mass of directly irradiated patient was modeled as a cylinder of water to permit the computation of the mean patient dose and total energy imparted for each chest CT examination. Computed values of energy imparted during the chest CT examination were converted into effective doses taking into account the patient weight. Patient weights ranged from 4.5 to 127 kg, and half the patients in this study were children under 18 years of age. All scans were performed at 120 kVp with a 1 s scan time. The selected tube current showed no correlation with patient weight (r2=0.06), indicating that chest CT examination protocols do not take into account for the size of the patient. Energy imparted increased with increasing patient weight, with values of energy imparted for 10 and 70 kg patients being 85 and 310 mJ, respectively. The effective dose showed an inverse correlation with increasing patient weight, however, with values of effective dose for 10 and 70 kg patients being 9.6 and 5.4 mSv, respectively. Current CT technique factors (kVp/mAs) used to perform chest CT examinations result in relatively high patient doses, which could be reduced by adjusting technique factors based on patient size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnharski, I; Carranza, C; Quails, N
Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less
Gámez-Cenzano, Cristina; Pino-Sorroche, Francisco
2014-04-01
There is a growing interest in using quantification in FDG-PET/CT in oncology, especially for evaluating response to therapy. Complex full quantitative procedures with blood sampling and dynamic scanning have been clinically replaced by the use of standardized uptake value measurements that provide an index of regional tracer uptake normalized to the administered dose of FDG. Some approaches have been proposed for assessing quantitative metabolic response, such as EORTC and PERCIST criteria in solid tumors. When using standardized uptake value in clinical routine and multicenter trials, standardization of protocols and quality control procedures of instrumentation is required. Copyright © 2014 Elsevier Inc. All rights reserved.
Triple ectopic thyroid: A rare entity
Nilegaonkar, Sujit; Naik, Chetna; Sonar, Sameer; Hirawe, Deepti
2011-01-01
Ectopic thyroid tissue is an uncommon congenital aberration. It is extremely rare to have three ectopic foci at three different sites. The thyroid scan has been used successfully to diagnose ectopic thyroid tissue. We report a case of ectopic thyroid tissue at base of tongue, another at the level of hyoid and third one as aberrant tissue at suprahyoid location in a 16 year old female who presented with swelling in front of neck. This patient was clinically diagnosed as thyroglossal cyst and was being planned for surgery. Preoperative thyroid scan helped in establishing diagnosis of ectopic thyroid which was the only functioning thyroid tissue. Thus, it prevented unnecessary surgery. Therefore it is suggested that thyroid scan and USG/CT scan must be done as routine work up in neck swellings pre operatively to avoid unnecessary surgeries. PMID:23559716
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Wiest, J.
2017-08-01
Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.
Pfister, Karin; Schierling, Wilma; Jung, Ernst Michael; Apfelbeck, Hanna; Hennersperger, Christoph; Kasprzak, Piotr M
2016-01-01
To compare standardised 2D ultrasound (US) to the novel ultrasonographic imaging techniques 3D/4D US and image fusion (combined real-time display of B mode and CT scan) for routine measurement of aortic diameter in follow-up after endovascular aortic aneurysm repair (EVAR). 300 measurements were performed on 20 patients after EVAR by one experienced sonographer (3rd degree of the German society of ultrasound (DEGUM)) with a high-end ultrasound machine and a convex probe (1-5 MHz). An internally standardized scanning protocol of the aortic aneurysm diameter in B mode used a so called leading-edge method. In summary, five different US methods (2D, 3D free-hand, magnetic field tracked 3D - Curefab™, 4D volume sweep, image fusion), each including contrast-enhanced ultrasound (CEUS), were used for measurement of the maximum aortic aneurysm diameter. Standardized 2D sonography was the defined reference standard for statistical analysis. CEUS was used for endoleak detection. Technical success was 100%. In augmented transverse imaging the mean aortic anteroposterior (AP) diameter was 4.0±1.3 cm for 2D US, 4.0±1.2 cm for 3D Curefab™, and 3.9±1.3 cm for 4D US and 4.0±1.2 for image fusion. The mean differences were below 1 mm (0.2-0.9 mm). Concerning estimation of aneurysm growth, agreement was found between 2D, 3D and 4D US in 19 of the 20 patients (95%). Definitive decision could always be made by image fusion. CEUS was combined with all methods and detected two out of the 20 patients (10%) with an endoleak type II. In one case, endoleak feeding arteries remained unclear with 2D CEUS but could be clearly localized by 3D CEUS and image fusion. Standardized 2D US allows adequate routine follow-up of maximum aortic aneurysm diameter after EVAR. Image Fusion enables a definitive statement about aneurysm growth without the need for new CT imaging by combining the postoperative CT scan with real-time B mode in a dual image display. 3D/4D CEUS and image fusion can improve endoleak characterization in selected cases but are not mandatory for routine practice.
Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G
2005-05-01
Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.
Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu
2014-01-01
Objective: To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. Methods: The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. Results: The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61–0.92 mGy for paranasal sinus CT scans, 1.10–2.45 mGy for head CT scans, and 2.63–5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.1 per 100,000 for boys and 14.1 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Conclusions: Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans. PMID:24608902
Kröner, Anke; Binnekade, Jan M; Graat, Marleen E; Vroom, Margreeth B; Stoker, Jaap; Spronk, Peter E; Schultz, Marcus J
2008-01-01
Elimination of daily-routine chest radiographs (CXRs) may influence chest computed tomography (CT) and ultrasound practice in critically ill patients. This was a retrospective cohort study including all patients admitted to a university-affiliated intensive care unit during two consecutive periods of 5 months, one before and one after elimination of daily-routine CXR. Chest CT and ultrasound studies were identified retrospectively by using the radiology department information system. Indications for and the diagnostic/therapeutic yield of chest CT and ultrasound studies were collected. Elimination of daily-routine CXR resulted in a decrease of CXRs per patient day from 1.1 +/- 0.3 to 0.6 +/- 0.4 (P < 0.05). Elimination did not affect duration of stay or mortality rates. Neither the number of chest CT studies nor the ratio of chest CT studies per patient day changed with the intervention: Before elimination of daily-routine CXR, 52 chest CT studies were obtained from 747 patients; after elimination, 54 CT studies were obtained from 743 patients. Similarly, chest ultrasound practice was not affected by the change of CXR strategy: Before and after elimination, 21 and 27 chest ultrasound studies were performed, respectively. Also, timing of chest CT and ultrasound studies was not different between the two study periods. During the two periods, 40 of 106 chest CT studies (38%) and 18 of 48 chest ultrasound studies (38%) resulted in a change in therapy. The combined therapeutic yield of chest CT and ultrasound studies did not change with elimination of daily-routine CXR. Elimination of daily-routine CXRs may not affect chest CT and ultrasound practice in a multidisciplinary intensive care unit.
NASA Astrophysics Data System (ADS)
Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias
2016-04-01
Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the scanned structures we will highlight interfaces i.e. pore-solid interface and soil-root interface. The latter will be linked to examples of fluorescent microscopy and scanning electron microscopy obtained from 2D sections revealing additional biological and chemical information in the respective microenvironment. Based on the combination of all 3D and 2D imaging data habitat features of soils can be characterized and combined with studies analyzing microbial rhizosphere colonization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milgrom, Sarah A., E-mail: samilgrom@mdanderson.org; Dong, Wenli; Akhtari, Mani
Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CTmore » scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined with the Deauville score, it might improve risk stratification and contribute to response-adapted individualization of therapy.« less
NMR Metabolomics in Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.
Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as amore » chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.« less
Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...
... cervical spine; Computed tomography scan of cervical spine; CT scan of cervical spine; Neck CT scan ... table that slides into the center of the CT scanner. Once you are inside the scanner, the ...
CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...
CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...
Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.
2015-01-01
Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902
Farolfi, Alberto; Carretta, Elisa; Luna, Corradina Della; Ragazzini, Angela; Gentili, Nicola; Casadei, Carla; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo
2014-10-31
Cancer patients undergo routine computed-tomography (CT) scans and, therefore, iodinated contrast media (ICM) administration. It is not known whether a time-dependent correlation exists between chemotherapy administration, contrast enhanced CT and onset of acute ICM-related adverse reactions (ARs). All consecutive contrast-enhanced CTs performed from 1 January 2010 to 31 December 2012 within 30 days of the last chemotherapy administration were retrospectively reviewed. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. We analyzed time to CT evaluation calculated as the time elapsed from the date of the CT performed to the date of the last chemotherapy administration. Patients were classified into 4 groups based on the antineoplastic treatment: platinum-based, taxane-based, platinum plus taxane and other group. Out of 10,472 contrast-enhanced CTs performed, 3,945 carried out on 1,878 patients were considered for the study. Forty acute ICM-related ARs (1.01%; 95% CI, 0.70-1.33) were reported. No differences were seen among immediate (within 10 days of the last chemotherapy administration), early (11-20 days) and delayed (21-30 days) CTs. Median time to CT in patients who experienced an acute ICM-related AR by treatment group was not statistically different: 20 days (range 6-30), 17 days (range 5-22), 13 days (range 8-17), 13 days (range (2-29) for the platinum, taxane, platinum plus taxane and other group, respectively (P =0.251). Our results did not reveal any correlation between time to CT and risk of acute ICM-related ARs in cancer patients.
Kim, Andrew J.; Francis, Richard; Liu, Xiaoqin; Devine, William A.; Ramirez, Ricardo; Anderton, Shane J.; Wong, Li Yin; Faruque, Fahim; Gabriel, George C.; Leatherbury, Linda; Tobita, Kimimasa; Lo, Cecilia W.
2013-01-01
Background Mice are well suited for modeling human congenital heart defects (CHD), given their four-chamber cardiac anatomy. However, mice with CHD invariably die prenatally/neonatally, causing CHD phenotypes to be missed. Therefore, we investigated the efficacy of noninvasive micro-computed tomography (micro-CT) to screen for CHD in stillborn/fetal mice. These studies were carried out using chemically mutagenized mice expected to be enriched for birth defects including CHD. Methods and Results Stillborn/fetal mice obtained from the breeding of N-ethyl-N-nitrosourea (ENU) mutagenized mice were formalin-fixed and stained with iodine, then micro-CT scanned. Those diagnosed with CHD and some CHD-negative pups were necropsied. A subset of these were further analyzed by histopathology to confirm the CHD/no-CHD diagnosis. Micro-CT scanning of 2105 fetal/newborn mice revealed an abundance of ventricular septal defects (VSD) (n=307). Overall, we observed an accuracy of 89.8% for VSD diagnosis. Outflow tract anomalies identified by micro-CT included double outlet right ventricle (n=36), transposition of the great arteries (n=14), and persistent truncus arteriosus (n=3). These were diagnosed with a 97.4% accuracy. Aortic arch anomalies also were readily detected with an overall 99.6% accuracy. This included right aortic arch (n=28) and coarctation/interrupted aortic arch (n=12). Also detected by micro-CT were atrioventricular septal defects (n=22), tricuspid hypoplasia/atresia (n=13), and coronary artery fistulas (n=16). They yielded accuracies of 98.9%, 100%, and 97.8% respectively. Conclusions Contrast enhanced micro-CT imaging in neonatal/fetal mice can reliably detect a wide spectrum of CHD. We conclude micro-CT imaging can be used for routine rapid assessments of structural heart defects in fetal/newborn mice. PMID:23759365
Are facilities following best practices of pediatric abdominal CT scans?
Nosek, Amy E; Hartin, Charles W; Bass, Kathryn D; Glick, Philip L; Caty, Michael G; Dayton, Merril T; Ozgediz, Doruk E
2013-05-01
Established guidelines for pediatric abdominal CT scans include reduced radiation dosage to minimize cancer risk and the use of intravenous (IV) contrast to obtain the highest-quality diagnostic images. We wish to determine if these practices are being used at nonpediatric facilities that transfer children to a pediatric facility. Children transferred to a tertiary pediatric facility over a 16-mo period with abdominal CT scans performed for evaluation of possible appendicitis were retrospectively reviewed for demographics, diagnosis, radiation dosage, CT contrast use, and scan quality. If CT scans were repeated, the radiation dosage between facilities was compared using Student t-test. Ninety-one consecutive children transferred from 29 different facilities had retrievable CT scan images and clinical information. Half of CT scans from transferring institutions used IV contrast. Due to poor quality or inconclusive CT scans, 19 patients required a change in management. Children received significantly less radiation at our institution compared to the referring adult facility for the same body area scanned on the same child (9.7 mSv versus 19.9 mSv, P = 0.0079). Pediatric facilities may be using less radiation per CT scan due to a heightened awareness of radiation risks and specific pediatric CT scanning protocols. The benefits of IV contrast for the diagnostic yield of pediatric CT scans should be considered to obtain the best possible image and to prevent additional imaging. Every facility performing pediatric CT scans should minimize radiation exposure, and pediatric facilities should provide feedback and education to other facilities scanning children. Copyright © 2013 Elsevier Inc. All rights reserved.
Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.
Stenner, Philip; Kachelriess, Marc
2008-11-01
DECT means acquiring the same object at two different energies, respectively two different tube voltages U1 and U2. The raw data q1 and q2 undergo a decomposition process of type p = p(q1,q2). The raw data p are reconstructed to obtain monochromatic images of the attenuation mu, of the object density rho, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D(alpha) the authors determine the optimal tube current curves I1(alpha) and I2(alpha), with alpha being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I1(alpha) and I2(alpha) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate mu-images and density images were evaluated. Image quality was compared to standard scans at U0=120 kV (clinical CT) and U0=45 kV (micro-CT) that were taken at the same dose level (D0=D1 + D2) and identical spatial resolution. Appropriate choice of p(q1, q2) allows to obtain mu-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to mu-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with mu-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular mu-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.
Dual energy exposure control (DEEC) for computed tomography: Algorithm and simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenner, Philip; Kachelriess, Marc
2008-11-15
DECT means acquiring the same object at two different energies, respectively two different tube voltages U{sub 1} and U{sub 2}. The raw data q{sub 1} and q{sub 2} undergo a decomposition process of type p=p(q{sub 1},q{sub 2}). The raw data p are reconstructed to obtain monochromatic images of the attenuation {mu}, of the object density {rho}, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)].more » Given p and a raw data-based projection-wise patient dose estimation D({alpha}) the authors determine the optimal tube current curves I{sub 1}({alpha}) and I{sub 2}({alpha}), with {alpha} being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I{sub 1}({alpha}) and I{sub 2}({alpha}) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate {mu}-images and density images were evaluated. Image quality was compared to standard scans at U{sub 0}=120 kV (clinical CT) and U{sub 0}=45 kV (micro-CT) that were taken at the same dose level (D{sub 0}=D{sub 1}+D{sub 2}) and identical spatial resolution. Appropriate choice of p(q{sub 1},q{sub 2}) allows to obtain {mu}-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to {mu}-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with {mu}-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular {mu}-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.« less
Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.
Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M
2015-12-01
Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kong, Victor Y; Weale, Ross D; Sartorius, Benn; Bruce, John L; Laing, Grant L; Clarke, Damian L
2018-04-25
Routine immobilisation of the cervical spine in trauma has been a long established practice. Very little is known in regard to its appropriateness in the specific setting of isolated traumatic brain injury secondary to gunshot wounds (GSWs). A retrospective study was conducted over a 5 year period (January 2010 to December 2014) at the Pietermaritzburg Metropolitan Trauma Service, Pietermaritzburg, South Africa in order to determine the actual incidence of concomitant cervical spine injury (CSI) in the setting of isolated cerebral GSWs. During the 5 year study period, 102 patients were included. Ninety-two per cent (94/102) were male and the mean age was 29 years. Ninety-eight per cent of the injuries were secondary to low velocity GSWs. Twenty-seven (26%) patients had cervical collar placed by the Emergency Medical Service. The remaining 75 patients had their cervical collar placed in the resuscitation room. Fifty-five (54%) patients had a Glasgow Coma Scale (GCS) of 15 and underwent plain radiography, all of which were normal. Clearance of cervical spine based on normal radiography combined with clinical assessment was achieved in all 55 (100%) patients. The remaining 47 patients whose GCS was <15 all underwent a computed tomography (CT) scan of their cervical spine and brain. All 47 CT scans of the cervical spine were normal and there was no detectable bone or soft tissue injury noted. Patients who sustain an isolated low velocity cerebral GSW are highly unlikely to have concomitant CSI. Routine cervical spine immobilisation is unnecessary, and efforts should be directed at management strategies aiming to prevent secondary brain injury. Further studies are required to address the issue in the setting of high velocity GSWs. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
De Placido, S; De Angelis, C; Giuliano, M; Pizzi, C; Ruocco, R; Perrone, V; Bruzzese, D; Tommasielli, G; De Laurentiis, M; Cammarota, S; Arpino, G; Arpino, G
2017-03-14
Although guidelines do not recommend computerised tomography (CT), positron emission tomography (PET) or magnetic resonance imaging (MRI) for the staging or follow-up of asymptomatic patients with non-metastatic breast cancer, they are often requested in routine clinical practice. The aim of this study was to determine the staging and follow-up patterns, and relative costs in a large population of breast cancer patients living and treated in a Southern Italian region. We analysed the clinical computerised information recorded by 567 primary-care physicians assisting about 650 000 inhabitants in the Campania region. Patients with non-metastatic breast cancer were identified and divided into calendar years from 2001 to 2010. The number of diagnostic tests prescribed per 100 patients (N/Pts) and the mean cost per patient was determined 3 months before diagnosis and up to 1 year after diagnosis. Costs are expressed in constant 2011 euros. We identified 4680 newly diagnosed cases of asymptomatic non-metastatic breast cancer. N/Pts increased significantly (P<0.0001) from 2001 to 2010. The mean number of prescribed mammograms, bone scans, abdominal ultrasound and chest X-rays ('routine tests'), and costs was unchanged. However, the number of CT, PET scans and MRI ('new tests')prescriptions almost quadrupled and the mean cost per patient related to these procedures significantly increased from [euro ]357 in 2001 to [euro ]830 in 2010 (P<0.0001). New test prescriptions and relative costs significantly and steadily increased throughout the study period. At present there is no evidence that the delivery of new tests to asymptomatic patients improves breast cancer outcome. Well-designed clinical trials are urgently needed to shed light on the impact of these tests on clinical outcome and overall survival.
... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...
Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S
2011-10-01
Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R
2013-10-01
In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.
An open library of CT patient projection data
NASA Astrophysics Data System (ADS)
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia
2016-03-01
Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.
Öğrenci, Ahmet; Koban, Orkun; Ekşi, Murat; Yaman, Onur; Dalbayrak, Sedat
2017-01-01
AIM: This study aimed to make a retrospective analysis of pediatric patients with head traumas that were admitted to one hospital setting and to make an analysis of the patients for whom follow-up CT scans were obtained. METHODS: Pediatric head trauma cases were retrospectively retrieved from the hospital’s electronic database. Patients’ charts, CT scans and surgical notes were evaluated by one of the authors. Repeat CT scans for operated patients were excluded from the total number of repeat CT scans. RESULTS: One thousand one hundred and thirty-eight pediatric patients were admitted to the clinic due to head traumas. Brain CT scan was requested in 863 patients (76%) in the cohort. Follow-up brain CT scans were obtained in 102 patients. Additional abnormal finding requiring surgical intervention was observed in only one patient (isolated 4th ventricle hematoma) on the control CTs (1% of repeat CT scans), who developed obstructive hydrocephalus. None of the patients with no more than 1 cm epidural hematoma in its widest dimension and repeat CT scans obtained 1.5 hours after the trauma necessitated surgery. CONCLUSION: Follow-up CT scans changed clinical approach in only one patient in the present series. When ordering CT scan in the follow-up of pediatric traumas, benefits and harms should be weighted based upon time interval from trauma onset to initial CT scan and underlying pathology. PMID:29104682
Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F
2008-09-01
lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.
Nguyen, Timothy K; Senan, Suresh; Bradley, Jeffery D; Franks, Kevin; Giuliani, Meredith; Guckenberger, Matthias; Landis, Mark; Loo, Billy W; Louie, Alexander V; Onishi, Hiroshi; Schmidt, Heidi; Timmerman, Robert; Videtic, Gregory M M; Palma, David A
Imaging after stereotactic ablative radiation therapy (SABR) for early-stage non-small cell lung cancer can detect recurrences and second primary lung cancers; however, the optimal follow-up practice of these patients remains unclear. We sought to establish consensus recommendations for surveillance after SABR. International opinion leaders in thoracic radiation oncology and radiology were invited to participate (n = 31), with 11 accepting (9 radiation oncologists, 2 radiologists). Consensus-building was achieved using a 3-round Delphi process. Participants rated their agreement/disagreement with statements using a 5-point Likert scale. An a priori threshold of ≥75% agreement/disagreement was required for consensus. A 100% response rate was achieved and final consensus statements were approved by all participants. The consensus statements were: (1.1) thoracic computed tomography (CT) scans should be ordered routinely in follow-up; (1.2) if there is a suspicion for local recurrence (LR), fludeoxyglucose positron emission tomography/CT scans are strongly recommended. Otherwise, there is limited evidence to guide routine use of fludeoxyglucose positron emission tomography /CT; (1.3) CT imaging is not recommended at 6 weeks, but is recommended at months 3, 6, and 12 in year 1 and then every 6 months in year 2 and annually in years 3 through 5; (1.4) after 5 years, CT imaging should continue, although no consensus was reached regarding the frequency. (2.1) Response Evaluation Criteria in Solid Tumors 1.1 criteria are not sufficient for detecting LR; (2.2) a formal scoring system, informed by validated data, should be used to classify high-risk imaging features predictive of LR; (2.3) CT findings suspicious for LR include: infiltration into adjacent structures, bulging margins, sustained growth, mass-like growth, spherical growth, craniocaudal growth, and loss of air bronchograms. (3) Salvage therapy without pathologic confirmation of recurrence is acceptable if imaging findings are highly suspicious and a biopsy is not safe/feasible or if an attempted biopsy was nondiagnostic. These guidelines provide international expert consensus on areas of uncertainty in the management of early-stage non-small cell lung cancer patients after SABR. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Utility of CT-compatible EEG electrodes in critically ill children.
Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S
2015-04-01
Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.
Johnstone, Emily; Wyatt, Jonathan J; Henry, Ann M; Short, Susan C; Sebag-Montefiore, David; Murray, Louise; Kelly, Charles G; McCallum, Hazel M; Speight, Richard
2018-01-01
Magnetic resonance imaging (MRI) offers superior soft-tissue contrast as compared with computed tomography (CT), which is conventionally used for radiation therapy treatment planning (RTP) and patient positioning verification, resulting in improved target definition. The 2 modalities are co-registered for RTP; however, this introduces a systematic error. Implementing an MRI-only radiation therapy workflow would be advantageous because this error would be eliminated, the patient pathway simplified, and patient dose reduced. Unlike CT, in MRI there is no direct relationship between signal intensity and electron density; however, various methodologies for MRI-only RTP have been reported. A systematic review of these methods was undertaken. The PRISMA guidelines were followed. Embase and Medline databases were searched (1996 to March, 2017) for studies that generated synthetic CT scans (sCT)s for MRI-only radiation therapy. Sixty-one articles met the inclusion criteria. This review showed that MRI-only RTP techniques could be grouped into 3 categories: (1) bulk density override; (2) atlas-based; and (3) voxel-based techniques, which all produce an sCT scan from MR images. Bulk density override techniques either used a single homogeneous or multiple tissue override. The former produced large dosimetric errors (>2%) in some cases and the latter frequently required manual bone contouring. Atlas-based techniques used both single and multiple atlases and included methods incorporating pattern recognition techniques. Clinically acceptable sCTs were reported, but atypical anatomy led to erroneous results in some cases. Voxel-based techniques included methods using routine and specialized MRI sequences, namely ultra-short echo time imaging. High-quality sCTs were produced; however, use of multiple sequences led to long scanning times increasing the chances of patient movement. Using nonroutine sequences would currently be problematic in most radiation therapy centers. Atlas-based and voxel-based techniques were found to be the most clinically useful methods, with some studies reporting dosimetric differences of <1% between planning on the sCT and CT and <1-mm deviations when using sCTs for positional verification. Copyright © 2017 Elsevier Inc. All rights reserved.
CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...
Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J
2017-03-01
The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.
X-ray cone-beam computed tomography: principles, applications, challenges and solutions
NASA Astrophysics Data System (ADS)
Noo, Frederic
2010-03-01
In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.
Relapse surveillance in AFP-positive hepatoblastoma: re-evaluating the role of imaging.
Rojas, Yesenia; Guillerman, R Paul; Zhang, Wei; Vasudevan, Sanjeev A; Nuchtern, Jed G; Thompson, Patrick A
2014-10-01
Children with hepatoblastoma routinely undergo repetitive surveillance imaging, with CT scans for several years after therapy, increasing the risk of radiation-induced cancer. The purpose of this study was to determine the utility of surveillance CT scans compared to serum alpha-fetoprotein (AFP) levels for the detection of hepatoblastoma relapse. This was a retrospective study of all children diagnosed with AFP-positive hepatoblastoma from 2001 to 2011 at a single institution. Twenty-six children with hepatoblastoma were identified, with a mean age at diagnosis of 2 years 4 months (range 3 months to 11 years). Mean AFP level at diagnosis was 132,732 ng/ml (range 172.8-572,613 ng/ml). Five of the 26 children had hepatoblastoma relapse. A total of 105 imaging exams were performed following completion of therapy; 88 (84%) CT, 8 (8%) MRI, 5 (5%) US and 4 (4%) FDG PET/CT exams. A total of 288 alpha-fetoprotein levels were drawn, with a mean of 11 per child. The AFP level was elevated in all recurrences and no relapses were detected by imaging before AFP elevation. Two false-positive AFP levels and 15 false-positive imaging exams were detected. AFP elevation was found to be significantly more specific than PET/CT and CT imaging at detecting relapse. We recommend using serial serum AFP levels as the preferred method of surveillance in children with AFP-positive hepatoblastoma, reserving imaging for the early postoperative period, for children at high risk of relapse, and for determination of the anatomical site of clinically suspected recurrence. Given the small size of this preliminary study, validation in a larger patient population is warranted.
Xiang, Joe; Zhang, Di; Shi, Xiuquan; Yan, Xueqiang; Zhu, Huiping
2015-01-01
Proper diagnosis and treatment of traumatic brain injury (TBI) in children is becoming an increasingly problematic issue in China. This study investigated Chinese clinicians to provide information about their knowledge and experiences in diagnosis and treatment of pediatric TBI. We conducted a questionnaire survey among clinicians in the emergency departments and neurosurgery departments at 9 major hospitals in China. The questionnaire included demographic information, and knowledge and experiences regarding the diagnosis and treatment of pediatric TBI. A total of 235 clinicians completed questionnaires. 43.8% of the surveyed clinicians reported children with only scalp hematoma without any other signs and symptoms of concussion as TBI cases. Most clinicians (85.1%) reported no existing uniform diagnostic criteria for children with TBI in China. The majority of clinicians (91.9%) reported that CT scans were performed in all patients with suspected head injury as a routine procedure in their hospitals. Only 20.9% of clinicians believed that radiation from CT scanning may increase cancer risk in children. About 33.6% of the clinicians reported that they ordered CT scans to investigate suspected head injury due to the poor doctor-patient relationship in China, and to protect themselves against any medical lawsuits in the future. About 80% of the clinicians reported that there are no existing pediatric TBI treatment guidelines in China. Instead a senior doctor’s advice is the most reported guidelines regarding treating pediatric TBI (66.0%). All of the surveyed clinicians reported that the lack of diagnosis and/or treatment standard is the biggest problem in effectively diagnosing and treating pediatric TBI in China. Developing guidelines for the diagnosis and treatment of children with TBI is a high priority in China. The extremely high usage of CT for pediatric TBI in China suggests that it is important to establish evidence-based clinical decision rules to help Chinese clinicians make diagnostic and therapeutic decisions during their practice in order to identify children unlikely to have a clinically-important TBI who can be safely discharged without a CT scan. PMID:26565400
NASA Astrophysics Data System (ADS)
Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.
2016-09-01
The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, 8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.
Selective Nonoperative Management of Penetrating Abdominal Solid Organ Injuries
Demetriades, Demetrios; Hadjizacharia, Pantelis; Constantinou, Costas; Brown, Carlos; Inaba, Kenji; Rhee, Peter; Salim, Ali
2006-01-01
Objective: To assess the feasibility and safety of selective nonoperative management in penetrating abdominal solid organ injuries. Background: Nonoperative management of blunt abdominal solid organ injuries has become the standard of care. However, routine surgical exploration remains the standard practice for all penetrating solid organ injuries. The present study examines the role of nonoperative management in selected patients with penetrating injuries to abdominal solid organs. Patients and Methods: Prospective, protocol-driven study, which included all penetrating abdominal solid organ (liver, spleen, kidney) injuries admitted to a level I trauma center, over a 20-month period. Patients with hemodynamic instability, peritonitis, or an unevaluable abdomen underwent an immediate laparotomy. Patients who were hemodynamically stable and had no signs of peritonitis were selected for further CT scan evaluation. In the absence of CT scan findings suggestive of hollow viscus injury, the patients were observed with serial clinical examinations, hemoglobin levels, and white cell counts. Patients with left thoracoabdominal injuries underwent elective laparoscopy to rule out diaphragmatic injury. Outcome parameters included survival, complications, need for delayed laparotomy in observed patients, and length of hospital stay. Results: During the study period, there were 152 patients with 185 penetrating solid organ injuries. Gunshot wounds accounted for 70.4% and stab wounds for 29.6% of injuries. Ninety-one patients (59.9%) met the criteria for immediate operation. The remaining 61 (40.1%) patients were selected for CT scan evaluation. Forty-three patients (28.3% of all patients) with 47 solid organ injuries who had no CT scan findings suspicious of hollow viscus injury were selected for clinical observation and additional laparoscopy in 2. Four patients with a “blush” on CT scan underwent angiographic embolization of the liver. Overall, 41 patients (27.0%), including 18 cases with grade III to V injuries, were successfully managed without a laparotomy and without any abdominal complication. Overall, 28.4% of all liver, 14.9% of kidney, and 3.5% of splenic injuries were successfully managed nonoperatively. Patients with isolated solid organ injuries treated nonoperatively had a significantly shorter hospital stay than patients treated operatively, even though the former group had more severe injuries. In 3 patients with failed nonoperative management and delayed laparotomy, there were no complications. Conclusions: In the appropriate environment, selective nonoperative management of penetrating abdominal solid organ injuries has a high success rate and a low complication rate. PMID:16998371
Low Yield of Paired Head and Cervical Spine Computed Tomography in Blunt Trauma Evaluation.
Graterol, Joseph; Beylin, Maria; Whetstone, William D; Matzoll, Ashleigh; Burke, Rennie; Talbott, Jason; Rodriguez, Robert M
2018-06-01
With increased computed tomography (CT) utilization, clinicians may simultaneously order head and neck CT scans, even when injury is suspected only in one region. We sought to determine: 1) the frequency of simultaneous ordering of a head CT scan when a neck CT scan is ordered; 2) the yields of simultaneously ordered head and neck CT scans for clinically significant injury (CSI); and 3) whether injury in one region is associated with a higher rate of injury in the other. This was a retrospective study of all adult patients who received neck CT scans (and simultaneously ordered head CT scans) as part of their blunt trauma evaluation at an urban level 1 trauma center in 2013. An expert panel determined CSI of head and neck injuries. We defined yield as number of patients with injury/number of patients who had a CT scan. Of 3223 patients who met inclusion criteria, 2888 (89.6%) had simultaneously ordered head and neck CT scans. CT yield for CSI in both the head and neck was 0.5% (95% confidence interval [CI] 0.3-0.8%), and the yield for any injury in both the head and neck was 1.4% (95% CI 1.0-1.8%). The yield for CSI in one region was higher when CSI was seen in the other region. The yield of CT for CSI in both the head and neck concomitantly is very low. When injury is seen in one region, there is higher likelihood of injury in the other. These findings argue against paired ordering of head and neck CT scans and suggest that CT scans should be ordered individually or when injury is detected in one region. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Morita, Syoichi; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi
2015-03-01
This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computedtomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on anatomical definition. The proposed approach combines several individual detections of organ-location with a groupwise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based template matching and generalized Hough transform-based point-distribution estimation are used in the detection and calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed that no significant difference between the anatomy partitioning results from those two databases except regarding the spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing localization tasks for major organs and tissues on CT images scanned using different protocols.
Khattab, Mona; Walker, Dale M; Albertini, Richard J; Nicklas, Janice A; Lundblad, Lennart K A; Vacek, Pamela M; Walker, Vernon E
2017-08-01
The use of computed tomography (CT scans) has increased dramatically in recent decades, raising questions about the long-term safety of CT-emitted x-rays especially in infants who are more sensitive to radiation-induced effects. Cancer risk estimates for CT scans typically are extrapolated from models; therefore, new approaches measuring actual DNA damage are needed for improved estimations. Hence, changes in a dosimeter of DNA double-strand breaks, micronucleated reticulocytes (MN-RETs) measured by flow cytometry, were investigated in mice and infants exposed to CT scans. In male C57BL/6N mice (6-8 weeks-of-age), there was a dose-related increase in MN-RETs in blood samples collected 48h after CT scans delivering targeted exposures of 1-130 cGy x-rays (n=5-10/group, r=0.994, p=0.01), with significant increases occurring at exposure levels as low as 0.83 cGy x-rays compared to control mice (p=0.002). In paired blood specimens from infants with no history of a prior CT scan, there was no difference in MN-RET frequencies found 2h before (mean, 0.10±0.07%) versus 48h after (mean, 0.11±0.05%) a scheduled CT scan/cardiac catheterization. However, in infants having prior CT scan(s), MN-RET frequencies measured at 48h after a scheduled CT scan (mean=0.22±0.12%) were significantly higher than paired baseline values (mean, 0.17±0.07%; p=0.032). Increases in baseline (r=0.722, p<0.001) and 48-h post exposure (r=0.682, p<0.001) levels of MN-RETs in infants with a history of prior CT scans were significantly correlated with the number of previous CT scans. These preliminary findings suggest that prior CT scans increase the cellular responses to subsequent CT exposures. Thus, further investigation is needed to characterize the potential cancer risk from single versus repeated CT scans or cardiac catheterizations in infants. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, W; Wagar, M; Lyatskaya, Y
2016-06-15
Purpose: Mastectomy patients with breast reconstruction usually have a magnetic injection port inside the breast during radiation treatments. The magnet has a very high CT number and produces severe streaking artifact across the entire breast in CT images. Our routine strategy is to replace the artifact volumes with uniform water, and it is necessary to validate that the planned dose, with such an artifact correction, is sufficiently accurate. Methods: A phantom was made with a gelatine-filled container sitting on a Matrixx detector, and the magnetic port was inserted into gelatine with specific depths and orientations. The phantom was scanned onmore » a CT simulator and imported into Eclipse for treatment planning. The dose distribution at the Matrixx detector plane was calculated for raw CT images and artifact-corrected images. The treatment beams were then delivered to the phantom and the dose distributions were acquired by the Matrixx detector. Gamma index was calculated to compare the planned dose and the measurement. Results: Three field sizes (10×10, 15×15 and 20×20) and two depths (50mm and 20mm) were investigated. With the 2%/2mm or 3%/3mm criteria, several points (6–10) failed in the plan for raw CT images, and the number of failure was reduced close to zero for the corrected CT images. An assignment of 10,000 HU to the magnet further reduced the dose error directly under the magnet. Conclusion: It is validated that our routine strategy of artifact correction can effectively reduce the number of failures in the detector plane. It is also recommended to set the magnet with a CT number of 10,000HU, which could potentially improve the dose calculation at the points right behind the magnet.« less
McGrew, Patrick R; Chestovich, Paul J; Fisher, Jay D; Kuhls, Deborah A; Fraser, Douglas R; Patel, Purvi P; Katona, Chad W; Saquib, Syed; Fildes, John J
2018-05-04
Computed Tomography (CT) scans are useful in the evaluation of trauma patients, but are costly and pose risks from ionizing radiation in children. Recent literature has demonstrated the utility of CT scan guidelines in the management of pediatric trauma. This study objective is to review our treatment of pediatric blunt trauma patients and evaluate CT utilization before and after CT-guideline implementation. Our Pediatric Level 2 Trauma Center (TC) implemented a CT scan practice guideline for pediatric trauma patients in March 2014. The guideline recommended for or against CT of the head and abdomen/pelvis utilizing published criteria from the Pediatric Emergency Care and Research Network (PECARN). There was no chest CT guideline. We reviewed all pediatric trauma patients for CT scans obtained during initial evaluation before and after guideline implementation, excluding inpatient scans. The Trauma Registry Database was queried to include all pediatric (age<15) trauma patients seen in our TC from 2010-2016, excluding penetrating mechanism and deaths in the TC. Scans were considered positive if organ injury was detected. Primary outcome was the proportion of patients undergoing CT and percent positive CTs. Secondary outcomes were hospital length of stay (LOS), readmissions, and mortality. Categorical and continuous variables were analyzed with Chi-square and Wilcoxon rank-sum tests, respectively. P<0.05 was considered significant. We identified 1934 patients: 1106 pre- and 828 post-guideline. Absolute reductions in head, chest, and abdomen/pelvis CT scans were 17.7%, 11.5%, and 18.8% respectively (p<0.001). Percent positive head CTs were equivalent, but percent positive chest and abdomen CT increased after implementation. Secondary outcomes were unchanged. Implementation of a pediatric CT guideline significantly decreases CT utilization, reducing the radiation exposure without a difference in outcome. Trauma centers treating pediatric patients should adopt similar guidelines to decrease unnecessary CT scans in children. Level IV, Therapeutic Study.
Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R
2010-05-01
Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.
... and intestine using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses a ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate enema, ...
Kornmann, Verena N N; Treskes, Nikki; Hoonhout, Lilian H F; Bollen, Thomas L; van Ramshorst, Bert; Boerma, Djamila
2013-04-01
Timely diagnosis of anastomotic leakage after colorectal surgery and adequate treatment is important to reduce morbidity and mortality. Abdominal computed tomography (CT) scanning is the diagnostic tool of preference, but its value may be questionable in the early postoperative period. The accuracy of CT scanning for the detection of anastomotic leakage and its role in timing of intervention was evaluated. A systematic literature search was performed. Relevant publications were identified from four electronic databases between 1990 and 2011. Inclusion criteria were human studies, studies published in English or Dutch, colorectal surgery with primary anastomosis, and abdominal CT scan with reported outcome for the detection of anastomotic leakage. Exclusion criteria were cohort of fewer than five patients, other gastrointestinal surgery, no anastomosis, and radiological imaging other than CT. Eight studies, including 221 abdominal CT scans, fulfilled the inclusion criteria. Overall, the methodological quality of the studies was poor. The overall sensitivity of CT scanning to diagnose leakage was 0.68 (95 % confidence interval 0.59-0.75) for colonic resection. Data on the sequelae of false-negative CT scanning was not available. There is limited good-quality evidence to determine the value of CT scans in the detection of anastomotic leakage. To prevent delay in diagnosis and appropriate treatment of anastomotic leakage, the relatively low sensitivity of CT scanning must be taken into account.
Effect of staff training on radiation dose in pediatric CT.
Hojreh, Azadeh; Weber, Michael; Homolka, Peter
2015-08-01
To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p<0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p>0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Smilg, Jacqueline S; Berger, Lee R
2015-01-01
In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.
Smilg, Jacqueline S.; Berger, Lee R.
2015-01-01
In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application. PMID:26684299
NASA Astrophysics Data System (ADS)
Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.
2017-05-01
Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.
Thurley, Pete; Crookdake, Jonathan; Norwood, Mark; Sturrock, Nigel; Fogarty, Andrew W
2018-02-01
Avoiding unnecessary radiation exposure is a clinical priority in children and young adults. We aimed to explore demand for CT scans in a busy general hospital with particular interest in the period of transition from paediatric to adult medical care. We used an observational epidemiological study based in a teaching hospital. Data were obtained on numbers and rates of CT scans from 2009 to 2015. The main outcome was age-stratified rates of receiving a CT scan. There were a total of 262,221 CT scans. There was a large step change in the rate of CT scans over the period of transition from paediatric to adult medical care. Individuals aged 10-15 years experienced 6.7 CT scans per 1000 clinical episodes, while those aged 19-24 years experienced 19.8 CT scans per 1000 clinical episodes (p < 0.001). This difference remained significant for all sensitivity analyses. There is almost a threefold increase in rates of CT scans in the two populations before and after the period of transition from paediatric to adult medical care. While we were unable to adjust for case mix or quantify radiation exposure, paediatricians' diagnostic strategies to minimize radiation exposure may have clinical relevance for adult physicians, and hence enable reductions in ionizing radiation to patients. Advances in knowledge: A large increase in rates of CT scans occurs during adolescence, and considering paediatricians' strategies to minimize radiation exposure may enable reductions to all patients.
Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, Warren D.; Kwok, Young; Deyoung, Chad
2005-12-15
Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less
Automatic lung nodule classification with radiomics approach
NASA Astrophysics Data System (ADS)
Ma, Jingchen; Wang, Qian; Ren, Yacheng; Hu, Haibo; Zhao, Jun
2016-03-01
Lung cancer is the first killer among the cancer deaths. Malignant lung nodules have extremely high mortality while some of the benign nodules don't need any treatment .Thus, the accuracy of diagnosis between benign or malignant nodules diagnosis is necessary. Notably, although currently additional invasive biopsy or second CT scan in 3 months later may help radiologists to make judgments, easier diagnosis approaches are imminently needed. In this paper, we propose a novel CAD method to distinguish the benign and malignant lung cancer from CT images directly, which can not only improve the efficiency of rumor diagnosis but also greatly decrease the pain and risk of patients in biopsy collecting process. Briefly, according to the state-of-the-art radiomics approach, 583 features were used at the first step for measurement of nodules' intensity, shape, heterogeneity and information in multi-frequencies. Further, with Random Forest method, we distinguish the benign nodules from malignant nodules by analyzing all these features. Notably, our proposed scheme was tested on all 79 CT scans with diagnosis data available in The Cancer Imaging Archive (TCIA) which contain 127 nodules and each nodule is annotated by at least one of four radiologists participating in the project. Satisfactorily, this method achieved 82.7% accuracy in classification of malignant primary lung nodules and benign nodules. We believe it would bring much value for routine lung cancer diagnosis in CT imaging and provide improvement in decision-support with much lower cost.
The measurement of liver fat from single-energy quantitative computed tomography scans
Cheng, Xiaoguang; Brown, J. Keenan; Guo, Zhe; Zhou, Jun; Wang, Fengzhe; Yang, Liqiang; Wang, Xiaohong; Xu, Li
2017-01-01
Background Studies of soft tissue composition using computed tomography (CT) scans are often semi-quantitative and based on Hounsfield units (HU) measurements that have not been calibrated with a quantitative CT (QCT) phantom. We describe a study to establish the water (H2O) and dipotassium hydrogen phosphate (K2HPO4) basis set equivalent densities of fat and fat-free liver tissue. With this information liver fat can be accurately measured from any abdominal CT scan calibrated with a suitable phantom. Methods Liver fat content was measured by comparing single-energy QCT (SEQCT) HU measurements of the liver with predicted HU values for fat and fat-free liver tissue calculated from their H2O and K2HPO4 equivalent densities and calibration data from a QCT phantom. The equivalent densities of fat were derived from a listing of its constituent fatty acids, and those of fat-free liver tissue from a dual-energy QCT (DEQCT) study performed in 14 healthy Chinese subjects. This information was used to calculate liver fat from abdominal SEQCT scans performed in a further 541 healthy Chinese subjects (mean age 62 years; range, 31–95 years) enrolled in the Prospective Urban Rural Epidemiology (PURE) Study. Results The equivalent densities of fat were 941.75 mg/cm3 H2O and –43.72 mg/cm3 K2HPO4, and for fat-free liver tissue 1,040.13 mg/cm3 H2O and 21.34 mg/cm3 K2HPO4. Liver fat in the 14 subjects in the DEQCT study varied from 0–17.9% [median: 4.5%; interquartile range (IQR): 3.0–7.9%]. Liver fat in the 541 PURE study subjects varied from –0.3–29.9% (median: 4.9%; IQR: 3.4–6.9%). Conclusions We have established H2O and K2HPO4 equivalent densities for fat and fat-free liver tissue that allow a measurement of liver fat to be obtained from any abdominal CT scan acquired with a QCT phantom. Although radiation dose considerations preclude the routine use of QCT to measure liver fat, the method described here facilitates its measurement in patients having CT scans performed for other purposes. Further studies comparing the results with magnetic resonance (MR) measurements of liver fat are required to validate the method as a useful clinical tool. PMID:28811994
New prospective 4D-CT for mitigating the effects of irregular respiratory motion
NASA Astrophysics Data System (ADS)
Pan, Tinsu; Martin, Rachael M.; Luo, Dershan
2017-08-01
Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.
Optimising μCT imaging of the middle and inner cat ear.
Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A
2012-04-01
This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT. © 2011 Blackwell Verlag GmbH.
Radiation exposure from Chest CT: Issues and Strategies
Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.
2004-01-01
Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885
NASA Astrophysics Data System (ADS)
Li, Xiang; Segars, W. Paul; Samei, Ehsan
2014-08-01
Body CT scans are routinely performed using tube-current-modulation (TCM) technology. There is notable variability across CT manufacturers in terms of how TCM technology is implemented. Some manufacturers aim to provide uniform image noise across body regions and patient sizes, whereas others aim to provide lower noise for smaller patients. The purpose of this study was to conduct a theoretical investigation to understand how manufacturer-dependent TCM scheme affects organ dose, and to develop a generic approach for assessing organ dose across TCM schemes. The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A ray-tracing method was developed to calculate the attenuation of the phantom for a given projection angle based on phantom anatomy, CT system geometry, x-ray energy spectrum, and bowtie filter filtration. The tube current (mA) for a given projection angle was then calculated as a log-linear function of the attenuation along that projection. The slope of this function, termed modulation control strength, α, was varied from 0 to 1 to emulate the variability in TCM technology. Using a validated Monte Carlo program, organ dose was simulated for five α values (α = 0, 0.25, 0.5, 0.75, and 1) in the absence and presence of a realistic system mA limit. Organ dose was further normalized by volume-weighted CT dose index (CTDIvol) to obtain conversion factors (h factors) that are relatively independent of system specifics and scan parameters. For both chest and abdomen-pelvis scans and for 24 radiosensitive organs, organ dose conversion factors varied with α, following second-order polynomial equations. This result suggested the need for α-specific organ dose conversion factors (i.e., conversion factors specific to the modulation scheme used). On the other hand, across the full range of α values, organ dose in a TCM scan could be derived from the conversion factors established for a fixed-mA scan (hFIXED). This was possible by multiplying hFIXED by a revised definition of CTDIvol that accounts for two factors: (a) the tube currents at the location of an organ and (b) the variation in organ volume along the longitudinal direction. This α-generic approach represents an approximation. The error associated with this approximation was evaluated using the α-specific organ dose (i.e., the organ dose obtained by using α-specific mA profiles as inputs into the Monte Carlo simulation) as the reference standard. When the mA profiles were constrained by a realistic system limit, this α-generic approach had errors of less than ~20% for the full range of α values. This was the case for 24 radiosensitive organs in both chest and abdomen-pelvis CT scans with the exception of thyroid in the chest scan and bladder in the abdomen-pelvis scan. For these two organs, the errors were less than ~40%. The results of this theoretical study suggested that knowing the mA modulation profile and the fixed-mA conversion factors, organ dose may be estimated for a TCM scan independent of the specific modulation scheme applied.
Desai, Atman; Pendharkar, Arjun V; Swienckowski, Jessica G; Ball, Perry A; Lollis, Scott; Simmons, Nathan E
2015-11-23
Construct failure is an uncommon but well-recognized complication following anterior cervical corpectomy and fusion (ACCF). In order to screen for these complications, many centers routinely image patients at outpatient visits following surgery. There remains, however, little data on the utility of such imaging. The electronic medical record of all patients undergoing anterior cervical corpectomy and fusion at Dartmouth-Hitchcock Medical Center between 2004 and 2009 were reviewed. All patients had routine cervical spine radiographs performed perioperatively. Follow-up visits up to two years postoperatively were analyzed. Sixty-five patients (mean age 52.2) underwent surgery during the time period. Eighteen patients were female. Forty patients had surgery performed for spondylosis, 20 for trauma, three for tumor, and two for infection. Forty-three patients underwent one-level corpectomy, 20 underwent two-level corpectomy, and two underwent three-level corpectomy, using an allograft, autograft, or both. Sixty-two of the fusions were instrumented using a plate and 13 had posterior augmentation. Fifty-seven patients had follow-up with imaging at four to 12 weeks following surgery, 54 with plain radiographs, two with CT scans, and one with an MRI scan. Unexpected findings were noted in six cases. One of those patients, found to have asymptomatic recurrent kyphosis following a two-level corpectomy, had repeat surgery because of those findings. Only one further patient was found to have abnormal imaging up to two years, and this patient required no further intervention. Routine imaging after ACCF can demonstrate asymptomatic occurrences of clinically significant instrument failure. In 43 consecutive single-level ACCF however, routine imaging did not change management, even when an abnormality was discovered. This may suggest a limited role for routine imaging after ACCF in longer constructs involving multiple levels.
Recent Advances in X-ray Cone-beam Computed Laminography.
O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas
2016-10-06
X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.
Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A
2013-09-01
To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
SU-G-206-11: The Effect of Table Height On CTDIvol and SSDE in CT Scanning: A Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R; Silosky, M
2016-06-15
Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and calculation of the Size Specific Dose Estimate (SSDE). Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). Consequently, variations in scanner table height may affect both CTDIvol and the calculated size-corrected dose index (SSDE). This study sought to characterize these effects. Methods: An anthropomorphic phantom was imaged using an AP localizer, followed by a diagnostic scan using ATCM and our institution’smore » routine abdomen protocol. This was repeated at various scanner table heights, recording the scanner-reported CTDIvol for each diagnostic scan. The width of the phantom was measured from the localizer and diagnostic images using in-house software. The measured phantom width and scanner-reported CTDIvol were used to calculate SSDE. This was repeated using PA localizers followed by diagnostic scans. Results: 1) The localizer-based phantom width varied by up to 54% of the nominal phantom width between minimum and maximum table heights. 2) Changing the table height caused a variation in scanner-reported CTDIvol of a factor greater than 4.6 when using a PA localizer and almost 2 when using an AP localizer. 3) SSDE, calculated from measured phantom size and scanner-reported CTDIvol, varied by a factor of more than 2.8 when using a PA localizer and almost 1.5 when using an AP localizer. Conclusion: Our study demonstrates that off-center patient positioning affects the efficacy of ATCM, more severely when localizers are acquired in the PA rather than AP projection. Further, patient positioning errors can cause a large variation in the calculated SSDE. This hinders interpretation of SSDE for individual patients and aggregate SSDE data when evaluating CT protocols and clinical practices.« less
Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika
2015-01-01
The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.
Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki
2014-01-01
The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bosch de Basea, Magda; Salotti, Jane A; Pearce, Mark S; Muchart, Jordi; Riera, Luis; Barber, Ignasi; Pedraza, Salvador; Pardina, Marina; Capdevila, Antoni; Espinosa, Ana; Cardis, Elisabeth
2016-01-01
Although there are undeniable diagnostic benefits of CT scanning, its increasing use in paediatric radiology has become a topic of concern regarding patient radioprotection. To assess the rate of CT scanning in Catalonia, Spain, among patients younger than 21 years old at the scan time. This is a sub-study of a larger international cohort study (EPI-CT, the International pediatric CT scan study). Data were retrieved from the radiological information systems (RIS) of eight hospitals in Catalonia since the implementation of digital registration (between 1991 and 2010) until 2013. The absolute number of CT scans annually increased 4.5% between 1991 and 2013, which was less accentuated when RIS was implemented in most hospitals. Because the population attending the hospitals also increased, however, the rate of scanned patients changed little (8.3 to 9.4 per 1,000 population). The proportions of patients with more than one CT and more than three CTs showed a 1.51- and 2.7-fold increase, respectively, over the 23 years. Gradual increases in numbers of examinations and scanned patients were observed in Catalonia, potentially explained by new CT scanning indications and increases in the availability of scanners, the number of scans per patient and the size of the attended population.
... this page: //medlineplus.gov/ency/article/003330.htm CT scan To use the sharing features on this page, please enable JavaScript. A computed tomography (CT) scan is an imaging method that uses x- ...
Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg
2015-01-01
The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.
Computed Tomography (CT) - Spine
... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...
Does Iterative Reconstruction Lower CT Radiation Dose: Evaluation of 15,000 Examinations
Noël, Peter B.; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A.; Rummeny, Ernst J.; Dobritz, Martin
2013-01-01
Purpose Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Method and Materials Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. Results IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). Conclusion The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving. PMID:24303035
Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.
Noël, Peter B; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A; Rummeny, Ernst J; Dobritz, Martin
2013-01-01
Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving.
Scope for energy improvement for hospital imaging services in the USA.
Esmaeili, Amin; Twomey, Janet M; Overcash, Michael R; Soltani, Seyed A; McGuire, Charles; Ali, Kamran
2015-04-01
To aid radiologists by measuring the carbon footprint of CT scans by quantifying in-hospital and out-of-hospital energy use and to assess public health impacts. The study followed a standard life cycle assessment protocol to measure energy from a CT scan then expanding to all hospital electrical energy related to CT usage. In addition, all the fuel energy used to generate electricity and to manufacture the CT consumables was measured. The study was conducted at two hospitals. The entire life cycle energy for a CT scan was 24-34 kWh of natural resource energy per scan. The actual active patient scan energy that produces the images is only about 1.6% of this total life cycle energy. This large multiplier to get total CT energy is a previously undocumented environmental response to the direct radiology order for a patient CT scan. The CT in-hospital energy related to idle periods, where the machine is on but no patients are being scanned and is 14-30-fold higher than the energy used for the CT image. The in-hospital electrical energy of a CT scan makes up only about 25% of the total energy footprint. The rest is generated outside the hospital: 54-62% for generation and transmission of the electricity, while 13-22% is for all the energy to make the consumables. Different CT scanners have some influences on the results and could help guide purchase of CT equipment. The transparent, detailed life cycle approach allows the data from this study to be used by radiologists to examine details of both direct and of unseen energy impacts of CT scans. The public health (outside-the-hospital) impact (including the patients receiving a CT) needs to be measured and included. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...
Thoracoabdominal Computed Tomography in Trauma Patients: A Cost-Consequences Analysis
van Vugt, Raoul; Kool, Digna R.; Brink, Monique; Dekker, Helena M.; Deunk, Jaap; Edwards, Michael J.
2014-01-01
Background: CT is increasingly used during the initial evaluation of blunt trauma patients. In this era of increasing cost-awareness, the pros and cons of CT have to be assessed. Objectives: This study was performed to evaluate cost-consequences of different diagnostic algorithms that use thoracoabdominal CT in primary evaluation of adult patients with high-energy blunt trauma. Materials and Methods: We compared three different algorithms in which CT was applied as an immediate diagnostic tool (rush CT), a diagnostic tool after limited conventional work-up (routine CT), and a selective tool (selective CT). Probabilities of detecting and missing clinically relevant injuries were retrospectively derived. We collected data on radiation exposure and performed a micro-cost analysis on a reference case-based approach. Results: Both rush and routine CT detected all thoracoabdominal injuries in 99.1% of the patients during primary evaluation (n = 1040). Selective CT missed one or more diagnoses in 11% of the patients in which a change of treatment was necessary in 4.8%. Rush CT algorithm costed € 2676 (US$ 3660) per patient with a mean radiation dose of 26.40 mSv per patient. Routine CT costed € 2815 (US$ 3850) and resulted in the same radiation exposure. Selective CT resulted in less radiation dose (23.23 mSv) and costed € 2771 (US$ 3790). Conclusions: Rush CT seems to result in the least costs and is comparable in terms of radiation dose exposure and diagnostic certainty with routine CT after a limited conventional work-up. However, selective CT results in less radiation dose exposure but a slightly higher cost and less certainty. PMID:25337521
Eze, K C; Mazeli, F O
2011-01-01
The outcome of head trauma as a result of road accident rests with increased use of CT scan and other radiological imaging modalities for prompt diagnosis is important. To find out the time of presentation for CT scan, symptoms for referral for CT scan and pattern of injuries in patients with cranial CT scan following road traffic accidents. Retrospective analysis of cranial computed tomography (CT) films, request cards, duplicate copy of radiology reports, soft copy CT images and case notes of 61 patients who underwent cranial CT scan on account of road traffic accidents. The study CT scans were performed at the radiology department of University Teaching Hospital between 1st January 2002 and 31st December 2004. 51 patients (83.6%) were male while 10 (16.4%) were female with male to female ratio of 5:1. Thirty - eight (62.3%) patients were aged 20-39 years. Forty two patients (68.9%) presented after one week of injury. No patient presented within the first six hours of injury. The symptoms needing referral for CT scan included head injury 30 (49.2%), seizures 10 16.4%), skull fractures 8 (13.1%) and persistent headache 6 (5.6%). A total of 113 lesions were seen as some patients presented with more than one lesion. The findings on CT scan included 10 patients with normal findings , 21 (34.4%) skull fractures , 21 (34.4%) intra-cerebral haemorrhage , 19 (31.2%) brain contusion , 18 (29.5%) paranasal sinus collection,11 (18.0%) cerebral oedema, 10 (16.4%) subdural haematoma and 5 (8.2%) epidural haematoma. Over 80% of the subdural and epidural haematomas were associated with skull fractures. The yield from plain radiography was poor being positive in only 8 (13.1%) while CT scan was positive in 51 (83.61%). Also 75 (about 66%) of the 113 lesions seen on CT scan were treatable surgically. CT scan is an effective imaging modality of patient with road traffic accident and should be promptly requested in symptomatic patients who sustain trauma to the head toward identification of lesions that are amenable to surgical treatment.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Nocturnal oxygen saturation in children with stable cystic fibrosis.
van der Giessen, Lianne; Bakker, Marije; Joosten, Koen; Hop, Wim; Tiddens, Harm
2012-11-01
Hypoxemia during sleep is a common finding in Cystic Fibrosis (CF) patients with more advanced lung disease. Nocturnal hypoxemia is associated with frequent awakenings and poor sleep quality. For children with CF, data of nocturnal oxygen saturation are sparse. To assess the oxygen saturation profile during sleep in 25 clinically stable children with CF lung disease and to correlate these data with spirometry, cough frequency, sleep quality, and CT-scan scores. During two nights cough was recorded with a digital audio recorder in 25 clinically stable CF patients. In addition oxygen saturation was measured. The day following the recording spirometry was carried out. CT scores were obtained from the most recent routine CT scan. Twenty-two patients were included in the study. Mean age (range) was 13 (6-18) years. Spirometry was FVC% 84 (range 52-114), FEV(1) % 77 (range 43-115), and FEF(75) % 50 (range 12-112). The mean SO(2) was 95.6% for the first and 96.2% for the second night. Mean SO(2) between the two nights correlated strongly (r(s) = 0.84, P < 0.001). Positive correlation was observed between mean SO(2) of the two nights (mean × SO(2)) and FVC, FEV(1) and FEF(75). Correlations were found between mean × SO(2) and the total CT score (r(s) = -0.45, P = 0.05) and the bronchiectasis subscore (r(s) = -0.48, P = 0.03). Nocturnal oxygen saturation in children with stable CF is lower than that in healthy children, and is correlated with lung function parameters and CT scores. Monitoring oxygen saturation during one night is sufficient to get a representative recording. Copyright © 2012 Wiley Periodicals, Inc.
Jeng, Toh Charng; Haspani, Mohd Saffari Mohd; Adnan, Johari Siregar; Naing, Nyi Nyi
2008-01-01
A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of admission (p=0.024), GCS status (p=0.02), pupillary changes (p=0.014), number of intracranial lesion (p=0.004), haemoglobin level (p=0.038), prothrombin time (p=0.016) as the best predictors of early detection of changes. Multiple logistics regression analysis indicated that age, severity, GCS status (motor component) and GCS during admission were significantly associated with second CT scan with changes. This study showed that 9.9% of the total patients seen in the period of study had DTICH and 42% had PTBI. In the early period after traumatic head injury, the initial CT brain did not reveal the full extent of haemorrhagic injury and associated cerebral oedema. Different referral hospitals of different trauma level, GCS status, motor component of the GCS, haemoglobin level, platelet count and time interval between trauma and the first CT brain were the significant predictors for DTICH. Whereas the key determinants of PTBI were age, race, types of admission, GCS status, pupillary changes, number of intracranial bleed, haemoglobin level, prothrombin time and of course time interval between trauma and first CT brain. Any patients who had traumatic head injury in hospitals with no protocol of repeat CT scan or intracranial pressure monitoring especially in developing countries are advised to have to repeat CT brain at the appropriate quickest time . PMID:22589639
[Preoperative CT Scan in middle ear cholesteatoma].
Sethom, Anissa; Akkari, Khemaies; Dridi, Inès; Tmimi, S; Mardassi, Ali; Benzarti, Sonia; Miled, Imed; Chebbi, Mohamed Kamel
2011-03-01
To compare preoperative CT scan finding and per-operative lesions in patients operated for middle ear cholesteatoma, A retrospective study including 60 patients with cholesteatoma otitis diagnosed and treated within a period of 5 years, from 2001 to 2005, at ENT department of Military Hospital of Tunis. All patients had computed tomography of the middle and inner ear. High resolution CT scan imaging was performed using millimetric incidences (3 to 5 millimetres). All patients had surgical removal of their cholesteatoma using down wall technic. We evaluated sensitivity, specificity and predictive value of CT-scan comparing otitic damages and CT finding, in order to examine the real contribution of computed tomography in cholesteatoma otitis. CT scan analysis of middle ear bone structures shows satisfaction (with 83% of sensibility). The rate of sensibility decrease (63%) for the tympanic raff. Predictive value of CT scan for the diagnosis of cholesteatoma was low. However, we have noticed an excellent sensibility in the analysis of ossicular damages (90%). Comparative frontal incidence seems to be less sensible for the detection of facial nerve lesions (42%). But when evident on CT scan findings, lesions of facial nerve were usually observed preoperatively (spécificity 78%). Predictive value of computed tomography for the diagnosis of perilymphatic fistulae (FL) was low. In fact, CT scan imaging have showed FL only for four patients among eight. Best results can be obtained if using inframillimetric incidences with performed high resolution computed tomography. Preoperative computed tomography is necessary for the diagnosis and the evaluation of chronic middle ear cholesteatoma in order to show extending lesion and to detect complications. This CT analysis and surgical correlation have showed that sensibility, specificity and predictive value of CT-scan depend on the anatomic structure implicated in cholesteatoma damages.
Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka
In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guidemore » provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.« less
Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute
NASA Astrophysics Data System (ADS)
Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús
2014-11-01
In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.
Biola, Holly; Best, Randall M; Lahlou, Rita M; Burke, Lauren M; Dewar, Charles; Jackson, Carlos T; Broder, Joshua; Grey, Linda; Semelka, Richard C; Dobson, Allen
2014-01-01
Patients are being exposed to increasing levels of ionizing radiation, much of it from computed tomography (CT) scans. Adults without a cancer diagnosis who received 10 or more CT scans in 2010 were identified from North Carolina Medicaid claims data and were sent a letter in July 2011 informing them of their radiation exposure; those who had undergone 20 or more CT scans in 2010 were also telephoned. The CT scan exposure of these high-exposure patients during the 12 months following these interventions was compared with that of adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. The average number of CT scans per month for the high-exposure population decreased over time, but most of that reduction occurred 6-9 months before our interventions took place. At about the same time, the number of CT scans per month also decreased in adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. Our data do not include information about CT scans that may have been performed during times when patients were not covered by Medicaid. Some of our letters may not have been received or understood. Some high-exposure patients were unintentionally excluded from our study because organization of data on Medicaid claims varies by setting of care. Our patient education intervention was not temporally associated with significant decreases in subsequent CT exposure. Effecting behavior change to reduce exposure to ionizing radiation requires more than an educational letter or telephone call.
Raju, Prashanth; Sallomi, David; George, Bindu; Patel, Hitesh; Patel, Nikhil; Lloyd, Guy
2012-06-01
To describe the frequency and severity of Aortic valve calcification (AVC) in an unselected cohort of patients undergoing chest CT scanning and to assess the frequency with which AVC was being reported in the radiology reports. Consecutive CT scan images of the chest and the radiological reports (December 2009 to May 2010) were reviewed at the district general hospital (DGH). AVC on CT scan was visually graded on a scale ranging from 0 to IV (0 = no calcification, IV = severe calcification). Total of 416 (232 male; 184 female) CT chest scans [Contrast enhanced 302 (72%), unenhanced 114 (28%)] were reviewed. Mean age was 70.55 ± 11.48 years. AVC in CT scans was identified in 95 of the 416 patients (22.83%). AVC classification was as follows: Grade I: 60 (63.15%), Grade II: 22 (23.15%), Grade III: 9 (9.47%), Grade IV: 4 (4.21%). Only one CT report mentioned AVC. Only 31 of 95 AVC had Transthoracic echocardiogram (TTE). The interval time between CT scan and TTE was variable. Aortic valve calcification in CT chest scans is a common finding and studies have shown that it is strongly related to the presence and severity of aortic valve disease. As CT scans are considered as a valuable additional screening tool for detection of aortic stenosis, AVC should always be commented upon in the radiology reports. Furthermore, patients with at least Grade III and IV AVC should be sent for TTE. © 2012 Blackwell Publishing Ltd.
SU-E-T-344: Validation and Clinical Experience of Eclipse Electron Monte Carlo Algorithm (EMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokharel, S; Rana, S
2014-06-01
Purpose: The purpose of this study is to validate Eclipse Electron Monte Carlo (Algorithm for routine clinical uses. Methods: The PTW inhomogeneity phantom (T40037) with different combination of heterogeneous slabs has been CT-scanned with Philips Brilliance 16 slice scanner. The phantom contains blocks of Rando Alderson materials mimicking lung, Polystyrene (Tissue), PTFE (Bone) and PMAA. The phantom has 30×30×2.5 cm base plate with 2cm recesses to insert inhomogeneity. The detector systems used in this study are diode, tlds and Gafchromic EBT2 films. The diode and tlds were included in CT scans. The CT sets are transferred to Eclipse treatment planningmore » system. Several plans have been created with Eclipse Monte Carlo (EMC) algorithm 11.0.21. Measurements have been carried out in Varian TrueBeam machine for energy from 6–22mev. Results: The measured and calculated doses agreed very well for tissue like media. The agreement was reasonably okay for the presence of lung inhomogeneity. The point dose agreement was within 3.5% and Gamma passing rate at 3%/3mm was greater than 93% except for 6Mev(85%). The disagreement can reach as high as 10% in the presence of bone inhomogeneity. This is due to eclipse reporting dose to the medium as opposed to the dose to the water as in conventional calculation engines. Conclusion: Care must be taken when using Varian Eclipse EMC algorithm for dose calculation for routine clinical uses. The algorithm dose not report dose to water in which most of the clinical experiences are based on rather it just reports dose to medium directly. In the presence of inhomogeneity such as bone, the dose discrepancy can be as high as 10% or even more depending on the location of normalization point or volume. As Radiation oncology as an empirical science, care must be taken before using EMC reported monitor units for clinical uses.« less
Value of repeat CT scans in low back pain and radiculopathy.
Schroeder, Josh E; Barzilay, Yair; Kaplan, Leon; Itshayek, Eyal; Hiller, Nurith
2016-02-01
We assessed the clinical value of repeat spine CT scan in 108 patients aged 18-60 years who underwent repeat lumbar spine CT scan for low back pain or radiculopathy from January 2008 to December 2010. Patients with a neoplasm or symptoms suggesting underlying disease were excluded from the study. Clinical data was retrospectively reviewed. Index examinations and repeat CT scan performed at a mean of 24.3 ± 11.3 months later were compared by a senior musculoskeletal radiologist. Disc abnormalities (herniation, sequestration, bulge), spinal stenosis, disc space narrowing, and bony changes (osteophytes, fractures, other changes) were documented. Indications for CT scan were low back pain (60 patients, 55%), radiculopathy (46 patients, 43%), or nonspecific back pain (two patients, 2%). A total of 292 spine pathologies were identified in 98 patients (90.7%); in 10 patients (9.3%) no spine pathology was seen on index or repeat CT scan. At repeat CT scan, 269/292 pathologies were unchanged (92.1%); 10/292 improved (3.4%), 8/292 worsened (2.8%, disc herniation or spinal stenosis), and five new pathologies were identified. No substantial therapeutic change was required in patients with worsened or new pathology. Added diagnostic value from repeat CT scan performed within 2-3 years was rare in patients suffering chronic or recurrent low back pain or radiculopathy, suggesting that repeat CT scan should be considered only in patients with progressive neurologic deficits, new neurologic complaints, or signs implying serious underlying conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.
Pan, Tinsu
2005-02-01
We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.
Reduction in radiation doses from paediatric CT scans in Great Britain.
Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy
2016-01-01
Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990.
Reduction in radiation doses from paediatric CT scans in Great Britain
Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy
2016-01-01
Objective: Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. Methods: We retrieved 1073 CT film sets from 36 hospitals. The patients were 0–19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current–time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0–4, 5–9, 10–14 and 15–19 years) and scan year (<1990, 1990–1994, 1995–1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. Results: For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0–4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0–4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. Conclusion: We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. Advances in knowledge: The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990. PMID:26864156
Full-Body CT Scans - What You Need to Know
... Medical Imaging Medical X-ray Imaging Full-Body CT Scans - What You Need to Know Share Tweet ... new service for health-conscious people: "Whole-body CT screening." This typically involves scanning the body from ...
2012-01-01
Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247
A quality assurance phantom for the performance evaluation of volumetric micro-CT systems
NASA Astrophysics Data System (ADS)
Du, Louise Y.; Umoh, Joseph; Nikolov, Hristo N.; Pollmann, Steven I.; Lee, Ting-Yim; Holdsworth, David W.
2007-12-01
Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 µm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm-1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuro; Zhou, Xiangrong; Chen, Huayue; Hara, Takeshi; Miyamoto, Kei; Kobayashi, Tatsunori; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi
2010-03-01
X-ray CT images have been widely used in clinical routine in recent years. CT images scanned by a modern CT scanner can show the details of various organs and tissues. This means various organs and tissues can be simultaneously interpreted on CT images. However, CT image interpretation requires a lot of time and energy. Therefore, support for interpreting CT images based on image-processing techniques is expected. The interpretation of the spinal curvature is important for clinicians because spinal curvature is associated with various spinal disorders. We propose a quantification scheme of the spinal curvature based on the center line of spinal canal on CT images. The proposed scheme consists of four steps: (1) Automated extraction of the skeletal region based on CT number thresholding. (2) Automated extraction of the center line of spinal canal. (3) Generation of the median plane image of spine, which is reformatted based on the spinal canal. (4) Quantification of the spinal curvature. The proposed scheme was applied to 10 cases, and compared with the Cobb angle that is commonly used by clinicians. We found that a high-correlation (for the 95% confidence interval, lumbar lordosis: 0.81-0.99) between values obtained by the proposed (vector) method and Cobb angle. Also, the proposed method can provide the reproducible result (inter- and intra-observer variability: within 2°). These experimental results suggested a possibility that the proposed method was efficient for quantifying the spinal curvature on CT images.
Chest CT in children: anesthesia and atelectasis.
Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E
2014-02-01
There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
How Is Testicular Cancer Diagnosed?
... patients with non-seminoma. Many centers have special machines that can do both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET with the more detailed images of the CT. Bone scan A bone scan can help show if a ... Information, ...
Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel
NASA Astrophysics Data System (ADS)
Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.
2015-01-01
The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.
Turillazzi, Emanuela; Frati, Paola; Pascale, Natascha; Pomara, Cristoforo; Grilli, Giampaolo; Viola, Rocco Valerio; Fineschi, Vittorio
2016-01-01
Multi-phase post-mortem CT-angiography (MPMCTA) has the great potential to increase the quality of the post-mortem investigation, especially in the area of sudden death; however, its role as routine complement to the pathology toolbox is still questioned as it needs to be further standardized. The aim of this study is to investigate the contribution of MPMCTA in cases of sudden unexplained death in adults and in particular in sudden cardiovascular death. Sixty-eight sudden unexpected deaths of adults were investigated at our institution between 2012 and 2013. Ten cases underwent MPMCTA and autopsy and were included in the study. Before the angiographic step by complete filling of the vascular system, prior to any manipulation of the body, a non-contrast CT-scan was carried out. Image reconstructions were performed on a CT workstation (Vitrea) and two radiologists experienced with post mortem imaging interpreted the MPMCTA findings. In all 10 cases, we could state a good correlation between combination of post-mortem CT and MPMCTA and autopsy procedures, confirming a high diagnostic sensitivity. With this case series we want to illustrate the advantages offered by performing MPMCTA when facing a sudden death, regardless of specific suspicion for acute coronary syndrome or other vascular or ischemic disease. PMID:27928228
Automatic lumbar spine measurement in CT images
NASA Astrophysics Data System (ADS)
Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun
2017-03-01
Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.
Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh
2009-10-01
To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.
Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo
2016-05-01
Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.
Computed tomography lung iodine contrast mapping by image registration and subtraction
NASA Astrophysics Data System (ADS)
Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias
2014-03-01
Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction iodine mapping.
[Performance evaluation of CT automatic exposure control on fast dual spiral scan].
Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi
2014-11-01
The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.
Maxfield, Mark W; Schuster, Kevin M; McGillicuddy, Edward A; Young, Calvin J; Ghita, Monica; Bokhari, S A Jamal; Oliva, Isabel B; Brink, James A; Davis, Kimberly A
2012-12-01
A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP) reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol (17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol (61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. Therapeutic study, level IV.
Maxfield, Mark W.; Schuster, Kevin M.; McGillicuddy, Edward A.; Young, Calvin J.; Ghita, Monica; Bokhari, S.A. Jamal; Oliva, Isabel B.; Brink, James A.; Davis, Kimberly A.
2013-01-01
BACKGROUND A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. METHODS We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP)reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. RESULTS For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol(17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol(61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. CONCLUSION Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. PMID:23147183
Sato, Haruka; Okada, Fumito; Matsumoto, Shunro; Mori, Hiromu; Kashiwagi, Junji; Komatsu, Eiji; Maeda, Toru; Nishida, Haruto; Daa, Tsutomu; Ohtani, Satoshi; Umeki, Kenji; Ando, Masaru; Kadota, Junichi
2018-05-03
The aim of this study was to assess the CT findings that characterise haemoptysis in patients with chronic pulmonary aspergillosis (CPA). We retrospectively identified 120 consecutive patients with CPA (84 men and 36 women, 17-89 years of age, mean age 68.4 years) who had undergone a total of 829 CT examinations between January 2007 and February 2017. In the 11 patients who underwent surgical resection, CT images were compared with the pathological results. The scab-like sign was seen on 142 of the 829 CT scans, specifically, in 87 of the 90 CT scans for haemoptysis and in 55 of the 739 CT scans obtained during therapy evaluation. In 48 of those 55 patients, haemoptysis occurred within 55 days (mean 12.0 days) after the CT scan. In the 687 CT scans with no scab-like sign, there were only three instances of subsequent haemoptysis in the respective patients over the following 6 months. Patients with and without scab-like sign differed significantly in the frequency of haemoptysis occurring after a CT scan (p<0.0001). Pathologically, the scab-like sign corresponded to a fibrinopurulent mass or blood crust. The scab-like sign should be considered as a CT finding indicative of haemoptysis. • Haemoptysis is commonly found in patients with CPA. • A CT finding indicative of haemoptysis in CPA patients is described. • Scab-like sign may identify CPA patients at higher risk of haemoptysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.
1989-06-01
The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (nmore » = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.« less
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
[CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].
Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E
2002-01-01
The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.
Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja
2016-09-01
This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine conditions, may play a role in the development of legally relevant behavioral disturbances which might be underestimated.
CT protocol management: simplifying the process by using a master protocol concept.
Szczykutowicz, Timothy P; Bour, Robert K; Rubert, Nicholas; Wendt, Gary; Pozniak, Myron; Ranallo, Frank N
2015-07-08
This article explains a method for creating CT protocols for a wide range of patient body sizes and clinical indications, using detailed tube current information from a small set of commonly used protocols. Analytical expressions were created relating CT technical acquisition parameters which can be used to create new CT protocols on a given scanner or customize protocols from one scanner to another. Plots of mA as a function of patient size for specific anatomical regions were generated and used to identify the tube output needs for patients as a function of size for a single master protocol. Tube output data were obtained from the DICOM header of clinical images from our PACS and patient size was measured from CT localizer radiographs under IRB approval. This master protocol was then used to create 11 additional master protocols. The 12 master protocols were further combined to create 39 single and multiphase clinical protocols. Radiologist acceptance rate of exams scanned using the clinical protocols was monitored for 12,857 patients to analyze the effectiveness of the presented protocol management methods using a two-tailed Fisher's exact test. A single routine adult abdominal protocol was used as the master protocol to create 11 additional master abdominal protocols of varying dose and beam energy. Situations in which the maximum tube current would have been exceeded are presented, and the trade-offs between increasing the effective tube output via 1) decreasing pitch, 2) increasing the scan time, or 3) increasing the kV are discussed. Out of 12 master protocols customized across three different scanners, only one had a statistically significant acceptance rate that differed from the scanner it was customized from. The difference, however, was only 1% and was judged to be negligible. All other master protocols differed in acceptance rate insignificantly between scanners. The methodology described in this paper allows a small set of master protocols to be adapted among different clinical indications on a single scanner and among different CT scanners.
Findik, Gokturk; Demiröz, S Mustafa; Apaydın, Selma Mine Kara; Ertürk, Hakan; Biri, Suzan; Incekara, Funda; Aydogdu, Koray; Kaya, Sadi
2017-08-01
Background Video-assisted thoracic surgery (VATS) is widely used for thoracic surgery operations, and day by day it becomes routine for the excision of undetermined pulmonary nodules. However, it is sometimes hard to reach millimetric nodules through a VATS incision. Therefore, some additional techniques were developed to reach such nodules little in size and which are settled on a challenging localization. In the literature, coils, hook wires, methylene blue, lipidol, and barium staining, and also ultrasound guidance were described for this aim. Herein we discuss our experience with CT-guided methylene blue labeling of small, deeply located pulmonary nodules just before VATS excision. Method From April 2013 to October 2016, 11 patients with millimetric pulmonary nodules (average 8, 7 mm) were evaluated in our clinic. For all these patients who had strong predisposing factors for malignancy, an 18F-FDG PET-CT scan was also performed. The patients whose nodules were decided to be excised were consulted the radiology clinic. The favorable patients were taken to CT room 2 hours prior to the operation, and CT-guided methylene blue staining were performed under sterile conditions. Results Mean nodule size of 11 patients was 8.7 mm (6, 2-12). Mean distance from the visceral pleural surface was 12.7 mm (4-29.3). Four of the nodules were located on the left (2 upper lobes, 2 lower lobes), and seven of them were on the right (four lower lobes, two upper lobes, one middle lobe). The maximum standardized uptake values (SUV max) on 18F-FDG PET/CT scan ranged between 0 and 2, 79. Conclusion CT-guided methylene blue staining of millimetric deeply located pulmonary nodules is a safe and feasible technique that helps surgeon find these undetermined nodules by VATS technique without any need of digital palpation. Georg Thieme Verlag KG Stuttgart · New York.
A rib-specific multimodal registration algorithm for fused unfolded rib visualization using PET/CT
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kopaczka, Marcin; Wimmer, Andreas; Platsch, Günther; Declerck, Jérôme
2014-03-01
Respiratory motion affects the alignment of PET and CT volumes from PET/CT examinations in a non-rigid manner. This becomes particularly apparent if reviewing fine anatomical structures such as ribs when assessing bone metastases, which frequently occur in many advanced cancers. To make this routine diagnostic task more efficient, a fused unfolded rib visualization for 18F-NaF PET/CT is presented. It allows to review the whole rib cage in a single image. This advanced visualization is enabled by a novel rib-specific registration algorithm that rigidly optimizes the local alignment of each individual rib in both modalities based on a matched filter response function. More specifically, rib centerlines are automatically extracted from CT and subsequently individually aligned to the corresponding bone-specific PET rib uptake pattern. The proposed method has been validated on 20 PET/CT scans acquired at different clinical sites. It has been demonstrated that the presented rib- specific registration method significantly improves the rib alignment without having to run complex deformable registration algorithms. At the same time, it guarantees that rib lesions are not further deformed, which may otherwise affect quantitative measurements such as SUVs. Considering clinically relevant distance thresholds, the centerline portion with good alignment compared to the ground truth improved from 60:6% to 86:7% after registration while approximately 98% can be still considered as acceptably aligned.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Metintas, Muzaffer; Ak, Guntulu; Dundar, Emine; Yildirim, Huseyin; Ozkan, Ragip; Kurt, Emel; Erginel, Sinan; Alatas, Fusun; Metintas, Selma
2010-06-01
In cases of pleural effusion, tissue samples can be obtained through Abrams needle pleural biopsy (ANPB), thoracoscopy, or cutting-needle pleural biopsy under the guidance of CT scan (CT-CNPB) for histopathologic analysis. This study aimed to compare the diagnostic efficiency and reliability of ANPB under CT scan guidance (CT-ANPB) with that of medical thoracoscopy in patients with pleural effusion. Between January 2006 and January 2008, 124 patients with exudative pleural effusion that could not be diagnosed by cytologic analysis were included in the study. All patients were randomized after the CT scan was performed. Patients either underwent CT-ANPB or thoracoscopy. The two groups were compared in terms of diagnostic sensitivity and complications associated with the methods used. Of the 124 patients, malignant mesothelioma was diagnosed in 33, metastatic pleural disease in 47, benign pleural disease in 42, and two were of indeterminate origin. In the CT-ANPB group, the diagnostic sensitivity was 87.5%, as compared with 94.1% in the thoracoscopy group; the difference was not statistically significant (P = .252). No difference was identified between the sensitivities of the two methods based on the cause, the CT scan findings, and the degree of pleural thickening. Complication rates were low and acceptable. We recommend the use of CT-ANPB as the primary method of diagnosis in patients with pleural thickening or lesions observed by CT scan. In patients with only pleural fluid appearance on CT scan and in those who may have benign pleural pathologies other than TB, the primary method of diagnosis should be medical thoracoscopy. clinicaltrials.gov; Identifier: NCT00720954.
Strauss, Keith J
2014-10-01
The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDIvol) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans.
Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K
2016-05-01
The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Arab, Ala Faisal; Ahmed, Anwar E; Hussein, Mohamed Ahmed; Khankan, Azzam A; Alokaili, Riyadh Nasser
2015-01-01
Background Investigation of unjustified computed tomography (CT) scan in patients with minor head injury is lacking in Saudi Arabia. The purpose of the study was to evaluate the compliance and effectiveness of the Canadian computed tomography head rule (CCHR) in our emergency department (ED) and trauma centre and also to reduce the number of unjustified CT studies of the head in the centre. Methods A retrospective study of 368 ED patients with minor head injury was conducted. Patients who underwent CT scan between July 2010 and June 2011were selected from the ED head trauma registry by systematic randomisation. The CCHR was retrospectively applied on the patients’ charts to calculate the prevalence of unjustified head CT scans. A separate survey was conducted to evaluate three emergency physicians’ level of awareness about the CCHR and their ability to determine the necessity of CT scans with various clinical scenarios of head injury. Results The prevalence of unjustified CT scans as per the CCHR was 61.8% (95% confidence interval (CI) 56.5–66.9%). Approximately 5% of the sample had positive CT findings with 95% CI 2.9–7.6%. The CCHR correctly identified 12 cases with positive CT findings with 66.67% sensitivity. Only 24 (6.7%) had Glasgow coma scale scores less than 15 (13/14). The Glasgow coma scale correctly identified only two cases with positive CT findings with 11.11% sensitivity. The percentage of skull fracture (0.9% vs 5%, P = 0.030) was significantly lower in patients with unjustified CT scans than in patients with clinically justified CT scans. There was fair to substantial agreement between the ED physicians and the CCHR (κ = 35–61%). Two ED physicians identified all cases of justified CT scan with 100% sensitivity (95% CI 71.51–100%). Conclusion The level of education regarding the CCHR was found to be optimal among emergency physicians using a case-based scenario survey. The CCHR was found to have a poor compliance potential in the busy ED of our trauma centre and the prevalence of unjustified cranial CT scans remained high. PMID:26471399
NASA Astrophysics Data System (ADS)
Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.
2016-03-01
The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.
Mohammadi, S; Bonnet, N; Leprince, P; Charbonneau, E; Berberian, G; Aslani, M; Silvaggio, G; Dorent, R; Pavie, A; Gandjbakhch, I
2007-10-01
We sought to evaluate the screening modality and outcome of lung cancer occurring in heart transplant recipients (HTR) during a 21-year period. We conducted a retrospective review to investigate the incidence, risk factors, screening modality, treatment, and outcomes in HTR with lung cancer. We compared them with a case-matched HTR control group. Out of 829 recipients of heart transplants, 19 cases of bronchogenic carcinoma were found either by routine chest X-ray (n = 10), chest computed tomographic (CT) scanning (n = 4), or by assessment of clinical symptoms (n = 5). The mean time from transplantation to bronchogenic carcinoma diagnosis was 68.8 +/- 42.4 months. A history of smoking was the only risk factor in HTR with bronchogenic carcinoma compared to their case-matched HTR control group ( P < 0.05). Of 18 patients with non-small cell lung cancer (NSCLC), 13 underwent surgery and 5 with advanced cancer underwent chemotherapy and/or radiotherapy. NSCLC was diagnosed by chest X-ray (n = 10), and 6 of these patients died after an average of 43.7 +/- 62.2 months following cancer detection. NSCLC was also diagnosed on the basis of clinical symptoms (n = 4), and 2 of these patients died after a mean follow-up of 9 +/- 4.2 months after cancer diagnosis. All 4 patients in whom cancer was detected by CT scan were alive at an average of 53.5 +/- 36.7 months following cancer detection. The survival rates did not differ between the study and control groups ( P = 0.5). Optimal outcomes of treatment for primary lung cancer after heart transplantation seem to be related to early detection. A high proportion of deaths from NSCLC may be prevented by chest CT scan screening.
Zhang, Yuan Z; Lu, Sheng; Zhang, Hui Q; Jin, Zhong M; Zhao, Jian M; Huang, Jian; Zhang, Zhi F
2016-10-01
The success of total knee arthroplasty (TKA) depends on many factors. The position of a prosthesis is vitally important. The purpose of the present study was to evaluate the value of a computer-aided establishing lower extremity mechanical axis in TKA using digital technology. A total of 36 cases of patients with TKA were randomly divided into the computer-aided design of navigation template group (NT) and conventional intramedullary positioning group (CIP). Three-dimensional (3D) CT scanning images of the hip, knee, and ankle were obtained in NT group. X-ray images and CT scans were transferred into the 3D reconstruction software. A 3D bone model of the hip, knee, ankle, as well as the modified loading, was reconstructed and saved in a stereolithographic format. In the 3D reconstruction model, the mechanical axis of the lower limb was determined, and the navigational templates produced an accurate model using a rapid prototyping technique. The THA in CIP group was performed according to a routine operation. CT scans were performed postoperatively to evaluate the accuracy of the two TKA methods. The averaged operative time of the NT group procedures was [Formula: see text] min shorter than those of the conventional procedures ([Formula: see text] min). The coronal femoral angle, coronal tibial angle, posterior tibial slope were [Formula: see text], [Formula: see text], [Formula: see text] in NT group and [Formula: see text], [Formula: see text], [Formula: see text] in CIP group, respectively. Statistically significant group differences were found. The navigation template produced through mechanical axis of lower extremity may provide a relative accurate and simple method for TKA.
Strauss, Christiane; Mal, Frederic; Perniceni, Thierry; Bouzar, Nadia; Lenoir, Stephane; Gayet, Brice; Palau, Robert
2010-04-01
Water-soluble contrast swallow (CS) is usually performed before refeeding for anastomosis assessment after esophagectomy with intrathoracic anastomosis but the sensitivity of CS is low. Another diagnostic approach is based on analysis of computed tomography (CT) scan with oral contrast and of CT mediastinal air images. We undertook to compare them prospectively. Ninety-seven patients with an esophageal carcinoma operated by intrathoracic anastomosis were included prospectively in a study based on a CT scan at postoperative day 3 (without oral and intravenous contrast) and CT scan and CS at day 7. CT scan analysis consisted of assessing contrast and air leakage. In case of doubt, an endoscopy was done. A diagnosis of anastomotic leak was made in 13 patients (13.4%), in 2 cases before day 7 and in 3 beyond day 7. At day 3, 94 CT scans were performed, but the diagnostic value was poor. In 95 patients with both CS and CT scan at day 7, CS disclosed a leak in 5 of 11, and CT scan was abnormal in 8 of 11. Leakage of contrast and/or presence of mediastinal gas had the best negative predictive value (95.8%). Endoscopy was done in 16 patients with only mediastinal gas at day 7 CT scan. It disclosed a normal anastomosis in 11, fibrin deposits in 4, and a leak in 1. In comparison with CS only, CT at day 7 improves the sensitivity and negative predictive value for diagnosing an anastomotic leak. In case of doubt endoscopy is advisable. This approach provides an accurate assessment of the anastomosis before refeeding.
Terterov, Dimitry; Leung, Philemon Ho-Yan; Twells, Laurie K.; Gregory, Deborah M.; Smith, Chris; Boone, Darrell; Pace, David
2017-01-01
Background Although laparoscopic sleeve gastrectomy (LSG) has been shown to be a safe and effective treatment for severe obesity (body mass index ≥ 35), staple line leaks remain a major complication and account for a substantial portion of the procedure’s morbidity and mortality. Many centres performing LSG routinely obtain contrast studies on postoperative day 1 for early detection of staple line leaks. We examined the usefulness of Gastrografin swallow as an early detection test for staple line leaks on postoperative day 1 after LSG as well as the associated costs. Methods We conducted a retrospective review of a prospectively collected database that included 200 patients who underwent LSG for severe obesity between 2011 and 2014. Primary outcome measures were the incidence of staple line leaks and the results of Gastrografin swallow tests. We obtained imaging costs from appropriate hospital departments. Results Gastrografin swallow was obtained on postoperative day 1 for all 200 patients who underwent LSG. Three patients (1.5%) were found to have staple line leaks. Gastrograffin swallows yielded 1 true positive result and 2 false negatives. The false negatives were subsequently diagnosed on computed tomography (CT) scan. The sensitivity of Gastrografin swallow in this study was 33%. For 200 patients, the total direct cost of the Gastrografin swallows was $35 000. Conclusion The use of routine upper gastrointestinal contrast studies for early detection of staple line leaks has low sensitivity and is costly. We recommend selective use of CT instead. PMID:28742012
Terterov, Dimitry; Leung, Philemon Ho-Yan; Twells, Laurie K; Gregory, Deborah M; Smith, Chris; Boone, Darrell; Pace, David
2017-09-01
Although laparoscopic sleeve gastrectomy (LSG) has been shown to be a safe and effective treatment for severe obesity (body mass index ≥ 35), staple line leaks remain a major complication and account for a substantial portion of the procedure's morbidity and mortality. Many centres performing LSG routinely obtain contrast studies on postoperative day 1 for early detection of staple line leaks. We examined the usefulness of Gastrografin swallow as an early detection test for staple line leaks on postoperative day 1 after LSG as well as the associated costs. We conducted a retrospective review of a prospectively collected database that included 200 patients who underwent LSG for severe obesity between 2011 and 2014. Primary outcome measures were the incidence of staple line leaks and the results of Gastrografin swallow tests. We obtained imaging costs from appropriate hospital departments. Gastrografin swallow was obtained on postoperative day 1 for all 200 patients who underwent LSG. Three patients (1.5%) were found to have staple line leaks. Gastrograffin swallows yielded 1 true positive result and 2 false negatives. The false negatives were subsequently diagnosed on computed tomography (CT) scan. The sensitivity of Gastrografin swallow in this study was 33%. For 200 patients, the total direct cost of the Gastrografin swallows was $35 000. The use of routine upper gastrointestinal contrast studies for early detection of staple line leaks has low sensitivity and is costly. We recommend selective use of CT instead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling
2016-05-01
Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less
Das, Anupam; Yadav, C S; Gamanagatti, Shivanand; Pandey, R M; Mittal, Ravi
2018-06-13
The outcome of single-bundle anterior cruciate ligament (ACL) reconstruction depends largely on the anatomic placement of bone tunnel. The lateral intercondylar ridge (LIR) and bifurcate ridge (BR) are useful bony landmarks for femoral tunnel placement. The purpose of our study was to compare the bony landmarks of ACL footprint on femur by three-dimensional computed tomography (3D CT) scan and arthroscopy in chronic ACL-deficient knees. Fifty patients above 18 years of age who were diagnosed of having ACL tear were selected for the study. All the cases were more than 6 months old since the injury. Preoperative 3D CT scan of the affected knee was obtained for each of them. They underwent single-bundle anatomic ACL reconstruction. Measurements were done on the preoperative 3D CT and arthroscopy to quantify the position of the LIR and BR. The proximodistal distance of lateral femoral condyle was 21.41+/-2.5 mm on CT scan and 22.02+/-2.02 mm on arthroscopy. On preoperative 3D CT scan, the midpoint of the LIR was found to be located at a mean distance of 11.17±2.11 mm from the proximal margin of the lateral femoral condyle. On arthroscopy, it was at 10.18+/-1.52 mm from the proximal margin the lateral femoral condyle. The "bifurcate ridge"(BR) was not visible in any of the cases during arthroscopy or CT scan. We concluded that LIR is an easily identifiable bony landmark on arthroscopy in all cases. It can also be identified on CT scans. BR is not identified both on arthroscopy and CT scans in chronic ACL tears. The arthroscopic measurements of bony landmarks are quite close to those of CT scan. Midpoint of LIR is at 52.185% of the proximodistal distance on CT scan evaluation and it is at 46.21% on arthroscopic evaluation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush
2016-01-01
Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.
Interpretation of Brain CT Scans in the Field by Critical Care Physicians in a Mobile Stroke Unit
Zakariassen, Erik; Lindner, Thomas; Nome, Terje; Bache, Kristi G.; Røislien, Jo; Gleditsch, Jostein; Solyga, Volker; Russell, David; Lund, Christian G.
2017-01-01
ABSTRACT BACKGROUND AND PURPOSE In acute stroke, thromboembolism or spontaneous hemorrhage abruptly reduces blood flow to a part of the brain. To limit necrosis, rapid radiological identification of the pathological mechanism must be conducted to allow the initiation of targeted treatment. The aim of the Norwegian Acute Stroke Prehospital Project is to determine if anesthesiologists, trained in prehospital critical care, may accurately assess cerebral computed tomography (CT) scans in a mobile stroke unit (MSU). METHODS In this pilot study, 13 anesthesiologists assessed unselected acute stroke patients with a cerebral CT scan in an MSU. The scans were simultaneously available by teleradiology at the receiving hospital and the on‐call radiologist. CT scan interpretation was focused on the radiological diagnosis of acute stroke and contraindications for thrombolysis. The aim of this study was to find inter‐rater agreement between the pre‐ and in‐hospital radiological assessments. A neuroradiologist evaluated all CT scans retrospectively. Statistical analysis of inter‐rater agreement was analyzed with Cohen's kappa. RESULTS Fifty‐one cerebral CT scans from the MSU were included. Inter‐rater agreement between prehospital anesthesiologists and the in‐hospital on‐call radiologists was excellent in finding radiological selection for thrombolysis (kappa .87). Prehospital CT scans were conducted in median 10 minutes (7 and 14 minutes) in the MSU, and median 39 minutes (31 and 48 minutes) before arrival at the receiving hospital. CONCLUSION This pilot study shows that anesthesiologists trained in prehospital critical care may effectively assess cerebral CT scans in an MSU, and determine if there are radiological contraindications for thrombolysis. PMID:28766306
Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S
2018-01-09
We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.
Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael
2014-04-01
Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.
Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho
2008-01-01
AIM: To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. METHODS: Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. RESULTS: Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. CONCLUSION: The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology. PMID:19058309
Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho
2008-11-28
To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology.
Cardona Arboniés, J; Rodríguez Alfonso, B; Mucientes Rasilla, J; Martínez Ballesteros, C; Zapata Paz, I; Prieto Soriano, A; Carballido Rodriguez, J; Mitjavila Casanovas, M
To evaluate the role of the 18 F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. A retrospective evaluation was performed on 18 F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of 18 F-Choline. There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. 18 F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of 18 F-choline PET/CT should be considered in prostate cancer management protocols. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Graham, Richard N J; Baldwin, David R; Callister, Matthew E J; Gleeson, Fergus V
2016-01-01
The British Thoracic Society has published new comprehensive guidelines for the management of pulmonary nodules. These guidelines are significantly different from those previously published, as they use two malignancy prediction calculators to better characterize the risk of malignancy. There are recommendations for a higher nodule size threshold for follow-up (≥5 mm or ≥80 mm(3)) and a reduction of the follow-up period to 1 year for solid pulmonary nodules; both of these will reduce the number of follow-up CT scans. PET-CT plays a crucial role in characterization also, with an ordinal scale being recommended for reporting. Radiologists will be the key in implementing these guidelines, and routine use of volumetric image-analysis software will be required to manage patients with pulmonary nodules correctly.
A comparison of sequential and spiral scanning techniques in brain CT.
Pace, Ivana; Zarb, Francis
2015-01-01
To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).
Bosch de Basea, Magda; Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth
2018-01-01
Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation.
Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth
2018-01-01
Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation. PMID:29723272
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Merle, C; Waldstein, W; Pegg, E C; Streit, M R; Gotterbarm, T; Aldinger, P R; Murray, D W; Gill, H S
2013-08-01
In pre-operative planning for total hip arthroplasty (THA), femoral offset (FO) is frequently underestimated on AP pelvis radiographs as a result of inaccurate patient positioning, imprecise magnification, and radiographic beam divergence. The aim of the present study was to evaluate the accuracy and reliability of predicting three-dimensional (3-D) FO from standardised AP pelvis radiographs. In a retrospective cohort study, pre-operative AP pelvis radiographs, AP hip radiographs and CT scans of a consecutive series of 345 patients (345 hips, 146 males, 199 females, mean age 60 (range: 40-79) years, mean body-mass-index 27 (range: 19-57)kg/m(2)) with primary end-stage hip OA were reviewed. Patients were positioned according to a standardised protocol and all images were calibrated. Using validated custom programmes, FO was measured on corresponding radiographs and CT scans. Measurement reliability was evaluated using intra-class-correlation-coefficients. To predict 3-D FO from AP pelvis measurements and to assess the accuracy compared to CT, the entire cohort was randomly split into subgroups A and B. Gender specific regression equations were derived from group A (245 patients) and the accuracy of prediction was evaluated in group B (100 patients) using Bland-Altman plots. In the entire cohort, mean FO was 39.2mm (95%CI: 38.5-40.0mm) on AP pelvis radiographs, 44.1mm (95%CI: 43.4-44.9mm) on AP hip radiographs and 44.6mm (95%CI: 44.0-45.2mm) on CT scans. In group B, we observed no significant difference between gender specific predicted FO (males: 48.0mm, 95%CI: 47.1-48.8mm; females: 42.0mm, 95%CI: 41.1-42.8mm) and FO as measured on CT (males: 47.7mm, 95%CI: 46.1-49.4mm, p=0.689; females: 41.6mm, 95%CI: 40.3-43.0mm, p=0.607). The present study suggests that FO can be accurately and reliably predicted from AP pelvis radiographs in patients with primary end-stage hip osteoarthritis. Our findings support the surgeon in pre-operative templating on AP-pelvis radiographs and may improve offset and limb length restoration in THA without the routine performance of additional radiographs or CT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J
1993-01-01
Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.
Dual energy micro CT SkyScan 1173 for the characterization of urinary stone
NASA Astrophysics Data System (ADS)
Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.
2016-03-01
Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.
SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Q; Shah, P; Li, S
Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiationmore » treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Chuong, M; Choi, W
Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J; Fan, J; Gopinatha Pillai, A
Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less
Use of PET/CT scanning in cancer patients: technical and practical considerations
2005-01-01
This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023
Shuryak, Igor; Lubin, Jay H; Brenner, David J
2014-06-01
Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25-65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans.
The Beatles, the Nobel Prize, and CT scanning of the chest.
Goodman, Lawrence R
2010-01-01
From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.
Trends and patterns of computed tomography scan use among children in The Netherlands: 1990-2012.
Meulepas, Johanna M; Smets, Anne M J B; Nievelstein, Rutger A J; Gradowska, Patrycja; Verbeke, Jonathan; Holscher, Herma C; Rutten, Matthieu J C M; Kieft, Mariëtte; Ronckers, Cécile M; Hauptmann, Michael
2017-06-01
To evaluate trends and patterns in CT usage among children (aged 0-17 years) in The Netherlands during the period 1990-2012. Lists of electronically archived paediatric CT scans were requested from the Radiology Information Systems (RIS) of Dutch hospitals which reported >10 paediatric CT scans annually in a survey conducted in 2010. Data included patient identification, birth date, gender, scan date and body part scanned. For non-participating hospitals and for years prior to electronic archiving in some participating hospitals, data were imputed by calendar year and hospital type (academic, general with <500 beds, general with ≥ 500 beds). Based on 236,066 CT scans among 146,368 patients performed between 1990 and 2012, estimated annual numbers of paediatric CT scans in The Netherlands increased from 7,731 in 1990 to 26,023 in 2012. More than 70 % of all scans were of the head and neck. During the last decade, substantial increases of more than 5 % per year were observed in general hospitals with fewer than 500 beds and among children aged 10 years or older. The estimated number of paediatric CT scans has more than tripled in The Netherlands during the last two decades. • Paediatric CT in The Netherlands has tripled during the last two decades. • The number of paediatric CTs increased through 2012 in general hospitals. • Paediatric CTs continued to increase among children aged 10 years or older.
Benedict, Leo Andrew; Paulus, Jessica K; Rideout, Leslie; Chwals, Walter J
2014-01-01
To assess whether pediatric trauma patients initially evaluated at referring institutions met Massachusetts statewide trauma field triage criteria for stabilization and immediate transfer to a Pediatric Trauma Center (PTC) without pre-transfer CT imaging. A 3-year retrospective cohort study was completed at our level 1 PTC. Patients with CT imaging at referring institutions were classified according to a triage scheme based on Massachusetts statewide trauma field triage criteria. Demographic data and injury profile characteristics were abstracted from patient medical records and our pediatric trauma registry. A total of 262 patients with 413 CT scans were reviewed from 2008 to 2011. 172 patients scanned (66%, 95% CI: 60%, 71%) met criteria for immediate transfer to a pediatric trauma center. Notably, 110 scans (27% of the total performed at referring institutions) were duplicated within four hours upon arrival to our PTC. GCS score <14 (45%) was the most common requirement for transfer, and CT scan of the head was the most frequent scan obtained (53%). The majority of pediatric trauma patients were subjected to CT scans at referring institutions despite meeting Massachusetts trauma triage guidelines that call for stabilization and immediate transfer to a pediatric trauma center without any CT imaging. © 2014.
Schwaiger, Benedikt J; Kopperdahl, David L; Nardo, Lorenzo; Facchetti, Luca; Gersing, Alexandra S; Neumann, Jan; Lee, Kwang J; Keaveny, Tony M; Link, Thomas M
2017-08-01
Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm 3 , femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. All measurements from PET/CT versus MDCT were strongly correlated (R 2 =0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm 2 , 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm 3 , 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm 2 ; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures. Copyright © 2017 Elsevier Inc. All rights reserved.
Semelka, Richard C; Armao, Diane M; Elias, Jorge; Huda, Walter
2007-05-01
"When one admits that nothing is certain one must, I think, also admit that some things are much more nearly certain than others." Bertrand Russell (1872-1970) Computed tomography (CT) is one of the largest contributors to man-made radiation doses in medical populations. CT currently accounts for over 60 million examinations in the United States, and its use continues to grow rapidly. The principal concern regarding radiation exposure is that the subject may develop malignancies. For this systematic review we searched journal publications in MEDLINE (1966-2006) using the terms "CT," "ionizing radiation," "cancer risks," "MRI," and "patient safety." We also searched major reports issued from governmental U.S. and world health-related agencies. Many studies have shown that organ doses associated with routine diagnostic CT scans are similar to the low-dose range of radiation received by atomic-bomb survivors. The FDA estimates that a CT examination with an effective dose of 10 mSv may be associated with an increased chance of developing fatal cancer for approximately one patient in 2000, whereas the BEIR VII lifetime risk model predicts that with the same low-dose radiation, approximately one individual in 1000 will develop cancer. There are uncertainties in the current radiation risk estimates, especially at the lower dose levels encountered in CT. To address what should be done to ensure patient safety, in this review we discuss the "as low as reasonably achievable" (ALARA) principle, and the use of MRI as an alternative to CT. (c) 2007 Wiley-Liss, Inc.
2018-01-01
Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.
Is there a trend in CT scanning scaphoid nonunions for deformity assessment?-A systematic review.
Ten Berg, Paul W L; de Roo, Marieke G A; Maas, Mario; Strackee, Simon D
2017-06-01
The effect of scaphoid nonunion deformity on wrist function is uncertain due to the lack of reliable imaging tools. Advanced three-dimensional (3-D) computed tomography (CT)-based imaging techniques may improve deformity assessment by using a mirrored image of the contralateral intact wrist as anatomic reference. The implementation of such techniques depends on the extent to which conventional CT is currently used in standard practice. The purpose of this systematic review of medical literature was to analyze the trend in CT scanning scaphoid nonunions, either unilaterally or bilaterally. Using Medline and Embase databases, two independent reviewers searched for original full-length clinical articles describing series with at least five patients focusing on reconstructive surgery of scaphoid nonunions with bone grafting and/or fixation, from the years 2000-2015. We excluded reports focusing on only nonunions suspected for avascular necrosis and/or treated with vascularized bone grafting, as their workup often includes magnetic resonance imaging. For data analysis, we evaluated the use of CT scans and distinguished between uni- and bilateral, and pre- and postoperative scans. Seventy-seven articles were included of which 16 were published between 2000 and 2005, 19 between 2006 and 2010, and 42 between 2011 and 2015. For these consecutive intervals, the rates of articles describing the use of pre- and postoperative CT scans increased from 13%, to 16%, to 31%, and from 25%, to 32%, to 52%, respectively. Hereof, only two (3%) articles described the use of bilateral CT scans. There is an evident trend in performing unilateral CT scans before and after reconstructive surgery of a scaphoid nonunion. To improve assessment of scaphoid nonunion deformity using 3-D CT-based imaging techniques, we recommend scanning the contralateral wrist as well. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramakrishnan, Sowmya; Alvino, Christopher; Grady, Leo; Kiraly, Atilla
2011-03-01
We present a complete automatic system to extract 3D centerlines of ribs from thoracic CT scans. Our rib centerline system determines the positional information for the rib cage consisting of extracted rib centerlines, spinal canal centerline, pairing and labeling of ribs. We show an application of this output to produce an enhanced visualization of the rib cage by the method of Kiraly et al., in which the ribs are digitally unfolded along their centerlines. The centerline extraction consists of three stages: (a) pre-trace processing for rib localization, (b) rib centerline tracing, and (c) post-trace processing to merge the rib traces. Then we classify ribs from non-ribs and determine anatomical rib labeling. Our novel centerline tracing technique uses the Random Walker algorithm to segment the structural boundary of the rib in successive 2D cross sections orthogonal to the longitudinal direction of the ribs. Then the rib centerline is progressively traced along the rib using a 3D Kalman filter. The rib centerline extraction framework was evaluated on 149 CT datasets with varying slice spacing, dose, and under a variety of reconstruction kernels. The results of the evaluation are presented. The extraction takes approximately 20 seconds on a modern radiology workstation and performs robustly even in the presence of partial volume effects or rib pathologies such as bone metastases or fractures, making the system suitable for assisting clinicians in expediting routine rib reading for oncology and trauma applications.
Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.
Parikh, A K; Shah, C C
2016-06-01
The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.
SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I; Song, J; Kim, K
Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less
Sheaves, R; Goldin, J; Reznek, R H; Chew, S L; Dacie, J E; Lowe, D G; Ross, R J; Wass, J A; Besser, G M; Grossman, A B
1996-03-01
The purpose of this study was to evaluate the relative merits of the postural stimulation test, adrenal computed tomography (CT) and venous sampling in the differential diagnosis of patients presenting with primary hyperaldosteronism. The records of 20 patients presenting with primary hyperaldosteronism were reviewed retrospectively. There were 15 patients with a unilateral aldosterone-producing adenoma (APA), four patients with idiopathic hyperaldosteronism (IHA) and one patient with primary adrenal hyperplasia (PAH). The postural stimulation test was based on measurements of plasma aldosterone and renin activity at 08.00 h and at noon after 4 h of ambulation. The CT scans of the adrenals were reviewed by a single radiologist. Bilateral venous sampling of adrenal veins was attempted in all patients and blood collected for aldosterone and cortisol assay. Plasma aldosterone concentration increased after 4 h of standing in all cases of hyperplasia but was also demonstrated in 10/15 patients with a surgically-proven APA. If one defines a significant postural rise as being greater than 30%, then 8/15 patients with APA can be considered as being posturally responsive. Computed tomography scanning correctly identified all 15 cases of APA and also classified correctly the remaining five cases of hyperplasia (four cases of IHA and one case of PAH). Venous sampling failed technically in 4/15 cases of APA and in one case of IHA: a total of 5/20 (25%,). A correct diagnosis of APA or IHA was established in all the remaining cases. However, the one case of PAH was treated successfully by adrenalectomy following venous sampling, which suggested a unilateral adrenal lesion: this one result was the only instance where venous sampling altered clinical decision-making. Computed tomography scanning may be used alone to confirm the cause of hyperaldosteronism where postural studies suggest an adrenal adenoma, and such patients may be considered for early surgery. Venous catheterization studies are not necessary routinely. but may still be useful in selected patients, particularly when CT scanning shows no clear lesion.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
Li, Qi; Zhang, Gang; Huang, Yuan-Jun; Dong, Mei-Xue; Lv, Fa-Jin; Wei, Xiao; Chen, Jian-Jun; Zhang, Li-Juan; Qin, Xin-Yue; Xie, Peng
2015-08-01
Early hematoma growth is not uncommon in patients with intracerebral hemorrhage and is an independent predictor of poor functional outcome. The purpose of our study was to report and validate the use of our newly identified computed tomographic (CT) blend sign in predicting early hematoma growth. Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours after onset of symptoms were included. The follow-up CT scan was performed within 24 hours after the baseline CT scan. Significant hematoma growth was defined as an increase in hematoma volume of >33% or an absolute increase of hematoma volume of >12.5 mL. The blend sign on admission nonenhanced CT was defined as blending of hypoattenuating area and hyperattenuating region with a well-defined margin. Univariate and multivariable logistic regression analyses were performed to assess the relationship between the presence of the blend sign on nonenhanced admission CT and early hematoma growth. A total of 172 patients were included in our study. Blend sign was observed in 29 of 172 (16.9%) patients with intracerebral hemorrhage on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively. The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth. © 2015 American Heart Association, Inc.
2009-01-01
Background Computed Tomography (CT) has become a widely used supplement to medico legal autopsies at several forensic institutes. Amongst other things, it has proven to be very valuable in visualising fractures of the cranium. Also CT scan data are being used to create head models for biomechanical trauma analysis by Finite Element Analysis. If CT scan data are to be used for creating individual head models for retrograde trauma analysis in the future we need to ascertain how well cranial fractures are captured by CT scan. The purpose of this study was to compare the diagnostic agreement between CT and autopsy regarding cranial fractures and especially the precision with which cranial fractures are recorded. Methods The autopsy fracture diagnosis was compared to the diagnosis of two CT readings (reconstructed with Multiplanar and Maximum Intensity Projection reconstructions) by registering the fractures on schematic drawings. The extent of the fractures was quantified by merging 3-dimensional datasets from both the autopsy as input by 3D digitizer tracing and CT scan. Results The results showed a good diagnostic agreement regarding fractures localised in the posterior fossa, while the fracture diagnosis in the medial and anterior fossa was difficult at the first CT scan reading. The fracture diagnosis improved during the second CT scan reading. Thus using two different CT reconstructions improved diagnosis in the medial fossa and at the impact points in the cranial vault. However, fracture diagnosis in the anterior and medial fossa and of hairline fractures in general still remained difficult. Conclusion The study showed that the forensically important fracture systems to a large extent were diagnosed on CT images using Multiplanar and Maximum Intensity Projection reconstructions. Difficulties remained in the minute diagnosis of hairline fractures. These inconsistencies need to be resolved in order to use CT scan data of victims for individual head modelling and trauma analysis. PMID:19835570
Delayed splenic vascular injury after nonoperative management of blunt splenic trauma.
Furlan, Alessandro; Tublin, Mitchell E; Rees, Mitchell A; Nicholas, Dederia H; Sperry, Jason L; Alarcon, Louis H
2017-05-01
Delayed splenic vascular injury (DSVI) is traditionally considered a rare, often clinically occult, harbinger of splenic rupture in patients with splenic trauma that are managed conservatively. The purpose of our study was to assess the incidence of DSVI and associated features in patients admitted with blunt splenic trauma and managed nonoperatively. A retrospective analysis was conducted over a 4-y time. Patients admitted with blunt splenic trauma, managed no-operatively and with a follow-up contrast-enhanced computed tomography (CT) scan study during admission were included. The CT scans were reviewed for American Association for the Surgery of Trauma splenic injury score, amount of hemoperitoneum, and presence of DSVI. Logistic regression models were used to investigate the risk factors associated with DSVI. A total of 100 patients (60 men and 40 women) constituted the study group. Follow-up CT scan demonstrated a 23% incidence of DSVI. Splenic artery angiography validated DSVI in 15% of the total patient population. Most DSVIs were detected only on arterial phase CT scan imaging. The American Association for the Surgery of Trauma splenic injury score (odds ratio = 1.73; P = 0.045) and the amount of hemoperitoneum (odds ratio = 1.90; P = 0.023) on admission CT scan were associated with the development of DSVI on follow-up CT scan. DSVI on follow-up CT scan imaging of patients managed nonoperatively after splenic injury is common and associated with splenic injury score assessed on admission CT scan. Copyright © 2016 Elsevier Inc. All rights reserved.
Advantages and limitations of computed tomography scans for treatment planning of lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mira, J.G.; Potter, J.L.; Fullerton, G.D.
1982-09-01
Forty-five Chest computed tomography (CT) scans performed on patients with lung carcinoma (LC) were evaluated in an attempt to understand the pattern of intrathoracic tumor spread and the advantages and limitations this technique offers for treatment planning when compared to planning done by conventional X rays. The following findings can help treatment planning. (1) When regular X rays do not show location (i.e., hemithorax opacification), CT scan will show it in 68% of patients. If regular X rays show a well localized mass, unsuspected tumor extensions were disclosed in 78% of these patients. Hence, CT scans should be done inmore » all LC patients prior to treatment planning; (2) Mediastinal masses frequently spread anteriorly toward the sternum and posteriorly around the vertebral bodies toward the cord and costal pleura. This should be considered for radiotherapy boost techniques; (3) Lung masses spread in one third of cases toward the lateral costal pleura. Thus, the usual 1-2cm of safety margin around the LC are not sufficient in some cases; (4) Tumor size can appear much smaller in regular X rays than in CT scans. Hence, CT scans are necessary for accurate staging and evaluation of tumor response. Some CT scan limitations are: (1) Atelectasis blends with tumor in approximately half of the patients, thus obscuring tumor boundaries; (2) CT numbers and contrast enhancement did not help to differentiate between these two structures; and (3) Limited definition of CT scan prevents investigation of suspected microscopic spread around tumor masses.« less
Cooper, Jennifer N; Lodwick, Daniel L; Adler, Brent; Lee, Choonsik; Minneci, Peter C; Deans, Katherine J
2017-06-01
Computed tomography (CT) is a widely used diagnostic tool in pediatric medicine. However, due to concerns regarding radiation exposure, it is essential to identify patient characteristics associated with higher radiation burden from CT imaging, in order to more effectively target efforts towards dose reduction. Our objective was to identify the effects of various demographic and clinical patient characteristics on radiation exposure from single abdomen/pelvis CT scans in children. CT scans performed at our institution between January 2013 and August 2015 in patients under 16 years of age were processed using a software tool that estimates patient-specific organ and effective doses and merges these estimates with data from the electronic health record and billing record. Quantile regression models at the 50th, 75th, and 90th percentiles were used to estimate the effects of patients' demographic and clinical characteristics on effective dose. 2390 abdomen/pelvis CT scans (median effective dose 1.52mSv) were included. Of all characteristics examined, only older age, female gender, higher BMI, and whether the scan was a multiphase exam or an exam that required repeating for movement were significant predictors of higher effective dose at each quantile examined (all p<0.05). The effects of obesity and multiphase or repeat scanning on effective dose were magnified in higher dose scans. Older age, female gender, obesity, and multiphase or repeat scanning are all associated with increased effective dose from abdomen/pelvis CT. Targeted efforts to reduce dose from abdominal CT in these groups should be undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increasing the automation of a 2D-3D registration system.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2013-02-01
Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
Neves, A A; Silva, E J; Roter, J M; Belladona, F G; Alves, H D; Lopes, R T; Paciornik, S; De-Deus, G A
2015-11-01
To propose an automated image processing routine based on free software to quantify root canal preparation outcomes in pairs of sound and instrumented roots after micro-CT scanning procedures. Seven mesial roots of human mandibular molars with different canal configuration systems were studied: (i) Vertucci's type 1, (ii) Vertucci's type 2, (iii) two individual canals, (iv) Vertucci's type 6, canals (v) with and (vi) without debris, and (vii) canal with visible pulp calcification. All teeth were instrumented with the BioRaCe system and scanned in a Skyscan 1173 micro-CT before and after canal preparation. After reconstruction, the instrumented stack of images (IS) was registered against the preoperative sound stack of images (SS). Image processing included contrast equalization and noise filtering. Sound canal volumes were obtained by a minimum threshold. For the IS, a fixed conservative threshold was chosen as the best compromise between instrumented canal and dentine whilst avoiding debris, resulting in instrumented canal plus empty spaces. Arithmetic and logical operations between sound and instrumented stacks were used to identify debris. Noninstrumented dentine was calculated using a minimum threshold in the IS and subtracting from the SS and total debris. Removed dentine volume was obtained by subtracting SS from IS. Quantitative data on total debris present in the root canal space after instrumentation, noninstrumented areas and removed dentine volume were obtained for each test case, as well as three-dimensional volume renderings. After standardization of acquisition, reconstruction and image processing micro-CT images, a quantitative approach for calculation of root canal biomechanical outcomes was achieved using free software. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Neural network and its application to CT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busse, Nathan; Erwin, William; Pan, Tinsu
2013-12-15
Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less
... PET - chest; PET - lung; PET - tumor imaging; PET/CT - lung; Solitary pulmonary nodule - PET ... minutes. PET scans are performed along with a CT scan. This is because the combined information from ...
Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs
Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson
1998-01-01
Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...
Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.
Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C
2014-10-01
Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.
Feasibility of dual-energy computed tomography in radiation therapy planning
NASA Astrophysics Data System (ADS)
Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih
2017-12-01
In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.
Sharp, Nicole E; Raghavan, Maneesha U; Svetanoff, Wendy J; Thomas, Priscilla T; Sharp, Susan W; Brown, James C; Rivard, Douglas C; St Peter, Shawn D; Holcomb, George W
2014-06-01
We compare the amount of radiation children receive from CT scans performed at non-dedicated pediatric facilities (OH) versus those at a dedicated children's hospital (CH). Using a retrospective chart review, all children undergoing CT scanning for appendicitis at an OH were compared to children undergoing CT imaging for appendicitis at a CH between January 2011 and November 2012. One hundred sixty-three children underwent CT scans at 42 different OH. Body mass index was similar between the two groups (21.00±6.49kg/m(2), 19.58±5.18kg/m(2), P=0.07). Dose length product (DLP) was 620±540.3 at OH and 253.78±211.08 at CH (P < 0.001). OH CT scans accurately diagnosed appendicitis in 81%, while CT scans at CH were accurate in 95% (P=0.026). CTDIvol was recorded in 65 patients with subset analysis showing CTDIvol of 16.98±15.58 and 4.89±2.64, a DLP of 586.25±521.59 and 143.54±41.19, and size-specific dose estimate (SSDE) of 26.71±23.1 and 3.81±2.02 at OH and CH, respectively (P<0.001). Using SSDE as a marker for radiation exposure, children received 86% less radiation and had improved diagnostic accuracy when CT scans are performed at a CH. Copyright © 2014 Elsevier Inc. All rights reserved.
Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy
2016-04-01
The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.
SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, V; Kohli, K
2015-06-15
Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity,more » noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm.« less
Menditto, Vincenzo G; Lucci, Moira; Polonara, Stefano; Pomponio, Giovanni; Gabrielli, Armando
2012-06-01
Patients receiving warfarin who experience minor head injury are at risk of intracranial hemorrhage, and optimal management after a single head computed tomography (CT) scan is unclear. We evaluate a protocol of 24-hour observation followed by a second head CT scan. In this prospective case series, we enrolled consecutive patients receiving warfarin and showing no intracranial lesions on a first CT scan after minor head injury treated at a Level II trauma center. We implemented a structured clinical pathway, including 24-hour observation and a CT scan performed before discharge. We then evaluated the frequency of death, admission, neurosurgery, and delayed intracranial hemorrhage. We enrolled and observed 97 consecutive patients. Ten refused the second CT scan and were well during 30-day follow-up. Repeated CT scanning in the remaining 87 patients revealed a new hemorrhage lesion in 5 (6%), with 3 subsequently hospitalized and 1 receiving craniotomy. Two patients discharged after completing the study protocol with 2 negative CT scan results were admitted 2 and 8 days later with symptomatic subdural hematomas; neither received surgery. Two of the 5 patients with delayed bleeding at 24 hours had an initial international normalized ratio greater than 3.0, as did both patients with delayed bleeding beyond 24 hours. The relative risk of delayed hemorrhage with an initial international normalized ratio greater than 3.0 was 14 (95% confidence interval 4 to 49). For patients receiving warfarin who experience minor head injury and have a negative initial head CT scan result, a protocol of 24-hour observation followed by a second CT scan will identify most occurrences of delayed bleeding. An initial international normalized ratio greater than 3 suggests higher risk. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Prieto-Peña, Diana; Martínez-Rodríguez, Isabel; Loricera, Javier; Banzo, Ignacio; Calderón-Goercke, Mónica; Calvo-Río, Vanesa; González-Vela, Carmen; Corrales, Alfonso; Castañeda, Santos; Blanco, Ricardo; Hernández, José L; González-Gay, Miguel Á
2018-05-18
Polymyalgia rheumatica (PMR) is often the presenting manifestation of giant cell arteritis (GCA). Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scan often discloses the presence of large vessel vasculitis (LVV) in PMR patients. We aimed to identify predictive factors of a positive PET/CT scan for LVV in patients classified as having isolated PMR according to well-established criteria. A set of consecutive patients with PMR from a single hospital were assessed. All of them underwent PET/CT scan between January 2010 and February 2018 based on clinical considerations. Patients with PMR associated to other diseases, including those with cranial features of GCA, were excluded. The remaining patients were categorized in classic PMR (if fulfilled the 2012 EULAR/ACR classification criteria at disease diagnosis; n = 84) or atypical PMR (who did not fulfill these criteria; n = 16). Only information on patients with classic PMR was assessed. The mean age of the 84 patients (51 women) with classic PMR was 71.4 ± 9.2 years. A PET/CT scan was positive in 51 (60.7%). Persistence of classic PMR symptoms was the most common reason to perform a PET/CT scan. Nevertheless, patients with positive PET/CT scan often had unusual symptoms. The best set of predictors of a positive PET/CT scan were bilateral diffuse lower limb pain (OR = 8.8, 95% CI: 1.7-46.3; p = 0.01), pelvic girdle pain (OR = 4.9, 95% CI: 1.50-16.53; p = 0.01) and inflammatory low back pain (OR = 4.7, 95% CI: 1.03-21.5; p = 0.04). Inflammatory low back pain, pelvic girdle and diffuse lower limb pain are predictors of positive PET/CT scan for LVV in PMR. Copyright © 2018 Elsevier Inc. All rights reserved.
WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less
Estimating the lifetime risk of cancer associated with multiple CT scans.
Ivanov, V K; Kashcheev, V V; Chekin, S Yu; Menyaylo, A N; Pryakhin, E A; Tsyb, A F; Mettler, F A
2014-12-01
Multiple CT scans are often done on the same patient resulting in an increased risk of cancer. Prior publications have estimated risks on a population basis and often using an effective dose. Simply adding up the risks from single scans does not correctly account for the survival function. A methodology for estimating personal radiation risks attributed to multiple CT imaging using organ doses is presented in this article. The estimated magnitude of the attributable risk fraction for the possible development of radiation-induced cancer indicates the necessity for strong clinical justification when ordering multiple CT scans.
[Non-operation management of 12 cases with brain abscess demonstrated by CT scan].
Long, J
1990-12-01
This paper reported 12 cases with brain abscess demonstrated by CT scan. Using antibiotic management without surgical intervention, in 10 cases the curative effects were satisfactory. The paper indicated that CT scan was very useful in prompt and correct diagnosis of brain abscess and with sequential CT scan medical therapy was feasible. It is significant in treatment of brain abscess especially for the patients who have a poor general condition, have the brain abscess located in important functional area or have multiple abscesses so that the operation is difficult for them.
Zhang, Zhanwen; Lyu, Qinghu; Chen, Feini; Liao, Siqin; Zhang, Jie; Hu, Rui; Hu, Ping
2015-03-01
To explore the preoperative diagnostic value of ¹⁸F-fluorodexyglucose positron emission tomography combined with contrast enhanced computed tomography (¹⁸F-FDG PET-ceCT) in patients with colorectal cancer liver metastasis. Clinical and imaging data of 58 patients with suspicious colorectal cancer liver metastasis between April 2010 and March 2013 were retrospectively evaluated. All the patients underwent ¹⁸F-FDG PET-ceCT. On the basis of definitive diagnosis, the sensitivity, specificity, accuracy and consistency of routine PET-CT, ceCT and ¹⁸F-FDG PET-ceCT were calculated. A total of 147 suspicious lesions of colorectal cancer liver metastasis were found in 58 patients. Finally, 125 lesions were confinmed as malignant, of which 58 (46.4%) lesions were less than 1.0 cm. The other 22 lesions were confinmed as benign, of which 17 (77.3%) lesions were less than 1.0 cm. The diagnostic accuracy of routine PET-CT, ceCT and ¹⁸F-FDG PET-ceCT in colorectal cancer liver metastasis for the lesions more than 1.0 cm was 100%, 93.1%, 100% respectively, and the consistency with final diagnosis was perfect, moderate, and perfect respectively (Kappa value 01.00, 0.408, 1.00). For the lesions less than 1.0 cm, the accuracy was 42.7%, 78.7%, 94.7% respectively, and the consistency with definitive diagnosis was insignificance, fair, and almost perfect respectively (Kappa value -0.005, 0.305, 0.848). The area under curve(AUC) was 0.525 (95% CI: 0.407-0.462) for routine PET-CT, 0.651(95% CI:0.532-0.757) for ceCT, and 0.924 (95% CI:0.839-0.972) for ¹⁸F-FDG PET-ceCT respectively. The AUC of ¹⁸F-FDG PET-ceCT was significantly larger than that of routine PET-CT (Z=5.559, P<0.05) or ceCT (Z=4.183, P<0.05). (18)F-FDG PET-ceCT can improve the diagnostic accuracy for smaller lesions of colorectal cancer liver metastasis.
Vomiting--is this a good indication for CT head scans in patients with minor head injury?
Bainbridge, J; Khirwadkar, H; Hourihan, M D
2012-02-01
The National Institute for Health and Clinical Excellence head injury guidelines advise CT imaging within 1 h if there is more than one episode of vomiting post-head injury in adults and three or more episodes in children. Since the guideline publication, studies have found that, following head injury, vomiting alone is associated with an abnormal CT head scan in 13-45% of cases. CT head scan requests referred from the emergency department between 1 May 2009 and 30 April 2010 were retrospectively reviewed. Patients with vomiting as the sole indication for an "immediate" CT head scan performed within 1 h were included in the study. Reports produced by experienced neuroradiologists were reviewed and the detection of significant head injury was noted. There were 1264 CT head scans performed during our study period. 151 (124 adults, 27 children) were indicated owing to vomiting following head injury. 5 of the 124 adult scans and 1 of the 27 paediatric scans showed an abnormal finding, giving positive predictive values (PPV) of 4% and 3.7%, respectively. None of these patients required either acute or delayed neurosurgical intervention. In our experience, vomiting alone has a PPV of 4% for significant head injury in adults. However, none of these injuries were serious enough to warrant acute or delayed intervention. Given these findings, vomiting following head injury is a reasonable indication for a CT head scan; however, as none of the patients required acute intervention, we suggest that these scans do not usually need to be performed within 1 h of request.
Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H
2015-06-01
Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of FDG SPECT/CT is then limited and cannot replace PET/CT.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
Effect of emergency department CT on neuroimaging case volume and positive scan rates.
Oguz, Kader Karli; Yousem, David M; Deluca, Tom; Herskovits, Edward H; Beauchamp, Norman J
2002-09-01
The authors performed this study to determine the effect a computed tomographic (CT) scanner in the emergency department (ED) has on neuroimaging case volume and positive scan rates. The total numbers of ED visits and neuroradiology CT scans requested from the ED were recorded for 1998 and 2000, the years before and after the installation of a CT unit in the ED. For each examination type (brain, face, cervical spine), studies were graded for major findings (those that affected patient care), minor findings, and normal findings. The CT utilization rates and positive study rates were compared for each type of study performed for both years. There was a statistically significant increase in the utilization rate after installation of the CT unit (P < .001). The fractions of studies with major findings, minor findings, and normal findings changed significantly after installation of the CT unit for facial examinations (P = .002) but not for brain (P = .12) or cervical spine (P = .24) examinations. In all types of studies, the percentage of normal examinations increased. In toto, there was a significant decrease in the positive scan rate after installation of the CT scanner (P = .004). After installation of a CT scanner in the ED, there was increased utilization and a decreased rate of positive neuroradiologic examinations, the latter primarily due to lower positive rates for facial CT scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D; Neylon, J; Dou, T
Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less
The utility of computed tomography in the management of fever and neutropenia in pediatric oncology.
Rao, Avani D; Sugar, Elizabeth A; Barrett, Neil; Mahesh, Mahadevappa; Arceci, Robert J
2015-10-01
Despite the frequent use and radiation exposure of computed tomography (CT) scans, there is little information on patterns of CT use and their utility in the management of pediatric patients with fever and neutropenia (FN). We examined the contribution of either the commonly employed pan-CT (multiple anatomical locations) or targeted CT (single location) scanning to identify possible infectious etiologies in this challenging clinical scenario. Procedure Pediatric patients with an underlying malignancy admitted for fever (temperature ≥ 38.3 °C) and an absolute neutrophil count <500 cells/μL from 2003-2009 were included. Risk factors associated with utilization, results, and effects on clinical management of CT scans were identified. Results Charts for 635 admissions for FN from 263 patients were reviewed. Overall, 139 (22%) admissions (93 individuals) had at least one scan. Of 188 scans, 103 (55%) were pan-scans. Changes in management were most strongly associated with the identification of evidence consistent with infection (OR = 12.64, 95% CI: 5.05-31.60, P < 0.001). Seventy-eight (41%) of all CT scans led to a change in clinical management, most commonly relating to use of antibiotic (N = 41, 53%) or antifungal/antiviral medications (N = 33, 42%). The odds of a change in clinical management did not differ for those receiving a pan-scan compared to those receiving a targeted scan (OR = 1.23; 95% CI, 0.61-2.46; P = 0.57). Conclusions When CT is clinically indicated, it is important for clinicians to strongly consider utilizing a targeted scan to reduce radiation exposure to patients as well as to decrease costs without compromising care. © 2015 Wiley Periodicals, Inc.
Rouchy, R C; Moreau-Gaudry, A; Chipon, E; Aubry, S; Pazart, L; Lapuyade, B; Durand, M; Hajjam, M; Pottier, S; Renard, B; Logier, R; Orry, X; Cherifi, A; Quehen, E; Kervio, G; Favelle, O; Patat, F; De Kerviler, E; Hughes, C; Medici, M; Ghelfi, J; Mounier, A; Bricault, I
2017-07-06
Interventional radiology includes a range of minimally invasive image-guided diagnostic and therapeutic procedures that have become routine clinical practice. Each procedure involves a percutaneous needle insertion, often guided using computed tomography (CT) because of its availability and usability. However, procedures remain complicated, in particular when an obstacle must be avoided, meaning that an oblique trajectory is required. Navigation systems track the operator's instruments, meaning the position and progression of the instruments are visualised in real time on the patient's images. A novel electromagnetic navigation system for CT-guided interventional procedures (IMACTIS-CT®) has been developed, and a previous clinical trial demonstrated improved needle placement accuracy in navigation-assisted procedures. In the present trial, we are evaluating the clinical benefit of the navigation system during the needle insertion step of CT-guided procedures in the thoraco-abdominal region. This study is designed as an open, multicentre, prospective, randomised, controlled interventional clinical trial and is structured as a standard two-arm, parallel-design, individually randomised trial. A maximum of 500 patients will be enrolled. In the experimental arm (navigation system), the procedures are carried out using navigation assistance, and in the active comparator arm (CT), the procedures are carried out with conventional CT guidance. The randomisation is stratified by centre and by the expected difficulty of the procedure. The primary outcome of the trial is a combined criterion to assess the safety (number of serious adverse events), efficacy (number of targets reached) and performance (number of control scans acquired) of navigation-assisted, CT-guided procedures as evaluated by a blinded radiologist and confirmed by an expert committee in case of discordance. The secondary outcomes are (1) the duration of the procedure, (2) the satisfaction of the operator and (3) the irradiation dose delivered, with (4) subgroup analysis according to the expected difficulty of the procedure, as well as an evaluation of (5) the usability of the device. This trial addresses the lack of published high-level evidence studies in which navigation-assisted CT-guided interventional procedures are evaluated. This trial is important because it addresses the problems associated with conventional CT guidance and is particularly relevant because the number of interventional radiology procedures carried out in routine clinical practice is increasing. ClinicalTrials.gov identifier: NCT01896219 . Registered on 5 July 2013.
Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A
2011-08-01
To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.
Reducing Head CT Use for Children With Head Injuries in a Community Emergency Department.
Jennings, Rebecca M; Burtner, Jennifer J; Pellicer, Joseph F; Nair, Deepthi K; Bradford, Miranda C; Shaffer, Michele; Uspal, Neil G; Tieder, Joel S
2017-04-01
Clinical decision rules have reduced use of computed tomography (CT) to evaluate minor pediatric head injury in pediatric emergency departments (EDs). CT use remains high in community EDs, where the majority of children seek medical care. We sought to reduce the rate of CT scans used to evaluate pediatric head injury from 29% to 20% in a community ED. We evaluated a quality improvement (QI) project in a community ED aimed at decreasing the use of head CT scans in children by implementing a validated head trauma prediction rule for traumatic brain injury. A multidisciplinary team identified key drivers of CT use and implemented decision aids to improve the use of prediction rules. The team identified and mitigated barriers. An affiliated children's hospital offered Maintenance of Certification credit and QI coaching to participants. We used statistical process control charts to evaluate the effect of the intervention on monthly CT scan rates and performed a Wald test of equivalence to compare preintervention and postintervention CT scan proportions. The baseline period (February 2013-July 2014) included 695 patients with a CT scan rate of 29.2% (95% confidence interval, 25.8%-32.6%). The postintervention period (August 2014-October 2015) included 651 patients with a CT scan rate of 17.4% (95% confidence interval, 14.5%-20.2%, P < .01). Barriers included targeting providers with variable pediatric experience and parental imaging expectations. We demonstrate that a Maintenance of Certification QI project sponsored by a children's hospital can facilitate evidence-based pediatric care and decrease the rate of unnecessary CT use in a community setting. Copyright © 2017 by the American Academy of Pediatrics.
18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.
Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K
2018-03-01
18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Pitfalls of CT for deep neck abscess imaging assessment: a retrospective review of 162 cases.
Chuang, S Y; Lin, H T; Wen, Y S; Hsu, F J
2013-01-01
To investigate the diagnostic value of contrast-enhanced computed tomography (CT) for the prediction of deep neck abscesses in different deep neck spaces and to evaluate the false-positive results. We retrospectively analysed the clinical charts, CT examinations, surgical findings, bacteriology, pathological examinations and complications of hospitalised patients with a diagnosis of deep neck abscess from 2004 to 2010. The positive predictive values (PPV) for the prediction of abscesses by CT scan in different deep neck spaces were calculated individually on the basis of surgical findings. A total of 162 patients were included in this study. All patients received both intravenous antibiotics and surgical drainage. The parapharyngeal space was the most commonly involved space. The overall PPV for the prediction of deep neck abscess with contrast-enhanced CT was 79.6%. The PPV was 91.3% when more than one deep neck space was involved but only 50.0% in patients with isolated retropharyngeal abscesses. In the false-positive group, cellulitis was the most common final result, followed by cystic degeneration of cervical metastases. Five specimens taken intra-operatively revealed malignancy and four of these were not infected. There are some limitations affecting the differentiation of abscesses and cellulitis, particularly in the retropharyngeal space. A central necrotic cervical metastatic lymph node may sometimes also mimic a simple pyogenic deep neck abscess on both clinical pictures and CT images. Routine biopsy of the tissue must be performed during surgical drainage.
Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L
2018-01-01
The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.
Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong
2015-08-01
It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children.
CT of Patients With Hip Fracture: Muscle Size and Attenuation Help Predict Mortality
Boutin, Robert D.; Bamrungchart, Sara; Bateni, Cyrus P.; Beavers, Daniel P.; Beavers, Kristen M.; Meehan, John P.; Lenchik, Leon
2018-01-01
OBJECTIVE Our objective was to determine the association between muscle cross-sectional area and attenuation, as measured on routine CT scans, and mortality in older patients with hip fracture. MATERIALS AND METHODS A retrospective 10-year study of patients with hip fracture was conducted with the following inclusion criteria: age 65 years or older, first-time hip fracture treated with surgery, and CT of the chest, abdomen, or pelvis. This yielded 274 patients (70.4% women; mean [± SD] age, 81.3 ± 8.3 years). On each CT scan, two readers independently measured the size (cross-sectional area, indexed for patient height) and attenuation of the paravertebral muscle at T12 and the psoas muscle at L4. We then determined the association between overall mortality and the muscle size and muscle attenuation, while adjusting for demographic variables (age, sex, ethnicity, and body mass index), American Society of Anesthesiologists (ASA) classification, and Charlson comorbidity index (CCI). RESULTS The overall mortality rate increased from 28.3% at 1 year to 79.5% at 5 years. Mortality was associated with decreased thoracic muscle size (odds ratio [OR], 0.66; 95% CI, 0.49–0.87). This association persisted after adjusting for demographic variables (OR, 0.69; 95% CI, 0.50–0.95), the ASA classification (OR, 0.70; CI, 0.51–0.97), and the CCI (OR, 0.72; 95% CI, 0.52–1.00). Similarly, decreased survival was associated with decreased thoracic muscle attenuation after adjusting for all of these combinations of covariates (OR, 0.67–0.72; 95% CI, 0.49–0.99). Decreased lumbar muscle size and attenuation trended with decreased survival but did not reach statistical significance. CONCLUSION In older adults with hip fractures, CT findings of decreased thoracic paravertebral muscle size and attenuation are associated with decreased overall survival. PMID:28267356
Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O
2015-01-06
Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. The cohort included 67,274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans.
Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.
Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S
2017-01-01
PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).
Livingston, Michael H; Igric, Ana; Vogt, Kelly; Parry, Neil; Merritt, Neil H
2014-01-01
The purpose of this study was to determine the effective dose of radiation due to computed tomography (CT) scans in paediatric trauma patients at a level 1 Canadian paediatric trauma centre. We also explored the indications and actions taken as a result of these scans. We performed a retrospective review of paediatric trauma patients presenting to our centre from January 1, 2007 to December 31, 2008. All CT scans performed during the initial trauma resuscitation, hospital stay, and 6 months afterwards were included. Effective dose was calculated using the reported dose length product for each scan and conversion factors specific for body region and age of the patient. 157 paediatric trauma patients were identified during the 2-year study period. Mean Injury Severity Score was 22.5 (range 12-75). 133 patients received at least one CT scan. The mean number of scans per patient was 2.6 (range 0-16). Most scans resulted in no further action (56%) or additional imaging (32%). A decision to perform a procedure (2%), surgery (8%), or withdrawal of life support (2%) was less common. The average dose per patient was 13.5mSv, which is 4.5 times the background radiation compared to the general population. CT head was the most commonly performed type of scan and was most likely to be repeated. CT body, defined as a scan of the chest, abdomen, and/or pelvis, was associated with the highest effective dose. CT is a significant source of radiation in paediatric trauma patients. Clinicians should carefully consider the indications for each scan, especially when performing non-resuscitation scans. There is a need for evidence-based treatment algorithms to assist clinicians in selecting appropriate imaging for patients with severe multisystem trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.
Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N
2013-05-01
[ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.
Sierink, Joanne C; Treskes, Kaij; Edwards, Michael J R; Beuker, Benn J A; den Hartog, Dennis; Hohmann, Joachim; Dijkgraaf, Marcel G W; Luitse, Jan S K; Beenen, Ludo F M; Hollmann, Markus W; Goslings, J Carel
2016-08-13
Published work suggests a survival benefit for patients with trauma who undergo total-body CT scanning during the initial trauma assessment; however, level 1 evidence is absent. We aimed to assess the effect of total-body CT scanning compared with the standard work-up on in-hospital mortality in patients with trauma. We undertook an international, multicentre, randomised controlled trial at four hospitals in the Netherlands and one in Switzerland. Patients aged 18 years or older with trauma with compromised vital parameters, clinical suspicion of life-threatening injuries, or severe injury were randomly assigned (1:1) by ALEA randomisation to immediate total-body CT scanning or to a standard work-up with conventional imaging supplemented with selective CT scanning. Neither doctors nor patients were masked to treatment allocation. The primary endpoint was in-hospital mortality, analysed in the intention-to-treat population and in subgroups of patients with polytrauma and those with traumatic brain injury. The χ(2) test was used to assess differences in mortality. This trial is registered with ClinicalTrials.gov, number NCT01523626. Between April 22, 2011, and Jan 1, 2014, 5475 patients were assessed for eligibility, 1403 of whom were randomly assigned: 702 to immediate total-body CT scanning and 701 to the standard work-up. 541 patients in the immediate total-body CT scanning group and 542 in the standard work-up group were included in the primary analysis. In-hospital mortality did not differ between groups (total-body CT 86 [16%] of 541 vs standard work-up 85 [16%] of 542; p=0.92). In-hospital mortality also did not differ between groups in subgroup analyses in patients with polytrauma (total-body CT 81 [22%] of 362 vs standard work-up 82 [25%] of 331; p=0.46) and traumatic brain injury (68 [38%] of 178 vs 66 [44%] of 151; p=0.31). Three serious adverse events were reported in patients in the total-body CT group (1%), one in the standard work-up group (<1%), and one in a patient who was excluded after random allocation. All five patients died. Diagnosing patients with an immediate total-body CT scan does not reduce in-hospital mortality compared with the standard radiological work-up. Because of the increased radiation dose, future research should focus on the selection of patients who will benefit from immediate total-body CT. ZonMw, the Netherlands Organisation for Health Research and Development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Kimura, Tomoatsu
2012-11-01
We developed a new technique for cervical pedicle screw and Magerl screw insertion using a 3-dimensional image guide. In posterior cervical spinal fusion surgery, instrumentation with screws is virtually routine. However, malpositioning of screws is not rare. To avoid complications during cervical pedicle screw and Magerl screw insertion, the authors developed a new technique which is a mold shaped to fit the lamina. Cervical pedicle screw fixation and Magerl screw fixation provide good correction of cervical alignment, rigid fixation, and a high fusion rate. However, malpositioning of screws is not a rare occurrence, and thus the insertion of screws has a potential risk of neurovascular injury. It is necessary to determine a safe insertion procedure for these screws. Preoperative computed tomographic (CT) scans of 1-mm slice thickness were obtained of the whole surgical area. The CT data were imported into a computer navigation system. We developed a 3-dimensional full-scale model of the patient's spine using a rapid prototyping technique from the CT data. Molds of the left and right sides at each vertebra were also constructed. One hole (2.0 mm in diameter and 2.0 cm in length) was made in each mold for the insertion of a screw guide. We performed a simulated surgery using the bone model and the mold before operation in all patients. The mold was firmly attached to the surface of the lamina and the guide wire was inserted using the intraoperative image of lateral vertebra. The proper insertion point, direction, and length of the guide were also confirmed both with the model bone and the image intensifier in the operative field. Then, drilling using a cannulated drill and tapping using a cannulated tapping device were carried out. Eleven consecutive patients who underwent posterior spinal fusion surgery using this technique since 2009 are included. The screw positions in the sagittal and axial planes were evaluated by postoperative CT scan to check for malpositioning. The screw insertion was done in the same manner as the simulated surgery. With the aid of this guide the pedicle screws and Magerl screws could be easily inserted even at the level where the pedicle seemed to be very thin and sclerotic on the CT scan. Postoperative CT scan showed that there were no critical breaches of the screws. This method employing the device using a 3-dimensional image guide seems to be easy and safe to use. The technique may improve the safety of pedicle screw and Magerl screw insertion even in difficult cases with narrow sclerotic pedicles.
Reasons for testing women for genital Chlamydia trachomatis infection in the Calgary region
Church, Deirdre L; Zentner, Ali; Semeniuk, Heather; Henderson, Elizabeth; Read, Ron
2003-01-01
OBJECTIVE: To determine the clinical reason(s) for screening women with varying degrees of risk for genital Chlamydia trachomatis (CT) in the Calgary region. DESIGN: Women aged 15 to 75 years were enrolled at various patient care locations. Pertinent risk factors for genital CT infection were recorded and a gynecological examination was performed. Two endocervical swabs and a first-void urine sample were collected for CT detection using two different nucleic acid amplification test methods. SETTING: Calgary is an urban region that provides healthcare services to a population of almost one million people. Microbiology services are provided by Calgary Laboratory Services through a centralized regional laboratory service. MAIN RESULTS: 504 women with a mean age of 28.1 ±SD 8.22 years were enrolled. Two hundred ninety-one women (57.8%) were at high risk for acquiring genital CT infection. Twenty-eight (5.6%) tested positive for CT infection and almost all of these women (26 of 28, 93%) had risk factors for acquiring infection. Of the high-risk women, 9.8% were CT positive versus only 1.3% of women at low risk (P=0.0001). Only two of 152 (1.3%) women older than 30 years had genital CT infections. Although most women were asymptomatic, those with laboratory-confirmed CT infection were more likely to have genitourinary symptoms. Three hundred forty-three of 476 (72%) women who did not have genital CT infection had no risk factors, and screening was done as part of a routine gynecological examination for other purposes (prenatal visit, Pap smear). CONCLUSION: Women without risk factors are being screened routinely for genital CT infection as part of a routine gynecological examination done for other reasons. Elimination of the routine screening of low-risk women older than 30 years of age would decrease the current regional utilization of CT tests by as much as one-third. PMID:18159423
TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawfel, RD; Young, G
Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dosemore » metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.« less
Yang, Zhongyi; Cheng, Jingyi; Pan, Lingling; Hu, Silong; Xu, Junyan; Zhang, Yongping; Wang, Mingwei; Zhang, Jianping; Ye, Dingwei; Zhang, Yingjian
2012-08-01
Because of the urinary excretion of fluorine-18 fluorodeoxyglucose ((18)F-FDG), FDG-PET or PET/CT is thought of little value in patients with bladder cancer. The purpose of our study was to investigate the value of (18)F-FDG PET/CT with additional pelvic images in detection of recurrent bladder cancers. From December 2006 to August 2010, 35 bladder cancer patients (median age 56 years old, ranging from 35 to 96) underwent routine (18)F-FDG PET/CT. To better detect bladder lesions, a new method called as oral hydration-voiding-refilling was introduced, which included that all the patients firstly received oral hydration, then were required to void frequently and finally were demanded to hold back urine when the additional pelvic images were scanned. Lesions were confirmed by either histopathology or clinical follow-up for at least 6 months. Finally, 12 recurrent cases of 35 patients were confirmed by cystoscope. PET/CT correctly detected 11 of them. Among these 11 true positive patients, 5 patients (45.5 %) were detected only after additional pelvic images. Lichenoid lesions on the bladder wall were missed, which caused 1 false negative result. All three false positive cases were testified to be inflammatory tissues by cystoscope. Therefore, the sensitivity, specificity and accuracy of PET/CT were 91.7 % (11/12), 87.0 % (20/23) and 88.6 % (31/35), respectively. PET/CT with additional pelvic images can highly detect recurrent lesions in residual bladder tissues. Our method with high accuracy and better endurance could be potentially applied.
Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT
NASA Astrophysics Data System (ADS)
Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.
2014-03-01
Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.
Investigating different computed tomography techniques for internal target volume definition.
Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen
2017-01-01
The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.
Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I
2017-08-01
A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.
Zhou, Alice L; Bonham, Luke W; Verde, Franco
2018-05-24
CT is routinely performed to evaluate trauma patients. When a radiologist misses an acute finding, there could be serious adverse consequences. In many subspecialty settings, body radiologists and neuroradiologists both interpret the thoracic and lumbar spine. RADPEER has estimated general disagreement rates between radiologists to be 2.9%, but the disagreement rate between neuroradiologists and body radiologists in trauma settings remains unknown. This retrospective case review examined reports from the past 10 years of adult CT scans of the chest, abdomen, and pelvis interpreted by body radiologists, with concurrent thoracic and lumbar spine reconstructions interpreted by neuroradiologists. Reports were scrutinized for disagreement on the presence of acute fractures visible to both radiologists. 1,497 report pairs were analyzed. Of them, 33 pairs (2.2%) disagreed on the presence of an unequivocal acute fracture. In scans where only one miss occurred, the body radiologist and neuroradiologist were attributed with 27 (82%) and 6 (18%) of 32 disagreements, respectively. One scan contained a miss by both the body radiologist and neuroradiologist. Transverse processes were most commonly missed, followed by vertebral body fractures. Misses by body radiologists comprised the majority of disagreements. Neuroradiologists are more sensitive for detecting spinal fractures likely secondary to experience, education, small field of view reconstructed, and more detailed reporting protocols. Additional studies are needed to determine whether emulating neuroradiology practices may help body radiologists detect subtle fractures. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Human identification based on cranial computed tomography scan — a case report
Silva, RF; Botelho, TL; Prado, FB; Kawagushi, JT; Daruge Júnior, E; Bérzin, F
2011-01-01
Today, there is increasing use of CT scanning on a clinical basis, aiding in the diagnosis of diseases or injuries. This exam also provides important information that allows identification of individuals. This paper reports the use of a CT scan on the skull, taken when the victim was alive, for the positive identification of a victim of a traffic accident in which the fingerprint analysis was impossible. The authors emphasize that the CT scan is a tool primarily used in clinical diagnosis and may contribute significantly to forensic purpose, allowing the exploration of virtual corpses before the classic autopsy. The use of CT scans might increase the quantity and quality of information involved in the death of the person examined. PMID:21493883
CT scans in young people in Northern England: trends and patterns 1993–2002
Pearce, Mark S.; Salotti, Jane A.; McHugh, Kieran; Metcalf, Wenhua; Kim, Kwang P.; Craft, Alan W.; Parker, Louise; Ron, Elaine
2014-01-01
Background Although CT can be greatly beneficial, its relatively high radiation doses have caused public health concerns. Objective To assess patterns in CT usage among patients aged less than 22 years in Northern England during the period 1993–2002. Materials and methods Electronic data were obtained from radiology information systems of all nine National Health Service trusts in the region. Results A total of 38,681 scans had been performed in 20,483 patients aged less than 22 years. The number of CT examinations rose, with the steepest increase between 1997 and 2000. The number of patients scanned per year increased less dramatically, with 2.24/1,000 population aged less than 22 years having one scan or more in 1993 compared to 3.54/1,000 in 2002. This reflects an increase in the median number of scans per patient, which rose from 1 in 1993 to 2 by 1999. More than 70% of CT examinations were of the head, with the number of head examinations varying with time and patient age. Conclusion The frequency of CT scans in this population more than doubled during the study period. This is partly, but not wholly, explained by an increase in the number of scans per patient. PMID:21594548
Wang, Zhen J.; Chen, Katherine S.; Gould, Robert; Coakley, Fergus V.; Fu, Yanjun; Yeh, Benjamin M.
2014-01-01
Objective To assess the effect of positive enteric contrast administration on automatic exposure control (AEC) CT radiation exposure in 1) a CT phantom, and 2) a retrospective review of patients. Materials and Methods We scanned a CT phantom containing simulated bowel that was sequentially filled with water and positive enteric contrast, and recorded the mean volume CT dose index (CTDIvol). We also identified 17 patients who had undergone 2 technically comparable CT scans of the abdomen and pelvis, one with positive enteric contrast and the other with oral water. Paired student t-tests were used to compare the mean CTDIvol between scans performed with and without positive enteric contrast. Both the phantom and patient CT scans were performed using AEC with a fixed noise index. Results The mean CTDIvol for the phantom with simulated bowel containing water and positive enteric contrast were 8.2 ± 0.2 mGy, and 8.7 ± 0.1 mGy (6.1% higher than water, p=0.02), respectively. The mean CTDIvol for patients scanned with oral water and with positive enteric contrast were 11.8mGy and 13.1mGy, respectively (p=0.003). This corresponded to a mean CTDIvol which was 11.0% higher (range: 0.0–20.7% higher) in scans with positive enteric contrast than those with oral water in patients. Conclusions When automatic exposure control is utilized for abdominopelvic CT, the radiation exposure, as measured by CTDIvol, is higher for scans performed with positive enteric contrast than those with oral water. PMID:21493028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish
2013-08-15
Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reedmore » National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.« less
Effect of topogram-tube angle combination on CT radiation dose reduction
NASA Astrophysics Data System (ADS)
Shim, J.; Yoon, M.
2017-09-01
This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.
Mathews, John D; Forsythe, Anna V; Brady, Zoe; Butler, Martin W; Goergen, Stacy K; Byrnes, Graham B; Giles, Graham G; Wallace, Anthony B; Anderson, Philip R; Guiver, Tenniel A; McGale, Paul; Cain, Timothy M; Dowty, James G; Bickerstaffe, Adrian C; Darby, Sarah C
2013-05-21
To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Population based, cohort, data linkage study in Australia. COHORT MEMBERS: 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. 60,674 cancers were recorded, including 3150 in 680,211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100,000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose.
Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P
2013-03-01
Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases with patient size, and the radiation dose received by larger patients as a result of more than 3 O-arm scans in standard mode may exceed the dose received during standard CT of the abdomen. Understanding radiation imparted to patients by cone-beam CT is important for assessing risks and benefits of this technology, especially when spinal surgical procedures require multiple intraoperative scans.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
Single energy micro CT SkyScan 1173 for the characterization of urinary stone
NASA Astrophysics Data System (ADS)
Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.
2016-08-01
A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.
Gandhi, Rohit; Lewis, Evan Cole; Evans, Jeanette W; Sell, Erick
2015-03-01
Headaches are a common problem in the pediatric population. In 2002, the American Academy of Neurology (AAN) developed guidelines on neuroimaging for patients presenting with headache. Our objective was to determine the frequency of computed tomographic (CT) scanning ordered by a range of medical practitioners for pediatric patients presenting with primary headache. A retrospective chart review was conducted at the Children's Hospital of Eastern Ontario (CHEO), a tertiary care centre in Ontario. One hundred fifty-one records of patients referred to the outpatient neurology clinic at CHEO with ''headache'' or ''migraine'' as the primary complaint from 2004 to 2009 were randomly selected. Ninety-nine patients with normal neurologic examinations were ultimately included. Thirty-four patients (34%; 95% CI 25-45) had undergone CT scanning. None of the 34 CT scans (0%; 95% CI 0-10) showed significant findings, and none changed the headache diagnosis or management. Eleven (32%) of the CT scans were ordered by CHEO neurologists, 15 (44%) by community physicians, and 8 (24%) by CHEO emergency physicians. A high proportion of children presenting with primary headaches and a normal neurologic examination undergo CT scanning, despite well-established AAN guidelines regarding neuroimaging. Most of these CT scans do not appear to alter diagnosis and management. A variety of non-evidencebased factors may be encouraging physicians to overinvestigate this population and, as a result, increasing the risk of adverse events due to radiation exposure. Implementing initiatives at a site-based level that promote the use of established guidelines before performing CT scanning in this population may be beneficial.
TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T; Zhu, L
Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less
Kobe, Isaac O; Qureshi, Mahmoud M; Hassan, Saidi; Oluoch-Olunya, David L
2017-12-01
The decision to order head CT scans to rule out clinically significant traumatic brain injury in mild head injury in children is made on the basis of clinical decision rules of which the Paediatric Emergency Care Applied Research Network (PECARN) CT head rules have been found to be most sensitive. The purpose of this study is to determine the proportion of head CT scans done for children with mild head injury and to determine disposition of patients from casualty after the introduction of PECARN head CT rules compared to the period before. The research question is "will introduction of the PECARN CT head rules reduce the proportion of head CT scans requested for children under 18 years with mild head injury at the AKUHN?" A before and after quasi experimental study with a study population including all children under 18 years presenting to the AKUHN with mild head injury and a Glasgow coma scale of 14 and above on presentation. Sample size was 85. A total of 42 patients files were analysed in the before study while 43 patients were selected for the after study. The median age was 5 years. The proportion of head CT scans reduced from 56% in the before group to 33% in the after group with no missed clinically significant traumatic brain injury. More patients were discharged home after evaluation in the after group (81%) than in the before group (58%). The number of head CT scans ordered reduced without missing any clinically significant traumatic brain injury.
[Exposure to CT scans in childhood and long-term cancer risk: A review of epidemiological studies].
Baysson, Hélène; Journy, Neige; Roué, Tristan; Ducou-Lepointe, Hubert; Etard, Cécile; Bernier, Marie-Odile
2016-02-01
Amongst medical exams requiring ionizing radiation, computed tomography (CT) scans are used more frequently, including in children. These CT examinations are associated with absorbed doses that are much higher than those associated with conventional radiology. In comparison to adults, children have a greater sensitivity to radiation and a longer life span with more years at cancer risks. Five epidemiological studies on cancer risks after CT scan exposure during childhood were published between 2012 and 2015. The results of these studies are consistent and show an increase of cancer risks in children who have been exposed to several CT scans. However, methodological limits due to indication bias, retrospective assessment of radiation exposure from CT scans and lack of statistical power are to be taken into consideration. International projects such as EPI-CT (Epidemiological study to quantify risks for pediatric computerized tomography and to optimize dose), with a focus on dosimetric reconstruction and minimization of bias will provide more precise results. In the meantime, available results reinforce the necessity of justification and optimization of doses. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Liu, Yiyan
Focal lung uptake without corresponding lesions or abnormalities on computed tomography (CT) scan poses a dilemma in the interpretation of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). A limited number of case reports have previously suggested an artifactual or iatrogenic nature of the uptake. In the present study, 8 relevant cases were included within a retrospective search of the database. Medical records were reviewed for follow-up radiological and pathologic information. In 7 of 8 cases with focal increased FDG uptake but no corresponding lesions or abnormalities on CT scan, the lung hot spots were artifactual or iatrogenic upon follow-up diagnostic chest CT or repeated PET/CT or both the scans. Microemboli were most likely a potential cause of the pulmonary uptake, with or without partial paravenous injection. One case in the series had a real pulmonary lesion demonstrated on follow-up PET/CT scans and on surgical pathology, although the initial integrated CT and follow-up diagnostic chest CT scans revealed negative findings to demonstrate pulmonary abnormalities corresponding to the hot spot on the PET scan. In conclusion, the finding of a lung hot spot in the absence of anatomical abnormality on FDG PET/CT was most likely artifactual or iatrogenic, but it might also represent a real pulmonary lesion. Nonvisualization of anatomical abnormality could be because of its small size and position directly overlying a segmental vessel. Further image follow-up is necessary and important to clarify the nature of the uptake. Copyright © 2017 Elsevier Inc. All rights reserved.
Journal Club: Head CT scans in the emergency department for syncope and dizziness.
Mitsunaga, Myles M; Yoon, Hyo-Chun
2015-01-01
The purpose of this study was to determine the yield of acutely abnormal findings on head CT scans in patients presenting to the emergency department with dizziness, near-syncope, or syncope and to determine the clinical factors that potentially predicted acutely abnormal head CT findings and hospital admission. We retrospectively reviewed the electronic medical records of all patients presenting to an HMO emergency department between July 1, 2012, and December 31, 2012, who underwent head CT for a primary complaint of dizziness, syncope, or near-syncope. The primary outcomes were head CT scans with acutely abnormal findings and hospital admission. Binary logistic regression was used to assess the association between clinical variables and acute head CT findings and between clinical variables and hospital admission. Of the 253 patients who presented with dizziness, 7.1% had head CT scans with acutely abnormal findings, and 18.6% were admitted. Of the 236 patients who presented with syncope or near-syncope, 6.4% had head CT scans with acutely abnormal findings, and 39.8% were admitted. The following three clinical factors were found to be significantly correlated with acutely abnormal head CT findings: a focal neurologic deficit (p = 0.003), age greater than 60 years (p = 0.011), and acute head trauma (p = 0.026). Our results suggest that most patients presenting with syncope or dizziness to the emergency department may not benefit from head CT unless they are older, have a focal neurologic deficit, or have a history of recent head trauma.
Fatal carotid dissection after blunt head trauma.
Tartara, F; Regolo, P; Servadei, F; Versari, P P; Giovanelli, M
2000-06-01
Occurrence of internal carotid artery injuries associated with skull base fracture has been reported. A. report a case of fatal intracranial carotid dissection related to petrous fracture involving the carotid canal. Identification of carotid lesions may be difficult and generally related to appearance of unexpected neurological deficit. Skull base fractures may be considered an indirect sign for detection of vascular injury. Patterns of the fracture are of paramount importance; routine CT scan may fail to detect basilar fractures and high definition fine-cut CT scan should be executed to carefully identify and evaluate fractures. Temporal and sphenoid bone fractures are common in head trauma and involvement of the course of the carotid artery is frequent. The involvement of the intracranial carotid artery course represents a direct risk factor for lesions of the petrous, lacerum and cavernous segments of the carotid artery. Early diagnosis of post-traumatic vascular injury may lead to prognosis improvement because of effectiveness of heparin anticoagulant therapy. Then vascular screening is recommendable in cases with complex fractures of the skull base and particularly fracturing along the course of the carotid artery. Magnetic resonance angiography may be considered the first line diagnostic tools for vascular screening. Angiography may be reserved for patients with a proven lesion or rapid neurological deterioration taking into account the possibility of interventional treatment.
Highly accurate fast lung CT registration
NASA Astrophysics Data System (ADS)
Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd
2013-03-01
Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.
Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A
2015-05-01
Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.
Firoozabadi, Razieh Dehghani; Karimi Zarchi, Mojgan; Mansurian, Hamid Reza; Moghadam, Bita Rafiei; Teimoori, Soraya; Naseri, Ali
2011-01-01
Because benign and malignant cervical and ovarian masses occur with different percentages in different age groups, the importance of primary diagnosis and selection of a suitable surgical procedure is underlined. Diagnosis of pelvic masses is carried out using ultrasound, physical examination, CT scan and MRI. The objective of this study is to evaluate the diagnostic value of CT scan in pelvic masses in comparison with physical examination-ultrasound based on pathology of the lesion in patients undergoing laparotomic surgery. This analytic-descriptive study focused on age, sonographic findings, physical examinations, CT scan and pathological findings in 139 patients with pelvic mass, gathered with questionnaires and statistically analayzed using the SPSS software programme. Of 139 patients with pelvic mass (patients aged from 17 to 75 years old), 62 (44%) cases were diagnosed as benign and 77 (55.4%) as malignant; among them malignant tratoma serocyst adenocarsinoma with 33 (23.7%) cases and benign myoma with 21 (15.2%) cases comprised the most frequent cases. The sensitivity and specificity of sonography-physical examination were 51.9% and 87.9% respectively and the sensitivity and specificity of CT scan images were 79.2% and 91.6% respectively. It was shown that CT scan images were more consistant with pathological findings in predicting appropriate surgical procedures than do sonography-physical examinations. The sensitivity of CT scan is far higher than that of sonography-physical examination in the diagnosis of pelvic mass malignancy.
Asha, Stephen Edward; Cooke, Andrew
2015-09-01
Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk
2010-05-01
Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.
[Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis].
Gierhake, D; Weber, J E; Villringer, K; Ebinger, M; Audebert, H J; Fiebach, J B
2013-01-01
To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a.m. to 6:30 p.m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95%) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69%) mainly caused by suboptimal positioning of patient or eye lens protection. Motion artefacts were observed in 8 exams (12%). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. © Georg Thieme Verlag KG Stuttgart · New York.
Respiratory Motion Management in PET/CT: Applications and Clinical Usefulness.
Guerra, Luca; Ponti, Elena De; Morzenti, Sabrina; Spadavecchia, Chiara; Crivellaro, Cinzia
2017-01-01
Breathing movement can introduce heavy bias in both image quality and quantitation in PET/CT. The aim of this paper is a review of the literature to evaluate the benefit of respiratory gating in terms of image quality, quantification and lesion detectability. A review of the literature published in the last 10 years and dealing with gated PET/CT technique has been performed, focusing on improvement in quantification, lesion detectability and diagnostic accuracy in neoplastic lesion. In addition, the improvement in the definition of radiotherapy planning has been evaluated. There is a consistent increase of the Standardized Uptake Value (SUV) in gated PET images when compared to ungated ones, particularly for lesions located in liver and in lung. Respiratory gating can also increase sensitivity, specificity and accuracy of PET/CT. Gated PET/CT can be used for radiation therapy planning, reducing the uncertainty in target definition, optimizing the volume to be treated and reducing the possibility of "missing" during the dose delivery. Moreover, new technologies, able to define the movement of lesions and organs directly from the PET sinogram, can solve some problems that currently are limiting the clinical use of gated PET/CT (i.e.: extended acquisition time, radiation exposure). The published literature demonstrated that respiratory gating PET/CT is a valid technique to improve quantification, lesion detectability of lung and liver tumors and can better define the radiotherapy planning of moving lesions and organs. If new technical improvements for motion compensation will be clinically validated, gated technique could be applied routinely in any PET/CT scan. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
CT biliary cystoscopy of gallbladder polyps
Lou, Ming-Wu; Hu, Wei-Dong; Fan, Yi; Chen, Jin-Hua; E, Zhan-Sen; Yang, Guang-Fu
2004-01-01
AIM: CT virtual endoscopy has been used in the study of various organs of body including the biliary tract, however, CT virtual endoseopy in diagnosis of gallbladder polyps has not yet been reported. This study was to evaluate the diagnostic value of CT virtual endoscopy in polyps of the gallbladder. METHODS: Thirty-two cases of gallbladder polyps were examined by CT virtual endoscopy, ultrasound, CT scan with oral biliary contrast separately and confirmed by operation and pathology. CT biliary cystoscopic findings were analyzed and compared with those of ultrasound and CT scan with oral biliary contrast, and evaluated in comparison with operative and pathologic findings in all cases. RESULTS: The detection rate of gallbladder polyps was 93.8%(90/96), 96.9%(93/96) and 79.2%(76/96) for CT cystoscopy, ultrasound and CT scan with oral contrast, respectively. CT biliary cystoscopy corresponded well with ultrasound as well as pathology in demonstrating the location, size and configuration of polyps. CT endoscopy was superior to ultrasound in viewing the polyps in a more precise way, 3 dimensionally from any angle in space, and showing the surface in details. CT biliary cystoscopy was also superior to CT scan with oral biliary contrast in terms of observation of the base of polyps for the presence of a pedicle, detection rates as well as image quality. The smallest polyp detected by CT biliary cystoscopy was measured 1.5 mm×2.2 mm×2.5 mm. CONCLUSION: CT biliary cystoscopy is a non-invasive and accurate technique for diagnosis and management of gallbladder polyps. PMID:15069726
Kuo, Ling-Wei; Yang, Shang-Ju; Fu, Chih-Yuan; Liao, Chien-Hung; Wang, Shang-Yu; Wu, Shih-Chi
2016-01-01
In the evaluation of haemorrhage in trauma patients with pelvic fractures, contrast extravasation (CE) on computed tomography (CT) scan often implies active arterial bleeding. However, the absence of CE on CT scan does not always exclude the need for transcatheter arterial embolisation (TAE) to achieve haemostasis. In the current study, we evaluated the factors associated with the need for TAE in patients without CE on CT scan. These factors may be evaluated as adjuncts to CT scanning in the management of patients with pelvic fractures. We retrospectively reviewed our trauma registry and medical records of patients with pelvic fractures. When CE was observed, indicating active haemorrhage, the patients underwent TAE to achieve haemostasis. In contrast, patients without CE were held for observation and treatment of their injuries, and if their condition deteriorated after a delayed interval, they were then also referred for TAE if no other focus of haemorrhage was found. Patients without CE on CT scan but with retroperitoneal haemorrhage requiring TAE were investigated. Their demographic characteristics, associated injuries, fracture patterns, and changes in systolic blood pressure were described and analysed. In total, 201 patients with pelvic fracture underwent CT scan examination; 47 (23.4%) had CE by CT scan, whereas the other 154 (76.6%) did not. Of the 154 patients who did not show CE by CT scan, 124 (80.5%) patients never underwent TAE; however, 30 (19.5%) of these patients did eventually undergo TAE. In comparing the patients who underwent TAE to those who did not undergo TAE among patients without CE on CT scan, the systolic blood pressure (SBP) on arrival (median: 100.0 mmHg vs 136.0 mmHg, p<0.01) and the lowest SBP recorded in the ED (median: 68.0 mmHg vs 129.0 mmHg, p<0.01) were significantly lower in the patients who underwent TAE. The ROC curve analysis revealed that the most appropriate cutoff value of decrement of SBP (SBP on arrival minus the lowest SBP in the ED) was 30 mmHg (AUC=0.89). In the management of pelvic fracture patients, greater attention should be directed toward patients with relative hypotension. The higher likelihood of haemodynamic deterioration and the need for TAE for haemorrhage control should remain under consideration in such cases, despite the absence of CE by CT scan. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giovanella, Luca; Trimboli, Pierpaolo; Verburg, Frederik A; Treglia, Giorgio; Piccardo, Arnoldo; Foppiani, Luca; Ceriani, Luca
2013-06-01
To assess the relationship between serum thyroglobulin (Tg) levels, Tg doubling time (Tg-DT) and the diagnostic performance of (18)F-FDG PET/CT in detecting recurrences of (131)I-negative differentiated thyroid carcinoma (DTC). Included in the present study were 102 patients with DTC. All patients were treated by thyroid ablation (e.g. thyroidectomy and (131)I), and underwent (18)F-FDG PET/CT due to detectable Tg levels and negative conventional imaging. Consecutive serum Tg measurements performed before the (18)F-FDG PET/CT examination were used for Tg-DT calculation. The (18)F-FDG PET/CT results were assessed as true or false after histological and/or clinical follow-up. Serum Tg levels were higher in patients with a positive (18)F-FDG PET/CT scan (median 6.7 ng/mL, range 0.7-73.6 ng/mL) than in patients with a negative scan (median 1.8 ng/mL, range 0.5-4.9 ng/mL; P < 0.001). In 43 (88 %) of 49 patients with a true-positive (18)F-FDG PET/CT scan, the Tg levels were >5.5 ng/mL, and in 31 (74 %) of 42 patients with a true-negative (18)F-FDG PET/CT scan, the Tg levels were ≤5.5 ng/mL. A Tg-DT of <1 year was found in 46 of 49 patients (94 %) with a true-positive (18)F-FDG PET/CT scan, and 40 of 42 patients (95 %) with a true-negative scan had a stable or increased Tg-DT. Moreover, combining Tg levels and Tg-DT as selection criteria correctly distinguished between patients with a positive and a negative scan (P<0.0001). The accuracy of (18)F-FDG PET/CT significantly improves when the serum Tg level is above 5.5 ng/mL during levothyroxine treatment or when the Tg-DT is less than 1 year, independent of the absolute value.
Wong, Andrew C; Kowalenko, Terry; Roahen-Harrison, Stephanie; Smith, Barbara; Maio, Ronald F; Stanley, Rachel M
2011-03-01
The objective of the study was to determine whether fear of malpractice is associated with emergency physicians' decision to order head computed tomography (CT) in 3 age-specific scenarios of pediatric minor head trauma. We hypothesized that physicians with higher fear of malpractice scores will be more likely to order head CT scans. Board-eligible/board-certified members of the Michigan College of Emergency Physicians were sent a 2-part survey consisting of case scenarios and demographic questions. Effect of fear of malpractice on the decision to order a CT scan was evaluated using a cumulative logit model. Two hundred forty-six members (36.5%) completed the surveys. In scenario 1 (infant), being a male and working in a university setting were associated with reduced odds of ordering a CT scan (odds ratio [OR], 0.40; 95% confidence interval [CI], 0.18-0.88; and OR, 0.35; 95% CI, 0.13-0.96, respectively). In scenario 2 (toddler), working for 15 years or more, at multiple hospitals, and for a private group were associated with reduced odds of ordering a CT scan (OR, 0.46; 95% CI, 0.26-0.79; OR, 0.36; 95% CI, 0.16-0.80; and OR, 0.51; 95% CI, 0.27-0.94, respectively). No demographic variables were significantly associated with ordering a CT scan in scenario 3 (teen). Overall, the fear of malpractice was not significantly associated with ordering a CT scan (OR, 1.28; 95% CI, 0.73-2.26; and OR, 1.70; 95% CI, 0.97-3.0). Only in scenario 2 was high fear significantly associated with increased odds of ordering a CT scan (OR, 2.09; 95% CI, 1.08-4.05). Members of Michigan College of Emergency Physicians with a higher fear of malpractice score tended to order more head CT scans in pediatric minor head trauma. However, this trend was shown to be statistically significant only in 1 case and not overall.
Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O
2015-01-01
Background: Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. Methods: The cohort included 67 274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. Results: During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. Conclusions: This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans. PMID:25314057
Childhood CT scans linked to leukemia and brain cancer later in life
Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.
CT protocol management: simplifying the process by using a master protocol concept
Bour, Robert K.; Rubert, Nicholas; Wendt, Gary; Pozniak, Myron; Ranallo, Frank N.
2015-01-01
This article explains a method for creating CT protocols for a wide range of patient body sizes and clinical indications, using detailed tube current information from a small set of commonly used protocols. Analytical expressions were created relating CT technical acquisition parameters which can be used to create new CT protocols on a given scanner or customize protocols from one scanner to another. Plots of mA as a function of patient size for specific anatomical regions were generated and used to identify the tube output needs for patients as a function of size for a single master protocol. Tube output data were obtained from the DICOM header of clinical images from our PACS and patient size was measured from CT localizer radiographs under IRB approval. This master protocol was then used to create 11 additional master protocols. The 12 master protocols were further combined to create 39 single and multiphase clinical protocols. Radiologist acceptance rate of exams scanned using the clinical protocols was monitored for 12,857 patients to analyze the effectiveness of the presented protocol management methods using a two‐tailed Fisher's exact test. A single routine adult abdominal protocol was used as the master protocol to create 11 additional master abdominal protocols of varying dose and beam energy. Situations in which the maximum tube current would have been exceeded are presented, and the trade‐offs between increasing the effective tube output via 1) decreasing pitch, 2) increasing the scan time, or 3) increasing the kV are discussed. Out of 12 master protocols customized across three different scanners, only one had a statistically significant acceptance rate that differed from the scanner it was customized from. The difference, however, was only 1% and was judged to be negligible. All other master protocols differed in acceptance rate insignificantly between scanners. The methodology described in this paper allows a small set of master protocols to be adapted among different clinical indications on a single scanner and among different CT scanners. PACS number: 87.57.Q PMID:26219005
Erb, Christopher T; Su, Kevin W; Soulos, Pamela R; Tanoue, Lynn T; Gross, Cary P
2016-09-01
Recurrence after treatment for non-small cell lung cancer (NSCLC) is common, and routine imaging surveillance is recommended by evidence-based guidelines. Little is known about surveillance patterns after curative intent therapy for early stage NSCLC. We sought to understand recent practice patterns for surveillance of stage I NSCLC in the first two years after curative intent therapy in the Medicare population. Using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database we selected patients diagnosed with stage I NSCLC between 1998 and 2008. We studied adherence to surveillance guidelines based on specialty society recommendations for chest radiography and computed tomography (CT) scanning. We also tracked the use of Positron Emission Tomography (PET) scans, which are not recommended for surveillance. We calculated the percent of patients who received guideline-adherent surveillance imaging and used logistic regression to determine associations between patient and provider factors and guideline adherence. Overall, 61.4% of patients received guideline-adherent surveillance during the initial 2 years after treatment. Use of CT scans in the first year after treatment increased from 47.4% in 1998-78.5% in 2008, and PET use increased from 5.8% to 28.9%. Adherence with surveillance imaging was associated with younger age, higher income, more comorbidities, access to primary care, and receipt of SBRT as the primary treatment. Adherence to specialty society guidelines for surveillance after treatment for stage I NSCLC was poor in this population of Medicare beneficiaries, with less than two-thirds of patients receiving recommended imaging, and almost 30% receiving non-recommended PET scans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tek Chand, Kalawat; Chennu, Krishna Kishore; Amancharla Yadagiri, Lakshmi; Manthri Gupta, Ranadheer; Rapur, Ram; Vishnubotla, Siva Kumar
2017-04-01
Studies on fever of unknown origin (FUO) in patients of chronic kidney disease and end stage renal disease patients on dialysis were not many. In this study, we used 18 F-FDG PET/CT scan whole body survey for detection of hidden infection, in patients on dialysis, labelled as FUO. In this retrospective study, 20 patients of end stage renal disease on dialysis were investigated for the cause of FUO using 18F-FDG PET/CT scan. All these patients satisfied the definition of FUO as defined by Petersdorf and Beeson. Any focal abnormal site of increased FDG concentration detected by PET/CT, either a solitary or multiple lesions was documented and at least one of the detected abnormal sites of radio tracer concentration was further examined for histopathology. All patients were on renal replacement therapy. Of these, 18 were on hemodialysis and two were on peritoneal dialysis. 18F-FDG PET/CT scan showed metabolically active lesions in 15 patients and metabolically quiescent in five patients. After 18F-FDG PET/CT scan all, but one patient had a change in treatment for fever. Anti-tuberculous treatment was given in 15 patients, antibiotics in four patients and anti-malaria treatment in one patient. The present study is first study of 18F-FDG PET/CT scan in patients of end stage renal disease on dialysis with FUO. The study showed that the 18 F FDG PET/CT scan may present an opportunity to attain the diagnosis in end stage renal disease patients on dialysis with FUO. © 2016 International Society for Hemodialysis.
Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime
2017-06-01
This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.
Paediatric blunt abdominal trauma - are we doing too many computed tomography scans?
Arnold, M; Moore, S W
2013-02-14
Blunt abdominal trauma in childhood contributes significantly to both morbidity and mortality. Selective non-operative management of blunt abdominal trauma in children depends on both diagnostic and clinical factors. Computed tomography (CT) scanning is widely used to facilitate better management. Increased availability of CT may, however, result in its overuse in the management of blunt abdominal trauma in children, which carries significant radiation exposure risks. To evaluate the use and value of CT scanning in the overall management and outcome of blunt abdominal trauma in children in the Tygerberg Academic Hospital trauma unit, Parow, Cape Town, South Africa, before and after improved access to CT as a result of installation of a new rapid CT scanner in the trauma management area (previously the scanner had been 4 floors away). Patients aged 0 - 13 years who were referred with blunt abdominal trauma due to vehicle-related accidents before the introduction of the new CT scanner (group 1, n=66, November 2003 - March 2009) were compared with those seen in the 1-year period after the scanner was installed (group 2, n=37, April 2009 - April 2010). Details of clinical presentation, imaging results and their influence on management were retrospectively reviewed. A follow-up group was evaluated after stricter criteria for abdominal CT scanning (viz. prior evaluation by paediatric surgical personnel) were introduced (group 3, n=14, November 2011 - May 2012) to evaluate the impact of this clinical screening on the rate of negative scans. There were 66 patients in group 1 and 37 in group 2. An apparent increase in CT use with increased availability was accompanied by a marked increase in negative CT scans (38.9% compared with 6.2%; p<0.006). Despite a slightly higher prevalence of associated injuries in group 2, as well as a slightly longer length of hospital stay, there was a similar prevalence of intra-abdominal injuries detected in positive scans in the two groups. In addition, rates of small-bowel perforation in the two groups were similar. The rate of negative scans in group 3 was 46.2% (6/13), but all except one of these patients had a severe brain injury preventing adequate clinical evaluation of intra-abdominal injury. CT scanning for blunt abdominal trauma in children is essential in the presence of appropriate clinical indications. Ease of access probably increases availability, but the rate of negative scans may increase. Management guidelines should be in place to direct CT scanning to cases in which clinical examination and/or other modalities indicate a likelihood of intra-abdominal injury. The principle of 'as low (radiation) dose as reasonably achievable' (ALARA) should be adhered to because of the increased radiation exposure risks in children.
Impact of routine cerebral CT angiography on treatment decisions in infective endocarditis.
Meshaal, Marwa Sayed; Kassem, Hussein Heshmat; Samir, Ahmad; Zakaria, Ayman; Baghdady, Yasser; Rizk, Hussein Hassan
2015-01-01
Infective endocarditis (IE) is commonly complicated by cerebral embolization and hemorrhage secondary to intracranial mycotic aneurysms (ICMAs). These complications are associated with poor outcome and may require diagnostic and therapeutic plans to be modified. However, routine screening by brain CT and CT angiography (CTA) is not standard practice. We aimed to study the impact of routine cerebral CTA on treatment decisions for patients with IE. From July 2007 to December 2012, we prospectively recruited 81 consecutive patients with definite left-sided IE according to modified Duke's criteria. All patients had routine brain CTA conducted within one week of admission. All patients with ICMA underwent four-vessel conventional angiography. Invasive treatment was performed for ruptured aneurysms, aneurysms ≥ 5 mm, and persistent aneurysms despite appropriate therapy. Surgical clipping was performed for leaking aneurysms if not amenable to intervention. The mean age was 30.43 ± 8.8 years and 60.5% were males. Staph aureus was the most common organism (32.3%). Among the patients, 37% had underlying rheumatic heart disease, 26% had prosthetic valves, 23.5% developed IE on top of a structurally normal heart and 8.6% had underlying congenital heart disease. Brain CT/CTA revealed that 51 patients had evidence of cerebral embolization, of them 17 were clinically silent. Twenty-six patients (32%) had ICMA, of whom 15 were clinically silent. Among the patients with ICMAs, 11 underwent endovascular treatment and 2 underwent neurovascular surgery. The brain CTA findings prompted different treatment choices in 21 patients (25.6%). The choices were aneurysm treatment before cardiac surgery rather than at follow-up, valve replacement by biological valve instead of mechanical valve, and withholding anticoagulation in patients with prosthetic valve endocarditis for fear of aneurysm rupture. Routine brain CT/CTA resulted in changes in the treatment plan in a significant proportion of patients with IE, even those without clinically evident neurological disease. Routine brain CT/CTA may be indicated in all hospitalized patients with IE.
Algorithm-enabled partial-angular-scan configurations for dual-energy CT.
Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan
2018-05-01
We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.
Incidental findings in children with blunt head trauma evaluated with cranial CT scans.
Rogers, Alexander J; Maher, Cormac O; Schunk, Jeff E; Quayle, Kimberly; Jacobs, Elizabeth; Lichenstein, Richard; Powell, Elizabeth; Miskin, Michelle; Dayan, Peter; Holmes, James F; Kuppermann, Nathan
2013-08-01
Cranial computed tomography (CT) scans are frequently obtained in the evaluation of blunt head trauma in children. These scans may detect unexpected incidental findings. The objectives of this study were to determine the prevalence and significance of incidental findings on cranial CT scans in children evaluated for blunt head trauma. This was a secondary analysis of a multicenter study of pediatric blunt head trauma. Patients <18 years of age with blunt head trauma were eligible, with those undergoing cranial CT scan included in this substudy. Patients with coagulopathies, ventricular shunts, known previous brain surgery or abnormalities were excluded. We abstracted radiology reports for nontraumatic findings. We reviewed and categorized findings by their clinical urgency. Of the 43,904 head-injured children enrolled in the parent study, 15,831 underwent CT scans, and these latter patients serve as the study cohort. On 670 of these scans, nontraumatic findings were identified, with 16 excluded due to previously known abnormalities or surgeries. The remaining 654 represent a 4% prevalence of incidental findings. Of these, 195 (30%), representing 1% of the overall sample, warranted immediate intervention or outpatient follow-up. A small but important number of children evaluated with CT scans after blunt head trauma had incidental findings. Physicians who order cranial CTs must be prepared to interpret incidental findings, communicate with families, and ensure appropriate follow-up. There are ethical implications and potential health impacts of informing patients about incidental findings.
Chan, Tao
2012-01-01
CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.
Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One
2018-04-01
The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.
Murphy, Robert; Doerger, Kirk M; Nathan, Mark A; Lowe, Val J
2009-01-01
Physiologic uptake of 2-[(18)F]-fluoro-2-deoxy-D: -glucose (FDG) by bowel can confound positron emission tomography/computed tomography (PET/CT) assessment for abdominal pathology, particularly within the bowel itself. We wished to determine if oral administration of the antimotility agent, Lomotil (5 mg diphenoxylate hydrochloride/0.05 mg atropine sulfate; G.D. Searle and Company, a division of Pfizer), prior to PET/CT scanning would reduce physiologic uptake of FDG by the small bowel and colon (lower gastrointestinal [GI] tract). Patients undergoing PET/CT scans for lymphoma were enrolled in a prospective, randomized, double-blinded study and received either 10 mL water (control group) or 10 mL Lomotil (experimental group) orally 30-60 min prior to scanning. Scans were reviewed independently by two blinded experienced readers and scored for the degree of FDG activity in the lower GI tract relative to liver activity. The administration of Lomotil prior to PET/CT scanning did not reduce physiologic FDG activity in the small bowel and colon. In contrast, increased radiotracer uptake by the lower GI tract was observed in the Lomotil group compared to the control group. Pretreatment with Lomotil prior to PET/CT scanning confers no benefit toward the reduction of physiologic FDG uptake by the small bowel and colon.
Kim, K. P.; Berrington de González, A.; Pearce, M. S.; Salotti, J. A.; Parker, L.; McHugh, K.; Craft, A. W.; Lee, C.
2012-01-01
Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240 000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries. PMID:22228685
Kim, K P; Berrington de González, A; Pearce, M S; Salotti, J A; Parker, L; McHugh, K; Craft, A W; Lee, C
2012-07-01
Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240,000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries.
... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...
Vidal Insua, Yolanda; De La Cámara, Juan; Brozos Vázquez, Elena; Fernández, Ana; Vázquez Rivera, Francisca; Villanueva Silva, Mª José; Barbazán, Jorge; Muinelo-Romay, Laura; Candamio Folgar, Sonia; Abalo, Alicia; López-López, Rafael; Abal, Miguel; Alonso-Alconada, Lorena
2017-01-01
Colorectal cancer (CRC) is one of the major causes of cancer-related deaths. Early detection of tumor relapse is crucial for determining the most appropriate therapeutic management. In clinical practice, computed tomography (CT) is routinely used, but small tumor changes are difficult to visualize, and reliable blood-based prognostic and monitoring biomarkers are urgently needed. The aim of this study was to prospectively validate a gene expression panel (composed of GAPDH, VIL1, CLU, TIMP1, TLN1, LOXL3 and ZEB2) for detecting circulating tumor cells (CTCs) as prognostic and predictive tool in blood samples from 94 metastatic CRC (mCRC) patients. Patients with higher gene panel expression before treatment had a reduced progression-free survival (PFS) and overall-survival (OS) rates compared with patients with low expression (p = 0.003 and p ≤ 0.001, respectively). Patients with increased expression of CTCs markers during treatment presented PFS and OS times of 8.95 and 11.74 months, respectively, compared with 14.41 and 24.7 for patients presenting decreased expression (PFS; p = 0.020; OS; p ≤ 0.001). Patients classified as non-responders by CTCs with treatment, but classified as responders by CT scan, showed significantly shorter survival times (PFS: 8.53 vs. 11.70; OS: 10.37 vs. 24.13; months). In conclusion, our CTCs detection panel demonstrated efficacy for early treatment response assessment in mCRC patients, and with increased reliability compared to CT scan. PMID:28608814
Establishment of swine-penetrating craniocerebral gunshot wound model.
Lu, Huchen; Wang, Lian; Zhong, Wuzhao; Qi, Rongfeng; Li, Ning; You, Wanchun; Su, Xingfeng; Zhuang, Zong; Cheng, Huilin; Shi, Jixin
2015-12-01
Bullet-induced brain wounds are common among military personnel in war zones and among civilians with gun accidents or crime-related gun injuries. The goal of this study was to develop a nonfatal porcine model of penetrating craniocerebral gunshot wound (PCGW) by firing a projectile in live swine to induce PCGW in such a realistic manner as to reconstruct their physical characteristics. We established a nonfatal porcine model of PCGW based on a custom-designed experimental gun that emulates the shooting of a 5.56-mm NATO standard rifle at 800 m (317 m/s; 200.9 J). Commercial swine (n = 20) were subjected to a ballistic wound to the bilateral frontal lobe, and four swine were used as controls. Surviving swine were used in subsequent first-aid, management, and monitoring experiments for neurosurgeons. Various physiological variables were measured continuously. After computed tomography (CT) scanning and three-dimensional CT reconstructions, all pigs underwent primary lifesaving emergency interventions, including emergency decompressive craniotomies and hemorrhage control. In our nonfatal porcine model of PCGW, injuries were comparable in their morphology to real gunshot wounds, as evidenced by analysis of wound characteristics and CT scan images. The survival rates of the pigs were 100% within 2 h, 95% within 6 h, 85% within 12 h, and 85% within 24 h (P < 0.01). Hemodynamics, hematology, blood routine biochemistry, coagulation, and other physiological parameters also exhibited significant changes in the PCGW pigs. This model makes possible the laboratory reproduction of real ballistic wounds in a live large animal model that is close to humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Organ dose conversion coefficients for tube current modulated CT protocols for an adult population
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan
2016-03-01
In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.
Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T
2016-01-01
Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana
2015-01-01
Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Kornerup, Josefine S; Brodin, Patrik; Birk Christensen, Charlotte; Björk-Eriksson, Thomas; Kiil-Berthelsen, Anne; Borgwardt, Lise; Munck Af Rosenschöld, Per
2015-04-01
PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.
Variations in the intensive use of head CT for elderly patients with hemorrhagic stroke.
Bekelis, Kimon; Fisher, Elliott S; Labropoulos, Nicos; Zhou, Weiping; Skinner, Jonathan
2015-04-01
To investigate the variability in head computed tomographic (CT) scanning in patients with hemorrhagic stroke in U.S. hospitals, its association with mortality, and the number of different physicians consulted. The study was approved by the Committee for the Protection of Human Subjects at Dartmouth College. A retrospective analysis of the Medicare fee-for-service claims data was performed for elderly patients admitted for hemorrhagic stroke in 2008-2009, with 1-year follow-up through 2010. Risk-adjusted primary outcome measures were mean number of head CT scans performed and high-intensity use of head CT (six or more head CT scans performed in the year after admission). We examined the association of high-intensity use of head CT with the number of different physicians consulted and mortality. A total of 53 272 patients (mean age, 79.6 years; 31 377 women [58.9%]) with hemorrhagic stroke were identified in the study period. The mean number of head CT scans conducted in the year after admission for stroke was 3.4; 8737 patients (16.4%) underwent six or more scans. Among the hospitals with the highest case volume (more than 50 patients with hemorrhagic stroke), risk-adjusted rates ranged from 8.0% to 48.1%. The correlation coefficient between number of physicians consulted and rates of high-intensity use of head CT was 0.522 (P < .01) for all hospitals and 0.50 (P < .01) for the highest-volume hospitals. No improvement in 1-year mortality was found for patients undergoing six or more head CT scans (odds ratio, 0.84; 95% confidence interval: 0.69, 1.02). High rates of head CT use for patients with hemorrhagic stroke are frequently observed, without an association with decreased mortality. A higher number of physicians consulted was associated with high-intensity use of head CT. © RSNA, 2014 Online supplemental material is available for this article.
Malignant external otitis: the role of computed tomography and radionuclides in evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelson, D.S.; Som, P.M.; Mendelson, M.H.
1983-12-01
Nine patients with malignant external otitis (MEO) were evaluated with Tc-99m bone scans, Ga-67 citrate scans, pluridirectional tomography, and computed tomographic (CT) scans in order to assess the role of each in the diagnosis and management of MEO. The Tc-99m and Ga-67 citrate scans were the most accurate studies in the initial identification of disease activity, while the return to normal or improvement of the Ga-67 citrate scan has been shown to correlate best with clinical resolution of MEO. CT demonstrated soft-tissue disease and central skull base osteomyelitis better than pluridirectional tomography. CT is excellent for localizing and following themore » progression of bone disease; however, because reossification of the skull base is a very slow process, CT cannot be used to follow accurately regression or inactivity of MEO affecting this area. CT is the best modality for following soft-tissue extension of MEO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plets, C.; Baert, A.L.; Nijs, G.L.
1986-01-01
It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang
Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less
Forsythe, Anna V; Brady, Zoe; Butler, Martin W; Goergen, Stacy K; Byrnes, Graham B; Giles, Graham G; Wallace, Anthony B; Anderson, Philip R; Guiver, Tenniel A; McGale, Paul; Cain, Timothy M; Dowty, James G; Bickerstaffe, Adrian C; Darby, Sarah C
2013-01-01
Objective To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Design Population based, cohort, data linkage study in Australia. Cohort members 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Main outcome Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. Results 60 674 cancers were recorded, including 3150 in 680 211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100 000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. Conclusions The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose. PMID:23694687
Bush, Lisa; Brookshire, Robert; Roche, Breanna; Johnson, Amelia; Cole, Frederic; Karmy-Jones, Riyad; Long, William; Martin, Matthew J
2016-09-01
Current trauma guidelines dictate that the cervical spine should not be cleared in intoxicated patients, resulting in prolonged immobilization or additional imaging. Modern computed tomography (CT) technology may obviate this and allow for immediate clearance. To analyze cervical spine clearance practices and the utility of CT scans of the cervical spine in intoxicated patients with blunt trauma. We performed a prospective observational study of 1668 patients with blunt trauma aged 18 years and older who underwent cervical spine CT scans from March 2014 to March 2015 at an American College of Surgeons-verified Level I trauma center. Intoxication was determined by serum alcohol levels and urine drug screens. Physical examination and CT scan findings were evaluated for cervical spine injuries (CSI) and the incidence of missed injuries. Clinically relevant CSIs requiring cervical stabilization. The hypotheses formed prior to data collection were that cervical CT scans are sensitive and specific enough to diagnose CSIs that require stabilization and that normal CT scans are sufficient to clear CSIs in intoxicated patients. Of 1668 patients, 1103 (66.1%) were male, with a mean (SD) age of 49 (20) years and a mean (SD) Injury Severity Score of 10 (9). Vehicular (734 [44.0%]) and falls (579 [34.7%]) were the most common mechanisms for hospitalization. Intoxication was identified in 632 of 1429 of patients tested (44.2%; 425 [29.7%] by serum alcohol levels and 350 [24.5%] by urine drug screens). Half (316 [50.0%]) were admitted with cervical spine immobilization, and 38 (12%) of these were solely owing to the presence of intoxication. There were 65 abnormal CT scans (10.3%) in the intoxicated group. Among 567 normal CT scans, 4 (0.7%) had central cord syndrome found on initial physical examination, and 1 (0.2%) had a symptomatic unstable ligament injury that was misread as normal on CT scan but was abnormal on magnetic resonance imaging. The 316 patients kept in a cervical collar for intoxication had no missed CSIs but were kept immobilized for a mean (SD) of 12 (19) hours. Computed tomographic scans had an overall negative predictive value of 99.2% for patients with CSIs and a negative predictive value of 99.8% for ruling out CSIs that required immobilization or stabilization. In this study, alcohol or drug intoxication was common and resulted in significant delays to cervical spine clearance. Computed tomographic scans were highly reliable for identifying all clinically significant CSIs. Spine clearance based on a normal CT scan among intoxicated patients with no gross motor deficits appears to be safe and avoids prolonged and unnecessary immobilization.
Relationship between Hounsfield unit in CT scan and gray scale in CBCT
NASA Astrophysics Data System (ADS)
Kamaruddin, Noorshaida; Rajion, Zainul Ahmad; Yusof, Asilah; Aziz, Mohd Ezane
2016-12-01
Cone-beam computed tomography (CBCT) is an imaging system which has advantages over computed tomography (CT). Recently, CBCT has become widely used for oral and maxillofacial imaging. In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present (in vitro) study was to investigate the relationship between gray scale in CBCT and HU in CT scan. In this descriptive study, the anthropomorphic head phantom was scanned with CBCT and CT scanner. Gray scales and HUs were detected on images at the crown of the teeth, trabecular and cortical bone of mandible. The images were analyzed to obtain the gray scale value and HU value. The obtained value then used to investigate the relationship between CBCT gray scales and HUs. For the statistical analysis, t-test, Pearson's correlation and regression analysis were used. The differences between the gray scale of CBCT and HU of CT were statistically not significant, whereas the Pearson's correlation coefficients demonstrated a statistically significant correlation between gray scale of CBCT and HU of CT values. Considering the fact that gray scale in CBCT is important in pre assessment evaluation of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.
Dual scan CT image recovery from truncated projections
NASA Astrophysics Data System (ADS)
Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat
2017-12-01
There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.
Pelvic artery calcification detection on CT scans using convolutional neural networks
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Lu, Le; Yao, Jianhua; Bagheri, Mohammadhadi; Summers, Ronald M.
2017-03-01
Artery calcification is observed commonly in elderly patients, especially in patients with chronic kidney disease, and may affect coronary, carotid and peripheral arteries. Vascular calcification has been associated with many clinical outcomes. Manual identification of calcification in CT scans requires substantial expert interaction, which makes it time-consuming and infeasible for large-scale studies. Many works have been proposed for coronary artery calcification detection in cardiac CT scans. In these works, coronary artery extraction is commonly required for calcification detection. However, there are few works about abdominal or pelvic artery calcification detection. In this work, we present a method for automatic pelvic artery calcification detection on CT scan. This method uses the recent advanced faster region-based convolutional neural network (R-CNN) to directly identify artery calcification without a need for artery extraction since pelvic artery extraction itself is challenging. Our method first generates category-independent region proposals for each slice of the input CT scan using region proposal networks (RPN). Then, each region proposal is jointly classified and refined by softmax classifier and bounding box regressor. We applied the detection method to 500 images from 20 CT scans of patients for evaluation. The detection system achieved a 77.4% average precision and a 85% sensitivity at 1 false positive per image.
What is the best imaging strategy for acute stroke?
Wardlaw, J M; Keir, S L; Seymour, J; Lewis, S; Sandercock, P A G; Dennis, M S; Cairns, J
2004-01-01
To determine the cost-effectiveness of computed tomographic (CT) scanning after acute stroke. To assess the contribution of brain imaging to the diagnosis and management of stroke, and to estimate the costs, benefits and risks of different imaging strategies in order to provide data to inform national and local policy on the use of brain imaging in stroke. A decision-analysis model was developed to represent the pathway of care in acute stroke using 'scan all patients within 48 hours' as the comparator against which to cost 12 alternative scan strategies. Hospitals in Scotland. Subjects were patients admitted to hospital with a first stroke and those managed as outpatients. The effect on functional outcome after ischaemic or haemorrhagic stroke, tumours or infections, of correctly administered antithrombotic or other treatment; of time to scan and stroke severity on diagnosis by CT or MRI; on management, including length of stay, functional outcome, and quality-adjusted life years (QALYs), of the diagnostic information provided by CT scanning; the cost-effectiveness (cost versus QALYs) of different strategies for use of CT after acute stroke. Death and functional outcome at long-term follow-up; accuracy of CT and MRI; cost of CT scanning by time of day and week; effect of CT diagnosis on change in health outcome, length of stay in hospital and QALYs; cost-effectiveness of various scanning strategies. CT is very sensitive and specific for haemorrhage within the first 8 days of stroke only. Suboptimal scanning used in epidemiology studies suggests that the frequency of primary intracerebral haemorrhage (PICH) has been underestimated. Aspirin increases the risk of PICH. There were no reliable data on functional outcome or on the effect of antithrombotic treatment given long term after PICH. In 60% of patients with recurrent stroke after PICH, the cause is another PICH and mortality is high among PICH patients. A specific MR sequence (gradient echo) is required to identify prior PICH reliably. CT scanners were distributed unevenly in Scotland, 65% provided CT scanning within 48 hours of stroke, and 100% within 7 days for hospital-admitted patients, but access out of hours was very variable, and for outpatients was poor. The average cost of a CT brain scan for stroke was pounds 30.23 to pounds 89.56 in normal working hours and pounds 55.05 to pounds 173.46 out of hours. Average length of stay was greatest for severe strokes and those who survived in a dependent state. For a cohort of 1000 patients aged 70-74 years, the policy 'scan all strokes within 48 hours', cost pounds 10,279,728 and achieved 1982.3 QALYS. The most cost-effective strategy was 'scan all immediately' (pounds 9,993,676 and 1982.4 QALYS). The least cost-effective was to 'scan patients on anticoagulants, in a life-threatening condition immediately and the rest within 14 days'. In general, strategies in which most patients were scanned immediately cost least and achieved the most QALYs, as the cost of providing CT (even out of hours) was less than the cost of inpatient care. Increasing independent survival by even a small proportion through early use of aspirin in the majority with ischaemic stroke, avoiding aspirin in those with haemorrhagic stroke, and appropriate early management of those who have not had a stroke, reduced costs and increased QALYs.
Tong, Aaron Kian Ti; Zhang, Zoe Xiaozhu; Zaheer, Sumbul; Yan, Xuexian Sean
2016-01-01
Prostate carcinoma is a major health problem, and routine imaging shows only modest results in detecting and restaging clinically localized prostate cancer recurrence. Recent studies have shown promise of radiolabeled analogues of choline for positron emission tomography (PET) scans in patients of biochemical recurrence and that sequentially incremental Fluorocholine (FCH) uptake is associated with malignancy, whereas decreasing tracer activity suggests a benign aetiology. However, this pattern of tracer uptake has not been fully validated, and no standardized (18)F-Fluorocholine ((18)F-FCH) scan protocol is in place yet. This study aimed to better define the role of dual-phase (18)F-FCH PET/computed tomography (CT) imaging using retrospective masked reading focusing on detection of locoregional recurrence/metastasis in patients with biochemical failure after definitive local primary treatment. A total of 32 subjects were enrolled during the period 04/2010 to 05/2014 with histologically proven prostate cancer that was treated with curative intent and had biochemical recurrence. Early scans and delayed imaging of the pelvis were graded separately by blinded readers. Final evaluation using the combination of information from dual-phase studies as a "summation scan" was also performed. Maximum standardized uptake value was computed using regions of interest constructed over focal hyperactivity. Calculations were performed using Statistical Product and Service Solutions, Version 20 for Windows. A composite reference consisting of histopathology, correlation with other imaging, or serum prostate specific antigen (PSA) trend with clinical follow-up of at least 6months was used to determine the true disease status of the patient. Early-phase pelvis imaging sensitivity and specificity were calculated to be 73.1% and 90.9%, respectively. Late-phase pelvis imaging sensitivity and specificity were 80.8% and 100%, respectively. Summation scan sensitivity and specificity were 76.9% and 100%, respectively. The odds ratio of having recurrent disease with an uptrend of SUVmax on dual-phase imaging was 33.3. The optimal cutoff value of PSA was 1.85ng/mL with 80% sensitivity and 62.5% specificity. Single late-phase FCH PET/CT imaging is a reliable scan modality which can detect sites of disease at low levels of PSA which still fulfil the criteria of biochemical recurrence. This will allow clinicians to identify sites for potential biopsy or start locoregional treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Berrington de Gonzalez, Amy; Journy, Neige; Lee, Choonsik; Morton, Lindsay M; Harbron, Richard W; Stewart, Douglas R; Parker, Louise; Craft, Alan W; McHugh, Kieran; Little, Mark P; Pearce, Mark S
2017-05-01
Background: We examined the relationship between estimated radiation dose from CT scans and subsequent Hodgkin lymphoma in the UK pediatric CT scans cohort. Methods: A retrospective, record linkage cohort included patients ages 0 to 21 years who underwent CT scans between 1980 and 2002 and were followed up for cancer or death until 2008. Poisson regression analysis was used to evaluate the relationship between estimated radiation dose (lagged by 2 years) and incident Hodgkin lymphoma diagnosed at least 2 years after the first CT scan. Results: There were 65 incident cases of Hodgkin lymphoma in the cohort of 178,601 patients. Neither estimated red bone marrow dose nor mean lymphocyte dose from CT scans was clearly associated with an increased risk of Hodgkin lymphoma (RR for 20+ mGy vs. <5 mGy = 0.92 (0.38-2.22) P trend > 0.5 and 1.44 (0.60-3.48) P trend > 0.5), respectively. Conclusions: Radiation exposure from pediatric CT scans 2 or more years before diagnosis was not associated with Hodgkin lymphoma in this large UK cohort. Impact: These findings are consistent with the majority of previous studies, which do not support a link between ionizing radiation and Hodgkin lymphoma. The results contrast our previous positive findings in this cohort for brain tumors and leukemia, both of which are known to be strongly linked to radiation exposure during childhood. Cancer Epidemiol Biomarkers Prev; 26(5); 804-6. ©2017 AACR . ©2017 American Association for Cancer Research.
Blumfield, Einat; Zember, Jonathan; Guelfguat, Mark; Blumfield, Amit; Goldman, Harold
2015-12-01
We would like to share our experience of reducing pediatric radiation exposure. Much of the recent literature regarding successes of reducing radiation exposure has come from dedicated children's hospitals. Nonetheless, over the past two decades, there has been a considerable increase in CT imaging of children in the USA, predominantly in non-pediatric-focused facilities where the majority of children are treated. In our institution, two general hospitals with limited pediatric services, a dedicated initiative intended to reduce children's exposure to CT radiation was started by pediatric radiologists in 2005. The initiative addressed multiple issues including eliminating multiphase studies, decreasing inappropriate scans, educating referring providers, training residents and technologists, replacing CT with ultrasound or MRI, and ensuring availability of pediatric radiologists for consultation. During the study period, the total number of CT scans decreased by 24 %. When accounting for the number of scans per visit to the emergency department (ED), the numbers of abdominal and head CT scans decreased by 37.2 and 35.2 %, respectively. For abdominal scans, the average number of phases per scan decreased from 1.70 to 1.04. Upon surveying the pediatric ED staff, it was revealed that the most influential factors on ordering of scans were daily communication with pediatric radiologists, followed by journal articles and lectures by pediatric radiologists. We concluded that a non-pediatric-focused facility can achieve dramatic reduction in CT radiation exposure to children; however, this is most effectively achieved through a dedicated, multidisciplinary process led by pediatric radiologists.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis
Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M
2017-01-01
The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a “routine” PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures. PMID:29348980
Estimation of skull table thickness with clinical CT and validation with microCT.
Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D
2015-01-01
Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.
Hubbard, Patricia; Callahan, Jason; Cramb, Jim; Budd, Ray; Kron, Tomas
2015-06-01
To review the dose delivered to patients in time-resolved computed tomography (4D CT) used for radiotherapy treatment planning. 4D CT is used at Peter MacCallum Cancer Centre since July 2007 for radiotherapy treatment planning using a Philips Brilliance Wide Bore CT scanner (16 slice, helical 4D CT acquisition). All scans are performed at 140 kVp and reconstructed in 10 datasets for different phases of the breathing cycle. Dose records were analysed retrospectively for 387 patients who underwent 4D CT procedures between 2007 and 2013. A total of 444 4D CT scans were acquired with the majority of them (342) being for lung cancer radiotherapy. Volume CT dose index (CTDIvol) as recorded over this period was fairly constant at approximately 20 mGy for adults. The CTDI for 4D CT for lung cancers of 19.6 ± 9.3 mGy (n = 168, mean ± 1SD) was found to be 63% higher than CTDIs for conventional CT scans for lung patients that were acquired in the same period (CTDIvol 12 ± 4 mGy, sample of n = 25). CTDI and dose length product (DLP) increased with increasing field of view; however, no significant difference between DLPs for different indications (breast, kidney, liver and lung) could be found. Breathing parameters such as breathing rate or pattern did not affect dose. 4D CT scans can be acquired for radiotherapy treatment planning with a dose less than twice the one required for conventional CT scanning. © 2015 The Royal Australian and New Zealand College of Radiologists.
The Value of 18F-FDG PET/CT in Diagnosis and During Follow-up in 273 Patients with Chronic Q Fever.
Kouijzer, Ilse J E; Kampschreur, Linda M; Wever, Peter C; Hoekstra, Corneline; van Kasteren, Marjo E E; de Jager-Leclercq, Monique G L; Nabuurs-Franssen, Marrigje H; Wegdam-Blans, Marjolijn C A; Ammerlaan, Heidi S M; Buijs, Jacqueline; Geus-Oei, Lioe-Fee de; Oyen, Wim J G; Bleeker-Rovers, Chantal P
2018-01-01
In 1%-5% of all acute Q fever infections, chronic Q fever develops, mostly manifesting as endocarditis, infected aneurysms, or infected vascular prostheses. In this study, we investigated the diagnostic value of 18 F-FDG PET/CT in chronic Q fever at diagnosis and during follow-up. Methods: All adult Dutch patients suspected of chronic Q fever who were diagnosed since 2007 were retrospectively included until March 2015, when at least one 18 F-FDG PET/CT scan was obtained. Clinical data and results from 18 F-FDG PET/CT at diagnosis and during follow-up were collected. 18 F-FDG PET/CT scans were prospectively reevaluated by 3 nuclear medicine physicians using a structured scoring system. Results: In total, 273 patients with possible, probable, or proven chronic Q fever were included. Of all 18 F-FDG PET/CT scans performed at diagnosis, 13.5% led to a change in diagnosis. Q fever-related mortality rate in patients with and without vascular infection based on 18 F-FDG PET/CT was 23.8% and 2.1%, respectively ( P = 0.001). When 18 F-FDG PET/CT was added as a major criterion to the modified Duke criteria, 17 patients (1.9-fold increase) had definite endocarditis. At diagnosis, 19.6% of 18 F-FDG PET/CT scans led to treatment modification. During follow-up, 57.3% of 18 F-FDG PET/CT scans resulted in treatment modification. Conclusion: 18 F-FDG PET/CT is a valuable technique in diagnosis of chronic Q fever and during follow-up, often leading to a change in diagnosis or treatment modification and providing important prognostic information on patient survival. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
New scoring system for intra-abdominal injury diagnosis after blunt trauma.
Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali
2014-01-01
An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.
Hu, Zhi-Jun; He, Jian; Zhao, Feng-Dong; Fang, Xiang-Qian; Zhou, Li-Na; Fan, Shun-Wu
2011-06-01
A reliability study was conducted. To estimate the intra- and intermeasurement errors in the measurements of functional cross-sectional area (FCSA), density, and T2 signal intensity of paraspinal muscles using computed tomography (CT) scan and magnetic resonance imaging (MRI). CT scan and MRI had been used widely to measure the cross-sectional area and degeneration of the back muscles in spine and muscle research. But there is still no systemic study to analyze the reliability of these measurements. This study measured the FCSA and fatty infiltration (density on CT scan and T2 signal intensity on MRI) of the paraspinal muscles at L3-L4, L4-L5, and L5-S1 in 29 patients with chronic low back pain. Two experienced musculoskeletal radiologists and one superior spine surgeon traced the region of interest twice within 3 weeks for measurement of the intra- and interobserver reliability. The intraclass correlation coefficients (ICCs) of the intra-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. The ICCs of the inter-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. There were no significant differences between CT scan and MRI in reliability results, except in the relative standard error of fatty infiltration measurement. The ICCs of the FCSA measurement between CT scan and MRI ranged from poor to good. The reliabilities of the CT scan and MRI for measuring the FCSA and fatty infiltration of the atrophied lumbar paraspinal muscles were acceptable. It was reliable for using uniform one image method for a single paraspinal muscle evaluation study. And the authors preferred to advise the MRI other than CT scan for paraspinal muscles measurements of FCSA and fatty infiltration.
Eye lens radiation exposure and repeated head CT scans: A problem to keep in mind.
Michel, Morgane; Jacob, Sophie; Roger, Gilles; Pelosse, Béatrice; Laurier, Dominique; Le Pointe, Hubert Ducou; Bernier, Marie-Odile
2012-08-01
The deterministic character of radiation-induced cataract is being called into question, raising the possibility of a risk in patients, especially children, exposed to ionizing radiation in case of repeated head CT-scans. This study aims to estimate the eye lens doses of a pediatric population exposed to repeated head CTs and to assess the feasibility of an epidemiological study. Children treated for a cholesteatoma, who had had at least one CT-scan of the middle ear before their tenth birthday, were included. Radiation exposure has been assessed from medical records and telephone interviews. Out of the 39 subjects contacted, 32 accepted to participate. A total of 76 CT-scans were retrieved from medical records. At the time of the interview (mean age: 16 years), the mean number of CT per child was 3. Cumulative mean effective and eye lens doses were 1.7mSv and 168mGy, respectively. A relatively high lens radiation dose was observed in children exposed to repeated CT-scans. Due to that exposure and despite the difficulties met when trying to reach patients' families, a large scale epidemiological study should be performed in order to assess the risk of radiation-induced cataracts associated with repeated head CT. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Meulepas, Johanna M; Ronckers, Cécile M; Merks, Johannes; Weijerman, Michel E; Lubin, Jay H; Hauptmann, Michael
2016-12-01
Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of pediatric CT scans. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk. Since empirical evidence is lacking in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome and other CSS. Moreover, tuberous sclerosis complex, von Hippel-Lindau disease, neurofibromatosis type 1 and other CSS do not meaningfully confound RRs for brain tumors. Empirical data on the use of CT scans among CSS patients is urgently needed. Our assessment indicates that associations with radiation exposure from pediatric CT scans and leukemia or brain tumors reported in previous studies are unlikely to be substantially confounded by unmeasured CSS.
Kohler, Steven W; Chen, Richard; Kagan, Alex; Helvey, Dustin W; Buccigrossi, David
2013-06-01
In order to determine the effects of implementation of an electronic medical record on rates of repeat computed tomography (CT) scanning in the emergency department (ED) setting, we analyzed the utilization of CT of the kidneys, ureters, and bladder (CT KUB) for the detection of urinary tract calculi for periods before and after the implementation of a hospital-wide electronic medical record system. Rates of repeat CT scanning within a 6-month period of previous scan were determined pre- and post-implementation and compared. Prior to implementation, there was a 6-month repeat rate of 6.2 % compared with the post-implementation period, which was associated with a 6-month repeat rate of 4.1 %. Statistical analysis using a two-sample, one-tailed t test for difference of means was associated with a p value of 0.00007. This indicates that the implementation of the electronic medical record system was associated with a 34 % decrease in 6-month repeat CT KUB scans. We conclude that the use of an electronic medical record can be associated with a decrease in utilization of unnecessary repeat CT imaging, leading to decreased cumulative lifetime risk for cancer in these patients and more efficient utilization of ED and radiologic resources.
18F-FDG uptake and its clinical relevance in primary gastric lymphoma.
Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog
2010-06-01
We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Rosica, D; Agarwal, V
Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less
Hoyer, Jürgen; Čolić, Jasmin; Pittig, Andre; Crawcour, Stephen; Moeser, Manuela; Ginzburg, Denise; Lin, Jihong; Wiltink, Joerg; Leibing, Eric; Stangier, Ulrich
2017-08-01
This study examined the effectiveness of manualized cognitive therapy (mCT) following the Clark-Wells approach versus non-manualized cognitive-behavioral treatment-as-usual (CBTAU) for social anxiety disorder (SAD) in routine practice. Forty-eight private practitioners were recruited within a multi-center trial and either received training in manualized CT for SAD or no such training. Practitioners treated 162 patients with SAD in routine practice (N = 107 completers, n = 57 for mCT, n = 50 for CBTAU). Social anxiety symptoms (Liebowitz Social Anxiety Scale; LSAS) and secondary measures were assessed before treatment, at treatment-hour 8, 15, and 25, at end of treatment, as well as 6 and 12 months after treatment. Patients in both groups showed significant reductions of SAD severity after treatment (d = 1.91 [mCT] and d = 1.80 [CBTAU], within-group effect sizes, intent-to-treat analyses, LSAS observer ratings), which remained stable at follow-up. There were no differences between groups in terms of symptom reduction and treatment duration. The present trial confirms the high effectiveness of CBTAU and mCT for SAD when practitioners conduct the treatments in routine practice. Additional training in the CT manual did not result in significant between-group effects on therapy outcome. Explanations for this unexpected result are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimating local noise power spectrum from a few FBP-reconstructed CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas
Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has themore » same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available. Conclusions: The radial NPS method was shown to be accurate and efficient in estimating the local NPS of FBP-reconstructed 2D CT images. It presents strong advantages over traditional NPS methods when the number of scans is limited and can be extended to estimate the in-plane NPS of cone-beam CT and multislice helical CT scans.« less
Porosity characterization for heterogeneous shales using integrated multiscale microscopy
NASA Astrophysics Data System (ADS)
Rassouli, F.; Andrew, M.; Zoback, M. D.
2016-12-01
Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.
Hefny, Ashraf F; Kunhivalappil, Fathima T; Matev, Nikolay; Avila, Norman A; Bashir, Masoud O; Abu-Zidan, Fikri M
2018-01-01
INTRODUCTION Diagnoses of pneumothorax, especially occult pneumothorax, have increased as the use of computed tomography (CT) for imaging trauma patients becomes near-routine. However, the need for chest tube insertion remains controversial. We aimed to study the management of pneumothorax detected on CT among patients with blunt trauma, including the decision for tube thoracostomy, in a community-based hospital. METHODS Chest CT scans of patients with blunt trauma treated at Al Rahba Hospital, Abu Dhabi, United Arab Emirates, from October 2010 to October 2014 were retrospectively studied. Variables studied included demography, mechanism of injury, endotracheal intubation, pneumothorax volume, chest tube insertion, Injury Severity Score, hospital length of stay and mortality. RESULTS CT was performed in 703 patients with blunt trauma. Overall, pneumothorax was detected on CT for 74 (10.5%) patients. Among the 65 patients for whom pneumothorax was detected before chest tube insertion, 25 (38.5%) needed chest tube insertion, while 40 (61.5%) did not. Backward stepwise likelihood regression showed that independent factors that significantly predicted chest tube insertion were endotracheal intubation (p = 0.01), non-United Arab Emirates nationality (p = 0.01) and pneumothorax volume (p = 0.03). The receiver operating characteristic curve showed that the best pneumothorax volume that predicted chest tube insertion was 30 mL. CONCLUSION Chest tube was inserted in less than half of the patients with blunt trauma for whom pneumothorax was detected on CT. Pneumothorax volume should be considered in decision-making regarding chest tube insertion. Conservative treatment may be sufficient for pneumothorax of volume < 30 mL. PMID:28741012
Hefny, Ashraf F; Kunhivalappil, Fathima T; Matev, Nikolay; Avila, Norman A; Bashir, Masoud O; Abu-Zidan, Fikri M
2018-03-01
Diagnoses of pneumothorax, especially occult pneumothorax, have increased as the use of computed tomography (CT) for imaging trauma patients becomes near-routine. However, the need for chest tube insertion remains controversial. We aimed to study the management of pneumothorax detected on CT among patients with blunt trauma, including the decision for tube thoracostomy, in a community-based hospital. Chest CT scans of patients with blunt trauma treated at Al Rahba Hospital, Abu Dhabi, United Arab Emirates, from October 2010 to October 2014 were retrospectively studied. Variables studied included demography, mechanism of injury, endotracheal intubation, pneumothorax volume, chest tube insertion, Injury Severity Score, hospital length of stay and mortality. CT was performed in 703 patients with blunt trauma. Overall, pneumothorax was detected on CT for 74 (10.5%) patients. Among the 65 patients for whom pneumothorax was detected before chest tube insertion, 25 (38.5%) needed chest tube insertion, while 40 (61.5%) did not. Backward stepwise likelihood regression showed that independent factors that significantly predicted chest tube insertion were endotracheal intubation (p = 0.01), non-United Arab Emirates nationality (p = 0.01) and pneumothorax volume (p = 0.03). The receiver operating characteristic curve showed that the best pneumothorax volume that predicted chest tube insertion was 30 mL. Chest tube was inserted in less than half of the patients with blunt trauma for whom pneumothorax was detected on CT. Pneumothorax volume should be considered in decision-making regarding chest tube insertion. Conservative treatment may be sufficient for pneumothorax of volume < 30 mL. Copyright: © Singapore Medical Association.
Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges.
Dighe, S; Castellano, E; Blake, H; Jeyadevan, N; Koh, M U; Orten, M; Swift, I; Brown, G
2012-10-01
Perfusion CT may have the potential to quantify the degree of angiogenesis of solid tumours in vivo. This study aims to identify the practical and technical challenges inherent to the technique, and evaluate its feasibility in colorectal tumours. 51 patients from 2 institutions prospectively underwent a single perfusion CT on 2 different multidetector scanners. The patients were advised to breath-hold as long as possible, followed by shallow breathing, and were given intravenous buscopan to reduce movement. Numerous steps were explored to identify the challenges. 43 patients successfully completed the perfusion CT as per protocol. Inability to detect the tumour (n=3), misplacement of dynamic sequence co-ordinates (n=2), failure of contrast injection (n=2) and displacement of tumour (n=1) were the reasons for failure. In 14 cases excessive respiratory motion displaced the tumour out of the scanning field along the temporal sequence, leading to erroneous data capture. In nine patients, minor displacements of the tumour were corrected by repositioning the region of interest (ROI) to its original position after reviewing each dynamic sequence slice. In 20 patients the tumour was stable, and data captured from the ROI were representative, and could have been analysed by commercially available Body Tumor Perfusion 3.0® software (GE Healthcare, Waukesha, WI). Hence all data were manually analysed by MATLAB® processing software (MathWorks, Cambridge, UK). Perfusion CT in tumours susceptible to motion during acquisition makes accurate data capture challenging and requires meticulous attention to detail. Motion correction software is essential if perfusion CT is to be used routinely in colorectal cancer.
128 slice computed tomography dose profile measurement using thermoluminescent dosimeter
NASA Astrophysics Data System (ADS)
Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.
2017-05-01
The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.
Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.
Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi
2012-11-08
A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.
Korhonen, Tommi K; Salokorpi, Niina; Niinimäki, Jaakko; Serlo, Willy; Lehenkari, Petri; Tetri, Sami
2018-02-23
OBJECTIVE Autologous bone cranioplasty after decompressive craniectomy entails a notable burden of difficult postoperative complications, such as infection and bone flap resorption (BFR), leading to mechanical failure. The prevalence and significance of asymptomatic BFR is currently unclear. The aim of this study was to radiologically monitor the long-term bone flap survival and bone quality change in patients undergoing autologous cranioplasty. METHODS The authors identified all 45 patients who underwent autologous cranioplasty at Oulu University Hospital, Finland, between January 2004 and December 2014. Using perioperative and follow-up CT scans, the volumes and radiodensities of the intact bone flap prior to surgery and at follow-up were calculated. Relative changes in bone flap volume and radiodensity were then determined to assess cranioplasty survival. Sufficient CT scans were obtainable from 41 (91.1%) of the 45 patients. RESULTS The 41 patients were followed up for a median duration of 3.79 years (25th and 75th percentiles = 1.55 and 6.66). Thirty-seven (90.2%) of the 41 patients had some degree of BFR and 13 (31.7%) had a remaining bone flap volume of less than 80%. Patients younger than 30 years of age had a mean decrease of 15.8% in bone flap volume compared with the rest of the cohort. Bone flap volume was not found to decrease linearly with the passing of time, however. The effects of lifestyle factors and comorbidities on BFR were nonsignificant. CONCLUSIONS In this study BFR was a very common phenomenon, occurring at least to some degree in 90% of the patients. Decreases in bone volume were especially prominent in patients younger than 30 years of age. Because the progression of resorption during follow-up was nonlinear, routine follow-up CT scans appear unnecessary in monitoring the progression of BFR; instead, clinical follow-up with mechanical stability assessment is advised. Partial resorption is most likely a normal physiological phenomenon during the bone revitalization process.
Scandinavian guidelines for initial management of minor and moderate head trauma in children.
Astrand, Ramona; Rosenlund, Christina; Undén, Johan
2016-02-18
The management of minor and moderate head trauma in children differs widely between countries. Presently, there are no existing guidelines for management of these children in Scandinavia. The purpose of this study was to produce new evidence-based guidelines for the initial management of head trauma in the paediatric population in Scandinavia. The primary aim was to detect all children in need of neurosurgical intervention. Detection of any traumatic intracranial injury on CT scan was an important secondary aim. General methodology according to the Appraisal of Guidelines for Research and Evaluation (AGREE) II and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used. Systematic evidence-based review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and based upon relevant clinical questions with respect to patient-important outcomes. Quality ratings of the included studies were performed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 and Centre of Evidence Based Medicine (CEBM)-2 tools. Based upon the results, GRADE recommendations, a guideline, discharge instructions and in-hospital observation instructions were drafted. For elements with low evidence, a modified Delphi process was used for consensus, which included relevant clinical stakeholders. The guidelines include criteria for selecting children for CT scans, in-hospital observation or early discharge, and suggestions for monitoring routines and discharge advice for children and guardians. The guidelines separate mild head trauma patients into high-, medium- and low-risk categories, favouring observation for mild, low-risk patients as an attempt to reduce CT scans in children. We present new evidence and consensus based Scandinavian Neurotrauma Committee guidelines for initial management of minor and moderate head trauma in children. These guidelines should be validated before extensive clinical use and updated within four years due to rapid development of new diagnostic tools within paediatric neurotrauma.
Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics
USDA-ARS?s Scientific Manuscript database
An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...
Different methods for anatomical targeting.
Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F
2003-03-01
Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.
Ultrafast CT scanning of an oak log for internal defects
Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder
1989-01-01
Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...
Braunschweig, Carol A; Sheean, Patricia M; Peterson, Sarah J; Gomez Perez, Sandra; Freels, Sally; Troy, Karen L; Ajanaku, Folabomi C; Patel, Ankur; Sclamberg, Joy S; Wang, Zebin
2014-09-01
Assessment of nutritional status in intensive care unit (ICU) patients is limited. Computed tomography (CT) scans that include the first to fifth lumbar region completed for diagnostic purposes measures fat and lean body mass (LBM) depots and are frequently done in ICU populations and can be used to quantify fat and LBM depots. The purpose of this study was to assess if these scans could measure change in skeletal muscle (SKT), visceral adipose (VAT), and intermuscular adipose (IMAT) tissue and to examine the association between the amount of energy and protein received and changes in these depots. Cross-sectional area of SKT, VAT, and IMAT from CT scans at the third lumbar region was quantified at 2 time points (CT1 and CT2). Change scores between CT1 and CT2 for each of these depots and the percentage of estimated energy/protein needs received were determined in 33 adults that with acute respiratory failure. Descriptive statistics and multiple regression was used to evaluate the influence of baseline characteristics and the percentage energy/protein needs received between CT1 and CT2 on percentage change/day between CT1 and CT2 on SKM, IMAT, and VAT. Participants were on average (SD) 59.7 (16) years old, received 41% of energy and 57% of protein needs. The average time between CT1 and CT2 was 10 (5) days. SKM declined 0.49%/day (men P = .07, women P = .09) and percentage of energy needs received reduced loss (β = 0.024, P = .03). No change in VAT or IMAT occurred. CT scans can be exploited to assess change in body composition in ICU patients and may assist in detecting the causal link between nutritional support and outcomes in future clinical trials. © 2013 American Society for Parenteral and Enteral Nutrition.
CT dose reduction in children.
Vock, Peter
2005-11-01
World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure.
A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.
Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim
2009-04-07
Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.
Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements.
Lu, Gray; Marsh, Steven; Damet, Jerome; Carbonez, Pierre; Laban, John; Bateman, Christopher; Butler, Anthony; Butler, Phil
2017-06-01
Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.
A rare adult renal neuroblastoma better imaged by 18F-FDG than by 68Ga-dotanoc in the PET/CT scan.
Jain, Tarun Kumar; Singh, Sharwan Kumar; Sood, Ashwani; Ashwathanarayama, Abhiram Gj; Basher, Rajender Kumar; Shukla, Jaya; Mittal, Bhagwant Rai
2017-01-01
Primary renal neuroblastoma is an uncommon tumor in children and extremely rare in adults. We present a case of a middle aged female having a large retroperitoneal mass involving the right kidney with features of neuroblastoma on pre-operative histopathology. Whole-body fluorine-18-fluoro-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and 68 Ga-dotanoc PET/CT scans performed for staging and therapeutic potential revealed a tracer avid mass replacing the right kidney and also pelvic lymph nodes. The 18 F-FDG PET/CT scan showed better both the primary lesion and the metastases in the pelvic lymph nodes than the 68 Ga-dotanoc scan supporting diagnosis and treatment planning.
Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe
2012-11-01
To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration
NASA Astrophysics Data System (ADS)
Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.
2012-02-01
The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.
HECTOR: A 240kV micro-CT setup optimized for research
NASA Astrophysics Data System (ADS)
Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc
2013-10-01
X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.
NASA Astrophysics Data System (ADS)
Wang, Tonghe; Zhu, Lei
2016-09-01
Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an average error of less than 1%.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner
NASA Astrophysics Data System (ADS)
Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.
2006-03-01
We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.
Selected PET radiomic features remain the same.
Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko
2018-04-17
We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.
Martin, C A; Gabrillargues, J; Louvrier, C; Saroul, N; Mom, T; Gilain, L
2014-11-01
This study was designed to analyse the contribution of CT scan to the management of retropharyngeal abscess in children and the place of CT-guided percutaneous aspiration as an alternative to surgical drainage. Retrospective study including 18 children with a mean age of 38 months [range: 5-67 months] presenting with retropharyngeal infection between 2006 and 2011. All cases were initially assessed by contrast-enhanced CT scan of the neck. Clinical, radiological treatment and bacteriological data were collected. Radiological results were correlated with surgical and percutaneous aspiration findings (presence or absence of an abscess). The initial CT scan detected 14 abscesses, 3 cases of non-suppurative lymphadenitis and one case of retropharyngeal oedema. One case of non-suppurative lymphadenitis progressed to abscess after failure of antibiotic therapy and was treated surgically. Surgical drainage revealed a purulent collection in 11 cases and no collection in 3 cases. Four CT-guided percutaneous aspirations were successfully performed. Three cases were treated by antibiotics alone (2 cases of lymphadenitis and 1 case of retropharyngeal oedema). Bacteriological examinations revealed the presence of Streptococcus pyogenes in 78.5% of cases. The positive predictive value of the initial CT scan was 78.8% in our series. Contrast-enhanced neck CT scan confirmed the diagnosis of retropharyngeal abscess and the indication for surgical drainage. It must be performed urgently, on admission. When it is decided to treat the patient with antibiotics alone, follow-up imaging should be performed in the absence of improvement 24 to 48 hours after starting antibiotics. CT-guided percutaneous aspiration is both a diagnostic modality confirming abscess formation of an inflammatory lesion of the retropharyngeal space as well as a therapeutic tool, sometimes avoiding the need for surgical drainage. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli
2014-09-21
With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.
NASA Astrophysics Data System (ADS)
Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli
2014-09-01
With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.
Hepatic and pulmonary cystic echinococcosis in a patient from the Central African Republic.
Develoux, Michel; Enache-Angoulvant, Adela; Gounant, Valerie; Brian, Emmanuel; Khalil, Antoine; Bazelly, Bernard; Hennequin, Christophe
2011-03-01
Apical lung opacity was diagnosed in an asymptomatic 30 year-old woman native of Central African Republic by routine chest X-ray. CT scan demonstrated an excavated pulmonary mass and revealed a simple hepatic cyst. Tuberculosis was suspected but mycobacterial cultures remained negative. Three months later, ultrasonography showed septations within the hepatic lesion suggestive of cystic echinococcosis. The detection of seric anti-Echinococcus antibodies was positive. Hepatic and pulmonary cysts were removed surgically and association with three-month course of albendazole resulted in a favorable outcome. Cystic echinococcosis is exceptional in Central Africa and to our knowledge never reported from the Central African Republic. Copyright © 2011 Elsevier Ltd. All rights reserved.
Holder, Jourdan T; Kessler, David M; Noble, Jack H; Gifford, René H; Labadie, Robert F
2018-06-01
To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. Retrospective. Academic Medical Center. Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.
PET/CT: underlying physics, instrumentation, and advances.
Torres Espallardo, I
Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important advances in this hybrid imaging modality. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.