CULA: hybrid GPU accelerated linear algebra routines
NASA Astrophysics Data System (ADS)
Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.
2010-04-01
The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.
Efficient linear algebra routines for symmetric matrices stored in packed form.
Ahlrichs, Reinhart; Tsereteli, Kakha
2002-01-30
Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.
Monitoring Daily QA 3 constancy for routine quality assurance on linear accelerators.
Binny, Diana; Lancaster, Craig M; Kairn, Tanya; Trapp, Jamie V; Crowe, Scott B
2016-11-01
The purpose of this study was to evaluate the suitability of the Daily QA 3 (Sun Nuclear Corporation, Melbourne, USA) device as a safe quality assurance device for control of machine specific parameters, such as linear accelerator output, beam quality and beam flatness and symmetry. Measurements were performed using three Varian 2300iX linear accelerators. The suitability of Daily QA 3 as a device for quality control of linear accelerator parameters was investigated for both 6 and 10MV photons and 6, 9, 12, 15 and 18MeV electrons. Measurements of machine specific using the Daily QA 3 device were compared to corresponding measurements using a simpler constancy meter, Farmer chamber and plane parallel ionisation chamber in a water tank. The Daily QA 3 device showed a linear dose response making it a suitable device for detection of output variations during routine measurements. It was noted that over estimations of variations compared with Farmer chamber readings were seen if the Daily QA 3 wasn't calibrated for output and sensitivity on a regular eight to ten monthly basis. Temperature-pressure correction factors calculated by Daily QA 3 also contributed towards larger short term variations seen in output measurements. Energy, symmetry and flatness variations detected by Daily QA 3 were consistent with measurements performed in water tank using a parallel plate chamber. It was concluded that the Daily QA 3 device is suitable for routine daily and fortnightly quality assurance of linear accelerator beam parameters however a regular eight-ten monthly dose and detector array calibration will improve error detection capabilities of the device.
The use of computed radiography for routine linear accelerator and simulator quality control.
Patel, I; Natarajan, T; Hassan, S S; Kirby, M C
2009-10-01
Computed radiography (CR) systems were originally developed for the purpose of clinical imaging, and there has been much work published on its effectiveness as a film replacement for this end. However, there has been little published on its use for routine linear accelerator and simulator quality control, and therefore we have evaluated the use of the Kodak 2000RT system with large Agfa CR plates as a replacement for film for this function. A prerequisite for any such use is a detailed understanding of the system behaviour, hence characteristics such as spatial uniformity of response, reproducibility of spatial accuracy, plate signal decay with time and the dose-response of plates were investigated. Finally, a comparison of results obtained using CR for the measurement of radiation field dimensions was made against those from radiographic film, and found to be in agreement within 0.1 mm (mean difference for high-resolution images, 0.3 mm root mean square difference) for megavoltage images and 0.3 mm (maximum difference) for simulator images. In conclusion, the CR system has been shown to be a good alternative to radiographic film for routine quality control of linear accelerators and simulators.
Linear control of oscillator and amplifier flows*
NASA Astrophysics Data System (ADS)
Schmid, Peter J.; Sipp, Denis
2016-08-01
Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1976-01-01
The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.
SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis
NASA Technical Reports Server (NTRS)
Oren, J. A.; Williams, D. R.
1975-01-01
The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.
The Piecewise Linear Reactive Flow Rate Model
Vitello, P; Souers, P C
2005-07-22
Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.
The Piece Wise Linear Reactive Flow Model
Vitello, P; Souers, P C
2005-08-18
For non-ideal explosives a wide range of behavior is observed in experiments dealing with differing sizes and geometries. A predictive detonation model must be able to reproduce many phenomena including such effects as: variations in the detonation velocity with the radial diameter of rate sticks; slowing of the detonation velocity around gentle corners; production of dead zones for abrupt corner turning; failure of small diameter rate sticks; and failure for rate sticks with sufficiently wide cracks. Most models have been developed to explain one effect at a time. Often, changes are made in the input parameters used to fit each succeeding case with the implication that this is sufficient for the model to be valid over differing regimes. We feel that it is important to develop a model that is able to fit experiments with one set of parameters. To address this we are creating a new generation of models that are able to produce better fitting to individual data sets than prior models and to simultaneous fit distinctly different regimes of experiments. Presented here are details of our new Piece Wise Linear reactive flow model applied to LX-17.
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
Thermal and flow analysis subroutines for the SINDA-version 9 computer routine
NASA Technical Reports Server (NTRS)
Oren, J. A.; Williams, D. R.
1973-01-01
Fluid flow analysis, special thermal analysis and input/output capabilities of the MOTAR routine were incorporated into the SINDA routine. All the capabilities were added in the form of user subroutines so that they may be added to different versions of SINDA with a minimum of programmer effort. Two modifications were made to the existing subroutines of SINDA/8 to incorporate the above subroutines. These were: (1) A modification to the preprocessor to permit actual values of array numbers, conductor numbers, node numbers or constant numbers supplied as array data to be converted to relative numbers. (2) Modifications to execution subroutine CNFAST to make it compatible with the radiant interchange user subroutine, RADIR. This modified version of SINDA has been designated SINDA/version 9. A detailed discussion of the methods used for the capabilities added is presented. The modifications for the SINDA subroutines are described, as well as user subroutines. All subroutines added or modified are listed.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
A study on springback of bending linear flow split profiles
NASA Astrophysics Data System (ADS)
Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.
2016-11-01
The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.
Development of flow/steric field-flow fractionation as a routine process control method
Barman, B.N.
1988-08-30
Researchers studied the feasibility of using the Flow/Steric Field-Flow Fractionation (Flow/StFFF) method for the characterization of particulate materials with diameters in the 1-100 micrometers range. Studies on the optimization of the method for the separation and characterization of different size particulate samples, as well as on the role of the crossflow field and channel flowrate on the separation and resolution, were performed with a number of spherical polystyrene divinylbenzene latex standards and included in the report. Applicability of the method as a fast and reliable practical tool for industrial process control, particularly for grinding operations, was examined by analyzing a number of samples obtained by grinding. Examples of materials considered include coal, limestone and glass.
Romero, G; Panzalis, R; Ruegg, P
2017-04-10
The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (P<0.05) in all the studied variables. Milk emission flow variables were similar to those recommended in scientific studies. Milking parameters were adequate in most of the farms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking
Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F
2017-04-15
Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Leary, Alison; Cook, Rob; Jones, Sarahjane; Smith, Judith; Gough, Malcolm; Maxwell, Elaine; Punshon, Geoffrey; Radford, Mark
2016-01-01
Objectives Nursing is a safety critical activity but not easily quantified. This makes the building of predictive staffing models a challenge. The aim of this study was to determine if relationships between registered and non-registered nurse staffing levels and clinical outcomes could be discovered through the mining of routinely collected clinical data. The secondary aim was to examine the feasibility and develop the use of ‘big data’ techniques commonly used in industry for this area of healthcare and examine future uses. Setting The data were obtained from 1 large acute National Health Service hospital trust in England. Routinely collected physiological, signs and symptom data from a clinical database were extracted, imported and mined alongside a bespoke staffing and outcomes database using Mathmatica V.10. The physiological data consisted of 120 million patient entries over 6 years, the bespoke database consisted of 9 years of daily data on staffing levels and safety factors such as falls. Primary and secondary outcomes To discover patterns in these data or non-linear relationships that would contribute to modelling. To examine feasibility of this technique in this field. Results After mining, 40 correlations (p<0.00005) emerged between safety factors, physiological data (such as the presence or absence of nausea) and staffing factors. Several inter-related factors demonstrated step changes where registered nurse availability appeared to relate to physiological parameters or outcomes such as falls and the management of symptoms. Data extraction proved challenging as some commercial databases were not built for extraction of the massive data sets they contain. Conclusions The relationship between staffing and outcomes appears to exist. It appears to be non-linear but calculable and a data-driven model appears possible. These findings could be used to build an initial mathematical model for acute staffing which could be further tested. PMID:27986733
Planning Student Flow with Linear Programming: A Tunisian Case Study.
ERIC Educational Resources Information Center
Bezeau, Lawrence
A student flow model in linear programming format, designed to plan the movement of students into secondary and university programs in Tunisia, is described. The purpose of the plan is to determine a sufficient number of graduating students that would flow back into the system as teachers or move into the labor market to meet fixed manpower…
Linear instability in Rayleigh-stable Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Deguchi, Kengo
2017-02-01
Rayleigh's stability criterion describes the inviscid stability of rotating fluid flows. Despite the limitations of the criterion due to the assumptions used, it has been widely viewed as a general stability barrier in various rapidly rotating flows. However, contrary to previous belief, a linear instability is identified in Rayleigh-stable Taylor-Couette flow. The instability is found in cyclonic rapid rotation regime, for almost the entire range of the radius ratio of the cylinders.
Controlling a Linear Process in Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Lim, Junwoo; Kim, John
1999-11-01
Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.
Non-linear system identification in flow-induced vibration
Spanos, P.D.; Zeldin, B.A.; Lu, R.
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Lattice Boltzmann method for linear oscillatory noncontinuum flows
NASA Astrophysics Data System (ADS)
Shi, Yong; Yap, Ying Wan; Sader, John E.
2014-03-01
Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.
The linear and nonlinear stability of thread-annular flow.
Walton, Andrew G
2005-05-15
The surgical technique of thread injection of medical implants is modelled by the axial pressure-gradient-driven flow between concentric cylinders with a moving core. The linear stability of the flow to both axisymmetric and asymmetric perturbations is analysed asymptotically at large Reynolds number, and computationally at finite Reynolds number. The existence of multiple regions of instability is predicted and their dependence upon radius ratio and thread velocity is determined. A discrepancy in critical Reynolds numbers and cut-off velocity is found to exist between experimental results and the predictions of the linear theory. In order to account for this discrepancy, the high Reynolds number, nonlinear stability properties of the flow are analysed and a nonlinear, equilibrium critical layer structure is found, which leads to an enhanced correction to the basic flow. The predictions of the nonlinear theory are found to be in good agreement with the experimental data.
On the linear stability of compressible plane Couette flow
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Erlebacher, Gordon; Hussaini, M. Yousuff
1991-01-01
The linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.
An improved higher order panel method for linearized supersonic flow
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.
1978-01-01
An improved higher order panel method for linearized supersonic flow is described. Each panel, defined by four points on the surface, is divided into eight subpanels in such a way that all subpanel and panel edges are contiguous. By prescribing a quadratic distribution of the doublet on each subpanel, the doublet strength is made strictly continuous on the paneled surface. A linear source distribution is also used. Numerical results are smoother and in better agreement with experiment than the previous method with less strict continuity. A brief discussion of superinclined panels used to eliminate interior interference in nacelles is included.
Linearized compressible-flow theory for sonic flight speeds
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard; Spreiter, John R
1950-01-01
The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'.
Linear and radial flow targets for characterizing downhole flow in perforations
Deo, M. ); Tariq, S.M. ); Halleck, P.M. )
1989-08-01
Two types of sandstone targets are commonly used to test flow efficiency of shaped-charge jet perforations: linear targets, in which flow enters only the unperforated end of the cylindrical sample, and radial targets, in which flow enters through the end and sides of the sample. To determine which of these targets best represents downhole conditions, the flow distribution along the length of a perforation has been studied by three-dimensional (3D) finite-element analyses. Linear and radial laboratory targets have been compared with downhole perforations under varying conditions. For ideal perforations, the low-shot-density (LSD) case is adequately represented by the radial target, while the high-shot-density (HSD) case falls between the two targets. With realistic crushed and damaged zones, the HSD closely matches the linear target, and the LSD case falls between the two targets.
Linearized pipe flow to Reynolds number 10 7
NASA Astrophysics Data System (ADS)
Meseguer, Á.; Trefethen, L. N.
2003-03-01
A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high-accuracy computation of linearized dynamics for flow in an infinite circular pipe. Our code is unusual in being based on solenoidal velocity variables and in being written in MATLAB. Systematic studies are presented of the dependence of eigenvalues, transient growth factors, and other quantities on the axial and azimuthal wave numbers and the Reynolds number R for R ranging from 10 2 to the idealized (physically unrealizable) value 10 7. Implications for transition to turbulence are considered in the light of recent theoretical results of S.J. Chapman.
Linear theory of Richtmyer-Meshkov like flows
NASA Astrophysics Data System (ADS)
Wouchuk, J. G.; Cobos-Campos, F.
2017-01-01
The hydrodynamic flow generated by rippled shocks and rarefactions (Richtmyer-Meshkov like flows) is presented. When a corrugated shock travels inside an homogeneous fluid, it leaves pressure, density and velocity perturbations in the compressed fluid. The velocity perturbations generated in the composed fluid are inherently rotational. Vorticity is an important quantity in order to determine the asymptotic rate of growth in the linear stage. The size of the strongest vortices generated by the rippled shocks is analyzed as a function of the shock Mach number for different boundary conditions downstream. Comparison to experiments and simulations is provided for the RMI in the shock and rarefaction reflected cases and the validity of the growth law {{\\psi}∞}+δ vi∞t is emphasized.
Asymptotic behavior of linearized pipe flow and implications for transition
NASA Astrophysics Data System (ADS)
Meseguer, Alvaro; Trefethen, Lloyd N.
2000-11-01
A solenoidal Petrov-Galerkin MATLAB spectral code is described for high-accuracy computation of linearized dynamics for Hagen-Poiseuille flow in an infinite circular pipe. Systematic studies are presented of the dependence of eigenvalues, transient growth factors, and other quantities on the discretization parameters, the axial and azimuthal wave numbers, and the Reynolds number Re for Re ranging from 10^2 to the idealized (physically unrealizable) value 10^7. Implications for transition to turbulence are considered in the light of the recent theoretical results of S. J. Chapman. Our computations are in agreement with Chapman's predicted threshold amplitude for transition of order Re-3/2 as Re --> ∞.
van de Geijn, Gert-Jan; van Rees, Vincent; van Pul-Bom, Natasja; Birnie, Erwin; Janssen, Hans; Pegels, Hans; Beunis, Marlène; Njo, Tjin
2011-09-01
Differential white blood cell count (dWBC) is a frequently used diagnostic tool. For most patient samples an automated blood counter produces a five-part differential count. If this dWBC does not meet pre-set criteria, microscopic dWBC is performed. Microscopy is labor intensive and requires sustained training of technicians. Inter-observer variation and statistical variation are significant, due to limited numbers of cells counted. Flow cytometry is a candidate reference method for dWBC. Advantages are immunological definitions and large number of measured cells. Our goal was to replace (part of) the microscopic dWBC by a flow cytometric dWBC, that gives additional information on blasts, myeloid precursors, and lymphocyte subsets. We designed a cocktail of antibodies (CD4, CD14, CD34, CD16, CD56, CD19, CD45, CD138, CD3, and CD71) combined with a gating strategy and flow cytometric protocol for easy identification of leukocyte populations. This assay, called Leukoflow, requires low sample volume, has few manual handling steps, and a potential turn-around-time shorter than 2 h. We determine percentages and absolute concentrations of at least 13 different cell populations. For quantification of normoblasts a second flow cytometric staining was designed. We compared microscopic dWBC with that of the automated blood counter and Leukoflow for normal and abnormal blood samples. Leukoflow results correlate well with the automated blood counter for leukocytes, neutrophils, eosinophils, monocytes, and lymphocytes. Correlation with manual dWBC is lower. Blast counts reported by Leukoflow suffer less from inter-observer variation compared to manual dWBC. In addition to microscopic or cytometric dWBC-techniques T-lymphocytes, CD4-T-lymphocytes, B-lymphocytes, NK-cells, myeloid progenitors, plasma cells, and blasts are determined by Leukoflow. These populations give potential useful clinical information and are subject for future studies focusing on the additional clinical
Detection of linear ego-acceleration from optic flow.
Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A
2012-07-20
Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.
Linear Aerospike SR-71 Experiment (LASRE) ground cold flow test
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this
Sant'Anna, Fernando M; Silva, Expedito E R; Batista, Leonardo Alves; Ventura, Fábio Machado; Barrozo, Carlos Alberto Mussel; Pijls, Nico H J
2007-02-15
In complex coronary artery disease, it is sometimes difficult to determine which lesions are associated with reversible ischemia and should be stented. Fractional flow reserve (FFR) is an established objective methodology to indicate which lesions produce ischemia. Despite this, the selection of lesions to be stented is often based on the subjectively interpreted angiogram alone. The aim of this study in patients admitted for elective percutaneous intervention (PCI) was to evaluate the change in strategy if the decision to intervene was based on FFR measurement rather than on angiographic assessment. Two hundred fifty consecutive patients (471 arteries) scheduled for PCI were included in this study. All stenoses >or=50% by visual estimation and initially selected to be stented by 3 independent reviewers were assessed by FFR measurements. If FFR was <0.75, stenting was performed; if FFR was >or=0.75, no interventional treatment was given. Optimal pressure measurements were obtained in 452 lesions (96%). Diameter stenosis was 62 +/- 12%, and FFR was 0.67 +/- 0.17 for the entire group. In 68% of the stenoses, initial strategy as assessed from the angiogram was followed, and in 32%, there was a change in the planned approach based on FFR. In 48% of the patients, there was >or=1 lesion in which the treatment decision was changed after physiologic measurements. In conclusion, in this prospective, nonselective, but complete study representing the real world of PCI, 32% of the coronary stenoses and 48% of patients would have received a different treatment if the decision had been based on angiography only, stressing the utility of physiologic assessment in refining decision making during PCI.
Simulating annual glacier flow with a linear reservoir model
NASA Astrophysics Data System (ADS)
Span, Norbert; Kuhn, Michael
2003-05-01
In this paper we present a numerical simulation of the observation that most alpine glaciers have reached peak velocities in the early 1980s followed by nearly exponential decay of velocity in the subsequent decade. We propose that similarity exists between precipitation and associated runoff hydrograph in a river basin on one side and annual mean specific mass balance of the accumulation area of alpine glaciers and ensuing changes in ice flow on the other side. The similarity is expressed in terms of a linear reservoir with fluctuating input where the year to year change of ice velocity is governed by two terms, a fraction of the velocity of the previous year as a recession term and the mean specific balance of the accumulation area of the current year as a driving term. The coefficients of these terms directly relate to the timescale, the mass balance/altitude profile, and the geometric scale of the glacier. The model is well supported by observations in the upper part of the glacier where surface elevation stays constant to within ±5 m over a 30 year period. There is no temporal trend in the agreement between observed and modeled horizontal velocities and no difference between phases of acceleration and phases of deceleration, which means that the model is generally valid for a given altitude on a given glacier.
Torres, Marta
2014-01-31
In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct
Linear stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1992-01-01
A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.
Enhancing the linear flow of fine granules through the addition of elongated particles
Guo, Zhiguo; Chen, Xueli; Xu, Yang; Liu, Haifeng
2015-01-01
Sandglasses have been used to record time for thousands of years because of their constant flow rates; however, they now are drawing attention for their substantial scientific importance and extensive industrial applications. The presence of elongated particles in a binary granular system is believed to result in undesired flow because their shape implies a larger resistance to flow. However, our experiments demonstrate that the addition of elongated particles can substantially reduce the flow fluctuation of fine granules and produce a stable linear flow similar to that in an hourglass. On the basis of experimental data and previous reports of flow dynamics, we observed that the linear flow is driven by the “needle particle effect,” including flow orientation, reduced agglomeration, and local perturbation. This phenomenon is observed in several binary granular systems, including fine granules and secondary elongated particles, which demonstrates that our simple method can be widely applied to the accurate measurement of granular flows in industry. PMID:26551736
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Two-Dimensional, Supersonic, Linearized Flow with Heat Addition
NASA Technical Reports Server (NTRS)
Lomax, Harvard
1959-01-01
Calculations are presented for the forces on a thin supersonic wing underneath which the air is heated. The analysis is limited principally to linearized theory but nonlinear effects are considered. It is shown that significant advantages to external heating would exist if the heat were added well below and ahead of the wing.
Linear stability and control of swept Hiemenz flow
NASA Astrophysics Data System (ADS)
Guegan, Alan; Schmid, Peter; Huerre, Patrick
2004-11-01
Perturbations at the leading edge of swept wings may feed the downstream flow and trigger early boundary layer transition. Control strategies focusing on the leading edge boundary layer may provide significant improvement of flow stability over the wing surface. To this end, a gradient-based optimization algorithm is implemented to find the perturbations that experience the highest energy growth in swept Hiemenz flow over a finite time interval, under the Görtler-Hämmerlin assumption. A two-dimensional mechanism resembling the Orr-mechanism in the spanwise-wall-normal plane is shown to generate energy growth of up to three orders of magnitude for a Reynolds number Re=2000 and a spanwise wavenumber k=0.1. A similar algorithm is used to compute the wall-normal blowing/sucking sequence that most efficiently damps the energy amplification. The maximum energy is then found to decrease by more than 70%.
Linear coupling of acoustic and cyclotron waves in plasma flows
Rogava, Andria; Gogoberidze, Grigol
2005-05-15
It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.
Linearized numerical solution method for rotating coaxial disk flows at moderate Reynolds numbers
NASA Astrophysics Data System (ADS)
Wu, J.; Delgado, A.; Rath, H. J.
A linearized solution method for rotating coaxial disk flows at moderate Reynolds numbers is discussed below. The analytical or numerical linearized similarity solutions agree with the nonlinear ones for infinite disk flows of the Stewartson-type as well as of the Batchelor-type with a small difference between angular velocities of both the disks. Over the inner portion of shrouded flows the computed results of the linearized partial differential equations have, overall, a good agreement with the solutions of the nonlinear von Karman similarity one and also with the complete Navier-Stokes solution.
Vanzetta, Ivo; Flynn, Corey; Ivanov, Anton I; Bernard, Christophe; Bénar, Christian G
2010-06-01
A successful outcome of epilepsy neurosurgery relies on an accurate delineation of the epileptogenic region to be resected. Functional magnetic resonance imaging (fMRI) would allow doing this noninvasively at high spatial resolution. However, a clear, quantitative description of the relationship between hemodynamic changes and the underlying epileptiform neuronal activity is still missing, thereby preventing the systematic use of fMRI for routine epilepsy surgery planning. To this aim, we used a local epilepsy model to record simultaneously cerebral blood flow (CBF) with laser Doppler (LD) and local field potentials (LFP) in rat frontal cortex. CBF responses to individual interictal-like spikes were large and robust. Their amplitude correlated linearly with spike amplitude. Moreover, the CBF response added linearly in time over a large range of spiking rates. CBF responses could thus be predicted by a linear model of the kind currently used for the interpretation of fMRI data, but including also the spikes' amplitudes as additional information. Predicted and measured CBF responses matched accurately. For high spiking frequencies (above approximately 0.2 Hz), the responses saturated but could eventually recover, indicating the presence of multiple neurovascular coupling mechanisms, which might act at different spatiotemporal scales. Spatially, CBF responses peaked at the center of epileptic activity and displayed a spatial specificity at least as good as the millimeter. These results suggest that simultaneous electroencephalographic and blood flow-based fMRI recordings should be suitable for the noninvasive precise localization of hyperexcitable regions in epileptic patients candidate for neurosurgery.
A higher order panel method for linearized supersonic flow
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.
1979-01-01
The basic integral equations of linearized supersonic theory for an advanced supersonic panel method are derived. Methods using only linear varying source strength over each panel or only quadratic doublet strength over each panel gave good agreement with analytic solutions over cones and zero thickness cambered wings. For three dimensional bodies and wings of general shape, combined source and doublet panels with interior boundary conditions to eliminate the internal perturbations lead to a stable method providing good agreement experiment. A panel system with all edges contiguous resulted from dividing the basic four point non-planar panel into eight triangular subpanels, and the doublet strength was made continuous at all edges by a quadratic distribution over each subpanel. Superinclined panels were developed and tested on s simple nacelle and on an airplane model having engine inlets, with excellent results.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
The linear stability of plane stagnation-point flow against general disturbances
NASA Astrophysics Data System (ADS)
Brattkus, K.; Davis, S. H.
1991-02-01
The linear-stability theory of plane stagnation-point flow against an infinite flat plate is re-examined. Disturbances are generalized from those of Goertler type to include other types of variations along the plate. It is shown that Hiemenz flow is linearly stable and that the Goertler-type modes are those that decay slowest. This work then rationalizes the use of such self-similar disturbances on Hiemenz flow and shows how questions of disturbance structure can be approached on other self-similar flows.
The linear stability of plane stagnation-point flow against general disturbances
NASA Technical Reports Server (NTRS)
Brattkus, K.; Davis, S. H.
1991-01-01
The linear-stability theory of plane stagnation-point flow against an infinite flat plate is re-examined. Disturbances are generalized from those of Goertler type to include other types of variations along the plate. It is shown that Hiemenz flow is linearly stable and that the Goertler-type modes are those that decay slowest. This work then rationalizes the use of such self-similar disturbances on Hiemenz flow and shows how questions of disturbance structure can be approached on other self-similar flows.
Linear flow dynamics near a T/NT interface
NASA Astrophysics Data System (ADS)
Teixeira, Miguel; Silva, Carlos
2011-11-01
The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.
Non-linear effects on solute transfer between flowing water and a sediment bed.
Higashino, Makoto; Stefan, Heinz G
2011-11-15
A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.
Stochastic Estimation and Non-Linear Wall-Pressure Sources in a Separating/Reattaching Flow
NASA Technical Reports Server (NTRS)
Naguib, A.; Hudy, L.; Humphreys, W. M., Jr.
2002-01-01
Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.
Linear stability analysis of flows in a grooved channel
NASA Astrophysics Data System (ADS)
Mohammadi, Alireza; Floryan, Jerzy Maciej
2015-11-01
It is known that longitudinal grooves which are parallel to the flow direction may either stabilize or destabilize the travelling wave instability in a pressure-gradient-driven channel flow depending on the groove wave number. These waves reduce to the classical Tollmien-Schlichting (TS) waves in the smooth channel limit. It is shown that another class of travelling wave instability exists if grooves with sufficiently high amplitude and proper wavelengths are used. It is demonstrated that the new instability is driven by inviscid mechanisms, with the disturbance motion having the form of a wave propagating in the streamwise direction with the phase speed approximately four times larger than the TS wave speed and with its streamwise wavelength being approximately twice the spanwise groove wavelength. The instability motion is concentrated mostly in the middle of the channel and has a primarily planar character, i.e. the dominant velocity components are parallel to the walls. A significant reduction of the corresponding critical Reynolds number can be achieved by increasing the groove amplitude. This mode reduces to the highly attenuated Squire mode in the smooth channel limit. This work has been carried out with support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Hall, K.C.; Lorence, C.B. . Dept. of Mechanical Engineering and Materials Science)
1993-10-01
An efficient three-dimensional Euler analysis of unsteady flows in turbomachinery is presented. The unsteady flow is modeled as the sun of a steady or mean flow field plus a harmonically varying small perturbation flow. The linearized Euler equations, which describe the small perturbation unsteady flow, are found to be linear, variable coefficient differential equations whose coefficients depend on the mean flow. A pseudo-time time-marching finite-volume Lax-Wendroff scheme is used to discretize and solve the linearized equations for the unknown perturbation flow quantities. Local time stepping and multiple-grid acceleration techniques are used to speed convergence. For unsteady flow problems involving blade motion, a harmonically deforming computational grid, which conforms to the motion of the vibrating blades, is used to eliminate large error-producing extrapolation terms that would otherwise appear in the airfoil surface boundary conditions and in the evaluation of the unsteady surface pressure. Results are presented for both linear and annular cascade geometries, and for the latter, both rotating and nonrotating blade row.
NASA Astrophysics Data System (ADS)
Chefranov, Sergey; Chefranov, Alexander
2016-04-01
Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A
Linear stability of a nonorthogonal axisymmetric stagnation flow on a rotating cylinder
NASA Astrophysics Data System (ADS)
Amaouche, Mustapha; Bouda, Faïçal Nait; Sadat, Hamou
2006-12-01
The present analysis deals with the onset of instability in an axisymmetric stagnation flow obliquely impinging on a uniformly rotating circular cylinder. The basic flow is described by an exact solution of the Navier-Stokes equations, discovered by Weidmann and Putkaradze [Eur. J. Mech. B/Fluids 22, 123 (2003)]. An eigenvalue problem for the linear stability is formulated, regardless of the free stream obliqueness, and then solved numerically by means of a collocation method using Laguerre's polynomials. It is established that the basic stagnation flow is stable for sufficiently high Reynolds numbers. This is in conformity with the unconditional linear stability of two-dimensional Hiemenz stagnation flow. Instability occurs for Reynolds numbers smaller than some threshold value that increases with the rotation rate of the cylinder. At criticality, the flow undergoes a Hopf bifurcation, leading then to an oscillatory secondary motion.
NASA Astrophysics Data System (ADS)
Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin
2016-08-01
The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
Motor Flow Instabilities - Part 2. Intrinsic Linear Stability of the Flow Induced by Wall Injection
2004-01-01
omitted boundary condition is satisfied. Code written in Matlab A small program written using the commercial software Matlab is given below. The five...Representation of five Matlab routines for solving a stability problem with the spectral collocation method either with a shooting method (upper line...pour l’écoulement dans un conduit plan à parois débitantes. % perturbation en forme de mode normal, % formulation en fonction de courant % % global
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-08-01
The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.
Subcritical transition in plane Poiseuille flow as a linear instability process
NASA Astrophysics Data System (ADS)
Roizner, Federico; Karp, Michael; Cohen, Jacob
2016-05-01
In this work, a transition scenario is demonstrated, in which most of the stages are followed analytically. The transition is initiated by the linear transient growth mechanism in plane Poiseuille flow subjected to an infinitesimally small secondary disturbance. A novel analytical approximation of the linear transient growth mechanism enables us to perform a secondary linear stability analysis of the modified base-flow. Two possible routes to transition are highlighted here, both correspond to a small secondary disturbance superimposed on a linear transient growth. The first scenario is initiated by four decaying odd normal modes which form a counter-rotating vortex pair; the second is initiated by five even decaying modes which form a pair of counter-rotating pairs. The approximation of the linear transient growth stage by a combination of minimal number of modes allows us to follow the transition stages analytically by employing the multiple time scale method. In particular, the secondary instability stage is followed analytically using linear tools, and is verified by obtaining transition in a direct numerical simulation initiated by conditions dictated by the transient growth analytical expressions. Very good agreement is observed, verifying the theoretical model. The similarities between the two transition routes are discussed and the results are compared with similar results obtained for plane Couette flow.
Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows.
Cohen, Jacob; Philip, Jimmy; Ben-Dov, Guy
2009-02-13
The failure of normal-mode linear stability analysis to predict a transition Reynolds number (Retr) in pipe flow and subcritical transition in plane Poiseuille flow (PPF) has led to the search of other scenarios to explain transition to turbulence in both flows. In this work, various results associated with linear and nonlinear mechanisms of both flows are presented. The results that combine analytical and experimental approaches indicate the strong link between the mechanisms governing the transition of both flows. It is demonstrated that the linear transient growth mechanism is based on the existence of a pair of least stable nearly parallel modes (having opposite phases and almost identical amplitude distributions). The analysis that has been applied previously to pipe flow is extended here to a fully developed channel flow predicting the shape of the optimized initial disturbance (a pair of counter-rotating vortices, CVP), time for maximum energy amplification and the dependence of the latter on Re. The results agree with previous predictions based on many modes. Furthermore, the shape of the optimized initial disturbance is similar in both flows and has been visualized experimentally. The analysis reveals that in pipe flow, the transient growth is a consequence of two opposite running modes decaying with an equal decay rate whereas in PPF it is due to two stationary modes decaying with different decay rates. In the first nonlinear scenario, the breakdown of the CVPs (produced by the linear transient growth mechanism) into hairpin vortices is followed experimentally. The associated scaling laws, relating the minimal disturbance amplitude required for the initiation of hairpins and the Re, are found experimentally for both PPF and pipe flow. The scaling law associated with PPF agrees well with the previous predictions of Chapman, whereas the scaling of the pipe flow is the same as the one previously obtained by Hof et al. indicating transition to a turbulent
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
Linear and nonlinear effect of sheared plasma flow on resistive tearing modes
Hu, Qiming Hu, Xiwei; Yu, Q.
2014-12-15
The effect of sheared plasma flow on the m/n = 2/1 tearing mode is studied numerically (m and n are the poloidal and toroidal mode numbers). It is found that in the linear phase the plasma flow with a weak or moderate shear plays a stabilizing effect on tearing mode. However, the mode is driven to be more unstable by sufficiently strong sheared flow when approaching the shear Alfvén resonance (AR). In the nonlinear phase, a moderate (strong) sheared flow leads to a smaller (larger) saturated island width. The stabilization of tearing modes by moderate shear plasma flow is enhanced for a larger plasma viscosity and a lower Alfvén velocity. It is also found that in the nonlinear phase AR accelerates the plasma rotation around the 2/1 rational surface but decelerates it at the AR location, and the radial location satisfying AR spreads inwards towards the magnetic axis.
NASA Astrophysics Data System (ADS)
Chakraborty, Debadi; Sader, John E.
2015-05-01
Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nanometer scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits—such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows.
A novel crowd flow model based on linear fractional stable motion
NASA Astrophysics Data System (ADS)
Wei, Juan; Zhang, Hong; Wu, Zhenya; He, Junlin; Guo, Yangyong
2016-03-01
For the evacuation dynamics in indoor space, a novel crowd flow model is put forward based on Linear Fractional Stable Motion. Based on position attraction and queuing time, the calculation formula of movement probability is defined and the queuing time is depicted according to linear fractal stable movement. At last, an experiment and simulation platform can be used for performance analysis, studying deeply the relation among system evacuation time, crowd density and exit flow rate. It is concluded that the evacuation time and the exit flow rate have positive correlations with the crowd density, and when the exit width reaches to the threshold value, it will not effectively decrease the evacuation time by further increasing the exit width.
Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming
2002-07-01
A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon.
Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow
Wu, L. N.; Ma, Z. W.
2014-07-15
The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β < β{sub s}, but decreases if β > β{sub s}. The existence of the specific value β{sub s} can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β{sub s} increases with increase of the streaming flow strength.
Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.
2001-01-01
The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may
Linear model describing three components of flow in karst aquifers using 18O data
Long, A.J.; Putnam, L.D.
2004-01-01
The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.
Wejner-Mik, Paulina; Nouri, Aria; Szymczyk, Ewa; Krzemińska-Pakuła, Maria; Lipiec, Piotr
2013-01-01
Introduction We hypothesized that coronary flow reserve (CFR) in the left anterior descending artery (LAD) can be effectively measured during an accelerated dipyridamole-atropine stress echocardiography (DASE) protocol to improve the diagnostic performance of the test. Material and methods In 64 patients with suspected or known coronary artery disease scheduled for coronary angiography DASE with concomitant CFR measurement in LAD was performed. Results Coronary flow reserve measurement and calculation were feasible in 83% of patients. The positive predictive value of undetectable LAD flow was 81% for severe LAD disease. Measured values of CFR were in the range 1.3–4.1 (mean: 2.2 ±0.7). Significantly lower CFR was found in patients with LAD disease (1.97 ±0.62 vs. 2.55 ±0.57, p = 0.0015). The optimal cutoff for detecting ≥ 50% stenosis was CFR ≤ 2.1 (ROC AUC 0.776), corresponding with 68% sensitivity and 84% specificity. In patients with negative DASE results 67% of patients with LAD disease had abnormal CFR, whereas in patients with a positive DASE result 92% of patients with normal LAD had normal CFR. The DASE diagnostic accuracy for the detection of coronary artery disease (CAD) increased from 75% to 85% when CFR measurement was added to wall motion abnormality (WMA) analysis. No test with both abnormalities was false positive for the detection of coronary disease. Conclusions Incorporation of CFR measurement into WMA-based stress echocardiography is feasible even in an accelerated DASE protocol and can be translated into an approximate gain of 10% in overall test accuracy. PMID:24273560
Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds
NASA Astrophysics Data System (ADS)
Saxe, S.; Hogue, T. S.; Hay, L.
2015-12-01
This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.
On the Applicability of Linearization Method of Vapor Flow in Porous Media
NASA Astrophysics Data System (ADS)
Li, J.; Zhan, H.; Huang, G.
2009-12-01
For decades, linearization treatment has been commonly applied in vapor flow problems in natural gas engineering, soil vapor extraction (SVE) design, barometric and pneumatic pumping in order to make the governing equation of vapor flow tractable for analytical solutions. In this study, we will particularly investigate two linearization methods: one is the standard linearization method using the squared pressure as the dependent variable (method A), and the other is using the history-dependent averaged pressure to calculate the diffusivity of flow as proposed by Wu et al. (1998) (method B). Although attempts were tried to enhance the confidence for applications of the linearization methods, errors caused by such approximations have not been analyzed to great details. In this work, we validate the linearization methods A and B based on a numerical solution, which is obtained using stiff integrator ODE15s to deal with the temporal derivative and finite-difference to deal with the spatial derivative. This numerical solution is obtained with sufficiently fine temporal and spatial resolutions to make the numerical errors negligible, thus is regarded as the “exact solution”. Two scenarios, the one-dimensional vapor flow under constant pressure difference and radial vapor flow under constant extraction rate, are investigated respectively. A new linearization method is proposed to reduce the error of pressure estimation in methods A and B. This study shows a few features of the linearization methods A and B. First, both methods A and B provide adequate pressure evaluation at early times under relatively small constant pressure difference or gas injection rate, otherwise large discrepancy from the exact solution becomes significant. Second, the maximum value of error of the method A is relatively insensitive to time for either scenarios investigated. Third, the pressure evaluation of the method B shows a transition from underestimate to overestimate (or from
Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2000-01-01
In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.
Plasma flow in peripheral region of detached plasma in linear plasma device
Hayashi, Y. Ohno, N.; Kajita, S.; Tanaka, H.
2016-01-15
A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.
Characterization of electron flow in positive-polarity linear-induction accelerators
NASA Astrophysics Data System (ADS)
Rosenthal, S. E.
Experiments at Sandia National Laboratories have studied the operation of the linear-induction accelerators, HELIA and Hermes 3, in positive polarity. These experiments have provided a unique opportunity to explore the consequences of multiple-cathode electron emission in magnetically insulated transmission lines. An examination of the total energy-canonical momentum distribution of the electrons explains the features of the magnetically insulated flow exhibited by these systems. Simple analysis based on the basic concept of pressure balance, in conjunction with particle-in-cell numerical simulations, shows how the line voltage is related to the anode and cathode currents. Two flow designations are introduced that can apply to multiple-cathode magnetically insulated transmission lines: full-gap flow (FGF), and locally emitted flow (LEF).
Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model
NASA Astrophysics Data System (ADS)
Head, D. A.
2013-09-01
The sessile microbial communities known as biofilms exhibit varying architectures as environmental factors are varied, which for immersed biofilms includes the shear rate of the surrounding flow. Here we modify an established agent-based biofilm model to include affine flow and employ it to analyze the growth of surface roughness of single-species, three-dimensional biofilms. We find linear growth laws for surface geometry in both horizontal and vertical directions and measure the thickness of the active surface layer, which is shown to anticorrelate with roughness. Flow is shown to monotonically reduce surface roughness without affecting the thickness of the active layer. We argue that the rapid roughening is due to nonlocal surface interactions mediated by the nutrient field, which are curtailed when advection competes with diffusion. We further argue the need for simplified models to elucidate the underlying mechanisms coupling flow to growth.
Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Gatski, Thomas B.
2000-01-01
Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
Probability density functions of the stream flow discharge in linearized diffusion wave models
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2016-12-01
This article considers stream flow discharge moving through channels subject to the lateral inflow and described by a linearized diffusion wave equation. The variability of lateral inflow is manifested by random fluctuations in time, which is the only source of uncertainty as to flow discharge quantification. The stochastic nature of stream flow discharge is described by the probability density function (PDF) obtained using the theory of distributions. The PDF of the stream flow discharge depends on the hydraulic properties of the stream flow, such as the wave celerity and hydraulic diffusivity as well as the temporal correlation scale of the lateral inflow rate fluctuations. The focus in this analysis is placed on the influence of the temporal correlation scale and the wave celerity coefficient on the PDF of the flow discharge. The analysis demonstrates that a larger temporal correlation scale causes an increase of PDF of the lateral inflow rate and, in turn, the PDF of the flow discharge which is also affected positively by the wave celerity coefficient.
Linear and weakly nonlinear global instability of a fluid flow through a collapsible channel
NASA Astrophysics Data System (ADS)
Amaouche, Mustapha; Di Labbio, Giuseppe
2016-04-01
Interactions between an internal flow and wall deformation occur in many biological systems. Such interactions can involve a complex and rich dynamical behavior and a number of peculiarities which depend on the flow parameter range. The aim of this paper is to present a variant (obtained via a weighted residual approach) of the averaged one-dimensional model derived by Stewart et al. ["Local and global instabilities of flow in a flexible-walled channel," Eur. J. Mech. B/Fluids 28, 541-557 (2009)]. The asymptotic expansions for small Reynolds numbers of these two models, compared to the exact solution obtained from the lubrication approach, reveal some quantitative difference, even at higher Reynolds numbers. Qualitatively, the two models give similar results at least at a linear level. It is shown that for relatively low membrane tension (T), there are distinct regions in the (T, R) parameter space where steady bifurcating flows may occur. These flows can also be observed at vanishingly small Reynolds numbers combined with relatively high membrane tension. At sufficiently high T and R, the bifurcating flow is rather time periodic. A weakly nonlinear analysis is then performed in both cases leading to the derivation of evolution equations for the amplitudes of the bifurcating flows. The amplitude equations show that the saddle node bifurcation has a transcritical character while the Hopf bifurcation is either subcritical or supercritical, depending both on the mode number and membrane tension.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
NASA Astrophysics Data System (ADS)
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
NASA Astrophysics Data System (ADS)
Spall, Robert E.
1993-08-01
The linear stability of numerical solutions to the quasi-cylindrical equations of motion for swirling flows is investigated. Initial conditions are derived from Batchelor's similarity solution for a trailing line vortex. The stability calculations are performed using a second-order-accurate finite-difference scheme on a staggered grid, with the accuracy of the computed eigenvalues enhanced through Richardson extrapolation. The streamwise development of both viscous and inviscid instability modes is presented. The possible relationship to vortex breakdown is discussed.
Quasilaminar regime in the linear response of a turbulent flow to wall waviness
NASA Astrophysics Data System (ADS)
Luchini, Paolo; Charru, François
2017-01-01
The linear response of the wall-shear stress of a turbulent flow to wall waviness is analyzed in the context of a comparison between existing experiments, direct numerical simulations, and analytical approximations. The spectral region where the response is largest is found to be amenable to a simplified quasilaminar analysis. The end result is a parameterless description of this phenomenon that completely captures its physics in a single analytical formula, a Padé approximation of the response function.
Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons.
Bekshaev, Aleksandr; Soskin, Marat
2006-07-15
Paraxial beams whose transverse structure rotates upon free propagation (spiral beams) can be treated as analogs of azimuthons recently found in nonlinear media [Phys. Rev. Lett.95, 203904 (2005)]. These linear azimuthons have essentially a nonlocalized character and can possess an almost arbitrary rotation rate independent of the angular momentum of the beam. Such beams can be assimilated into fluent mechanical bodies with intrinsic mass flows determined by transverse energy redistribution over the beam cross section.
Linear drag law for high-Reynolds-number flow past an oscillating body
NASA Astrophysics Data System (ADS)
Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif
2016-07-01
An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.
Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
Levant, Michael; Steinberg, Victor
2016-12-01
In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.
Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow
NASA Astrophysics Data System (ADS)
Levant, Michael; Steinberg, Victor
2016-12-01
In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid ηo. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σc of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.
Integrable Magnetic Geodesic Flows on 2-Torus: New Examples via Quasi-Linear System of PDEs
NASA Astrophysics Data System (ADS)
Agapov, S. V.; Bialy, M.; Mironov, A. E.
2017-01-01
For a magnetic geodesic flow on the 2-torus the only known integrable example is that of a flow integrable for all energy levels. It has an integral linear in momenta and corresponds to a one parameter group preserving the Lagrangian function of the magnetic flow. In this paper the problem of integrability on a single energy level is considered. Then, in addition to the example mentioned above, a few other explicit examples with quadratic in momenta integrals can be constructed by means of the Maupertuis' principle. Recently we proved that such an integrability problem can be reduced to a remarkable semi-Hamiltonian system of quasi-linear PDEs and to the question of the existence of smooth periodic solutions for this system. Our main result of the present paper states that any Liouville metric with the zero magnetic field on the 2-torus can be analytically deformed to a Riemannian metric with a small magnetic field so that the magnetic geodesic flow on an energy level is integrable by means of an integral quadratic in momenta.
Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.
Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W
2015-05-29
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.
Linear stability of plane Poiseuille flow over a generalized Stokes layer
NASA Astrophysics Data System (ADS)
Quadrio, Maurizio; Martinelli, Fulvio; Schmid, Peter J.
2011-12-01
Linear stability of plane Poiseuille flow subject to spanwise velocity forcing applied at the wall is studied. The forcing is stationary and sinusoidally distributed along the streamwise direction. The long-term aim of the study is to explore a possible relationship between the modification induced by the wall forcing to the stability characteristic of the unforced Poiseuille flow and the signifcant capabilities demonstrated by the same forcing in reducing turbulent friction drag. We present in this paper the statement of the mathematical problem, which is considerably more complex that the classic Orr-Sommerfeld-Squire approach, owing to the streamwise-varying boundary condition. We also report some preliminary results which, although not yet conclusive, describe the effects of the wall forcing on modal and non-modal characteristics of the flow stability.
Linear stability analysis of immiscible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Riaz, Amir
2005-11-01
Linear stability analysis of immiscible displacements is carried out for both viscously and gravitationally unstable two-phase flows in porous media with very large adverse viscosity ratios. Capillary dispersion is the proper dissipative mechanism in this case which sets both the preferred length scale and the band width of the spectrum of unstable length scales. The growth rate, the most dangerous and the cutoff wavenumbers, all scale linearly with the capillary number. We show that the instability is governed by fluid properties across the shock rather than those across the full Buckley--Leverett profile. The shock total mobility ratio provides a sufficient condition for the onset of instability; however, it is not an appropriate criterion for predicting the magnitude of the growth rate, particularly for large viscosity ratios. The details of the relative permeability functions are observed to have a significant influence on the stability characteristics. For neutrally buoyant flows the maximum growth rate scales linearly with the viscosity ratio while the most dangerous and the cutoff wavenumbers scale with the square root of the viscosity ratio.
Effect of clustering on linear plug nozzle flow field for overexpanded internal jet
NASA Astrophysics Data System (ADS)
Chutkey, K.; Viji, M.; Verma, S. B.
2017-01-01
Experiments were carried out to analyze the flow field development of a linear plug nozzle wherein the internal nozzle was operating in the overexpanded regime. Steady and unsteady pressure measurements were taken along with the schlieren and oil flow visualization techniques to describe the flow field. Over the range of pressure ratios considered, the overexpanded shock pattern from the internal nozzle has been explained with regard to differential end conditions on either side of the core jet. The unsteady characteristics of the pressure fluctuations have been discussed with respect to the foot of the overexpansion shock on the plug surface. The effect of internal nozzle clustering on the plug nozzle flow field has been studied for two different cluster nozzles. The cluster module jet wave interactions along the spanwise direction have been explained with respect to the limiting streamline pattern on the plug surface. In addition to these, the base flow characteristics for these overexpanded internal nozzle pressure ratios have been discussed for two different truncated plug lengths.
Self-regulating Drift wave -- Zonal Flow turbulence in a linear plasma device
NASA Astrophysics Data System (ADS)
Xie, Jinlin; Chen, Ran; Hu, Guanghai; Jin, Xiaoli; Li, Hong; Liu, Wandong; Yu, Changxuan
2012-10-01
Here we report new and interesting results about the DW-ZF system in a linear plasma device with much better control environments to illustrate important Zonal flow physics: (1) The three-dimensional spectral features of the LFZF have been provided. In particular, it is identified that the LFZF damping is dominated by ion-neutral collision in our case. Also experimental evidence of the shearing effect of ZF on DW has been given. (2) A zonal flow dominated state of the DW-ZF system has been achieved. Theoretically, it has been predicted that a significant portion of the turbulence energy can be stored in the Zonal Flows for the case of low collisionality plasmas. In our experiments we achieve a zonal flow dominated state, in which the maximum ratio of the ZF energy to the total turbulence energy is about 80%, which seems to support the hypothesis of zonostropic state in geostrophic turbulence. (3) The self-regulating dynamics in the DW-ZF system is clearly elucidated. The evolution of the energy partition ratio of drift-wave turbulence and zonal flow is investigated with varying magnetic field strength, which is found consistent with the general prey-predator model.
On three-dimensional linear stability of Poiseuille flow of Bingham fluids
NASA Astrophysics Data System (ADS)
Frigaard, Ian; Nouar, Cherif
2003-10-01
Plane channel Poiseuille flow of a Bingham fluid is characterized by the Bingham number, B, which describes the ratio of yield and viscous stresses. Unlike purely viscous non-Newtonian fluids, which modify hydrodynamic stability studies only through the dissipation and the basic flow, inclusion of a yield stress additionally results in a modified domain and boundary conditions for the stability problem. We investigate the effects of increasing B on the stability of the flow, using eigenvalue bounds that incorporate these features. As B→∞ we show that three-dimensional linear stability can be achieved for a Reynolds number bound of form Re=O(B3/4), for all wavelengths. For long wavelengths this can be improved to Re=O(B), which compares well with computed linear stability results for two-dimensional disturbances [J. Fluid Mech. 263, 133 (1994)]. It is also possible to find bounds of form Re=O(B1/2), which derive from purely viscous dissipation acting over the reduced domain and are comparable with the nonlinear stability bounds in J. Non-Newt. Fluid Mech. 100, 127 (2001). We also show that a Squire-like result can be derived for the plane channel flow. Namely, if the equivalent eigenvalue bounds for a Newtonian fluid yield a stability criterion, then the same stability criterion is valid for the Bingham fluid flow, but with reduced wavenumbers and Reynolds numbers. An application of these results is to bound the regions of parameter space in which computational methods need to be used.
Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows
Takahashi, Kazuya; Yamada, Shoichi
2014-10-20
We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.
Parallel simulations of vortex-induced vibrations in turbulent flow: Linear and nonlinear models
NASA Astrophysics Data System (ADS)
Evangelinos, Constantinos
1999-11-01
In this work unstructured spectral/hp element based direct numerical simulation (DNS) techniques are used to simulate vortex-induced vibrations (VIV) of flexible cylinders. Linear structural models are employed for tension- dominated structures (cables) and bending stiffness- dominated structures (beams). Flow-structure interactions are studied in transitional (200-300) and turbulent (1000) Reynolds numbers. Structural responses as well as hydrodynamic forces are analyzed and their relationship with the near wake flow structures is examined. The following conclusions were reached: (1)A Reynolds number effect exists for the observed oscillation amplitude. (2)The phase relationship between cross- flow displacement and coefficient of lift is correlated with both the magnitudes of lift forces and displacement. (3)Cables enhance transition to turbulent flow, while beams (and rigidly vibrating cylinders) delay it. In the transition regime beams oscillate with 70% of the amplitude of cables. (4)Oblique and parallel shedding appear to coexist in the turbulent wake of cables and beams with a traveling wave structural response. The corresponding wake structure behind a cylinder with pinned ends vibrating as a standing wave, displays lambda-type vortices similar to those seen at lower (laminar) Reynolds numbers. (5)Cables and beams at a Reynolds number of 1000 give: (a)extremely similar velocity spectra, (b)differing autocorrelation profiles and large flow structures, and (c)differing structural responses. (6)The empirical formula for the coefficient of drag due to Skop et al. (1977) is shown to be in disagreement with the experimental data; a modified formula fits the results much better. A non-linear set of equations for the finite amplitude vibrations of a string are also derived and investigated. It is combined with an Arbitrary Lagrangian-Eulerian (ALE) flow solver and applied to model simulations of low Reynolds number (100) flow past flexible cylinders with pinned ends
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Asymptotic Behavior of Ensemble-Averaged Linear Disturbances in Homogeneous Shear Flow
NASA Technical Reports Server (NTRS)
Thacker, W. D.; Grosch, C E.; Gatski, T. B.
1999-01-01
In order to expand the predictive capability of single-point turbulence closure models too account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. The calibration is based on homogeneous shear flow where disturbances can be described by rapid distort,ion theory (RDT). The relationship between RDT and linear stability theory is exploit,c d in order to obtain a closed set, of modeled equations. The linear disturbance equations are solved directly so that, the numerical simulation yields a database from which the closure coefficient,s in the ensemble-averaged disturbance equations can he determined.
Linear feedback control and estimation of transition in plane channel flow
NASA Astrophysics Data System (ADS)
Högberg, Markus; Bewley, Thomas R.; Henningson, Dan S.
2003-04-01
Modern linear control theory has recently been established as a viable tool for developing effective, spatially localized convolution kernels for the feedback control and estimation of linearized Navier Stokes systems. In the present paper, the effectiveness of these kernels for significantly expanding the basin of attraction of the laminar state in a subcritical nonlinear channel flow system is quantified using direct numerical simulations for a range of Reynolds numbers (Re_{CL}=2000, 3000 and 5000) and for a variety of initial conditions of physical interest. This is done by quantifying the change in the transition thresholds (see Reddy et al. 1998) when feedback control is applied. Such transition thresholds provide a relevant measure of performance for transition control strategies even in the nonlinear regime. Initial flow perturbations with streamwise vortices, oblique waves, and random excitations over an array of several Fourier modes are considered. It is shown that the minimum amplitude of these initial flow perturbations that is sufficient to excite nonlinear instability, and thereby promote transition to turbulence, is significantly increased by application of the control feedback. The kernels used to apply the feedback are found to decay exponentially with distance far from the origin, as predicted by the analysis of Bamieh, Paganini & Dahleh (2002). In the present paper, it is demonstrated via numerical simulation that truncation of these spatially localized convolution kernels to spatially compact kernels with finite non-zero support does not significantly degrade the effectiveness of the control feedback. In addition to the new state-feedback control results, exponential convergence of a localized physical-space state estimator with wall measurements is also demonstrated. The estimator and the full-state feedback controller are then combined to obtain a wall-information-based linear compensator. The compensator performance is also quantified, and
Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.
2009-03-15
The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.
Entropy analysis reveals a simple linear relation between laser speckle and blood flow.
Miao, Peng; Chao, Zhen; Zhang, Yiguang; Li, Nan; Thakor, Nitish V
2014-07-01
Dynamic laser speckles contain motion information of scattering particles which can be estimated by laser speckle contrast analysis (LASCA). In this work, an entropy-based method was proposed to provide a more robust estimation of motion speed. An in vitro flow simulation experiment confirmed a simple linear relation between entropy, exposure time, and speed. A multimodality optical imaging setup is developed to validate the advantages of the entropy method based on laser speckle imaging, green light imaging, and fluorescence imaging. The entropy method overcomes traditional LASCA with less noisy interference, and extracts more visible and detailed vasculatures in vivo. Furthermore, the entropy method provides a more accurate estimation and a stable pattern of blood flow activations in the rat's somatosensory area under multitrial hand paw stimulations.
A parametric study of supersonic laminar flow for swept wings using linear stability analysis
NASA Technical Reports Server (NTRS)
Cummings, Russell M.; Garcia, Joseph A.; Tu, Eugene L.
1995-01-01
A parametric study to predict the extent of laminar flow on the upper surface of a generic swept-back wing (NACA 64A010 airfoil section) at supersonic speeds was conducted. The results were obtained by using surface pressure predictions from an Euler/Navier-Stokes computational fluid dynamics code coupled with a boundary layer code, which predicts detailed boundary layer profiles, and finally with a linear stability code to determine the extent of laminar flow. The parameters addressed are Reynolds number, angle of attack, and leading-edge wing sweep. The results of this study show that an increase in angle of attack, for specific Reynolds numbers, can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag due to the delay in transition is possible for certain flight conditions.
Kim, J M; Edwards, B J; Keffer, D J
2008-04-01
We have performed nonequilibrium molecular dynamic simulations of the linear short-chain polyethylene liquids C(24)H(50), C(50)H(102), C(78)H(158), and C(128)H(258) under homogenous shear and elongational flows. We present visualizations of the molecular structure of each of the four liquids under shear and elongation, and compare them with their equilibrium static structures. These graphics provide a structural understanding of the various statistical measures that have been used in the literature to characterize the change in chain conformation as a function of strain rate and chain length. Moreover, these graphics allow a visualization of the inherent chain dynamics and orientation induced by shear and elongational flows. We discuss the molecular-level mechanisms apparent in the graphics.
Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case
NASA Astrophysics Data System (ADS)
Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.
2016-11-01
This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.
NASA Astrophysics Data System (ADS)
Qiao, Jundong; Delavan, Sarah
2014-11-01
Laboratory experiments were conducted to explore the mean flow structure and turbulence properties downstream of a spanwise suspended linear canopy in a 2-D open channel flow using the Particle Tracking Velocimetry technique. This canopy simulated the effect of one long-line structure of a mussel farm. Four experimental scenarios with the approach velocities 50, 80, 110, and 140 mm s-1 were under investigation. Three sub-layers formed downstream of the canopy. An internal canopy layer, where the time-averaged velocity decreases linearly with increasing distance downstream, a canopy mixing layer increasing in vertical extent with increasing distance downstream of the canopy, and an external canopy layer with higher velocity under the canopy, which may bring nutrients from the local ambient environment into this layer. The canopy turbulence results in upward momentum transport downstream of the canopy within a distance of 0.60 of the canopy depth and downward momentum transport beyond 1.20 of it. In the scenarios with relatively lower approach velocities 50 and 80 mm s1 , the wake turbulence results in upward momentum transport. The broader goal of this study is to offer guidelines for the design and site selection of more productive mussel farms. The results suggest that distance interval between the parallel long-lines in a mussel farm should be less than 0.6 times the height of a long-line dropper. Also, potential farm locations that are characterized with current velocity from 50 to 80 mm s1 are suggested.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Linear Chain Formation by Unicellular Bacteria During Mat Growth Under Low-Energy Flows
NASA Astrophysics Data System (ADS)
Tice, M. M.; Newman, D. K.; Grotzinger, J. P.
2007-12-01
Biofilm morphologies and material properties are known to be functions of overlying fluid flow strength. It has been hypothesized that microbial mats and stromatolites also respond morphologically to fluid flow. We show that microscopic textures of experimentally grown mats of the unicellular cyanobacterium Synechocystis sp. PCC 6803 respond sensitively to overlying flow. Cultures were grown in two chemostats in which growth medium was replaced at a rate much faster than the bacteria's instantaneous growth rate, thus selecting for individuals attached to surfaces. Small petri dishes at the bottoms of each chemostat received innocula at the beginning of the experiment. One chemostat was stirred at a low rate such that there was no measurable flow across the tops of the dishes, while the other was stirred at a rate maintaining a flow of approximately 0.7 cm/s at 1 cm over the dishes. Cultures were grown for 10 days during which thick biofilms/mats developed in the dishes. In addition to biofilms developed on the petri dish surfaces, cultures in the rapidly stirred chemostat developed thick "streamers" which projected up into and were deflected by the overlying flow. Samples were collected from films and, in the rapidly stirred chemostat, from streamers by pipetting and by pinching between two thin bamboo sticks. Samples were examined by fluorescence microscopy with a 40x objective. Without fluid flow, cells were only loosely associated and showed little or no spatial organization. Under the modest flow set up in the rapidly stirred chemostat, cells in both biofilms and streamers formed long linear chains arranged in sheets or tight bundles. These results suggest that hydraulic factors may be significant in shaping mat textures at the scale of 10-100 μm by modifying the spatial associations of groups of cells. If preserved in microcrystalline quartz or carbonate, the chains formed in these experiments could be mistaken for filamentous bacteria. Care must be taken
Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)
2001-01-01
The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic
NASA Astrophysics Data System (ADS)
Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro
2016-12-01
Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases
Estimating {Omega} from galaxy redshifts: Linear flow distortions and nonlinear clustering
Bromley, B.C. |; Warren, M.S.; Zurek, W.H.
1997-02-01
We propose a method to determine the cosmic mass density {Omega} from redshift-space distortions induced by large-scale flows in the presence of nonlinear clustering. Nonlinear structures in redshift space, such as fingers of God, can contaminate distortions from linear flows on scales as large as several times the small-scale pairwise velocity dispersion {sigma}{sub {nu}}. Following Peacock & Dodds, we work in the Fourier domain and propose a model to describe the anisotropy in the redshift-space power spectrum; tests with high-resolution numerical data demonstrate that the model is robust for both mass and biased galaxy halos on translinear scales and above. On the basis of this model, we propose an estimator of the linear growth parameter {beta}={Omega}{sup 0.6}/b, where b measures bias, derived from sampling functions that are tuned to eliminate distortions from nonlinear clustering. The measure is tested on the numerical data and found to recover the true value of {beta} to within {approximately}10{percent}. An analysis of {ital IRAS} 1.2 Jy galaxies yields {beta}=0.8{sub {minus}0.3}{sup +0.4} at a scale of 1000kms{sup {minus}1}, which is close to optimal given the shot noise and finite size of the survey. This measurement is consistent with dynamical estimates of {beta} derived from both real-space and redshift-space information. The importance of the method presented here is that nonlinear clustering effects are removed to enable linear correlation anisotropy measurements on scales approaching the translinear regime. We discuss implications for analyses of forthcoming optical redshift surveys in which the dispersion is more than a factor of 2 greater than in the {ital IRAS} data. {copyright} {ital 1997} {ital The American Astronomical Society}
Suspended particulate composition: evolution along a river linear and influence of regime flow
NASA Astrophysics Data System (ADS)
Le Meur, Mathieu; Montargès-Pelletier, Emmanuelle; Bauer, Allan; Gley, Renaud; Migot, Sylvie; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Razafitianamaharavo, Angelina; Villièras, Frédéric
2015-04-01
Suspended Particulate Matters are recognized to play a crucial role in the transport and fate of chemicals like trace metal elements. The affinity of trace metals with natural SPM is influenced by (i) the nature of metal (ii) physical-chemical conditions of the water column (iii) SPM physical characteristics (grain size, surface area) (iiii) SPM chemical characteristics (elemental composition, mineralogy, organic composition). Some authors observed that the SPM composition was the predominant factor controlling the affinity of trace metals with natural SPM. One purpose of this work is to follow the physical and chemical characteristics of SPM along the river linear in order to better understand the affinity between SPM and heavy metals. One other purpose is to study the influence of regime flow on SPM physical and chemical composition in order to detect any variation of SPM composition with regime flow. SPM were sampled along Moselle river (North East of France) following an urbanization gradient. Two tributaries were also sampled, the Madon river which drains an agricultural catchment and the Fensch stream which flows through an ancient steel-making basin. SPM were sampled several times during high flow and low flow. Particulate matter was extracted on field using continuous flow field centrifuge. Frozen-dried samples were then characterized in terms of size distribution, elemental composition (ICP - AES, ICP - MS), mineralogy (XRD, FTIR, SEM, TEM), surface properties (gas adsorption techniques) and organic composition (Py-GC-MS and GC-MS). Grain size distribution evidenced the presence of coarser particles during high flow but no difference in the grain size distribution could be evidenced between the different stations. The grain size distribution of collected SPM appeared globally identical, although the increase of conductivity due to the junction of Meurthe river . In terms of composition, major element contents in SPM are characterized by the predominance of
Implicit schemes with large time step for non-linear equations: application to river flow hydraulics
NASA Astrophysics Data System (ADS)
Burguete, J.; García-Navarro, P.
2004-10-01
In this work, first-order upwind implicit schemes are considered. The traditional tridiagonal scheme is rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for unsteady transcritical flows. On the other hand, the origin of the instabilities associated to the use of upwind implicit methods for shock propagations is identified and a new stability condition for non-linear problems is proposed. This modification produces a robust, simple and accurate upwind semi-explicit scheme suitable for discontinuous flows with high Courant-Friedrichs-Lewy (CFL) numbers.The discretization at the boundaries is based on the condition of global mass conservation thus enabling a fully conservative solution for all kind of boundary conditions.The performance of the proposed technique will be shown in the solution of the inviscid Burgers' equation, in an ideal dambreak test case, in some steady open channel flow test cases with analytical solution and in a realistic flood routing problem, where stable and accurate solutions will be presented using CFL values up to 100.
Linear stability analysis of axisymmetric flow over a sudden expansion in an annular pipe
NASA Astrophysics Data System (ADS)
Beladi, Behnaz; Kuhlmann, Hendrik Christoph
2016-11-01
A global temporal linear stability analysis is performed of the fully-developed axisymmetric incompressible Newtonian flow in an annular pipe with a sudden radially-inward expansion. The geometry is characterized by the radial expansion ratio (radial step height to the outlet gap width) and the outlet radius ratio (inner-to-outer radius). Stability boundaries have been calculated with finite volumes for an outlet radius ratio of 0 . 1 and expansion ratios from 0 . 25 to 0 . 75 . For expansion ratios less than 0 . 55 the most dangerous mode has an azimuthal wave number m = 3 , whereas m = 2 for larger expansion ratios. An a posteriori analysis of the kinetic energy transferred between the basic state and the critical mode allows to check the energy conservation and to identify the physical instability mechanism. For all expansion ratios considered the basic flow arises as an annular jet between two separation zones which are located immediately after the step. The jet gradually widens downstream before reattaching to the cylinders. The deceleration of the flow associated with the widening of the jet is found to be the primary source of energy for the critical modes.
Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes.
Marmarelis, Vz; Shin, Dc; Zhang, R
2012-01-01
Cerebral Flow Autoregulation (CFA) is the dynamic process by which cerebral blood flow is maintained within physiologically acceptable bounds during fluctuations of cerebral perfusion pressure. The distinction is made with "static" flow autoregulation under steady-state conditions of perfusion pressure, described by the celebrated "autoregulatory curve" with a homeostatic plateau. This paper studies the dynamic CFA during changes in perfusion pressure, which attains critical clinical importance in patients with stroke, traumatic brain injury and neurodegenerative disease with a cerebrovascular component. Mathematical and computational models have been used to advance our quantitative understanding of dynamic CFA and to elucidate the underlying physiological mechanisms by analyzing the relation between beat-to-beat data of mean arterial blood pressure (viewed as input) and mean cerebral blood flow velocity(viewed as output) of a putative CFA system. Although previous studies have shown that the dynamic CFA process is nonlinear, most modeling studies to date have been linear. It has also been shown that blood CO2 tension affects the CFA process. This paper presents a nonlinear modeling methodology that includes the dynamic effects of CO2 tension (or its surrogate, end-tidal CO2) as a second input and quantifies CFA from short data-records of healthy human subjects by use of the modeling concept of Principal Dynamic Modes (PDMs). The PDMs improve the robustness of the obtained nonlinear models and facilitate their physiological interpretation. The results demonstrate the importance of including the CO2 input in the dynamic CFA study and the utility of nonlinear models under hypercapnic or hypocapnic conditions.
1985-06-01
the cavitating propeller program [21]. In this thesis, first the linear theory for partial and 17 a, ~ ~ i a T n - - - - - of using the hodograph ...problems has been achieved via the hodograph technique (3]. The extension to non-zero cavitation number * problems has created a lot of diversity in
NASA Astrophysics Data System (ADS)
Balluch, M.
1991-03-01
Recent developments concerning spherically symmetric (1D-) numerical models of protostellar evolution show that steady protostellar accretion flows (resp. their shockfronts) may be unstable at least in the very early (Tscharnuter 1987a) and late stages (Balluch 1988) of accretion. A global, linear stability analysis of the structure of steady protostellar accretion flows with a shock discontinuity (Balluch 1990) is therefore presented to investigate such flows by different methods. Thereby three characteristic wave types, the radiation-, radiation diffusion- and acoustic modes were found. In the `ideal case' of a perfect gas law and constant opacity, the shockfront appears to be oscillatory unstable due to critical cooling as long as the mass flux rate is larger than a critical one of Mṡcrit = 10-6 Msun yr-1. In the `real case' with more realistic constitutive relations, an additional vibrational instability occurs due to the κ-mechanism in the outer layers of the core. This is shown to be the case in the whole range of core masses between 0.01 and 1 Msun, mass flow rates between 10-3 and 10-7 Msun yr-1 and different outer boundary conditions (corresponding to different states of the surrounding interstellar cloud). Analysing the first, outer protostellar cores before they get dynamically unstable due to H2-dissociation in their interiors, similar instabilities as mentioned above were found. Now the unstable κ-behaviour is due to dust instead of the deep ionisation zone as in the case of second, inner cores. According to the linear analysis, the instabilities should first appear in the velocity and the radiation flux in the settling zone. In the case of first, outer cores, these variations should be accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Sooner or later, the shockfront should oscillate in both cases too. These results are finally compared with the characteristics of the accretion shock
Are eruptions from linear fissures and caldera ring dykes more likely to produce pyroclastic flows?
NASA Astrophysics Data System (ADS)
Jessop, D. E.; Gilchrist, J.; Jellinek, A. M.; Roche, O.
2016-11-01
Turbulent volcanic jets are produced by highly-energetic explosive eruptions and may form buoyant plumes that rise many tens of kilometres into the atmosphere to form umbrella clouds or collapse to generate ground-hugging pyroclastic flows. Ash injected into the atmosphere can be transported for many hundreds of kilometres with the potential to affect climate, disrupt global air travel and cause respiratory health problems. Pyroclastic flows, by contrast, are potentially catastrophic to populations and infrastructure close to the volcano. Key to which of these two behaviours will occur is the extent to which the mechanical entrainment and mixing of ambient air into the jet by large (entraining) eddies forming the jet edge changes the density of the air-ash mixture: low entrainment rates lead to pyroclastic flows and high entrainment rates give rise to buoyant plumes. Recent experiments on particle-laden (multi-phase) volcanic jets from flared and straight-sided circular openings suggest that the likelihood for buoyant plumes will depend strongly on the shape and internal geometry of the vent region. This newly recognised sensitivity of the fate of volcanic jets to the structure of the vent is a consequence of a complex dynamic coupling between the jet and entrained solid particles, an effect that has generally been overlooked in previous studies. Building on this work, here we use an extensive series of experiments on multi-phase turbulent jets from analogue linear fissures and annular ring fractures to explore whether the restrictive vent geometry during cataclysmic caldera-forming (CCF) eruptions will ultimately lead a relatively greater frequency of pyroclastic flows than eruptions from circular vents on stratovolcanoes. Our results, understood through scaling analyses and a one-dimensional theoretical model, show that entrainment is enhanced where particle motions contribute angular momentum to entraining eddies. However, because the size of the entraining
Characterization of linear-like Orr bursts in fully turbulent channel flows
NASA Astrophysics Data System (ADS)
Encinar, Miguel P.; Jimenez, Javier
2016-11-01
The linearised Orr-Sommerfield equation predicts that initially small perturbations of the cross-shear velocity become transiently amplified when tilted by the effect of a mean shear. Such transient behaviour can also be found in the large-scale structures of fully developed nonlinear shear turbulence, although affected by the non linearity of the flow. We investigate the dynamics of the bursting structures in properly filtered large-box turbulent channels at Reτ = 950 , and find that all velocity components play an important role in their formation. This implies that their underlying geometry is three dimensional. We explore the latter using spatio-temporal conditionally averaged structures that show the formation of tilted rollers at the moment of the burst, and reveal a relation between the Orr-like bursts and the vertical momentum transfer. Funded by the ERC COTURB project.
Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test
NASA Technical Reports Server (NTRS)
1998-01-01
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous
A Vector Study of Linearized Supersonic Flow Applications to Nonplanar Problems
NASA Technical Reports Server (NTRS)
Martin, John C
1953-01-01
A vector study of the partial-differential equation of steady linearized supersonic flow is presented. General expressions which relate the velocity potential in the stream to the conditions on the disturbing surfaces, are derived. In connection with these general expressions the concept of the finite part of an integral is discussed. A discussion of problems dealing with planar bodies is given and the conditions for the solution to be unique are investigated. Problems concerning nonplanar systems are investigated, and methods are derived for the solution of some simple nonplanar bodies. The surface pressure distribution and the damping in roll are found for rolling tails consisting of four, six, and eight rectangular fins for the Mach number range where the region of interference between adjacent fins does not affect the fin tips.
A Mach line panel method for computing the linearized supersonic flow over planar wings
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Rubbert, P. E.
1978-01-01
A method is described for solving the linearized supersonic flow over planar wings using panels bounded by two families of Mach lines. Polynomial distributions of source and doublet strength lead to simple, closed form solutions for the aerodynamic influence coefficients, and a nearly triangular matrix yields rapid solutions for the singularity parameters. The source method was found to be accurate and stable both for analysis and design boundary conditions. Similar results were obtained with the doublet method for analysis boundary conditions on the portion of the wing downstream of the supersonic leading edge, but instabilities in the solution occurred for the region containing a portion of the subsonic leading edge. Research on the method was discontinued before this difficulty was resolved.
Conduction in Low Mach Number Flows. I. Linear and Weakly Nonlinear Regimes
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.
2014-12-01
Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced "soundproof" anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.
CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES
Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.
2014-12-20
Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.
Hau, Jan-Niklas Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander
2015-12-15
Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber
Feng, Lei; Siu, Kin; Moore, Leon C; Marsh, Donald J; Chon, Ki H
2006-02-01
We have developed a method that can identify switching dynamics in time series, termed the improved annealed competition of experts (IACE) algorithm. In this paper, we extend the approach and use it for detection of linear and nonlinear interactions, by employing histograms showing the frequency of switching modes obtained from the IACE, then examining time-frequency spectra. This extended approach is termed Histogram of improved annealed competition of experts-time frequency (HIACE-TF). The hypothesis is that frequent switching dynamics in HIACE-TF results are due to interactions between different dynamic components. To validate this assertion, we used both simulation examples as well as application to renal blood flow data. We compared simulation results to a time-phase bispectrum (TPB) approach, which can also be used to detect time-varying quadratic phase coupling between various components. We found that the HIACE-TF approach is more accurate than the TPB in detecting interactions, and remains accurate for signal-to-noise ratios as low as 15 dB. With all 10 data sets, comprised of volumetric renal blood flow data, we also validated the feasibility of the HIACE-TF approach in detecting nonlinear interactions between the two mechanisms responsible for renal autoregulation. Further validation of the HIACE-TF approach was achieved by comparing it to a realistic mathematical model that has the capability to generate either the presence or the absence of nonlinear interactions between two renal autoregulatory mechanisms.
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali
2012-11-01
Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.
Energetics of slope flows: linear and weakly nonlinear solutions of the extended Prandtl model
NASA Astrophysics Data System (ADS)
Güttler, Ivan; Marinović, Ivana; Večenaj, Željko; Grisogono, Branko
2016-07-01
The Prandtl model succinctly combines the 1D stationary boundary-layer dynamics and thermodynamics of simple anabatic and katabatic flows over uniformly inclined surfaces. It assumes a balance between the along-the-slope buoyancy component and adiabatic warming/cooling, and the turbulent mixing of momentum and heat. In this study, energetics of the Prandtl model is addressed in terms of the total energy (TE) concept. Furthermore, since the authors recently developed a weakly nonlinear version of the Prandtl model, the TE approach is also exercised on this extended model version, which includes an additional nonlinear term in the thermodynamic equation. Hence, interplay among diffusion, dissipation and temperature-wind interaction of the mean slope flow is further explored. The TE of the nonlinear Prandtl model is assessed in an ensemble of solutions where the Prandtl number, the slope angle and the nonlinearity parameter are perturbed. It is shown that nonlinear effects have the lowest impact on variability in the ensemble of solutions of the weakly nonlinear Prandtl model when compared to the other two governing parameters. The general behavior of the nonlinear solution is similar to the linear solution, except that the maximum of the along-the-slope wind speed in the nonlinear solution reduces for larger slopes. Also, the dominance of PE near the sloped surface, and the elevated maximum of KE in the linear and nonlinear energetics of the extended Prandtl model are found in the PASTEX-94 measurements. The corresponding level where KE>PE most likely marks the bottom of the sublayer subject to shear-driven instabilities. Finally, possible limitations of the weakly nonlinear solutions of the extended Prandtl model are raised. In linear solutions, the local storage of TE term is zero, reflecting the stationarity of solutions by definition. However, in nonlinear solutions, the diffusion, dissipation and interaction terms (where the height of the maximum interaction is
NASA Astrophysics Data System (ADS)
Hill, P.; Saarelma, S.; McMillan, B.; Peeters, A.; Verwichte, E.
2012-06-01
Sheared E × B flows are known to stabilize turbulence. This paper investigates how the linear stability of the ion-temperature-gradient (ITG) mode depends on k⊥ in both circular and MHD geometry. We study the effects of both rotation profiles of constant shear and of purely toroidal flow taken from experiment, using the global gyrokinetic particle-in-cell code NEMORB. We find that in order to effectively stabilize the linear mode, the fastest growing mode requires a shearing rate (γE) around 1-2 times its linear growth rate without flow (γ0), while both longer and shorter wavelength modes need much larger flow shear compared with their static linear growth rates. Modes with kθρi < 0.2 need γE as much as 10 times their γ0. This variation exists in both large-aspect ratio circular cross-section and small-aspect ratio MHD geometries, with both analytic constant shear and experimental flow profiles. There is an asymmetry in the suppression with respect to the sign of γE, due to competition between equilibrium profile variation and flow shear. The maximum growth rate for cases using the experimental profile in MAST equilibria occurs at shearing rates of 10% the experimental level.
Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla
2010-02-01
Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.
Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.
2015-04-15
The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.
Tandon, P; Diamond, S L
1997-01-01
We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at
NASA Technical Reports Server (NTRS)
Carmichael, R. L.; Erickson, L. L.
1981-01-01
PAN AIR is a computer program for predicting subsonic or supersonic linear potential flow about arbitrary configurations. It uses linear source and quadratic doublet strength distributions. These higher-order distributions have been implemented in a manner that greatly reduces the numerical stability problems that have plagued earlier attempts to make surface paneling methods work successfully for supersonic flow. PAN AIR's problem-solving capability, numerical approach, modeling features, and program architecture are described. Numerical results are presented for a variety of geometries at supersonic Mach numbers.
NASA Astrophysics Data System (ADS)
Obrist, Dominik; Schmid, Peter J.
2003-10-01
Following the study of the spectral properties of linearized swept Hiemenz flow (see Part 1, Obrist & Schmid 2003) we investigate the potential of swept Hiemenz flow to support transiently growing perturbations owing to the non-normal nature of the underlying linear stability operator. Transient amplification of perturbation energy is found for polynomial orders higher than zero, and a catalytic role of the continuous modes in increasing transient growth is demonstrated. The adjoint stability equations are derived and used in a numerical receptivity experiment to illustrate the scattering of vortical free-stream disturbances into the least stable boundary layer mode.
Linear stability of optimal streaks in the log-layer of turbulent channel flows
NASA Astrophysics Data System (ADS)
Alizard, Frédéric
2015-10-01
The importance of secondary instability of streaks for the generation of vortical structures attached to the wall in the logarithmic region of turbulent channels is studied. The streaks and their linear instability are computed by solving equations associated with the organized motion that include an eddy-viscosity modeling the effect of incoherent fluctuations. Three friction Reynolds numbers, Reτ = 2000, 3000, and 5000, are investigated. For all flow cases, optimal streamwise vortices (i.e., having the highest potential for linear transient energy amplification) are used as initial conditions. Due to the lift-up mechanism, these optimal perturbations lead to the nonlinear growth of streaks. Based on a Floquet theory along the spanwise direction, we observe the onset of streak secondary instability for a wide range of spanwise wavelengths when the streak amplitude exceeds a critical value. Under neutral conditions, it is shown that streak instability modes have their energy mainly concentrated in the overlap layer and propagate with a phase velocity equal to the mean streamwise velocity of the log-layer. These neutral log-layer modes exhibit a sinuous pattern and have characteristic sizes that are proportional to the wall distance in both streamwise and spanwise directions, in agreement with the Townsend's attached eddy hypothesis (A. Townsend, the structure of turbulent shear flow, Cambridge university press, 1976 2nd edition). In particular, for a distance from the wall varying from y+ ≈ 100 (in wall units) to y ≈ 0.3h, where h is half the height of the channel, the neutral log-layer modes are self-similar with a spanwise width of λz ≈ y/0.3 and a streamwise length of λx ≈ 3λz, independently of the Reynolds number. Based on this observation, it is suggested that compact vortical structures attached to the wall can be ascribed to streak secondary instabilities. In addition, spatial distributions of fluctuating vorticity components show that the onset
Linear stability of a circular Couette flow under a radial thermoelectric body force.
Yoshikawa, H N; Meyer, A; Crumeyrolle, O; Mutabazi, I
2015-03-01
The stability of the circular Couette flow of a dielectric fluid is analyzed by a linear perturbation theory. The fluid is confined between two concentric cylindrical electrodes of infinite length with only the inner one rotating. A temperature difference and an alternating electric tension are applied to the electrodes to produce a radial dielectrophoretic body force that can induce convection in the fluid. We examine the effects of superposition of this thermoelectric force with the centrifugal force including its thermal variation. The Earth's gravity is neglected to focus on the situations of a vanishing Grashof number such as microgravity conditions. Depending on the electric field strength and of the temperature difference, critical modes are either axisymmetric or nonaxisymmetric, occurring in either stationary or oscillatory states. An energetic analysis is performed to determine the dominant destabilizing mechanism. When the inner cylinder is hotter than the outer one, the circular Couette flow is destabilized by the centrifugal force for weak and moderate electric fields. The critical mode is steady axisymmetric, except for weak fields within a certain range of the Prandtl number and of the radius ratio of the cylinders, where the mode is oscillatory and axisymmetric. The frequency of this oscillatory mode is correlated with a Brunt-Väisälä frequency due to the stratification of both the density and the electric permittivity of the fluid. Under strong electric fields, the destabilization by the dielectrophoretic force is dominant, leading to oscillatory nonaxisymmetric critical modes with a frequency scaled by the frequency of the inner-cylinder rotation. When the outer cylinder is hotter than the inner one, the instability is again driven by the centrifugal force. The critical mode is axisymmetric and either steady under weak electric fields or oscillatory under strong electric fields. The frequency of the oscillatory mode is also correlated with the
NASA Astrophysics Data System (ADS)
Ianoul, Anatoli I.; Fleury, Fabrice; Duval, Olivier; Jardillier, Jean-Claude; Alix, Alain J.; Nabiev, Igor R.
1999-04-01
Surface-Enhanced Raman Scattering (SERS) spectroscopy and Flow Linear Dichroism (FLD) technique have been employed to study the anticancer agent fagaronine and its derivative ethoxidine - double inhibitors of DNA topoisomerases I and II. Cooperative use of two methods permitted (i) to determine the molecular determinants of the drug-DNA interactions; (ii) to monitor in real time the process of topo I inhibition by these anticancer agents. FLD technique allowed us to identify the mode of drug interactions with the DNA as a 'major groove intercalation' and to determine orientation of the drugs chromophores within the complexes. Using SERS spectroscopy we have determined the drugs molecular determinants interacting with the DNA. FLD was also used for real time monitoring of the process of sc DNA relaxation by topo I and of inhibition of relaxation with the pharmaceuticals. Ethoxidine was found to exhibit the same activity of inhibition of sc DNA relaxation as fagaronine at the 10-fold less concentration. The proposed SERS-FLD combined approach demonstrates the new perspectives for screening new pharmaceuticals due to its relative simplicity and low expense, high sensitivity and selectivity, and, finally, possibility of real-time monitoring of the structure-function correlation within the series of drug derivatives.
Linear ground-water flow, flood-wave response program for programmable calculators
Kernodle, John Michael
1978-01-01
Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Munz, Claus-Dieter; Dumbser, Michael; Roller, Sabine
2007-05-01
When the Mach number tends to zero the compressible Navier-Stokes equations converge to the incompressible Navier-Stokes equations, under the restrictions of constant density, constant temperature and no compression from the boundary. This is a singular limit in which the pressure of the compressible equations converges at leading order to a constant thermodynamic background pressure, while a hydrodynamic pressure term appears in the incompressible equations as a Lagrangian multiplier to establish the divergence-free condition for the velocity. In this paper we consider the more general case in which variable density, variable temperature and heat transfer are present, while the Mach number is small. We discuss first the limit equations for this case, when the Mach number tends to zero. The introduction of a pressure splitting into a thermodynamic and a hydrodynamic part allows the extension of numerical methods to the zero Mach number equations in these non-standard situations. The solution of these equations is then used as the state of expansion extending the expansion about incompressible flow proposed by Hardin and Pope [J.C. Hardin, D.S. Pope, An acoustic/viscous splitting technique for computational aeroacoustics, Theor. Comput. Fluid Dyn. 6 (1995) 323-340]. The resulting linearized equations state a mathematical model for the generation and propagation of acoustic waves in this more general low Mach number regime and may be used within a hybrid aeroacoustic approach.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αDB ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αDB in the brain layer with a step decrement of 10% while maintaining αDB values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. The theoretical model has already been presented in Part I of the present study. Non-linearities due to moderately large-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Paı̈doussis and Denise. For different amplitudes and frequencies of the excitation and for different flow velocities, the following are investigated numerically: (1) periodic response of the system; (2) unsteady and stochastic motion; (3) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the non-linear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude modulated motions, multi-periodic solutions, chaotic responses, cascades of bifurcations as the route to chaos and the so-called “blue sky catastrophe” phenomenon have all been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.
ERIC Educational Resources Information Center
Hughes, Rebecca; Monaghan, John; Shingadia, Eisha; Vaughan, Stephen
2006-01-01
What is a routine question? The focus of this paper is routine questions and time (in years) since a hitherto routine question was last attempted by the solver. The data comes from undergraduate students' work on solving two calculus questions. The data was selected for reporting purposes because it is well documented and because it threw up…
Investigation of flow separation in a transonic-fan linear cascade using visualization methods
NASA Astrophysics Data System (ADS)
Lepicovsky, J.
2008-06-01
An extensive experimental study into the nature of the separated flows on the blade suction surface of modern transonic fans is described in this paper. The study was a subtask of a larger experimental effort focused on blade flutter excited by flow separation in the blade tip region. The tip sections of airfoils on transonic fan blades are designed for precompression and consequently they differ from sections on the rest of the blade. The blade tip section was modeled by a low aspect ratio blade and therefore most of the blade tested was exposed to the secondary flow effects. The aim of this work was to supply reliable data on flow separation on transonic fan blades for validation of future analytical studies. The experimental study focused on two visualization techniques: surface flow visualization using dye oils and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction surface of the blade was separated over a large portion of the blade, and the separated area increased with increasing inlet Mach number. For the supersonic inlet flow condition, the flow was attached from the leading edge up to the point where a bow shock from the upper neighboring blade imposed on the blade surface. Downstream, there was a separated flow region in which air flowed in the direction opposite the inlet flow. Finally, past the separated flow region, the flow reattached to the blade surface. For subsonic inlet flow, the low cascade solidity resulted in an increased area of separated flow. For supersonic flow conditions, the low solidity resulted in an improvement in flow over the suction surface.
Linear Aerospike SR-71 Experiment (LASRE) during first in-flight cold flow test
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the LASRE pod on the upper rear fuselage of an SR-71 aircraft during take-off of the first flight to experience an in-flight cold flow test. The flight occurred on 4 March 1998. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume
Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.
1996-06-01
The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency ({ital f{sub f}}) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below {ital f{sub f}} was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies {ital f{sub 1}, f{sub 2}}, and other peak frequencies as linear combinations thereof ({ital mf{sub 1}{+-}nf{sub 2}}), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation.
Investigation of Flow Separation in a Transonic-fan Linear Cascade Using Visualization Methods
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Chima, Rodrick V.; Jett, Thomas A.; Bencic, Timothy J.; Weiland, Kenneth E.
2000-01-01
An extensive study into the nature of the separated flows on the suction side of modem transonic fan airfoils at high incidence is described in the paper. Suction surface.flow separation is an important flow characteristic that may significantly contribute to stall flutter in transonic fans. Flutter in axial turbomachines is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high cycle fatigue blade failure. The study basically focused on two visualization techniques: surface flow visualization using dye oils, and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction side of the blade is separated over a large portion of the blade, and the separated area increases with increasing inlet Mach number. For the supersonic inlet flow condition, the flow is attached from the leading edge up to the point where a bow shock from the upper neighboring blade hits the blade surface. Low cascade solidity, for the subsonic inlet flow, results in an increased area of separated flow. For supersonic flow conditions, a low solidity results in an improvement in flow over the suction surface. Finally, computational results modeling the transonic cascade flowfield illustrate our ability to simulate these flows numerically.
Making Routine Letters Have Positive Effects.
ERIC Educational Resources Information Center
Walsh, S. M.
While few business people dispute the importance of carefully crafting persuasive, demanding, conciliatory, and bad-news letters, the regular flow of routine communications receives very little meaningful consideration or scrutiny. These routine communications (letters, inquiries, requests, collection letters, complaints, confirmations,…
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
NASA Astrophysics Data System (ADS)
Fuse, Shinichiro; Mifune, Yuto; Nakamura, Hiroyuki; Tanaka, Hiroshi
2016-11-01
Feglymycin is a naturally occurring, anti-HIV and antimicrobial 13-mer peptide that includes highly racemizable 3,5-dihydroxyphenylglycines (Dpgs). Here we describe the total synthesis of feglymycin based on a linear/convergent hybrid approach. Our originally developed micro-flow amide bond formation enabled highly racemizable peptide chain elongation based on a linear approach that was previously considered impossible. Our developed approach will enable the practical preparation of biologically active oligopeptides that contain highly racemizable amino acids, which are attractive drug candidates.
NASA Astrophysics Data System (ADS)
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
Mynard, Jonathan; Penny, Daniel J; Smolich, Joseph J
2008-12-05
Local reflection coefficients (R) provide important insights into the influence of wave reflection on vascular haemodynamics. Using the relatively new time-domain method of wave intensity analysis, R has been calculated as the ratio of the peak intensities (R(PI)) or areas (R(CI)) of incident and reflected waves, or as the ratio of the changes in pressure caused by these waves (R(DeltaP)). While these methods have not yet been compared, it is likely that elastic non-linearities present in large arteries will lead to changes in the size of waves as they propagate and thus errors in the calculation of R(PI) and R(CI). To test this proposition, R(PI), R(CI) and R(DeltaP) were calculated in a non-linear computer model of a single vessel with various degrees of elastic non-linearity, determined by wave speed and pulse amplitude (DeltaP(+)), and a terminal admittance to produce reflections. Results obtained from this model demonstrated that under linear flow conditions (i.e. as DeltaP(+)-->0), R(DeltaP) is equivalent to the square-root of R(PI) and R(CI) (denoted by R(PI)(p) and R(CI)(p)). However for non-linear flow, pressure-increasing (compression) waves undergo amplification while pressure-reducing (expansion) waves undergo attenuation as they propagate. Consequently, significant errors related to the degree of elastic non-linearity arise in R(PI) and R(CI), and also R(PI)(p) and R(CI)(p), with greater errors associated with larger reflections. Conversely, R(Delta)(P) is unaffected by the degree of non-linearity and is thus more accurate than R(PI) and R(CI).
NASA Astrophysics Data System (ADS)
Lu, Liang; Papadakis, George
2011-09-01
The aim of this paper is to investigate the receptivity of cylinder wake to external periodic flow pulsation at low Reynolds number using linear stability analysis. The inlet flow pulsation appears as a forcing term in the linearised equation set. The full non-linear N-S equations as well as the linearised set for small perturbations around the time-averaged flow are solved using an in-house finite volume solver. The results are first validated against reference data for growth rate and frequency of the most unstable eigenmode for flow past a fixed cylinder with steady base flow at various Reynolds numbers. A special numerical technique is developed to separate the components of the solution in the wake that vary with the natural shedding frequency and the external pulsating frequency. The developed approach requires temporal integration over one period of vortex shedding and solution of a 4×4 linear system at every cell of the domain. The results show that both cross-stream and streamwise velocity components in the near cylinder region are strongly affected by flow pulsation, and its effect is spatially localised in the near wake. Increasing the pulsation frequency reduces the spatial extent within which pulsation plays an important role. A symmetric shedding pattern is established and at every period of external pulsation, two pairs of symmetric vortices are shed from the top and bottom of the cylinder. The width of the wake periodically widens and narrows, which is similar to "wake breathing" observed in a streamwise oscillating cylinder.
NASA Astrophysics Data System (ADS)
Desjardins, Tiffany
2015-11-01
Various bias electrodes have been inserted into the Helicon-Cathode (HelCat) device at the University of New Mexico, in order to affect intrinsic drift-wave turbulence and flows. The goal of the experiments was to suppress and effect the intrinsic turbulence and with detailed measurements, understand the changes that occur during biasing. The drift-mode in HelCat varies from coherent at low magnetic field (<1kG) to broad-band turbulent at high magnetic fields (>1kG). The first electrode consists of 6 concentric rings set in a ceramic substrate; these rings act as a boundary condition, sitting at the end of the plasma column 2-m away from the source. A negative bias has been found to have no effect on the fluctuations, but a positive bias (Vr>5Te) is required in order to suppress the drift-mode. Two molybdenum grids can also be inserted into the plasma and sit close to the source. Floating or grounding a grid results in suppressing the drift-mode of the system. A negative bias (>-5Te) is found to return the drift-mode, and it is possible to drive a once coherent mode into a broad-band turbulent one. From a bias voltage of -5Te
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690
Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.
Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma
Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.
2016-01-01
Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894
Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.
2016-09-01
Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow.
NASA Astrophysics Data System (ADS)
Sakoske, George Emil
Analytical, experimental, and computer modeling studies are conducted for axial pressing of a glass cylinder between parallel plates. The classic "no-slip" parallel plate equation is derived from fundamental fluid mechanics with no geometric limitations and its validity is proved for transient and steady state low Reynold's number flow. Similarly, a "perfect-slip" solution yields the fiber elongation equation sigma = 3etadotvarepsilon. These limiting boundary conditions are studied experimentally by pressing directly on graphite and mica providing slip mechanisms, and non-deformable metal discs for no-slip. Linear, non-linear flow, and elastic fracture are observed by varying time scale over which strain is applied, theta, in relationship to glass structural relaxation time, tau. Linear flow is measured for tau<
Massoudi, Mehrdad; Tran, P.X.
2008-09-22
In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed
Massoudi, Mehrdad; Phuoc, Tran X.
2008-09-25
In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.
NASA Astrophysics Data System (ADS)
Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai
2006-10-01
We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P
The role of plasma elongation on the linear damping of zonal flows
Angelino, P.; Garbet, X.; Ghendrih, Ph.; Grandgirard, V.; Sarazin, Y.; Dif-Pradalier, G.; Bottino, A.
2008-06-15
Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonlinear interactions. A class of macroscopic flows, the poloidally symmetric zonal flows, is widely recognized as a key constituent in nearly all cases and regimes of microturbulence, also because of the realization that zonal flows are a critical agent of self-regulation for turbulent transport. In tokamaks and other toroidal magnetic confinement systems, axisymmetric flows exist in two branches, a zero frequency branch and a finite frequency branch, named Geodesic Acoustic Modes (GAMs). The finite frequency is due to the geodesic curvature of the magnetic field. There is a growing body of evidence that suggests strong GAM activity in most devices. Theoretical investigation of the GAMs is still an open field of research. Part of the difficulty of modelling the GAMs stems from the requirement of running global codes. Another issue is that one cannot determine a simple one to one relation between turbulence stabilization and GAM activity. This paper focuses on the study of ion temperature gradient turbulence in realistic tokamak magnetohydrodynamic equilibria. Analytical and numerical analyses are applied to the study of geometrical effects on zonal flows oscillations. Results are shown on the effects of the plasma elongation on the GAM amplitude and frequency and on the zonal flow residual amplitude.
NASA Astrophysics Data System (ADS)
Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng
2016-07-01
Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.
Archambeau, C.B.
1994-01-01
A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.
Silliman, Brian R.; McCoy, Michael W.; Trussell, Geoffrey C.; Crain, Caitlin M.; Ewanchuk, Patrick J.; Bertness, Mark D.
2013-01-01
Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510
Instability of Poiseuille flow at extreme Mach numbers: linear analysis and simulations.
Xie, Zhimin; Girimaji, Sharath S
2014-04-01
We develop the perturbation equations to describe instability evolution in Poiseuille flow at the limit of very high Mach numbers. At this limit the equation governing the flow is the pressure-released Navier-Stokes equation. The ensuing semianalytical solution is compared against simulations performed using the gas-kinetic method (GKM), resulting in excellent agreement. A similar comparison between analytical and computational results of small perturbation growth is performed at the incompressible (zero Mach number) limit, again leading to excellent agreement. The study accomplishes two important goals: it (i) contrasts the small perturbation evolution in Poiseuille flows at extreme Mach numbers and (ii) provides important verification of the GKM simulation scheme.
NASA Astrophysics Data System (ADS)
Riaz, Amir; Tchelepi, Hamdi A.
2004-12-01
Linear stability analysis of immiscible displacements is carried out for both viscously and gravitationally unstable two-phase flows in porous media with very large adverse viscosity ratios. Capillary dispersion is the proper dissipative mechanism in this case which sets both the preferred length scale and the band width of the spectrum of unstable length scales. The growth rate, the most dangerous and the cutoff wavenumbers, all scale linearly with the capillary number. We show that the instability is governed by fluid properties across the shock rather than those across the full Buckley-Leverett profile. The shock total mobility ratio provides a sufficient condition for the onset of instability; however, it is not an appropriate criterion for predicting the magnitude of the growth rate, particularly for large viscosity ratios. The details of the relative permeability functions are observed to have a significant influence on the stability characteristics. For neutrally buoyant flows the maximum growth rate scales linearly with the viscosity ratio while the most dangerous and the cutoff wavenumbers scale with the square root of the viscosity ratio. In the case of displacements with density contrast, the maximum growth rate scales with the square of the unstable gravity number while the most dangerous and the cutoff wavenumbers scale with an exponent of 1.2, for all viscosity ratios. A marginal stability curve is computed for stable and unstable regions in the parameter space of the viscosity ratio and the gravity number. It is found that flows with unstable viscosity contrasts are more readily stabilized with buoyancy as compared to the viscous stabilization of gravitationally unstable flows.
Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation
NASA Astrophysics Data System (ADS)
Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.
2016-12-01
The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.
... page: //medlineplus.gov/ency/patientinstructions/000891.htm Outdoor fitness routine To use the sharing features on this ... you and is right for your level of fitness. Here are some ideas: Warm up first. Get ...
Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.
1997-01-01
An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.
NASA Astrophysics Data System (ADS)
Saikia, Bijaylakshmi; Ramachandran, Ashwin; Sinha, Krishnendu; Govindarajan, Rama
2017-02-01
Accurate prediction of laminar to turbulent transition in compressible flows is a challenging task, as it can be affected by a combination of factors. Compressibility causes large variations in thermodynamic as well as transport properties of a gas, which in turn are known to affect flow stability. We study the stratification of individual transport properties and their combined behavior. We also examine the effect of a change in the magnitude of viscosity and conductivity on flow stability. The Couette flow of a perfect gas is our model problem and both modal and non-modal analyses are carried out. We notice a large destabilizing role of the increase in the conductivity value and a dramatic stabilizing effect of mean viscosity stratification, over a range of free-stream Mach number, Reynolds number, Prandtl number, and disturbance wavenumber. In the combined case, viscosity stratification plays a dominant role. We find this to be the case for finite-time transient growth in the parameter regime below linear instability as well as asymptotically at large time. A budget of the transient growth energy amplification is also shown to identify the effects of transport properties on the constituents of perturbation energy. The extensive results presented in this paper, we believe should motivate those studying more realistic flows to examine how these contrasting effects of stratification come together.
Particle behavior in linear shear flow: an experimental and numerical study
NASA Astrophysics Data System (ADS)
Fathi, Nima; Ingber, Marc; Vorobieff, Peter
2012-11-01
We study particle behavior in low Reynolds number flows. Our experimental setup can produce both Couette flow and Pouseuille flow at low Reynolds numbers. Spherical particles are suspended in gravity-stratified Newtonian fluid. Their predominantly two-dimensional motion is driven by moving belts (and/or piston) that produce shear in the fluids. Particle migration and translational velocity have been studied. The irreversibility of particle motion has been investigated. The experimental results are compared to the numerical simulations performed with discrete phase element method (DPM). Particle trajectories with the same boundary conditions in viscous fluids have been studied. The irreversibility in numerical simulation has been modeled for different cases. Results show the particle migration is a function of shear rate, particle size, degree of symmetry of the fluid domain, and also of the initial starting position, the latter playing an important role in the irreversibility of particle motion. This research is partly supported by Procter & Gamble.
Vortex-induced vibrations of a square cylinder under linear shear flow
NASA Astrophysics Data System (ADS)
Sun, Wenjuan; Zhou, Dai; Tu, Jiahuang; Han, Zhaolong
2017-04-01
This paper investigates the numerical vortex-induced vibration (VIV) of a square cylinder which is connected to a 2-DOF mass-spring system and is immersed in the planar shear flow by employing a characteristic-based split (CBS) finite element method (FEM). The reduced mass of the square cylinder is M r = 2, while the reduced velocity, U r, is changed from 3 to 12 with an increment of ΔU r = 1. The effects of some key parameters on the cylinder dynamic responses, vibrating frequencies, the flow patterns as well as the energy transferred between the fluid and cylinder are revealed. In this study, the key parameters are selected as follows: shear ratio (k = 0, 0.05 and 0.1) and Reynolds numbers (Re = 80 and 160). Numerical results demonstrate that the X-Y trajectories of the cylinder mainly appear as a symmetrical figure ‘8’ in uniform flow (k = 0) and an unsymmetrical figure ‘8’ and ‘O’ in shear flows (k = 0.05 and 0.1). The maximum oscillation amplitudes of the square cylinder in both the inline and transverse directions have distinct characteristics compared to that of a circular cylinder. Two kinds of flow patterns, ‘2S’ and ‘P + S’, are mainly observed under the shear flow. Also, the mean values of the energy of the cylinder system increase with the reduced velocity, while the root mean square (rms) of the energy reaches its peak value at reduced velocity U r = 5.
1988-02-29
Plate and a NACA 64A010 Airfoil Section . 31 3. Spatial Variations of Velocity Potentials on a Flat Plate and MBB-A3 Airfoil Section ........ 32 4...39 14. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack w ith M = 0.80...44 22. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack 23. W ith M = 0.78
Khan, Junaid Ahmad; Mustafa, Meraj; Hayat, Tasawar; Alsaedi, Ahmed
2014-01-01
This article studies the viscous flow and heat transfer over a plane horizontal surface stretched non-linearly in two lateral directions. Appropriate wall conditions characterizing the non-linear variation in the velocity and temperature of the sheet are employed for the first time. A new set of similarity variables is introduced to reduce the boundary layer equations into self-similar forms. The velocity and temperature distributions are determined by two methods, namely (i) optimal homotopy analysis method (OHAM) and (ii) fourth-fifth-order Runge-Kutta integration based shooting technique. The analytic and numerical solutions are compared and these are found in excellent agreement. Influences of embedded parameters on momentum and thermal boundary layers are sketched and discussed. PMID:25198696
Laskowski, Gregory Michael
2005-12-01
Flows with strong curvature present a challenge for turbulence models, specifically eddy viscosity type models which assume isotropy and a linear and instantaneous equilibrium relation between stress and strain. Results obtained from three different codes and two different linear eddy viscosity turbulence models are compared to a DNS simulation in order to gain some perspective on the turbulence modeling capability of SIERRA/Fuego. The Fuego v2f results are superior to the more common two-layer k-e model results obtained with both a commercial and research code in terms of the concave near wall behavior predictions. However, near the convex wall, including the separated region, little improvement is gained using the v2f model and in general the turbulent kinetic energy prediction is fair at best.
A Numerical Investigation of the Non-Linear Mechanics of Wave Disturbances in Plane Poiseuille Flows
1971-09-02
34Stability Conditions in the Numerical Treatment of Parabolic Differential Equations ," Math Tables and Other Aids to Computation, 7? pp. 135-152. h...various initial wavenumbers and amplitudes is investigated by numerically integrating the equation of motion. It is shown that for very low...certain modes computed from the linear Orr-Sommerfeld equation . In general it is found that the disturbance is dominated for a long time by the primary
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
2009-06-30
34High amplitude vortex-induced pulsations in a gas transport system", Journal of Sound and Vibration 184, 343 (1995). 7 W. W. Martin, M. Padmanabhan...and E. Naudascher, "Fluid-dynamic excitation involving flow instability", Journal of the Hydraulics Division 101, 681 (1975). 8 D. Rockwell and E
NASA Astrophysics Data System (ADS)
Pascal, J. P.; D'Alessio, S. J. D.
2016-12-01
We consider the stability of a binary liquid film flowing down a heated incline. A theoretical model is implemented which captures the Soret effect and the dependence of surface tension on both temperature and solutal concentration. The model also allows for variation in the density of the liquid mixture with thermal and solutal differences. A linear stability analysis is performed with asymptotic and numerical results being obtained. The coupling of the effect of a variable density with the thermosolutal-Marangoni instability and the Soret effect is investigated. Good agreement with previous results for the constant density case is found.
NASA Astrophysics Data System (ADS)
Obrist, Dominik; Schmid, Peter J.
2003-10-01
The temporal stability of swept attachment-line boundary layer flow based on a swept Hiemenz flow model is studied. Starting from the global stability problem and motivated by analytical free-stream solutions, a Hermite expansion is employed in the chordwise coordinate direction which results in coupled local stability problems. A complete study of the temporal spectrum is presented and the discrete and continuous modes are classified according to their symmetry, chordwise polynomial order and asymptotic decay. Uniform, Görtler Hämmerlin and higher-order modes are described in detail. Estimates are given for the location of the continuous spectrum, and bounds are derived for the validity of the linear approximation.
Bohling, G.C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Schilling, K.E.; Wolter, C.F.
2005-01-01
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).
Linear Algebraic Modeling of Power Flow in the HMP500-3 Transmission
2012-08-01
Vehicle. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable displacement hydrostatic...pump / motor units (HSUs). Power flow in the HMPT500-3 is extremely complex, with numerous feedback paths within the planetary gear train. Without a...tracked vehicle transmission. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable
Linear Algebraic Modeling of Power Flow in the HMPT500-3 Transmission
2012-08-01
Vehicle. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable displacement hydrostatic...pump / motor units (HSUs). Power flow in the HMPT500-3 is extremely complex, with numerous feedback paths within the planetary gear train. Without a...tracked vehicle transmission. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable
Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.
Linear and nonlinear instability and ligament dynamics in 3D laminar two-layer liquid/liquid flows
NASA Astrophysics Data System (ADS)
Ó Náraigh, Lennon; Valluri, Prashant; Scott, David; Bethune, Iain; Spelt, Peter
2013-11-01
We consider the linear and nonlinear stability of two-phase density-matched but viscosity contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. The Orr-Sommerfeld-Squire analysis is used along with DNS of the 3D two-phase Navier-Stokes equations using our newly launched TPLS Solver (http://edin.ac/10cRKzS). For the parameter regimes considered, we demonstrate the existence of two distinct mechanisms whereby 3D waves enter the system, and dominate at late time. There exists a direct route, whereby 3D waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of most-dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave couples to a streamwise mode and grows exponentially. We demonstrate these mechanisms in isolation and in concert. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ``sheets,'' or ``interfacial turbulence.'' HECToR RAP/dCSE Project e174, HPC-Europa 2.
High-Accuracy Methods for Numerical Flow Analysis Using Adaptive Non-Linear Wavelets
2012-08-01
20 s; x s; 5 and - 20 s; y s; 10 with a 600 x 600 grid . The Mach number of vortex is 0.39 and the initial vortex core is located at (- 5,-5). This...vortex interaction problem [8]. TI1e domain is set as - 20 ~x~ 5 and - 20 ~ y ~ 10 with a Published Paper in AJK 2011 5 400X400 grid . The... 20 ~x~5 and - 205 y 510 with a 400x 400 grid . The initial velocity, density and pressure distributions of a vortex flow are presented in Eq. (11
Flow patterns in linear state of Rayleigh-Bénard convection in a rotating nanofluid layer
NASA Astrophysics Data System (ADS)
Agarwal, Shilpi; Bhadauria, B. S.
2013-10-01
In this paper, we study the flow patterns of a rotating, horizontal layer of a Newtonian nanofluid. The nanofluid layer incorporates the effect of Brownian motion along with thermophoresis. In order to find the expressions for streamlines, isotherms, and iso-nanohalines, a minimal representation of the truncated Fourier series of two terms, has been used. The results obtained imply that the magnitude of the streamlines, and the contours of the isotherms and the iso-nanohalines, turn flatter and concentrated near the boundaries for large value of Ra cr , indicating a delay in the onset of convection.
Linear analysis of time dependent properties of Child-Langmuir flow
Rokhlenko, A.
2013-01-15
We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.
Motivation through Routine Documentation
ERIC Educational Resources Information Center
Koth, Laurie J.
2016-01-01
This informed commentary article offers a simple, effective classroom management strategy in which the teacher uses routine documentation to motivate students both to perform academically and to behave in a manner consistent with established classroom rules and procedures. The pragmatic strategy is grounded in literature, free to implement,…
Learning from Homeschooling Routines
ERIC Educational Resources Information Center
Thomas, Jesse
2016-01-01
This study provides a rare opportunity to look inside the homeschool and to observe the routines of homeschooling families from across the United States. With more than 1000 survey participants, and nine parents selected for interviews, the compiled data were analyzed through open coding techniques. Meaningful aspects that arose from the routines…
Technology Transfer Automated Retrieval System (TEKTRAN)
Routine DNA testing. It’s done once you’ve Marker-Assisted Breeding Pipelined promising Qantitative Trait Loci within your own breeding program and thereby established the performance-predictive power of each DNA test for your germplasm under your conditions. By then you are ready to screen your par...
PROPER: Optical propagation routines
NASA Astrophysics Data System (ADS)
Krist, John E.
2014-05-01
PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Distributed as IDL source code, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
Dolgashev, Valery A.
2016-06-28
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.
An investigation of the non-linear instability of flow near a swept attachment-line
NASA Astrophysics Data System (ADS)
Theofilis, V.; Duck, P. W.; Poll, D. I. A.
The present investigation of the nature of the attachment-line boundary layer formed on the windward surface of an infinite swept cylinder, relative to the transition to turbulence, proceeds numerically by using an initial-value approach that departs from the specified spatial- and time-dependence of previous efforts. The full, two-dimensional Navier-Stokes equations are solved under the conventional assumptions as to the form of the stagnation point and of the Hiemenz flows. Attention is given to the time-periodic form for the low quantities. The accuracy of all solution methods is noted to critically depend on the choice of the appropriate grids in the y- and z-directions.
The piecewise-linear predictor-corrector code - A Lagrangian-remap method for astrophysical flows
NASA Technical Reports Server (NTRS)
Lufkin, Eric A.; Hawley, John F.
1993-01-01
We describe a time-explicit finite-difference algorithm for solving the nonlinear fluid equations. The method is similar to existing Eulerian schemes in its use of operator-splitting and artificial viscosity, except that we solve the Lagrangian equations of motion with a predictor-corrector and then remap onto a fixed Eulerian grid. The remap is formulated to eliminate errors associated with coordinate singularities, with a general prescription for remaps of arbitrary order. We perform a comprehensive series of tests on standard problems. Self-convergence tests show that the code has a second-order rate of convergence in smooth, two-dimensional flow, with pressure forces, gravity, and curvilinear geometry included. While not as accurate on idealized problems as high-order Riemann-solving schemes, the predictor-corrector Lagrangian-remap code has great flexibility for application to a variety of astrophysical problems.
NASA Astrophysics Data System (ADS)
Hudoba, A.; Molokov, S.
2016-11-01
Linear stability of buoyant convective flow of an electrically conducting fluid in a vertical channel owing to internal heat sources has been studied. The flow takes place in a transverse, horizontal magnetic field. The results show that up to four different local minima may be present in the neural stability curve. Up to two of these modes may be the most unstable depending, critically, on the value of the Hartmann number. Over a wide range of moderate to high Hartmann numbers, thermal waves dominate the instability. As the Hartmann number increases, however, this mode is strongly damped. Then the so-called Hartmann mode takes over, which involves the characteristic Hartmann layers at the walls appearing due to modification of the basic velocity profile by the magnetic field. Overall, for liquid metals at high magnetic fields, the basic flow is very stable. Variation of the Prandtl number in a wide range has also been performed as, depending on the type of an electrically conducting fluid (liquid metal or various kinds of electrolytes), the Prandtl number varies over several orders of magnitude. As may be expected, the increase of the Prandtl number lowers the instability threshold for the thermal waves.
MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Alsaedi, A.; Farooq, M.
This research explores the magnetohydrodynamic (MHD) boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter.
NASA Astrophysics Data System (ADS)
De Santi, Francesca; Fraternale, Federico; Tordella, Daniela
2016-03-01
In this study we analyze the phase and group velocity of three-dimensional linear traveling waves in two sheared flows: the plane channel and the wake flows. This was carried out by varying the wave number over a large interval of values at a given Reynolds number inside the ranges 20-100, 1000-8000, for the wake and channel flow, respectively. Evidence is given about the possible presence of both dispersive and nondispersive effects which are associated with the long and short ranges of wavelength. We solved the Orr-Sommerfeld and Squire eigenvalue problem and observed the least stable mode. It is evident that, at low wave numbers, the least stable eigenmodes in the left branch of the spectrum behave in a dispersive manner. By contrast, if the wave number is above a specific threshold, a sharp dispersive-to-nondispersive transition can be observed. Beyond this transition, the dominant mode belongs to the right branch of the spectrum. The transient behavior of the phase velocity of small three-dimensional traveling waves was also considered. Having chosen the initial conditions, we then show that the shape of the transient highly depends on the transition wavelength threshold value. We show that the phase velocity can oscillate with a frequency which is equal to the frequency width of the eigenvalue spectrum. Furthermore, evidence of intermediate self-similarity is given for the perturbation field.
High shear rate flow in a linear stroke magnetorheological energy absorber
NASA Astrophysics Data System (ADS)
Hu, W.; Wereley, N. M.; Hiemenz, G. J.; Ngatu, G. T.
2014-05-01
To provide adaptive stroking load in the crew seats of ground vehicles to protect crew from blast or impact loads, a magnetorheological energy absorber (MREA) or shock absorber was developed. The MREA provides appropriate levels of controllable stroking load for different occupant weights and peak acceleration because the viscous stroking load generated by the MREA force increases with velocity squared, thereby reducing its controllable range at high piston velocity. Therefore, MREA behavior at high piston velocity is analyzed and validated experimentally in order to investigate the effects of velocity and magnetic field on MREA performance. The analysis used to predict the MREA force as a function of piston velocity squared and applied field is presented. A conical fairing is mounted to the piston head of the MREA in order reduce predicted inlet flow loss by 9% at nominal velocity of 8 m/s, which resulted in a viscous force reduction of nominally 4%. The MREA behavior is experimentally measured using a high speed servo-hydraulic testing system for speeds up to 8 m/s. The measured MREA force is used to validate the analysis, which captures the transient force quite accurately, although the peak force is under-predicted at the peak speed of 8 m/s.
Chen, R.; Xie, J. L. Yu, C. X.; Liu, A. D.; Lan, T.; Li, H.; Liu, W. D.; Zhang, S. B.; Kong, D. F.; Hu, G. H.
2015-01-15
Low-frequency zonal flow (ZF) has been observed in a linear magnetic plasma device, exhibiting significant intermittency. Using the conditional analysis method, a time-averaged fluctuation-induced particle flux was observed to consistently decrease as ZF increased in amplitude. A dominant fraction of the flux, which is driven by drift-wave harmonics, is reversely modulated by ZF in the time domain. Spectra of the flux, together with each of the related turbulence properties, are estimated subject to two conditions, i.e., when potential fluctuation series represents a strong ZF intermittency or a very weak ZF component. Comparison of frequency-domain results demonstrates that ZF reduces the cross-field particle transport primarily by suppressing the density fluctuation as well as decorrelating density and potential fluctuations.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Saloranta, Tuomo M; Andersen, Tom; Naes, Kristoffer
2006-01-01
Rate constant bioaccumulation models are applied to simulate the flow of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the coastal marine food web of Frierfjorden, a contaminated fjord in southern Norway. We apply two different ways to parameterize the rate constants in the model, global sensitivity analysis of the models using Extended Fourier Amplitude Sensitivity Test (Extended FAST) method, as well as results from general linear system theory, in order to obtain a more thorough insight to the system's behavior and to the flow pathways of the PCDD/Fs. We calibrate our models against observed body concentrations of PCDD/Fs in the food web of Frierfjorden. Differences between the predictions from the two models (using the same forcing and parameter values) are of the same magnitude as their individual deviations from observations, and the models can be said to perform about equally well in our case. Sensitivity analysis indicates that the success or failure of the models in predicting the PCDD/F concentrations in the food web organisms highly depends on the adequate estimation of the truly dissolved concentrations in water and sediment pore water. We discuss the pros and cons of such models in understanding and estimating the present and future concentrations and bioaccumulation of persistent organic pollutants in aquatic food webs.
Lundahl, P Johan; Kitts, Catherine C; Nordén, Bengt
2011-08-21
This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost.
NASA Astrophysics Data System (ADS)
Gilmore, M.; Desjardins, T. R.; Fisher, D. M.
2016-10-01
Ongoing experiments and numerical modeling on the effects of flow shear on electrostatic turbulence in the presence of electrode biasing are being conducted in helicon plasmas in the linear HelCat (Helicon-Cathode) device. It is found that changes in flow shear, affected by electrode biasing through Er x Bz rotation, can strongly affect fluctuation dynamics, including fully suppressing the fluctuations or inducing chaos. The fundamental underlying instability, at least in the case of low magnetic field, is identified as a hybrid resistive drift-Kelvin-Helmholtz mode. At higher magnetic fields, multiple modes (resistive drift, rotation-driven interchange and/or Kelvin-Helmholtz) are present, and interact nonlinearly. At high positive electrode bias (V >10Te), a large amplitude, global instability, identified as the potential relaxation instability is observed. Numerical modeling is also being conducted, using a 3 fluid global Braginskii solver for no or moderate bias cases, and a 1D PIC code for high bias cases. Recent experimental and numerical results will be presented. Supported by U.S. National Science Foundation Award 1500423.
NASA Astrophysics Data System (ADS)
Vo, Tony; Pothérat, Alban; Sheard, Gregory J.
2017-03-01
This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.
CHR -- Character Handling Routines
NASA Astrophysics Data System (ADS)
Charles, A. C.; Rees, P. C. T.; Chipperfield, A. J.; Jenness, T.
This document describes the Character Handling Routine library, CHR, and its use. The CHR library augments the limited character handling facilities provided by the Fortran 77 standard. It offers a range of character handling facilities: from formatting Fortran data types into text strings and the reverse, to higher level functions such as wild card matching, string sorting, paragraph reformatting and justification. The library may be used simply for building text strings for interactive applications or as a basis for more complex text processing applications.
Rosén, T; Do-Quang, M; Aidun, C K; Lundell, F
2015-05-01
This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Re(p)=Gd(2)ν(-1) (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St=αRe(p) (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St=Re(p)) at low Re(p), particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Re(p), fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕ(c) to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α, particle aspect ratio r(p), and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high r(p) and low α.
Examination of the Circle Spline Routine
NASA Technical Reports Server (NTRS)
Dolin, R. M.; Jaeger, D. L.
1985-01-01
The Circle Spline routine is currently being used for generating both two and three dimensional spline curves. It was developed for use in ESCHER, a mesh generating routine written to provide a computationally simple and efficient method for building meshes along curved surfaces. Circle Spline is a parametric linear blending spline. Because many computerized machining operations involve circular shapes, the Circle Spline is well suited for both the design and manufacturing processes and shows promise as an alternative to the spline methods currently supported by the Initial Graphics Specification (IGES).
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
... by filling gallon (liter) milk jugs with water. Warm up. Get your blood flowing by walking in place. ... prevent some injuries. You should continue with your warm up until your body feels warm and you are ...
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1987-01-01
Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.
NASA Astrophysics Data System (ADS)
Weng, W.; Taylor, P. A.
2010-09-01
Based on the early linear and Non-Linear Mixed Spectral Finite-Difference (MSFD and NLMSFD) models, a 3-D non-linear model of planetary boundary-layer flow (NLMSFD-PBL) was developed to study neutral PBL flow over complex terrain. The model assumes upwind or zero-order profiles of mean and turbulence variables about which perturbation quantities are calculated due to the effects of the terrain. In early models, the mean zero-order wind profile was assumed to be a simple logarithmic surface-layer profile and Reynolds stresses were constant throughout the depth of the model domain. This formally limits the applications of model to the surface-layer flow. The new model utilizes the results of early 1-D planetary boundary layer model of Weng and Taylor as the zero-order or upstream profiles of mean and turbulent quantities. The limitations associated with the original MSFD/NLMSFD model (e.g. logarithmic wind profile and constant shear stress layer) are relaxed. The effect of earth's rotation is also included in the model. Model results for planetary boundary-layer flow over complex terrain are discussed, particularly, the flow over Askervein hill - the site of a detailed and much referenced field study of flow over hills in the 1980s. This type of modelling of flow over complex terrain has important applications for wind energy resource assessment and wind farm design.
Pichler, J; Printz, D; Scharner, D; Trbojevic, D; Siekmann, J; Fritsch, G
2002-08-15
Increasing demand for quality control of blood products requires more sensitive methods to enumerate residual cells. Presently, the reported threshold (in cells per microliter) is 400 for red blood cells, 30-500 for platelets, and 1 for leukocytes. To examine precision and linearity in enumerating residual platelets and red blood cells, EDTA-anticoagulated blood from healthy donors was serially diluted with serum, stained in TruCount tubes using a no-lyse/no-wash procedure and a monoclonal antibody cocktail against the CD42a (FL1) and glycophorin-A (FL2) epitopes, and analyzed by flow cytometry. Leukocyte counts were determined in separate tubes. Cell preparation and analysis were performed once for 20 blood samples each and 20 times using the same specimen. Acquisition from the same tube was performed separately for platelets (threshold on FL1) and red blood cells (threshold on FL2). Multiparameter analysis was used for data evaluation. Linear results were obtained for platelets per microliter between 3,410 and 5 and for red blood cells per microliter between 54,000 and 3. For the lower cell concentrations, the coefficient of variation was 16.7% for platelets and 10.9% for red blood cells. The presented method allows the distinction between physiologically intact and ghost red blood cells. The method represents a reliable, sensitive, and accurate approach to quantify platelets and red blood cells in diluted blood. It can be applied to enumerate residual cells in plasma products and meets the increasing demand for quality control in blood components.
CALIPSO User-Provided Routines
Atmospheric Science Data Center
2013-04-01
... data files. These routines are written in Interactive Data Language (IDL). A README file demonstrating use of the routines is also available. Interactive Data Language (IDL) is available from Exelis Visual Information Solutions . ...
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle
2016-04-01
Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the
NASA Astrophysics Data System (ADS)
Lee, Taesam; Ouarda, Taha B. M. J.; Yoon, Sunkwon
2017-02-01
Climate change frequently causes highly nonlinear and irregular behaviors in hydroclimatic systems. The stochastic simulation of hydroclimatic variables reproduces such irregular behaviors and is beneficial for assessing their impact on other regimes. The objective of the current study is to propose a novel method, a k-nearest neighbor (KNN) based on the local linear regression method (KLR), to reproduce nonlinear and heteroscedastic relations in hydroclimatic variables. The proposed model was validated with a nonlinear, heteroscedastic, lag-1 time dependent test function. The validation results of the test function show that the key statistics, nonlinear dependence, and heteroscedascity of the test data are reproduced well by the KLR model. In contrast, a traditional resampling technique, KNN resampling (KNNR), shows some biases with respect to key statistics, such as the variance and lag-1 correlation. Furthermore, the proposed KLR model was used to simulate the annual minimum of the consecutive 7-day average daily mean flow (Min7D) of the Romaine River, Quebec. The observed and extended North Atlantic Oscillation (NAO) index is incorporated into the model. The case study results of the observed period illustrate that the KLR model sufficiently reproduced key statistics and the nonlinear heteroscedasticity relation. For the future period, a lower mean is observed, which indicates that drier conditions other than normal might be expected in the next decade in the Romaine River. Overall, it is concluded that the KLR model can be a good alternative for simulating irregular and nonlinear behaviors in hydroclimatic variables.
NASA Technical Reports Server (NTRS)
Carlson, John R.
1996-01-01
The ability of the three-dimensional Navier-Stokes method, PAB3D, to simulate the effect of Reynolds number variation using non-linear explicit algebraic Reynolds stress turbulence modeling was assessed. Subsonic flat plate boundary-layer flow parameters such as normalized velocity distributions, local and average skin friction, and shape factor were compared with DNS calculations and classical theory at various local Reynolds numbers up to 180 million. Additionally, surface pressure coefficient distributions and integrated drag predictions on an axisymmetric nozzle afterbody were compared with experimental data from 10 to 130 million Reynolds number. The high Reynolds data was obtained from the NASA Langley 0.3m Transonic Cryogenic Tunnel. There was generally good agreement of surface static pressure coefficients between the CFD and measurement. The change in pressure coefficient distributions with varying Reynolds number was similar to the experimental data trends, though slightly over-predicting the effect. The computational sensitivity of viscous modeling and turbulence modeling are shown. Integrated afterbody pressure drag was typically slightly lower than the experimental data. The change in afterbody pressure drag with Reynolds number was small both experimentally and computationally, even though the shape of the distribution was somewhat modified with Reynolds number.
NASA Astrophysics Data System (ADS)
Satija, Aaditya; Caers, Jef
2015-03-01
Inverse modeling is widely used to assist with forecasting problems in the subsurface. However, full inverse modeling can be time-consuming requiring iteration over a high dimensional parameter space with computationally expensive forward models and complex spatial priors. In this paper, we investigate a prediction-focused approach (PFA) that aims at building a statistical relationship between data variables and forecast variables, avoiding the inversion of model parameters altogether. The statistical relationship is built by first applying the forward model related to the data variables and the forward model related to the prediction variables on a limited set of spatial prior models realizations, typically generated through geostatistical methods. The relationship observed between data and prediction is highly non-linear for many forecasting problems in the subsurface. In this paper we propose a Canonical Functional Component Analysis (CFCA) to map the data and forecast variables into a low-dimensional space where, if successful, the relationship is linear. CFCA consists of (1) functional principal component analysis (FPCA) for dimension reduction of time-series data and (2) canonical correlation analysis (CCA); the latter aiming to establish a linear relationship between data and forecast components. If such mapping is successful, then we illustrate with several cases that (1) simple regression techniques with a multi-Gaussian framework can be used to directly quantify uncertainty on the forecast without any model inversion and that (2) such uncertainty is a good approximation of uncertainty obtained from full posterior sampling with rejection sampling.
Modular thermal analyzer routine, volume 1
NASA Technical Reports Server (NTRS)
Oren, J. A.; Phillips, M. A.; Williams, D. R.
1972-01-01
The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.
Standard, routine and non-routine processes in health care.
Lillrank, Paul; Liukko, Matti
2004-01-01
Quality management methods have been introduced into health care with variable success. Industrial approaches, such as standardization, are not always applicable professional services, because of fundamental differences in conceptions of aims and the predictability of the results of action. Processes in health care can be classified into standard, routine and non-routine depending on the level of repetition and amount of variation, variety and uncertainty. Quality problems are different in each type: standard processes may produce deviations from targets, routines errors in classification, and non-routines failures in interpretation. Different management approaches for each type are discussed. A metaphor to assist discussion, The Broom, is introduced.
NASA Astrophysics Data System (ADS)
Khosid, S.; Tambour, Y.
A novel modification of the classical Langhaar linearization of the mutually coupled momentum equations for developing two-phase flows in circular ducts is presented. This modification enables us to treat: (i) flows developing from spatially periodic initial velocity distributions without the presence of droplets, and (ii) two-phase flows in which monosize, non-evaporating and evaporating droplets suspended in a developing gas flow of an initially uniform velocity distribution exchange momentum with the host-gas flow. New solutions are presented for the downstream evolution in the velocity profiles which develop from spatially periodic initial velocity distributions that eventually reach the fully developed Poiseuille velocity profile. These solutions are validated by employing known numerical procedures, providing strong support for the physical underpinnings of the present modified linearization. New solutions are also presented for the evolution in drop velocities and vapour spatial distributions for evaporating droplets suspended in an initially uniform velocity profile of the host gas. Asymptotic solutions are presented for the flow region which lies very close to the inlet of the tube, where the relative velocity between the droplets and the host gas is high, and thus the velocity fields of the two phases are mutually coupled. These solutions provide new explicit formulae for the droplet velocity field as a function of the initial conditions and droplet diameter (relative to the tube diameter) for non-evaporating drops, and also as a function of evaporation rate for evaporating drops.
Lidar Altitude Data Read Routine
Atmospheric Science Data Center
2013-03-19
... Profile products. It is written in Interactive Data Language (IDL) and uses HDF routine calls to read the altitude data which are ... Data Read routine (1.5 KB) Interactive Data Language (IDL) is available from Exelis Visual Information Solutions . ...
NASA Technical Reports Server (NTRS)
Tyson, R. W.; Muraca, R. J.
1975-01-01
The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.
NASA Astrophysics Data System (ADS)
Zillinger, Christian
2016-09-01
In a previous article (Zillinger, Linear inviscid damping for monotone shear flows, 2014), we have established linear inviscid damping for a large class of monotone shear flows in a finite periodic channel and have further shown that boundary effects asymptotically lead to the formation of singularities of derivatives of the solution as {t → infty}. As the main results of this article, we provide a detailed description of the singularity formation and establish stability in all sub-critical fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore, we discuss the implications of the blow-up to the problem of nonlinear inviscid damping in a finite periodic channel, where high regularity would be essential to control nonlinear effects.
NASA Astrophysics Data System (ADS)
Deuring, Paul; Kračmar, Stanislav; Nečasová, Šárka
We consider a system arising by linearization of a model for stationary viscous incompressible flow around a translating and rotating body. An asymptotic profile of the gradient of the velocity is derived. The leading term of the profile involves derivatives of a fundamental solution constructed by R.B. Guenther and E.A. Thomann (2006) [23], for the system in question. In addition, we establish decay estimates of the second derivatives of the velocity.
Castillo-Tejas, Jorge; Alvarado, Juan F J; González-Alatorre, Guillermo; Luna-Bárcenas, Gabriel; Sanchez, Isaac C; Macias-Salinas, Ricardo; Manero, Octavio
2005-08-01
Nonequilibrium molecular-dynamics simulations are performed for linear and branched chain molecules to study their rheological and structural properties under simple shear and Poiseuille flows. Molecules are described by a spring-monomer model with a given intermolecular potential. The equations of motion are solved for shear and Poiseuille flows with Lees and Edward's [A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972)] periodic boundary conditions. A multiple time-scale algorithm extended to nonequilibrium situations is used as the integration method, and the simulations are performed at constant temperature using Nose-Hoover [S. Nose, J. Chem. Phys. 81, 511 (1984)] dynamics. In simple shear, molecules with flow-induced ellipsoidal shape, having significant segment concentrations along the gradient and neutral directions, exhibit substantial flow resistance. Linear molecules have larger zero-shear-rate viscosity than that of branched molecules, however, this behavior reverses as the shear rate is increased. The relaxation time of the molecules is associated with segment concentrations directed along the gradient and neutral directions, and hence it depends on structure and molecular weight. The results of this study are in qualitative agreement with other simulation studies and with experimental data. The pressure (Poiseuille) flow is induced by an external force F(e) simulated by confining the molecules in the region between surfaces which have attractive forces. Conditions at the boundary strongly influence the type of the slip flow predicted. A parabolic velocity profile with apparent slip on the wall is predicted under weakly attractive wall conditions, independent of molecular structure. In the case of strongly attractive walls, a layer of adhered molecules to the wall produces an abrupt distortion of the velocity profile which leads to slip between fluid layers with magnitude that depends on the molecular structure. Finally, the molecular deformation
LINOPT: A FORTRAN Routine for Solving Linear Programming Problems,
1981-10-09
MD 20910 2R44EA501 I I. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE 9 October 1981 ’I. NUMBER OF PAGES 46 11. MONITORING AGENCY NAME...block /XXXLP/, which must accordingly be a common block in the calling program. ROUNDOFF CONTROL In the program there are three input variables which...can be used to control roundoff error accummulations. EPS is a tolerance used in checking constraint violations. H is also used to zero out
NASA Astrophysics Data System (ADS)
Ashrafi, Nariman; Mohamadali, Meysam
2016-11-01
High Weissenberg boundary layer flow of viscoelastic fluids on a stretching surface has been studied. The flow is considered to be steady, low inertial, and two-dimensional. Upon proper scaling and by means of an exact similarity transformation, the nonlinear momentum and constitutive equations of each layer transform into the respective system of highly nonlinear and coupled ordinary differential equations. Numerical solutions to the resulting boundary value problem are obtained using an efficient shooting technique in conjunction with a variable stepping method for different values of pressure gradients. It is observed that, unlike the Newtonian flows, in order to maintain a potential flow, normal stresses must inevitably develop. The velocity field and stresses distributions over plate are presented for difference values of pressure gradient and Weissenberg numbers.
2009-05-01
in the flow field. The DES results agree well with the RANS results. These two cases indicate that the DES is more effective on predicting flow...separation. The DES code is used to simulate the limited cycle oscillation of NLR7301 airfoil. For the cases computed in this research, the predicted LCO...129 8.13 Positions of plunging movement in Fig. 8.11 . . . . . . . . . . . . . . . . . 129 8.14 Stream line for Case E
Closed Loop Guidance Of A Non-Linear Spinning 40mm Grenade Using Micro-Adaptive Flow Control
2008-12-01
launch velocity and thus reduce the impact of the muzzle velocity variation on the grenade’s trajectory. The effect of muzzle velocity on an... effects , shown in Figure 3. Many parameters such as jet location, jet Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...side of the step. This control flow could in principal be used to reattach the flow over the curved surface using the Coanda affect as described
NASA Astrophysics Data System (ADS)
Ghopa, Wan Aizon W.; Harun, Zambri; Funazaki, Ken-ichi; Miura, Takemitsu
2015-02-01
The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwall surfaces from the hot gas since it could not be completely prevented. Thus, present study investigated the potential of leakage flows as a function of film cooling. In present study, the flow field at the downstream of high-pressure turbine blade has been investigated by 5-holes pitot tube. This is to reveal the aerodynamic performances under the influenced of leakage flows while the temperature measurement was conducted by thermochromic liquid crystal (TLC). Experimental has significantly captured theaerodynamics effect of leakage flows near the blade downstream. Furthermore, TLC measurement illustrated that the film cooling effectiveness contours were strongly influenced by the secondary flows behavior on the endwall region. Aero-thermal results were validated by the numerical simulation adopted by commercial software, ANSYS CFX 13. Both experimental and numerical simulation indicated almost similar trendinaero and also thermal behavior as the amount of leakage flows increases.
1985-05-01
Melser and Michie (1970), 135-151. Sacerdoti, Earl D, [1977], A structure for plans and behavior, Elsevier. * Sartre , Jean - Paul , [1976], Critique of...theorem proving to problem solving," Artificial Intelligence, 2 (3) 189-208. Fitts, Paul M and Michael I Posner, [1967], Human performance, Brooks/Cole...Laing, R D and A Esterson, [1964], Sanity, Madness, and the Family, Tavistock. Laird, John E, Paul Rosenbloom, and Allen Newell, [1984], Towards
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Gorla, R. S. Reddy; Abbasi, F. M.; Shehzad, S. A.
2016-11-01
Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases.
Wei, Hsien-Hung; Halpern, David; Grotberg, James B
2005-05-15
This paper analyzes the effect of surfactant on the linear stability of an annular film in a capillary undergoing a time-periodic pressure gradient force. The annular film is thin compared to the radius of the tube. An asymptotic analysis yields a coupled set of equations with time-periodic coefficients for the perturbed fluid-fluid interface and the interfacial surfactant concentration. Wei and Rumschitzki (submitted for publication) previously showed that the interaction between a surfactant and a steady base flow could induce a more severe instability than a stationary base state. The present work demonstrates that time-periodic base flows can modify the features of the steady-flow-based instability, depending on surface tension, surfactant activity, and oscillatory frequency. For an oscillatory base flow (with zero mean), the growth rate decreases monotonically as the frequency increases. In the low-frequency limit, the growth rate approaches a maximum corresponding to the growth rate of a steady base flow having the same amplitude. In the high-frequency limit, the growth rate reaches a minimum corresponding to the growth rate in the limit of a stationary base state. The underlying mechanisms are explained in detail, and extension to other time-periodic forms is further exploited.
NASA Astrophysics Data System (ADS)
Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair
Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-12-01
The non-linear response of empty and fluid-filled circular cylindrical shells to harmonic excitations is investigated. Both modal and point excitations have been considered. The model is suitable to study simply supported shells with and without axial constraints. Donnell's non-linear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The radial deflection of the shell is expanded by using a basis of seven linear modes. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion, obtained in Part I of this study, are studied by using a code based on the collocation method. The validation of the present model is obtained by comparison with other authoritative results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. Modes with two longitudinal half-waves are also investigated.
Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma
2013-07-26
[1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d(-1) in 1999 and 0.52 h d(-1) in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.
Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma
2013-01-01
[1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d−1 in 1999 and 0.52 h d−1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers. PMID:25598557
On the effect of a non-uniform longitudinal ion flow on the linear ITG mode stability.
NASA Astrophysics Data System (ADS)
Lontano, Maurizio; Lazzaro, Enzo; Varischetti, Maria Cecilia
2006-10-01
A one-dimensional model for slab ion temperature gradient (ITG) modes, in the presence of an inhomogeneous equilibrium plasma velocity along the main magnetic field direction, has been formulated in the frame of a two-fluid guiding-center approximation. The physical effects of a magnetic field gradient and of the line curvature are included by means of a gravitational drift velocity. The magnetic shear across the plasma slab is also taken into account. The linear stability of slow plasma dynamics, under the assumptions of quasi-neutrality and adiabatic electrons, is described by means of a third-degree dispersion relation. Generally speaking, the presence of a sheared longitudinal ion velocity leads to the linear destabilization of the ITG modes, especially for flat equilibrium density profiles. Transverse quasi-linear fluxes of ion thermal energy and longitudinal momentum are calculated for different equilibrium profiles of the density, temperature, momentum, and magnetic shear. Plasma configurations leading to zero transverse (or even negative) momentum fluxes are exploited and discussed in the light of their experimental implementation.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Mohammadian, Abdolmajid; Qiblawey, Hazim
2016-10-01
The discretization of the shallow water system on unstructured grids can lead to spurious modes which usually can affect accuracy and/or cause stability problems. This paper introduces a new approach for stability analysis of unstructured linear finite volume schemes for linear shallow water equations with the Coriolis Effect using spectra, pseudospectra, and singular value decomposition. The discrete operator of the scheme is the principal parameter used in the analysis. It is shown that unstructured grids have a large influence on operator normality. In some cases the eigenvectors of the operator can be far from orthogonal, which leads to amplification of solutions and/or stability problems. Large amplifications of the solution can be observed, even for discrete operators which respect the condition of asymptotic stability, and in some cases even for Lax-Richtmyer stable methods. The pseudospectra are shown to be efficient for the verification of stability of finite volume methods for linear shallow water equations. In some cases, the singular value decomposition is employed for further analysis in order to provide more information about the existence of unstable modes. The results of the analysis can be helpful in choosing the type of mesh, the appropriate placements of the variables of the system on the grid, and the suitable discretization method which is stable for a wide range of modes.
NASA Astrophysics Data System (ADS)
EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.
2016-11-01
The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood.
NASA Technical Reports Server (NTRS)
Cohen, J.; Wygnanski, I.
1987-01-01
The modal distribution of coherent structures evolving near the nozzle of a circular jet was studied experimentally and theoretically, with particular attention given to the effects produced on the instability modes by transverse curvature, flow divergence, inhomogeneous inflow conditions, and the detailed shape of the mean velocity profile. Experiments were performed using a specially constructed air-jet facility; hot-wire anemometers were used in conjunction with Disa Model 55P11 sensors for flow measurements. The linear model used as a transfer function is capable of predicting the spectral distribution of the velocity perturbations in a jet. Consideration was also given to studies of leading nonlinear interactions generated by waves externally superimposed on an axisymmetric jet; theoretical predictions were verified experimentally.
NASA Astrophysics Data System (ADS)
Sahu, Kirti; Matar, Omar
2010-11-01
We investigate the three-dimensional linear characteristics of pressure-driven two-layer channel flow, focussing on the range of parameters for which Squire's theorem does not exist, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. The modified Orr-Sommerfeld and Squire equations in each layers are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilising. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.
NASA Astrophysics Data System (ADS)
Sahu, K. C.; Matar, O. K.
2010-11-01
The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.
NASA Astrophysics Data System (ADS)
Early, J. S.; Donovan, J. J.
2002-05-01
The Cambro-Ordovician carbonate aquifer in the Great Valley Region of Berkeley and Jefferson counties, West Virginia, is highly productive but threatened by acute water quality degradation as a result of rapid population growth. A regional-scale equivalent porous medium (EPM) model was developed using MODFLOW and MODPATH to simulate flow in the vicinity of high-discharge springs and community wells. The simulation approach was to develop an initial simplistic steady-state EPM solution using uniform K values distributed by surface-exposed geologic formation, consistent with a large calibration dataset; then this calibrated solution would be adjusted to address local issues involving large-scale heterogeneity, inferred in past studies. The initial simulation employed no anisotropy although its sensitivity was evaluated. A large database of springflows, surface-water baseflow, and target wells was available for calibration. The simulations were calibrated using two independent datasets: 1) hydraulic heads in wells, specifying flows at springs, and 2) estimated long-term average spring flows, specifying heads at springs. These calibrations did not agree; the first method produced excessive drawdowns around springs, while the second yielded very high K values and extremely low hydraulic gradients. The constant-flux method for springs was deemed more consistent with field reality but required implementation of high-contrast heterogeneity in the vicinity of springs, but not wells, to eliminate anomalous drawdown. A linear series of high-K zones was added to simulate suspected karst fracture zones and/or conduits; however, the orientation, style, and location of linear-flow zones are unknown. Simulation of variations in position and orientation of high-K karst zones shows that distinctive head patterns and transient discharge behavior may result from size, length, and relative K contrast of such zones.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Kanai, Masahiro; Isojima, Shin; Nishinari, Katsuhiro; Tokihiro, Tetsuji
2009-05-01
In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the modified Korteweg-de Vries (mkdV) equation, a soliton equation. Meanwhile, the ultradiscrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.
Learning Routines in Innovation Processes
ERIC Educational Resources Information Center
Hoeve, Aimee; Nieuwenhuis, Loek F. M.
2006-01-01
Purpose: This paper aims to generate both a theoretical and an empirical basis for a research model that serves in further research as an analytical tool for understanding the complex phenomenon of learning at different levels in a work organisation. The key concept in this model is the routine concept of Nelson and Winter.…
MISR Conversion to ASCII Routines
Atmospheric Science Data Center
2013-04-01
... These routines are written in Exelis Visual Information Solutions IDL programming language. They can be run either with a licensed ... with IDL and is available from Exelis Visual Information Solutions . The IDL VM software can be downloaded from this site or ordered ...
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated by using improved mode expansions with respect to those assumed in Parts I and II of the present study. Two cases are studied: (1) shells in vacuo; and (2) shells filled with stagnant water. The improved expansions allow checking the accuracy of the solutions previously obtained and giving definitive results within the limits of Donnell's non-linear shallow-shell theory. The improved mode expansions include: (1) harmonics of the circumferential mode number n under consideration, and (2) only the principal n, but with harmonics of the longitudinal mode included. The effect of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with 2 n circumferential waves is very limited on the trend of non-linearity, but is significant in the response with companion mode participation in the case of lightly damped shells (empty shells). In particular, the travelling wave response appears for much lower vibration amplitudes and presents a frequency range without stable responses, corresponding to a beating phenomenon. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory.
Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow
NASA Astrophysics Data System (ADS)
Bai, Yefei; Cheung, Kwok Fai
2016-11-01
A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.
NASA Technical Reports Server (NTRS)
Hsu, Y. K.; Swanson, T.; Mcintosh, R.
1988-01-01
Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere.
Sétif, Pierre
2015-02-01
The inhibitor methyl viologen (MV) has been widely used in photosynthesis to study oxidative stress. Its effects on electron transfer kinetics in Synechocystis sp. PCC6803 cells were studied to characterize its electron-accepting properties. For the first hundreds of flashes following MV addition at submillimolar concentrations, the kinetics of NADPH formation were hardly modified (less than 15% decrease in signal amplitude) with a significant signal decrease only observed after more flashes or continuous illumination. The dependence of the P700 photooxidation kinetics on the MV concentration exhibited a saturation effect at 0.3 mM MV, a concentration which inhibits the recombination reactions in photosystem I. The kinetics of NADPH formation and decay under continuous light with MV at 0.3 mM showed that MV induces the oxidation of the NADP pool in darkness and that the yield of linear electron transfer decreased by only 50% after 1.5-2 photosystem-I turnovers. The unexpectedly poor efficiency of MV in inhibiting NADPH formation was corroborated by in vitro flash-induced absorption experiments with purified photosystem-I, ferredoxin and ferredoxin-NADP(+)-oxidoreductase. These experiments showed that the second-order rate constants of MV reduction are 20 to 40-fold smaller than the competing rate constants involved in reduction of ferredoxin and ferredoxin-NADP(+)-oxidoreductase. The present study shows that MV, which accepts electrons in vivo both at the level of photosystem-I and ferredoxin, can be used at submillimolar concentrations to inhibit recombination reactions in photosystem-I with only a moderate decrease in the efficiency of fast reactions involved in linear electron transfer and possibly cyclic electron transfer.
Memos trace routine radiation overexposures
Lobsenz, G.
1994-03-09
Workers at the Energy Department's Fernald plant routinely received [open quotes]gross,[close quotes] [open quotes]unacceptable[close quotes] and [open quotes]undue[close quotes] radiation exposures during uranium processing operations from the 1950s through the early 1970s, according to internal Fernald memos. The documents come to light as DOE continues to pay hundreds of thousands of dollars every month to defend its former Fernald contractor, NLO Inc., from a workers' lawsuit seeking compensation for alleged injuries from poor safety practices at the Ohio facility. DOE officials have contended the NLO defense effort is justified because there is no evidence that any former Fernald workers have suffered injury as a result of radiation exposures at the plant. However, the internal Fernald memos document major concerns expressed by Fernald health officials about unsafe working conditions at the plant and what appear in some cases to be routine overexposures of workers.
MATHEMATICAL ROUTINES FOR ENGINEERS AND SCIENTISTS
NASA Technical Reports Server (NTRS)
Kantak, A. V.
1994-01-01
The purpose of this package is to provide the scientific and engineering community with a library of programs useful for performing routine mathematical manipulations. This collection of programs will enable scientists to concentrate on their work without having to write their own routines for solving common problems, thus saving considerable amounts of time. This package contains sixteen subroutines. Each is separately documented with descriptions of the invoking subroutine call, its required parameters, and a sample test program. The functions available include: maxima, minima, and sort of vectors; factorials; random number generator (uniform or Gaussian distribution); complimentary error function; fast Fourier Transformation; Simpson's Rule integration; matrix determinate and inversion; Bessel function (J Bessel function for any order, and modified Bessel function for zero order); roots of a polynomial; roots of non-linear equation; and the solution of first order ordinary differential equations using Hamming's predictor-corrector method. There is also a subroutine for using a dot matrix printer to plot a given set of y values for a uniformly increasing x value. This package is written in FORTRAN 77 (Super Soft Small System FORTRAN compiler) for batch execution and has been implemented on the IBM PC computer series under MS-DOS with a central memory requirement of approximately 28K of 8 bit bytes for all subroutines. This program was developed in 1986.
NASA Astrophysics Data System (ADS)
Yapici, Kerim
2012-03-01
In this computational study, the convergence, stability and order of accuracy of several different numerical schemes are assessed and compared. All of the schemes considered were developed using a normalized variable diagram. Two test cases are considered: (1) two-dimensional steady incompressible laminar flow of a Newtonian fluid in a square lid-driven cavity; and (2) creeping flow of a PTT-linear fluid in a lid-driven square cavity. The governing equations are discretized to varying degrees of refinement using uniform grids, and solved by using the finite volume technique. The momentum interpolation method (MIM) is employed to evaluate the face velocity. Coupled mass and momentum conservation equations are solved through an iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. Among the higher-order and bounded schemes considered in the present study, only the CLAM, COPLA, CUBISTA, NOTABLE, SMART and WACEB schemes provide a steady converged solution to the prescribed tolerance of 1×10-5 at all studied Weissenberg ( We) numbers, using a very fine mesh structure. It is found that the CLAM, COPLA, CUBISTA, SMART and WACEB schemes provide about the same order of accuracy that is slightly higher than that of the NOTABLE scheme at low and high Weissenberg numbers. Moreover, flow structures formed in the cavity, i.e. primary vortex, are captured accurately up to We = 5 by all converged schemes.
NASA Technical Reports Server (NTRS)
Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui
2007-01-01
This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.
Schenone, Agustina V; Culzoni, María J; Marsili, Nilda R; Goicoechea, Héctor C
2013-06-01
The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and sunset yellow FCF as possible interferents. In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unexpected components not included in the calibration set. Secondly, a polynomial function was used to model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis time. The proposed method was validated by comparison with a chromatographic procedure published in the literature. Mean recovery values between 98% and 100% and relative errors of prediction values between 4% and 9% were indicative of the good performance of the method.
DeMuth, S.F.; Watson, J.S.
1985-01-01
A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.
Routine Checkup Should Assess Fitness, Too
... news/fullstory_162856.html Routine Checkup Should Assess Fitness, Too Cardiorespiratory test would help gauge patients' heart ... checked regularly, but an exercise expert says cardiorespiratory fitness should also be part of a routine medical ...
Supercritical fluid chromatography in the routine stability control of antipruritic preparations.
Anton, K; Bach, M; Geiser, A
1991-08-16
A recently developed system for supercritical fluid chromatography (SFC), based on independent flow and pressure control and suitable for packed and capillary columns, was tested on a routine level for the reliable, accurate and precise determination of active pharmaceutical substances in stability control. Only packed columns were used for this analysis. The chromatographic figures of merit and the validation data of the active substance alone and in two different dosage forms (accuracy, 98.8-99.2%; precision, 0.6%; linearity of response, 0.998-0.999) are comparable with the former liquid chromatographic methods. Economical (reduction of analysis time, fewer experimental steps and less sample pre-separation) and ecological (carbon dioxide of organic solvents) advantages make SFC an attractive alternative to liquid chromatography in the determination of crotamiton.
Program sustainability: focus on organizational routines.
Pluye, P; Potvin, L; Denis, J L; Pelletier, J
2004-12-01
Program sustainability is an ongoing concern for most people in health promotion. However, the current notion of sustainability in organizations, namely routinization, needs refinement. This article examines organizational routines. In so doing, it refines the notion of sustainability and the assessment of routines. Drawing on the organizational literature, a routinized program is defined by the presence of routinized activities, meaning that these activities exhibit four characteristics of organizational routines: memory, adaptation, values and rules. To answer the question of how these characteristics are useful, we conducted an empirical study of the routinization of the Quebec Heart Health Demonstration Project in five community health centers. Our method consisted of a multiple-case study. We observed project activities in each center in 2000. The data came from documents and interviews with project actors. Our results show that, in one of the centers, no resources had been officially committed to project activities. Even so, the actors continued some activities on an informal basis. In another center, the activities satisfied three of the four routine characteristics. In the three others, activities satisfied all of the characteristics. These results suggest focusing the study of program sustainability on the routinization of activities resulting from it. They indicate four distinct degrees of sustainability: (1) the absence of sustainability; no program activity is continued; (2) precarious sustainability; some residual activities are pursued, at least unofficially; (3) weak sustainability; the program produces some official activities that are not routinized; and (4) sustainability through routinization; routinized activities result from the program.
42 CFR 493.931 - Routine chemistry.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a...
42 CFR 493.931 - Routine chemistry.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a...
42 CFR 493.931 - Routine chemistry.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a...
42 CFR 493.931 - Routine chemistry.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a...
Evolutionary Dynamics of Digitized Organizational Routines
ERIC Educational Resources Information Center
Liu, Peng
2013-01-01
This dissertation explores the effects of increased digitization on the evolutionary dynamics of organizational routines. Do routines become more flexible, or more rigid, as the mix of digital technologies and human actors changes? What are the mechanisms that govern the evolution of routines? The dissertation theorizes about the effects of…
NASA Astrophysics Data System (ADS)
Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula
2013-04-01
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.
NASA Technical Reports Server (NTRS)
Magnus, A. E.; Epton, M. A.
1981-01-01
Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.
Global Routine Vaccination Coverage, 2015.
Casey, Rebecca M; Dumolard, Laure; Danovaro-Holliday, M Carolina; Gacic-Dobo, Marta; Diallo, Mamadou S; Hampton, Lee M; Wallace, Aaron S
2016-11-18
In 1974, the World Health Organization (WHO) established the Expanded Program on Immunization* to provide protection against six vaccine-preventable diseases through routine infant immunization (1). Based on 2015 WHO and United Nations Children's Fund (UNICEF) estimates, global coverage with the third dose of diphtheria-tetanus-pertussis vaccine (DTP3), the first dose of measles-containing vaccine (MCV1) and the third dose of polio vaccine (Pol3) has remained stable (84%-86%) since 2010. From 2014 to 2015, estimated global coverage with the second MCV dose (MCV2) increased from 39% to 43% by the end of the second year of life and from 58% to 61% when older age groups were included. Global coverage was higher in 2015 than 2010 for newer or underused vaccines, including rotavirus vaccine, pneumococcal conjugate vaccine (PCV), rubella vaccine, Haemophilus influenzae type b (Hib) vaccine, and 3 doses of hepatitis B (HepB3) vaccine. Coverage estimates varied widely by WHO Region, country, and district; in addition, for the vaccines evaluated (MCV, DTP3, Pol3, HepB3, Hib3), wide disparities were found in coverage by country income classification. Improvements in equity of access are necessary to reach and sustain higher coverage and increase protection from vaccine-preventable diseases for all persons.
Routine outcome measures in Canada.
Kisely, Steve; Adair, Carol E; Lin, Elizabeth; Marriott, Brian
2015-01-01
Canada is a federal country of 10 provinces and three territories. High level information on mental health conditions and service use has mostly been generated from administrative data collected by provinces and territories. These include four major types - hospital admissions and discharges, physician billings, ambulatory care services, and drug databases. At the national level, the Canadian Institute for Health Information brings together this information to produce indicators of outcome. Although these data provide information on patient and health system characteristics, they do not capture the full spectrum of formal and informal mental healthcare. These include changes in health status, functioning, community integration and quality of life. As a result, some jurisdictions have begun to implement more standardized measures of outcome such as the clinician-rated Health of the Nation Outcome Scales or the inpatient Resident Assessment Instrument - Mental Health. In this paper we provide an overview of mental-health-related data sources in Canada, highlight some of the more progressive practices beginning to emerge, and conclude with some thoughts about how the routine measurement and reporting of mental health outcomes in Canada might be advanced including efforts at engaging both clinicians and decision-makers.
Routine CMV screening during pregnancy.
Collinet, P; Subtil, D; Houfflin-Debarge, V; Kacet, N; Dewilde, A; Puech, F
2004-05-10
Cytomegalovirus (CMV) screening during pregnancy has been widely discussed for several years, but still no consensus has been agreed. With a number of live births of 750,000 per year in France, we would expect 7500 infected infants at birth per year (rate of congenital infection of 1%). Among infected infants at birth, the number of severely infected foetuses would be approximately 75, the number of infants with severe sequelae would be 480, 675 approximately would present with hearing loss and the number of asymptomatic infants would be 6270. Five different preventive methods for congenital CMV infection are possible: (1) Routine CMV screening at the beginning of pregnancy for primary prevention. (2) Secondary prevention by antenatal diagnosis of congenital CMV infection complications. (3) Tertiary prevention by serological testing during pregnancy. (4) Tertiary prevention by serological screening at birth. (5) Tertiary prevention: Hearing loss screening at birth. The aims of this review are to define the advantages and disadvantages of these different methods of CMV screening during pregnancy and to determine if the current available information would make systematic testing acceptable.
Sturgeon, Catharine; Hill, Robert; Hortin, Glen L; Thompson, Douglas
2010-01-01
There is increasing pressure to provide cost-effective healthcare based on “best practice.” Consequently, new biomarkers are only likely to be introduced into routine clinical biochemistry departments if they are supported by a strong evidence base and if the results will improve patient management and outcome. This requires convincing evidence of the benefits of introducing the new test, ideally reflected in fewer hospital admissions, fewer additional investigations and/or fewer clinic visits. Carefully designed audit and cost-benefit studies in relevant patient groups must demonstrate that introducing the biomarker delivers an improved and more effective clinical pathway. From the laboratory perspective, pre-analytical requirements must be thoroughly investigated at an early stage. Good stability of the biomarker in relevant physiological matrices is essential to avoid the need for special processing. Absence of specific timing requirements for sampling and knowledge of the effect of medications that might be used to treat the patients in whom the biomarker will be measured is also highly desirable. Analytically, automation is essential in modern high-throughput clinical laboratories. Assays must therefore be robust, fulfilling standard requirements for linearity on dilution, precision and reproducibility, both within- and between-run. Provision of measurements by a limited number of specialized reference laboratories may be most appropriate, especially when a new biomarker is first introduced into routine practice. PMID:21137030
NASA Astrophysics Data System (ADS)
Wang, Baoyuan
The objective of this research is to develop an efficient and accurate methodology to resolve flow non-linearity of fluid-structural interaction. To achieve this purpose, a numerical strategy to apply the detached-eddy simulation (DES) with a fully coupled fluid-structural interaction model is established for the first time. The following novel numerical algorithms are also created: a general sub-domain boundary mapping procedure for parallel computation to reduce wall clock simulation time, an efficient and low diffusion E-CUSP (LDE) scheme used as a Riemann solver to resolve discontinuities with minimal numerical dissipation, and an implicit high order accuracy weighted essentially non-oscillatory (WENO) scheme to capture shock waves. The Detached-Eddy Simulation is based on the model proposed by Spalart in 1997. Near solid walls within wall boundary layers, the Reynolds averaged Navier-Stokes (RANS) equations are solved. Outside of the wall boundary layers, the 3D filtered compressible Navier-Stokes equations are solved based on large eddy simulation(LES). The Spalart-Allmaras one equation turbulence model is solved to provide the Reynolds stresses in the RANS region and the subgrid scale stresses in the LES region. An improved 5th order finite differencing weighted essentially non-oscillatory (WENO) scheme with an optimized epsilon value is employed for the inviscid fluxes. The new LDE scheme used with the WENO scheme is able to capture crisp shock profiles and exact contact surfaces. A set of fully conservative 4th order finite central differencing schemes are used for the viscous terms. The 3D Navier-Stokes equations are discretized based on a conservative finite differencing scheme. The unfactored line Gauss-Seidel relaxation iteration is employed for time marching. A general sub-domain boundary mapping procedure is developed for arbitrary topology multi-block structured grids with grid points matched on sub-domain boundaries. Extensive numerical experiments
1988-12-01
Researchers have suggested other solution strategies, using ideas from nonlinear progamming for solving this general separable convex cost flow problems. Some...plane methods and branch and bound procedures of integer programming, primal-dual methods of linear and nonlinear programming, and polyhedral methods...Combinatorial Optimization: Networks and Matroids), Bazaraa and Jarvis [1978] (Linear Programming and Network Flows), Minieka [1978] (Optimization Algorithms for
Active Movement Warm-Up Routines
ERIC Educational Resources Information Center
Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy
2011-01-01
This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…
SVI: Super-VIOR interface routines
Alleva, D.
1987-10-21
This document describes a set of routines for a VME DMA module called the Super-VIOR. The Super-VIOR interface routines, also called the SVI routines, are written in PILS and run under a Valet-plus system. These routines enable a program to set up, execute, and monitor DMA operations. The Super-VIOR Interface Routines are written in PILS, a high level language similar to BASIC and Pascal which is powerful and fast enough for most applications. One of the most powerful features of the Valet/PILS system is the ability to set up exception vectors and exception handlers directly in a program. This feature is used to handle interrupts from the MC68450 (a 4 channel, 16 bit DMA controller) and the interface's front panel. This document is divided into ten sections, the first being the introduction. The remaining sections detail the interface registers, channel initiation, polling and interrupts, status reporting, front panel interrupts, the configuration routines, the operation control routines, the status reporting routines, and special comments on the MC68450.
10 CFR 1017.20 - Routine access.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Routine access. 1017.20 Section 1017.20 Energy DEPARTMENT... INFORMATION Access to Unclassified Controlled Nuclear Information § 1017.20 Routine access. (a) Authorized... access to the UCNI, subject to limitations in paragraph (b) of this section, and who may...
Daily Routines of Young Children. (Draft).
ERIC Educational Resources Information Center
Rossbach, Hans-Guenther
This pilot study of the structural characteristics of daily routines of young children also explored aspects of conceptual framework and research instruments. Four data collection instruments were developed. Two of the three retrospective measures used were questionnaires for mothers about their child's routine on the previous day. The other…
Unlearning Established Organizational Routines--Part I
ERIC Educational Resources Information Center
Fiol, Marlena; O'Connor, Edward
2017-01-01
Purpose: The purpose of this two-part paper is to develop a process model of unlearning established organizational routines. The model traces the interactions among three unlearning sub-processes: ostensive aspects of initial destabilization of an established routine; performative aspects of ongoing discarding-from-use of old behaviors and…
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Metadata extraction routines for improving infobutton performance.
Hulse, Nathan C; Haug, Peter J
2010-11-13
Infobuttons have been proven as an effective means for providing quick, context-specific links to pertinent information resources at the point of care. Current infobutton manager implementations, however, lack the ability to exchange metadata, are limited to a relatively small set of information providers, and are targeted primarily for a clinician audience. As part of a local effort to implement infobuttons for patient use via a tethered personal health record, we present a series of metadata extraction routines. These routines were constructed to extract key pieces of information from health information providers on the Internet, including content coverage, language availability, and readability scores. The extraction routines were tested using thirty different disease conditions against eight different providers. The routines yielded 183 potential infobutton targets and associated metadata for each. The capabilities of the extraction routines will be expanded to cover new types of metadata in the future.
ERIC Educational Resources Information Center
Bull, Leah E.; Oliver, Chris; Callaghan, Eleanor; Woodcock, Kate A.
2015-01-01
Several neurodevelopmental disorders are associated with preference for routine and challenging behavior following changes to routines. We examine individuals with Prader-Willi syndrome, who show elevated levels of this behavior, to better understand how previous experience of a routine can affect challenging behavior elicited by disruption to…
Habitual routines in task-performing groups
NASA Technical Reports Server (NTRS)
Gersick, C. J.; Hackman, J. R.
1990-01-01
Groups, like individuals, often develop habitual routines for dealing with frequently encountered stimuli. Although such routines are consequential for group life and work, little is known about them. This paper reconnoiters the territory of habitual behavior in groups that perform work within organizations. We offer a definition of group habits, identify their functions and dysfunctions, suggest how they develop and are maintained, and identify the circumstances when they are likely to be altered or abandoned. Throughout, we give special attention to the social nature of habitual routines in groups, to the interaction between habitual behavior and group life cycle phenomena, and to the role of the organizational context in prompting, shaping, and terminating habitual routines.
Taking medicine at home - create a routine
... page: //medlineplus.gov/ency/patientinstructions/000613.htm Taking medicine at home - create a routine To use the ... teeth. Find Ways to Help You Remember Your Medicines You can: Set the alarm on your clock, ...
NASA Technical Reports Server (NTRS)
Utku, S.
1969-01-01
A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.
NASA Astrophysics Data System (ADS)
Helbing, D.; Moussaid, M.
2009-06-01
Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.
Subjective refraction: the mechanism underlying the routine.
Harris, W F
2007-11-01
The routine of subjective refraction is usually understood, explained and taught in terms of the relative positions of line or point foci and the retina. This paper argues that such an approach makes unnecessary and sometimes invalid assumptions about what is actually happening inside the eye. The only assumption necessary in fact is that the subject is able to guide the refractionist to (or close to) the optimum power for refractive compensation. The routine works even in eyes in which the interval of Sturm does not behave as supposed; it would work, in fact, regardless of the structure of the eye. The idealized subjective refraction routine consists of two steps: the first finds the best sphere (the stigmatic component) and the second finds the remaining Jackson cross-cylinder (the antistigmatic component). The model makes use of the concept of symmetric dioptric power space. The second part of the refraction routine can be performed with Jackson cross-cylinders alone. However, it is usually taught and practiced using spheres, cylinders and Jackson cross-cylinders in a procedure that is not easy to understand and learn. Recognizing that this part of the routine is equivalent to one involving Jackson cross-cylinders only allows one to teach and understand the procedure more naturally and easily.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Routine Radiological Environmental Monitoring Plan. Volume 1
Bechtel Nevada
1999-12-31
The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.
Analysis of routine pilot-controller communication
NASA Technical Reports Server (NTRS)
Morrow, Daniel G.; Lee, Alfred; Rodvold, Michelle
1990-01-01
Although pilot-controller communication is central to aviation safety, this area of aviation human factors has not been extensively researched. Most research has focused on what kinds of communication problems occur. A more complete picture of communication problems requires understanding how communication usually works in routine operations. A sample of routine pilot-controller communication in the TRACON environment is described. After describing several dimensions of routine communication, three kinds of communication problems are treated: inaccuracies such as incorrect readbacks, procedural deviations such as missing callsigns and readbacks, and nonroutine transactions where pilot and controller must deal with misunderstandings or other communication problems. Preliminary results suggest these problems are not frequent events in daily operations. However, analysis of the problems that do occur suggest some factors that may cause them.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Routine environmental monitoring schedule, calendar year 1998
McKinney, S.M.
1997-11-24
This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor (PHMC) a schedule in accordance with the HNF-PRO-454, Inactive Waste Sites` HNF-PRO-455, Solid Waste 3 Management4 and BHI-EE-02, Environmental Requirements, of monitoring and sampling, routines for the near-facility environmental monitoring program during calendar year (CY) 1998. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Environmental Monitoring and Investigations. The survey frequencies for particular sites are determined by the technical judgment of Environmental Monitoring and investigations and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1999. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy, Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for 1332 assistance in completing these routines to Radiological Control management and Environmental Monitoring and Investigations. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Environmental Monitoring and Investigations. These routine surveys will not be considered complete until this
Optimized groundwater containment using linear programming
Quinn, J.J.; Johnson, R.L.; Durham, L.A.
1998-07-01
Groundwater extraction systems are typically installed to contain contaminant plumes. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield is to use a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, optimal locations and pump rates of extraction wells are difficult to determine when the objectives of the potential pumping scheme and the site hydrogeology are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. Calculations were conducted by using ModMan to link a calibrated MODFLOW flow model with LINDO, a linear programming package. Past activities at the site under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input water budget as groundwater discharge from the disposal area. The objective function of the optimization was to minimize the rate of groundwater extraction while preventing discharge to the marsh across a user-specified boundary. In this manner, the optimization routine selects well locations and pump rates to produce a groundwater divide along this boundary.
Reis, K V; Venere, P C; Sampaio, I; Rêgo, P S; Vallinoto, M; Souza, I L
2015-09-01
The aim of this study was to estimate the genetic diversity and structure of the only known population of minnow Astyanax xavante, which inhabits a stretch of river including several waterfalls. The FST values among the samples were not significant, except between two populations separated by a 30 m waterfall. Nevertheless, haplotype and nucleotide diversity increased in the downstream direction, indicating that gene flow is unidirectional, which indicates this genetic pattern as downstairs gene flow, as it has the effect of increasing genetic diversity in the downstream direction.
Support Routines for In Situ Image Processing
NASA Technical Reports Server (NTRS)
Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean
2013-01-01
This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the
An Examination of Latino Students' Homework Routines
ERIC Educational Resources Information Center
Martinez, Sylvia
2011-01-01
Homework appears to be positively associated with better student outcomes. Although some researchers have explored the connection between time spent on homework and minority student achievement, few have examined the homework routines of Latino youth. Interviews with Latino high school students show that they have some difficulty completing daily…
The Daily Routine of the Oldest Old.
ERIC Educational Resources Information Center
Barer, Barbara M.
Individuals who are beyond the age of 85 have to confront the decrements of aging that are commonly recognized. This study examined the daily routine of the oldest old through interviews. Subjects were asked about the logistics of their daily lives, what they liked best to do, what they didn't like to do, what made a day good for them, and what…
Action Selection in Complex Routinized Sequential Behaviors
ERIC Educational Resources Information Center
Ruh, Nicolas; Cooper, Richard P.; Mareschal, Denis
2010-01-01
We report two experiments in which errors and interaction latencies were recorded during routinization of hierarchically structured computer-based tasks. Experiment 1 demonstrates that action selection is slowed at subtask transitions, especially when selecting lower frequency actions. This frequency effect is compounded by concurrent performance…
10 CFR 71.87 - Routine determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Operating Controls and Procedures § 71.87 Routine determinations. Before each shipment of licensed material, the licensee shall... accordance with written procedures; (g) For fissile material, any moderator or neutron absorber, if...
Individual Values, Learning Routines and Academic Procrastination
ERIC Educational Resources Information Center
Dietz, Franziska; Hofer, Manfred; Fries, Stefan
2007-01-01
Background: Academic procrastination, the tendency to postpone learning activities, is regarded as a consequence of postmodern values that are prominent in post-industrialized societies. When students strive for leisure goals and have no structured routines for academic tasks, delaying strenuous learning activities becomes probable. Aims: The…
Routines. Infant/Toddler Caregiving: A Guide.
ERIC Educational Resources Information Center
Gonzalez-Mena, Janet
Intended for use in conjunction with videos illustrating key concepts and caregiving techniques, this guide focuses on how the daily routines of caring for infants and toddlers can become opportunities for promoting the child's learning and development and for deepening the relationship between child and caregiver. Special attention is given to…
libvaxdata: VAX data format conversion routines
Baker, Lawrence M.
2005-01-01
libvaxdata provides a collection of routines for converting numeric data-integer and floating-point-to and from the formats used on a Digital Equipment Corporation1 (DEC) VAX 32-bit minicomputer (Brunner, 1991). Since the VAX numeric data formats are inherited from those used on a DEC PDP-11 16-bit minicomputer, these routines can be used to convert PDP-11 data as well. VAX numeric data formats are also the default data formats used on DEC Alpha 64-bit minicomputers running OpenVMS The libvaxdata routines are callable from Fortran or C. They require that the caller use two's-complement format for integer data and IEEE 754 format (ANSI/IEEE, 1985) for floating-point data. They also require that the 'natural' size of a C int type (integer) is 32 bits. That is the case for most modern 32-bit and 64-bit computer systems. Nevertheless, you may wish to consult the Fortran or C compiler documentation on your system to be sure. Some Fortran compilers support conversion of VAX numeric data on-the-fly when reading or writing unformatted files, either as a compiler option or a run-time I/O option. This feature may be easier to use than the libvaxdata routines. Consult the Fortran compiler documentation on your system to determine if this alternative is available to you. 1Later Compaq Computer Corporation, now Hewlett-Packard Company
The first year of routine Herschel observations
NASA Astrophysics Data System (ADS)
2011-06-01
MEETING REPORT The successful completion of the first year of routine science operations of ESA's Herschel Space Observatory was marked by a Specialist Discussion Meeting of the RAS held in January 2011. A few of the early science highlights from the mission were presented. Derek Ward-Thompson and David Clements summarize.
NASA Technical Reports Server (NTRS)
Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.
1988-01-01
In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.
NASA Technical Reports Server (NTRS)
Magnus, Alfred E.; Epton, Michael A.
1981-01-01
An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the PAN AIR (Panel Aerodynamics) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformations, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.
Forest, Cary B.
2016-11-10
This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma. His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.
On the stability of numerical integration routines for ordinary differential equations.
NASA Technical Reports Server (NTRS)
Glover, K.; Willems, J. C.
1973-01-01
Numerical integration methods for the solution of initial value problems for ordinary vector differential equations may be modelled as discrete time feedback systems. The stability criteria discovered in modern control theory are applied to these systems and criteria involving the routine, the step size and the differential equation are derived. Linear multistep, Runge-Kutta, and predictor-corrector methods are all investigated.
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.
Improved Electrohydraulic Linear Actuators
NASA Technical Reports Server (NTRS)
Hamtil, James
2004-01-01
A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.
Routine Operational Environmental Monitoring schedule, CY 1994
Schmidt, J.W.
1993-12-01
This document provides Health Physics (HP) a schedule in accordance with the Environmental Compliance Manual, WHC-CM-7-5, of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) Program during calendar year (CY) 1994. The survey frequencies for particular sites are determined by the technical judgment of EES and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive waste sites are scheduled to be surveyed annually at a minimum. Any newly discovered waste sites not documented by this schedule will be included in the revised schedule for CY 1995. This schedule does not discuss the manpower needs nor does it list the monitoring equipment to be used in completing specific routines.
NASA Astrophysics Data System (ADS)
Revenough, Justin
Elastic waves propagating in simple media manifest a surprisingly rich collection of phenomena. Although some can't withstand the complexities of Earth's structure, the majority only grow more interesting and more important as remote sensing probes for seismologists studying the planet's interior. To fully mine the information carried to the surface by seismic waves, seismologists must produce accurate models of the waves. Great strides have been made in this regard. Problems that were entirely intractable a decade ago are now routinely solved on inexpensive workstations. The mathematical representations of waves coded into algorithms have grown vastly more sophisticated and are troubled by many fewer approximations, enforced symmetries, and limitations. They are far from straightforward, and seismologists using them need a firm grasp on wave propagation in simple media. Linear Elastic Waves, by applied mathematician John G. Harris, responds to this need.
Newman, Gregory A.; Commer, Michael
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.
ROUTINE CHOLANGIOGRAPHY DURING OPERATION FOR GALLSTONES
Smith, C. C.; Faris, George A.
1959-01-01
Cholangiography done routinely during operation was found valuable for detection of stones in the bile ducts. Operation for stone not seen in the operative cholangiogram was seldom necessary. When no stone is demonstrated, it seems proper to spare the patient the additional trauma of common duct exploration. ImagesFigure 1 (Case 1).Figure 2 (Case 1).Figure 3 (Case 2).Figure 4 (Case 3).Figure 5 (Case 5).Figure 6 (Case 6). PMID:13651956
Verification and quality control of routine hematology analyzers.
Vis, J Y; Huisman, A
2016-05-01
Verification of hematology analyzers (automated blood cell counters) is mandatory before new hematology analyzers may be used in routine clinical care. The verification process consists of several items which comprise among others: precision, accuracy, comparability, carryover, background and linearity throughout the expected range of results. Yet, which standard should be met or which verification limit be used is at the discretion of the laboratory specialist. This paper offers practical guidance on verification and quality control of automated hematology analyzers and provides an expert opinion on the performance standard that should be met by the contemporary generation of hematology analyzers. Therefore (i) the state-of-the-art performance of hematology analyzers for complete blood count parameters is summarized, (ii) considerations, challenges, and pitfalls concerning the development of a verification plan are discussed, (iii) guidance is given regarding the establishment of reference intervals, and (iv) different methods on quality control of hematology analyzers are reviewed.
One year of campaigns in Cameroon: effects on routine health services
Mounier-Jack, Sandra; Edengue, Jean Marie; Lagarde, Mylene; Baonga, Simon Franky; Ongolo-Zogo, Pierre
2016-01-01
Background: Targeted campaigns have been reported to disrupt routine health services in low- and middle-income countries. The objective of this study was to evaluate the average effect of public health campaigns over 1 year on routine services such as antenatal care, routine vaccination and outpatient services. Method: We collected daily activity data in 60 health facilities in two regions of Cameroon that traditionally undergo different intensities of campaign activity, the Centre region (low) and the Far North (high), to ascertain effects on routine services. For each outcome, we restricted our analysis to the public health centres for which good data were available and excluded private health facilities given their small number. We used segment-linear regression to account for the longitudinal nature of the data, and assessed whether the number of routine activities decreased in health facilities during periods when campaigns occurred. The analysis controlled for secular trends and serial correlation. Results: We found evidence that vaccination campaigns had a negative impact on routine activities, decreasing outpatient visits when they occurred (Centre: −9.9%, P = 0.079; Far North: −11.6%, P = 0.025). The average negative effect on routine services [outpatient visits −18% (P = 0.02) and antenatal consultations −70% [P = 0.001]) was most pronounced in the Far North during ‘intensive’ campaigns that usually require high mobilization of staff. Discussion: With an increasing number of interventions delivered by campaigns and in the context of elimination and eradication targets, these are important results for countries and agencies to consider. Achieving disease control targets hinges on ensuring high uptake of routine services. Therefore, we suggest that campaigns should systematically monitor ‘impact on routine services’, while also devising concrete strategies to mitigate potential adverse effects. PMID:27175031
Plasma detachment in linear devices
NASA Astrophysics Data System (ADS)
Ohno, N.
2017-03-01
Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.
Parent routines for managing cystic fibrosis in children
Grossoehme, Daniel H.; Filigno, Stephanie Spear; Bishop, Meredith
2014-01-01
Management of cystic fibrosis (CF) is burdensome and adherence is often suboptimal. Family routines are associated with adherence and health outcomes in other disease populations. Few studies have examined routines in CF. The study's aim was to describe parent experiences developing and utilizing CF care routines. Semi-structured interviews with a convenience sample of 25 parents of children under 13 years of age with CF were analyzed using phenomenological analysis. Three domains emerged: parent experiences developing a routine, support systems facilitating maintenance of routines, and challenges with maintaining care routines. Parents found routines difficult to establish, used trial and error, encountered barriers, and found support helpful to manage care demands. Some parents chose to deviate from their routine. Providing anticipatory guidance to promote the use of care routines and strategies to manage potential challenges may facilitate use of routines and improve CF management. PMID:24838648
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
Domestic violence in pregnancy: midwives and routine questioning.
Stonard, Gill; Whapples, Emma
2016-01-01
The Confidential enquiry into maternal and child health (CEMACH) (2004) set the standard for maternity care to protect women from domestic violence. Twelve women who were murdered by their partner and 43 further deaths from disclosure with no appropriate referrals prompted the routine enquiry for domestic violence to be initiated in 2000. The death rate from domestic violence had marginally decreased slightly in the latest report from The Centre for Maternal and Child Enquiries (CMACE) (2011) with 11 women murdered by their partner and 34 further deaths from disclosure with no referrals. The aim of this article is to review the current literature in order to explore evidence that questions the confidence of midwives when asking about domestic violence in pregnancy. The article aims to highlight the concerns that midwives face when confronted with a positive disclosure of domestic violence, and to provide a flow chart to aid in referral.
York, T.M.; Klevans, E.H.
1980-05-01
Experimental and analytical studies of particle and energy loss at the ends of a linear theta pinch have been carried out. A study of transients occurring in the formation of reversed trapped fields within the coil, and of transients in the end region of a 25 cm long device was completed. A 1-D code has proven to be highly accurate in describing loss events and defining transport mechanisms in different experiments and is described here. A study of loss along field lines in a 50 cm long device has generated new information on loss velocity, axial and radial temperature gradients, and has established an initial effort in understanding thermal loss to the walls. Rotation and parallel trapped fields have been added to the existing 0-D code. A new technique crowbar switch and magnetic field prediction code have been developed. Direct measurment of electron velocity with Thomson scattering was accomplished experimentally. A Nd-glass laser system, frequency doubled, is being developed for low density diagnostics. Theoretical results that accurately predict confinement in FRX devices are described.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds
These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.
Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
[When life needs routine, imagination, listening].
Tognoni, Gianni
2015-01-01
When life needs routine, imagination, listening. Barbara is a 44 years old oncologist, married and with two children, that tells through others but also with her own words of her cancer, until death. Giuseppe is a laboratory technician, researcher, mountaineer, promoter of humanitarian initiatives Bosnia and Croatia; his lateral amyotrophic sclerosis is told by his wife, in a booklet written after his death. Their two stories are the occasions for reflecting on the importance and role of closeness, listening, dreaming, narrating in improving the quality of life and care: none of these words are included in the guidelines.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The EHFR program reference information which is presented consists of the following subprogram detailed data: purpose-description of the routine, a list of the calling programs, an argument list description, nomenclature definition, flow charts, and a compilation listing of each subprogram. Each of the EHFR subprograms were developed specifically for this routine and do not have an applicability of a general nature. Single precision accuracy available on the Univac 1108 is used exclusively in all but two of the 31 EHFR subprograms. The double precision variables required are identified in the nomenclature definition of the two subprograms that require them. A concise definition of the purpose, function, and capabilities is made in the subprogram description. The description references the appropriate Volume 1 sections of the report which contain the applicable detailed definitions, governing equations, and assumptions used. The compilation listing of each subprogram defines the program/data storage requirements, identifies the labeled block common data required, and identifies other subprograms called during execution. For Vol. 1, see N73-31842.
NASA Astrophysics Data System (ADS)
Balint, Agneta M.; Balint, Stefan; Szabo, Robert
2012-11-01
This paper comments on a number of inaccuracies in the article by Brambley [E.J. Brambley, Fundamental problems with the model of uniform flow over acoustic linings, Journal of Sound and Vibration 322(2009)1026-1037] concerning the new concept of "well-posed partial differential equation" introduced in the paper. In particular, the neglect of specifying: the initial and boundary conditions; meaning of solution; conditions assuring existence and uniqueness of the solution; topology in the space of the solutions necessary for analyze the continuous dependence on the initial data and Lyapunov stability. It is shown that, due to the above inaccuracies, the concept introduced by Brambley is confusing, i.e. depending on the set of initial data, boundary conditions, meaning of solution and topology, the same equation can be ill-posed or it can be well-posed. In our paper the concept of well-posed problem, introduced by Hadamard long times ago, is refreshed and applied in the case of rectangular lined duct. Sufficient conditions for that the Briggs-Bers stability criterion can be applied are given. The requirement appearing here, concerning the existence of a finite upper bound of the set of exponential growth rates, is necessary only for assuring the existence of the Laplace transform of the solutions of the partial differential equation from a considered set and not for that the partial differential equation be well-posed.
Meel-van den Abeelen, Aisha S S; Simpson, David M; Wang, Lotte J Y; Slump, Cornelis H; Zhang, Rong; Tarumi, Takashi; Rickards, Caroline A; Payne, Stephen; Mitsis, Georgios D; Kostoglou, Kyriaki; Marmarelis, Vasilis; Shin, Dae; Tzeng, Yu-Chieh; Ainslie, Philip N; Gommer, Erik; Müller, Martin; Dorado, Alexander C; Smielewski, Peter; Yelicich, Bernardo; Puppo, Corina; Liu, Xiuyun; Czosnyka, Marek; Wang, Cheng-Yen; Novak, Vera; Panerai, Ronney B; Claassen, Jurgen A H R
2014-05-01
Transfer function analysis (TFA) is a frequently used method to assess dynamic cerebral autoregulation (CA) using spontaneous oscillations in blood pressure (BP) and cerebral blood flow velocity (CBFV). However, controversies and variations exist in how research groups utilise TFA, causing high variability in interpretation. The objective of this study was to evaluate between-centre variability in TFA outcome metrics. 15 centres analysed the same 70 BP and CBFV datasets from healthy subjects (n=50 rest; n=20 during hypercapnia); 10 additional datasets were computer-generated. Each centre used their in-house TFA methods; however, certain parameters were specified to reduce a priori between-centre variability. Hypercapnia was used to assess discriminatory performance and synthetic data to evaluate effects of parameter settings. Results were analysed using the Mann-Whitney test and logistic regression. A large non-homogeneous variation was found in TFA outcome metrics between the centres. Logistic regression demonstrated that 11 centres were able to distinguish between normal and impaired CA with an AUC>0.85. Further analysis identified TFA settings that are associated with large variation in outcome measures. These results indicate the need for standardisation of TFA settings in order to reduce between-centre variability and to allow accurate comparison between studies. Suggestions on optimal signal processing methods are proposed.
CPU timing routines for a CONVEX C220 computer system
NASA Technical Reports Server (NTRS)
Bynum, Mary Ann
1989-01-01
The timing routines available on the CONVEX C220 computer system in the Structural Mechanics Division (SMD) at NASA Langley Research Center are examined. The function of the timing routines, the use of the timing routines in sequential, parallel, and vector code, and the interpretation of the results from the timing routines with respect to the CONVEX model of computing are described. The timing routines available on the SMD CONVEX fall into two groups. The first group includes standard timing routines generally available with UNIX 4.3 BSD operating systems, while the second group includes routines unique to the SMD CONVEX. The standard timing routines described in this report are /bin/csh time,/bin/time, etime, and ctime. The routines unique to the SMD CONVEX are getinfo, second, cputime, toc, and a parallel profiling package made up of palprof, palinit, and palsum.
Lachenbruch, A.H.
1980-01-01
In their recent paper, Singh & Negi, (This journal, 57, 741-744) contend that if thd slope of the empirical linear relation between heat flow and heat production is interpreted as the decay-length of an exponential depth-distribution of sources, a discrepancy rises, whereas if it is interpreted as the depth of a step distribution, it does not. I should like to point out that their discrepancy follows from their arbitrary assumption of one of a range of physical possibilities unconstrained by the observations; with an equally valid alternate assumption (Lachenbruch 1970) the discrepancy disappears. In any case such discrepancies are probably minor compared to physical difficulties that arise from the step model, and to uncertainties introduced by other assumptions in any simple model.-Author
NASA Technical Reports Server (NTRS)
Budhani, R. C.; Suenaga, M.; Liou, S. H.
1992-01-01
A large shift of the onset of flux-flow resistivity and the irreversibility line H(irr)(T) to higher temperatures is observed in Tl2Ba2Ca2Cu3O10 films containing linear defects created by Ag(+21) ion irradiation. The H(irr)(T), which has a characteristic L shape in highly anisotropic Tl and Bi based cuprates, becomes more like that of YBa2Cu3O7 in the presence of these defects. The Jc at 77 K also shows a large increase as a result of flux localization at the defects. The transport data indicate that in the H-T plane above H(irr)(T) of the unirradiated material, an ensemble of unoccupied defects is required for effective pinning of each flux line in the system.
NASA Technical Reports Server (NTRS)
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Adiponectin as a routine clinical biomarker.
Kishida, Ken; Funahashi, Tohru; Shimomura, Iichiro
2014-01-01
Adiponectin is a protein synthesized and secreted predominantly by adipocytes into the peripheral blood. However, circulating adiponectin level is inversely related with body weight, especially visceral fat accumulation. The mechanism of this paradoxical relation remains obscure. Low circulating adiponectin concentrations (hypoadiponectinemia; <4 μg/mL) are associated with a variety of diseases, including dysmetabolism (type 2 diabetes, insulin resistance, hypertension, dyslipidemia, metabolic syndrome, hyperuricemia), atherosclerosis (coronary artery disease, stroke, peripheral artery disease), sleep apnea, non-alcoholic fatty liver disease, gastritis and gastro-esophageal reflux disease, inflammatory bowel diseases, pancreatitis, osteoporosis, and cancer (endometrial cancer, postmenopausal breast cancer, leukemia, colon cancer, gastric cancer, prostate cancer). On the other hand, hyperadiponectinemia is associated with cardiac, renal and pulmonary diseases. This review article focuses on the significance of adiponectin as a clinical biomarker of obesity-related diseases. Routine measurement of adiponectin in patients with lifestyle-related diseases is highly recommended.
[Management of aflibercept in routine clinical practice].
Cabrera López, F
2015-03-01
Aflibercept is a new anti-vegf drug that, unlike ranibizumab and bevacizumab blocks both vegf-A and placental growth factor. Moreover, it binds with much greater strength and affinity to human VEGF-A165 than other endogenous vegf receptors, conferring it with a more extended effect and allowing a lower frequency of intravitreal injections. This facilitates the adoption of fixed treatment regimens other than monthly or individual regimens such as "treat and extend". Aflibercept is indicated for the treatment of neovascular (exudative) age-related macular degeneration (ARMD), visual alteration due to macular edema secondary to central retinal vein occlusion (CRVO) and visual alteration due to diabetic macular edema (DME). The present article reviews the management of aflibercept in routine clinical practice, based on the specifications of its new core data sheet, which includes all the therapeutic indications in which its use has been approved and evaluating the distinct alternatives and treatment regimens after the initial loading doses.
When Routines Are Not so Routine: Exploring Coordination Work in Hospitals
ERIC Educational Resources Information Center
Haque, Saira Naim
2010-01-01
Many work processes take place through routines, or recurrent patterns of action. These activities involve individuals from several occupations working across spatial, temporal, and organizational boundaries. Crossing these professional, temporal and spatial boundaries has unique challenges which can lead to coordination failures. In these…
Family Routines and School Readiness during the Transition to Kindergarten
ERIC Educational Resources Information Center
Ferretti, Larissa K.; Bub, Kristen L.
2017-01-01
Research Findings: Using data from 3,250 participants in the Early Childhood Longitudinal Study, Birth Cohort, we used structural equation modeling to investigate whether family routines (e.g., bedtime routine, reading routine) established in preschool predict children's school readiness (i.e., academic skills, social-emotional skills, and…
Rituals and Routines: Supporting Infants and Toddlers and Their Families
ERIC Educational Resources Information Center
Gillespie, Linda; Petersen, Sandra
2012-01-01
The words "routine" and "ritual" are sometimes used interchangeably. Yet there are some important differences. Routines are repeated, predictable events that provide a foundation for the daily tasks in a child's life. Teachers can create a predictable routine in early childhood settings for infants and toddlers, and they can individualize those…
42 CFR 493.1210 - Condition: Routine chemistry.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, §...
42 CFR 493.1210 - Condition: Routine chemistry.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, §...
42 CFR 493.1210 - Condition: Routine chemistry.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, §...
42 CFR 493.1210 - Condition: Routine chemistry.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, §...
42 CFR 493.1210 - Condition: Routine chemistry.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, §...
[The controversy of routine articulator mounting in orthodontics].
Wang, Li; Han, Xianglong; Bai, Ding
2013-06-01
Articulators have been widely used by clinicians of dentistry. But routine articulator mounting is still controversial in orthodontics. Orthodontists oriented by gnathology approve routine articulator mounting while nongnathologic orthodontists disapprove it. This article reviews the thoughts of orthodontist that they agree or disagree with routine articulator mounting based on the considerations of biting, temporomandibular disorder (TMD), periodontitis, and so on.
Routines and Transitions: A Guide for Early Childhood Professionals
ERIC Educational Resources Information Center
Malenfont, Nicole
2006-01-01
In early childhood settings, children spend over 50 percent of their time on handwashing, dressing, napping, and other routines and transitions. "Routines and Transitions" is a guide to help turn these routine daily activities into learning experiences. By using transitions wisely, providers not only help children develop skills, but also run a…
Correlates of Family Routines in Head Start Families
ERIC Educational Resources Information Center
Churchill, Susan L.; Stoneman, Zolinda
2004-01-01
The popular parenting literature places great importance on the role of routines in children's lives. Empirical research on family routines, however, is limited. This study examined correlates of family routines in a Head Start population in order to better understand their significance in the lives of families. Weak correlations were found…
Linear Controllers for Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason
2000-11-01
Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.
Routine polysomnography in an epilepsy monitoring unit.
Phillips, Matthew C L; Costello, Craig A; White, Elise J; Smit, Michelle; Carino, John; Strawhorn, Andrew; Jackson, Brianna; Kwan, Patrick; French, Christopher R; Yerra, S Raju; Tan, K Meng; O'Brien, Terence J; Goldin, Jeremy
2013-08-01
Up to 13% of patients with epilepsy have moderate or severe sleep-disordered breathing, in particular obstructive sleep apnea (OSA), a disorder associated with reduced quality of life, worsened seizure control, and increased cardiovascular morbidity and mortality. Combining video-EEG monitoring with polysomnography (VPSG) provides the opportunity to diagnose clinically significant OSA as well as relate the occurrence of seizures and the epilepsy diagnosis to the presence and severity of sleep-disordered breathing. We have established routine VPSG in our inpatient video-EEG monitoring unit and present our findings in 87 patients. Clinically significant sleep-disordered breathing was diagnosed in 19 of 87 (22%) patients. Patients with psychogenic non-epileptic seizures (PNES) had poorer sleep quality compared to patients with epilepsy and those with neither diagnosis, whereas the prevalence of clinically significant sleep-disordered breathing in patients with PNES (29%) did not differ significantly compared to patients with epilepsy (21%) and those with neither diagnosis (22%). The differences in sleep quality are not explained by differences in body mass index (BMI) or anti-epileptic drug (AED) effects.
Antinuclear antibody determination in a routine laboratory.
Feltkamp, T E
1996-01-01
Pitfalls in the method for demonstrating antinuclear antibodies (ANA) by the indirect immunofluorescence technique are described and the use of international standard preparations outlined. Determination of the optimal border dilution dividing positive from negative results is discussed. Each laboratory is a unique setting; it must define its own method, which should rarely be changed. One should not rely on copying methods from other laboratories or commercial firms, but the reproducibility of the nuclear substrate, the conjugate, and other variables should be controlled daily by the use of a control serum which has been related to the WHO standard preparation for ANA of the homogeneous type. Since many sera contain mixtures of different ANA, the results of routine tests are best expressed in titres or expressions of the intensity of fluorescence. The ANA test using the immunofluorescence technique should be used as a screening method for other tests allowing a more defined interpretation of the ANA. Each laboratory should individually determine the border between positive and negative results. Therefore about 200 sera from local healthy controls equally distributed over sex and age, and 100 sera from local patients with definite SLE should be tested. Since the local clinicians should become acquainted with this border it should rarely be changed. Finally each laboratory should participate regularly in national and international quality control rounds, where sera known to be difficult to interpret are tested. The judgment of the organisers of these rounds should stimulate improvements in the participating laboratories. PMID:8984936
Antinuclear antibody determination in a routine laboratory.
Feltkamp, T E
1996-10-01
Pitfalls in the method for demonstrating antinuclear antibodies (ANA) by the indirect immunofluorescence technique are described and the use of international standard preparations outlined. Determination of the optimal border dilution dividing positive from negative results is discussed. Each laboratory is a unique setting; it must define its own method, which should rarely be changed. One should not rely on copying methods from other laboratories or commercial firms, but the reproducibility of the nuclear substrate, the conjugate, and other variables should be controlled daily by the use of a control serum which has been related to the WHO standard preparation for ANA of the homogeneous type. Since many sera contain mixtures of different ANA, the results of routine tests are best expressed in titres or expressions of the intensity of fluorescence. The ANA test using the immunofluorescence technique should be used as a screening method for other tests allowing a more defined interpretation of the ANA. Each laboratory should individually determine the border between positive and negative results. Therefore about 200 sera from local healthy controls equally distributed over sex and age, and 100 sera from local patients with definite SLE should be tested. Since the local clinicians should become acquainted with this border it should rarely be changed. Finally each laboratory should participate regularly in national and international quality control rounds, where sera known to be difficult to interpret are tested. The judgment of the organisers of these rounds should stimulate improvements in the participating laboratories.
Routine Processing and Evaluation of HST Observations
NASA Astrophysics Data System (ADS)
Parsons, S. B.; Wilson, I. R.; Crawford, J. R.; Dempsey, R. C.; Ewald, R. A.; Gillam, S. D.; Giovane, E. A.; Kochte, M. C.; Schultz, A. B.; Scott, J. F.; Swade, D. A.
1993-05-01
All WFPC, FOC, FOS, GHRS, HSP observations taken by the Hubble Space Telescope are automatically processed by the Routine Science Data Processing (RSDP) ``pipeline'' at STScI, under the Post Observation Data Processing System (PODPS) branch. Over 36,000 readouts have been processed since launch, 97% of these within two days of execution. Packetized science data enter the pipeline after telemetry bit-error correction at the Data Capture Facility, GSFC. Software sorts the data by observation, inserts fill packets as needed, and examines the data structure for errors. If none, the Edited Information Set is converted into a generic (waivered FITS) format. If repair is required (1-2% of observations), tested procedures are used to modify erroneous bits or keywords. The observation is then calibrated, and a film file or laser plot is generated. The HST instrument teams supply all information for calibration performed by RSDP. As calibration evolves, PODPS updates the flat fields and other files and tables for subsequent pipeline processing. Also, the observer may recalibrate the data with STSDAS tools. PODPS staff astronomers, using STSDAS IRAF tasks and SAOimage, evaluate the quality of each observation and provide keywords such as `OK' or `UNDEREXP' plus informative comments to the archive catalog. Comments often include information from the Observation Support Branch (OSS) regarding guide star acquisition success, centering slews, high jitter, etc. Observation data (in packetized, reformatted, and calibrated form) and their comments are placed in the HST science and ancillary optical disk archives (now by DMF, to be superseded by DADS). FITS tapes containing both uncalibrated and calibrated files are written for the GO by the Data Systems Operations Branch (DSOB), and prints or plots plus OSS and PODPS comments are mailed with the tapes. The authors are staff members of the Space Telescope Science Institute.
Evaluation of macrocytosis in routine hemograms.
Veda, P
2013-03-01
Macrocytosis, a condition in which erythrocytes are larger than normal manifests as an increase in mean corpuscular volume (MCV) more than 100 fl. The aim of this study was to identify the underlying causes of macrocytosis, detected in routine hemograms and to evaluate the hematological features in different etiologies. This study included 178 adult patients whose detailed medical history was recorded, and Vitamin B12 assay, folate assay, thyroid function tests, liver function tests, complete blood counts and peripheral smear evaluation was performed. Alcoholism was identified as the etiological factor in 65 cases (36.5%), Vitamin B12 deficiency in 43 cases (24.1%) and drug related in 23 cases (12.9%). These three conditions accounted for 73.6% of macrocytosis. Other causes identified were folate deficiency, liver disease, Myelodysplastic syndrome, chronic renal failure and Aplastic anemia. In 41 cases, the cause of macrocytosis could not be explained. Anemia was observed in 95 cases (53.3%) being most common in Vitamin B12 deficiency. 9 cases (20.9%) of Vitamin B12 deficiency presented with isolated macrocytosis without anemia. It was observed that mean hemoglobin was lower and red cell distribution width (RDW) higher in megaloblastic conditions. Peripheral smear revealed hypersegmented neutrophils in 86% and macro-ovalocytes in 72% of the megaloblastic cases. Complete medical history, red cell parameters and peripheral blood smear are simple, inexpensive tools which assist in identifying the underlying cause of macrocytosis, particularly in resource limited settings. Macrocytosis needs to be evaluated even in the absence of anemia, as it may be the first clue to an underlying pathology.
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Development and application of a segmentation routine in a mammographic mass CAD system
NASA Astrophysics Data System (ADS)
Catarious, David M., Jr.; Baydush, Alan H.; Floyd, Carey E., Jr.
2004-05-01
The purpose of this paper is to present a new segmentation routine developed for mammographic masses. We previously developed a computer-aided detection (CAD) system for mammographic masses that employed a simple but imprecise segmentation procedure. To improve the systems performance, an iterative, linear segmentation routine was developed. The routine begins by employing a linear discriminant function to determine the optimal threshold between estimates of an objects interior and exterior pixels. After applying the threshold and identifying the objects outline, two constraints are applied to minimize the influence of extraneous background structures. Each iteration further refines the outline until the stopping criterion is reached. The segmentation algorithm was tested on a database of 181 mammographic images that contained forty-nine malignant and fifty benign masses. A set of suspicious regions of interest (ROIs) was found using the previous CAD system. Twenty features were measured from the regions before and after applying the new segmentation routine. The difference in the features discriminatory ability was examined via receiver operating characteristic (ROC) analysis. A significant performance difference was observed in many features, particularly those describing the object border. Free-response ROC (FROC) curves were utilized to examine how the overall CAD system performance changed with the inclusion of the segmentation routine. The FROC performance appeared to be improved, especially for malignant masses. When detecting 90% of the malignant masses, the previous system achieved 4.4 false positives per image (FPpI) compared to the post-segmentation systems 3.7 FPpI. At 85%, the respective FPpI are 4.1 and 2.1.
NASA Technical Reports Server (NTRS)
Sidwell, Kenneth W.; Baruah, Pranab K.; Bussoletti, John E.; Medan, Richard T.; Conner, R. S.; Purdon, David J.
1990-01-01
A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines.
NASA Technical Reports Server (NTRS)
Epton, Michael A.; Magnus, Alfred E.
1990-01-01
An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the Panel Aerodynamics (PAN AIR) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformation, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments. Principal revisions to version 3.0 are the following: (1) appendices H and K more fully describe the Aerodynamic Influence Coefficient (AIC) construction; (2) appendix L now provides a complete description of the AIC solution process; (3) appendix P is new and discusses the theory for the new FDP module (which calculates streamlines and offbody points); and (4) numerous small corrections and revisions reflecting the MAG module rewrite.
Performance Analysis of Apollo Navigational Starter Routine
NASA Technical Reports Server (NTRS)
Ivanov, Stoyan I.; Holt, Greg
2010-01-01
The focus of this project is to recreate and analyze the effectiveness of the original Apollo Starter Routine (ASR) which was used to generate the state vector of the Apollo spacecraft based on a series of radiometric observations. The original Apollo navigation software is unavailable in a modern programming language and the original coding has not been preserved. This necessitates its recreation using the original software documentation. Space Shuttle navigation software does not typically use the ASR or an algorithm like it since the Shuttle s state vector is easily deduced from GPS information or other sources. However, this tactic will be ineffective when trying to determine the state vector of a craft approaching, departing or in orbit around the Moon since the GPS network faces the surface of the Earth, not outer space. The recreation of the ASR from the original documentation is therefore vital as a simulation baseline for the navigation software under development for the Constellation program. The algorithms that make up the ASR will be extracted from the original documentation and adapted for and then implemented in a modern programming language; the majority of it will be coded in Matlab. The ASR s effectiveness will then be tested using simulated tracking data. The ability of the ASR to handle realistically noisy data and the accuracy with which it generates state vectors were analyzed. The ASR proved to be robust enough to process data with range and angle noise as large as 10,000 meters and 10(exp -6) radians together and 300,000 meters and 5x10(exp -4) radians separately at Lunar distances. The ASR was able to handle marginally more noise at distances closer to the Earth where the angle noise was less significant. The ASR is capable of effectively processing 40-80 data points gathered at a rate of one per 20 seconds at close Earth orbit and up to 28-40 data points gathered at a rate of one per minute at distant Earth orbit and Lunar orbit.
Routman, Justin S.; Willig, James H.; Westfall, Andrew O.; Abroms, Sarah R.; Varshney, Mohit; Adusumilli, Sunil; Allison, Jeroan J.; Savage, Karen G.; Saag, Michael S.; Mugavero, Michael J.
2009-01-01
Summary The generalizability of clinical trial findings (efficacy) to routine care (effectiveness) may be limited. The present study found similar first year virologic and CD4 outcomes among antiretroviral-naïve patients treated through routine care vs. those participating in clinical trials. Background The generalizability of clinical trial findings (efficacy) to routine care (effectiveness) may be limited due to study eligibility criteria and volunteer bias. While well chronicled in many conditions, the efficacy vs. effectiveness of antiretroviral therapy (ART) remains understudied. Methods A retrospective study of the UAB 1917 Clinic Cohort evaluated naïve patients starting ART between 1/1/00–12/31/06. Patients received ART through clinical trials or routine care. Multivariable logistic and linear regression models were fit to evaluate factors associated with virologic failure (VF=VL>50 copies/mL) and change from baseline CD4 count 6 and 12 months after ART initiation. Sensitivity analyses evaluated the impact of missing data on outcomes. Results Among 570 patients starting ART during the study period, 121 (21%) enrolled in clinical trials vs. 449 (79%) receiving ART via routine care. ART receipt through routine care was not associated with VF at either 6 (OR=1.00;95%CI=0.54–1.86) or 12 (OR=1.56;95%CI=0.80–3.05) months in primary analyses. No significant differences in CD4 count responses at 6 and 12 months were observed. Conclusions Though marked differences in efficacy vs. effectiveness have been observed in the therapeutic outcomes of other conditions, our analyses found no evidence of such divergence among our patients initiating antiretroviral therapy for HIV. PMID:20067423
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
NASA Technical Reports Server (NTRS)
Jones, William H.
1985-01-01
The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.
Linearly Forced Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
2003-01-01
Stationary isotropic turbulence is often studied numerically by adding a forcing term to the Navier-Stokes equation. This is usually done for the purpose of achieving higher Reynolds number and longer statistics than is possible for isotropic decaying turbulence. It is generally accepted that forcing the Navier-Stokes equation at low wave number does not influence the small scale statistics of the flow provided that there is wide separation between the largest and smallest scales. It will be shown, however, that the spectral width of the forcing has a noticeable effect on inertial range statistics. A case will be made here for using a broader form of forcing in order to compare computed isotropic stationary turbulence with (decaying) grid turbulence. It is shown that using a forcing function which is directly proportional to the velocity has physical meaning and gives results which are closer to both homogeneous and non-homogeneous turbulence. Section 1 presents a four part series of motivations for linear forcing. Section 2 puts linear forcing to a numerical test with a pseudospectral computation.
FIO/RIO -- FORTRAN file I/O routines
NASA Astrophysics Data System (ADS)
Allan, P. M.; Chipperfield, A. J.
FIO/RIO is a subroutine package that allows a FORTRAN programmer to access sequential and direct access data files in a machine independent manner. The package consists of stand alone FIO and RIO routines, which can be used independently of the Starlink software environment, plus routines to interface to the Starlink parameter system.
Recapturing Desired Family Routines: A Parent-Professional Behavioral Collaboration
ERIC Educational Resources Information Center
Buschbacher, Pamelazita; Fox, Lise; Clarke, Shelley
2004-01-01
Children with complex disabilities such as autism spectrum disorders and Landau Kleffner syndrome often lack means to participate in everyday family routines. Serious problem behaviors may result from their challenges in responding to and initiating communicative interactions. These behaviors can change routine family activities such that the…
What Impact Does Developmental Coordination Disorder Have on Daily Routines?
ERIC Educational Resources Information Center
Summers, Janet; Larkin, Dawne; Dewey, Deborah
2008-01-01
In order to understand how age and motor difficulties impact on daily routines, this qualitative investigation used focus groups and in-depth interviews with Australian and Canadian parents to examine the daily routines of younger (5 to 7 years of age) and older children (8 to 9 years of age) with and without Developmental Coordination Disorder…
Computer routine adds plotting capabilities to existing programs
NASA Technical Reports Server (NTRS)
Harris, J. C.; Linnekin, J. S.
1966-01-01
PLOTAN, a generalized plot analysis routine written for the IBM 7094 computer, minimizes the difficulties in adding plot capabilities to large existing programs. PLOTAN is used in conjunction with a binary tape writing routine and has the ability to plot any variable on the intermediate binary tape as a function of any other.
Changing Urban Bureaucracies: How New Practices Become Routinized.
ERIC Educational Resources Information Center
Yin, Robert K.; And Others
The goal of this report is to describe the process by which new service practices in urban bureaucracies become routinized. The routinization process is studied by examining the life histories of six types of innovations: computer-assisted instruction; police computer systems; mobile intensive care units; closed circuit television systems; breath…
Factors for Radical Creativity, Incremental Creativity, and Routine, Noncreative Performance
ERIC Educational Resources Information Center
Madjar, Nora; Greenberg, Ellen; Chen, Zheng
2011-01-01
This study extends theory and research by differentiating between routine, noncreative performance and 2 distinct types of creativity: radical and incremental. We also use a sensemaking perspective to examine the interplay of social and personal factors that may influence a person's engagement in a certain level of creative action versus routine,…
Thinking Routines: Replicating Classroom Practices within Museum Settings
ERIC Educational Resources Information Center
Wolberg, Rochelle Ibanez; Goff, Allison
2012-01-01
This article describes thinking routines as tools to guide and support young children's thinking. These learning strategies, developed by Harvard University's Project Zero Classroom, actively engage students in constructing meaning while also understanding their own thinking process. The authors discuss how thinking routines can be used in both…
Routine Activities and Victimization at School: The Significance of Gender
ERIC Educational Resources Information Center
Popp, Ann Marie; Peguero, Anthony A.
2011-01-01
Routine activities theory has not fully considered the role of gender in shaping victimization and yet, the research literature clearly demonstrates that gender is associated with an individual's risk of victimization. In addition to the pervasive effect of gender on victimization, gender shapes an individual's daily routines and thus may create a…
Parental Involvement Routines and Former Head Start Children's Literacy Outcomes
ERIC Educational Resources Information Center
Dove, Meghan Kicklighter; Neuharth-Pritchett, Stacey; Wright, David W.; Wallinga, Charlotte
2015-01-01
This study examined the relationship between parental involvement routines and former Head Start children's literacy outcomes. Former Head Start children (n = 3, 808) from the National Head Start/Public School Transition Demonstration Research Project comprised the sample. Family routines and literacy outcomes in kindergarten were examined,…
An Element of Practical Knowledge in Education: Professional Routines
ERIC Educational Resources Information Center
Lacourse, France
2011-01-01
The question of practical knowledge and its teaching has arisen more perceptibly since the appearance of the aim to professionalize teachers. How can imperceptible knowledge such as professional routines be taught? To establish a social fabric and effective class management, it is essential to call on creative and adaptive professional routines.…
42 CFR 493.1267 - Standard: Routine chemistry.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Routine chemistry. 493.1267 Section 493.1267 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1267 Standard: Routine chemistry. For blood gas analyses, the laboratory must perform...
42 CFR 493.1267 - Standard: Routine chemistry.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Standard: Routine chemistry. 493.1267 Section 493.1267 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1267 Standard: Routine chemistry. For blood gas analyses, the laboratory must perform...
42 CFR 493.841 - Standard; Routine chemistry.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Standard; Routine chemistry. 493.841 Section 493.841 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.841 Standard; Routine chemistry. (a) Failure to attain a score of at least 80...
42 CFR 493.841 - Standard; Routine chemistry.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Standard; Routine chemistry. 493.841 Section 493.841 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.841 Standard; Routine chemistry. (a) Failure to attain a score of at least 80...
42 CFR 493.841 - Standard; Routine chemistry.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Standard; Routine chemistry. 493.841 Section 493.841 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.841 Standard; Routine chemistry. (a) Failure to attain a score of at least 80...
42 CFR 493.1267 - Standard: Routine chemistry.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Standard: Routine chemistry. 493.1267 Section 493.1267 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1267 Standard: Routine chemistry. For blood gas analyses, the laboratory must perform...
42 CFR 493.841 - Standard; Routine chemistry.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Routine chemistry. 493.841 Section 493.841 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.841 Standard; Routine chemistry. (a) Failure to attain a score of at least 80...
42 CFR 493.1267 - Standard: Routine chemistry.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard: Routine chemistry. 493.1267 Section 493.1267 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1267 Standard: Routine chemistry. For blood gas analyses, the laboratory must perform...
42 CFR 493.841 - Standard; Routine chemistry.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Routine chemistry. 493.841 Section 493.841 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.841 Standard; Routine chemistry. (a) Failure to attain a score of at least 80...
42 CFR 493.1267 - Standard: Routine chemistry.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Standard: Routine chemistry. 493.1267 Section 493.1267 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1267 Standard: Routine chemistry. For blood gas analyses, the laboratory must perform...
See, Say, Write: A Writing Routine for the Preschool Classroom
ERIC Educational Resources Information Center
Copp, Stefanie B.; Cabell, Sonia Q.; Tortorelli, Laura S.
2016-01-01
See, Say, Write is an adaptable classroom writing routine that teachers can use across a range of activities in the preschool classroom. This preschool writing routine offers an opportunity for teachers to build on a shared experience through engagement in rich conversation and writing. After a shared experience, teachers will provide a visual…
Routines in School Organizations: Creating Stability and Change
ERIC Educational Resources Information Center
Conley, Sharon; Enomoto, Ernestine K.
2005-01-01
Purpose: This paper presents routinized action theory as a way to examine the regular, habitual activities that occur in school organizations. Using this theoretical lens, school routines were analyzed in order to understand organizational stability and change. Design/methodology/approach: Using case study methods, three discrete cases are…
THE SEPARATION OF URANIUM ISOTOPES BY GASEOUS DIFFUSION: A LINEAR PROGRAMMING MODEL,
URANIUM, ISOTOPE SEPARATION), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), MATHEMATICAL MODELS, GAS FLOW, NUCLEAR REACTORS, OPERATIONS RESEARCH
Optimized remedial groundwater extraction using linear programming
Quinn, J.J.
1995-12-31
Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.
NASA Technical Reports Server (NTRS)
Baruah, P. K.; Bussoletti, J. E.; Chiang, D. T.; Massena, W. A.; Nelson, F. D.; Furdon, D. J.; Tsurusaki, K.
1981-01-01
The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system.
NASA Technical Reports Server (NTRS)
Purdon, David J.; Baruah, Pranab K.; Bussoletti, John E.; Epton, Michael A.; Massena, William A.; Nelson, Franklin D.; Tsurusaki, Kiyoharu
1990-01-01
The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, updating, and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few CAL language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY 1S, 1M, and X-MP computing systems. The system is comprised of a data base management system, a program library, an execution control module, and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a set of CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards. Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points); (2) a complete rewrite of the section on the MAG module; and (3) strict applicability to CRAY computing systems.
Routine activities and sexual assault: an analysis of individual- and school-level factors.
Cass, Amy I
2007-01-01
The efficacy of routine activities theory is examined to explain sexual assault on the college campus. Although many research studies have utilized routine activities theory to predict sexual assault using individual-level factors, little is known about the effect of school-level factors on a student's risk of sexual assault. Based on interviews from 3,036 randomly selected students and surveys from 11 randomly selected colleges in the United States, a hierarchical linear model was created to predict student victimizations by school characteristics. For the individual, results reveal that being female, drug use, and marital status are statistically significant for predicting the probability of a sexual assault. At the institutional level, however, none of the variables are significant in predicting sexual assault among college coeds. Policy implications for prevention measures on college campuses are discussed.
NASA Technical Reports Server (NTRS)
Medan, R. T. (Editor); Magnus, A. E.; Sidwell, K. W.; Epton, M. A.
1981-01-01
Numerous applications of the PAN AIR computer program system are presented. PAN AIR is user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a higher order panel method. Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three-dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard-tail-nacelle-fuselage combination in supersonic flow.
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
Freire, Ellen Figueiredo; Borges, Keyller Bastos; Tanimoto, Hélio; Nogueira, Raquel Tassara; Bertolini, Lucimara Cristiane Toso; de Gaitani, Cristiane Masetto
2009-01-01
A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 x 4.6 mm id, 5.0 microm particle size) at room temperature with acetonitrile-100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160-240 microg/mL (correlation coefficient > or = 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 microg/mL), limit of quantification (ranged from 4.26 to 6.84 microg/mL), precision (relative standard deviation < or = 1.87%), accuracy (ranged from 96.97 to 100.54%), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.
Factors for radical creativity, incremental creativity, and routine, noncreative performance.
Madjar, Nora; Greenberg, Ellen; Chen, Zheng
2011-07-01
This study extends theory and research by differentiating between routine, noncreative performance and 2 distinct types of creativity: radical and incremental. We also use a sensemaking perspective to examine the interplay of social and personal factors that may influence a person's engagement in a certain level of creative action versus routine, noncreative work. Results demonstrate that willingness to take risks, resources for creativity, and career commitment are associated primarily with radical creativity; that the presence of creative coworkers and organizational identification are associated with incremental creativity; and that conformity and organizational identification are linked with routine performance. Theoretical and managerial implications are discussed.
Floating-point function generation routines for 16-bit microcomputers
NASA Technical Reports Server (NTRS)
Mackin, M. A.; Soeder, J. F.
1984-01-01
Several computer subroutines have been developed that interpolate three types of nonanalytic functions: univariate, bivariate, and map. The routines use data in floating-point form. However, because they are written for use on a 16-bit Intel 8086 system with an 8087 mathematical coprocessor, they execute as fast as routines using data in scaled integer form. Although all of the routines are written in assembly language, they have been implemented in a modular fashion so as to facilitate their use with high-level languages.
Testing calibration routines for LISFLOOD, a distributed hydrological model
NASA Astrophysics Data System (ADS)
Pannemans, B.
2009-04-01
Traditionally hydrological models are considered as difficult to calibrate: their highly non-linearity results in rugged and rough response surfaces were calibration algorithms easily get stuck in local minima. For the calibration of distributed hydrological models two extra factors play an important role: on the one hand they are often costly on computation, thus restricting the feasible number of model runs; on the other hand their distributed nature smooths the response surface, thus facilitating the search for a global minimum. Lisflood is a distributed hydrological model currently used for the European Flood Alert System - EFAS (Van der Knijff et al, 2008). Its upcoming recalibration over more then 200 catchments, each with an average runtime of 2-3 minutes, proved a perfect occasion to put several existing calibration algorithms to the test. The tested routines are Downhill Simplex (DHS, Nelder and Mead, 1965), SCEUA (Duan et Al. 1993), SCEM (Vrugt et al., 2003) and AMALGAM (Vrugt et al., 2008), and they were evaluated on their capability to efficiently converge onto the global minimum and on the spread in the found solutions in repeated runs. The routines were let loose on a simple hyperbolic function, on a Lisflood catchment using model output as observation, and on two Lisflood catchments using real observations (one on the river Inn in the Alps, the other along the downstream stretch of the Elbe). On the mathematical problem and on the catchment with synthetic observations DHS proved to be the fastest and the most efficient in finding a solution. SCEUA and AMALGAM are a slower, but while SCEUA keeps converging on the exact solution, AMALGAM slows down after about 600 runs. For the Lisflood models with real-time observations AMALGAM (hybrid algorithm that combines several other algorithms, we used CMA, PSO and GA) came as fastest out of the tests, and giving comparable results in consecutive runs. However, some more work is needed to tweak the stopping
The routine pre-employment screening chest radiograph: Should it be routine?
Samuel, V John; Gibikote, Sridhar; Kirupakaran, Henry
2016-01-01
Background and Objective: A routine chest radiograph is mandatory in many institutions as a part of pre-employment screening. The usefulness of this has been studied over the years keeping in mind the added time, cost, and radiation concerns. Studies conducted outside India have shown different results, some for and some against it. To our knowledge, there is no published data from India on this issue. Materials and Methods: A retrospective review of the reports of 4113 pre-employment chest radiographs done between 2007 and 2009 was conducted. Results: Out of 4113 radiographs, 24 (0.58%) candidates required further evaluation based on findings from the screening chest radiograph. Out of these, 7 (0.17%) candidates required appropriate further treatment. Interpretation and Conclusions: The percentage of significant abnormalities detected which needed further medical intervention was small (0.17%). Although the individual radiation exposure is very small, the large numbers done nation-wide would significantly add to the community radiation, with added significant cost and time implications. We believe that pre-employment chest radiographs should be restricted to candidates in whom there is relevant history and/or clinical findings suggestive of cardiopulmonary disease. PMID:27857470
Ultra-high vacuum photoelectron linear accelerator
Yu, David U.L.; Luo, Yan
2013-07-16
An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.
Stolker, Alida A. M.; Peters, Ruud J. B.; Zuiderent, Richard; DiBussolo, Joseph M.
2010-01-01
There is an increasing interest in screening methods for quick and sensitive analysis of various classes of veterinary drugs with limited sample pre-treatment. Turbulent flow chromatography in combination with tandem mass spectrometry has been applied for the first time as an efficient screening method in routine analysis of milk samples. Eight veterinary drugs, belonging to seven different classes were selected for this study. After developing and optimising the method, parameters such as linearity, repeatability, matrix effects and carry-over were studied. The screening method was then tested in the routine analysis of 12 raw milk samples. Even without internal standards, the linearity of the method was found to be good in the concentration range of 50 to 500 µg/L. Regarding repeatability, RSDs below 12% were obtained for all analytes, with only a few exceptions. The limits of detection were between 0.1 and 5.2 µg/L, far below the maximum residue levels for milk set by the EU regulations. While matrix effects—ion suppression or enhancement—are obtained for all the analytes the method has proved to be useful for screening purposes because of its sensitivity, linearity and repeatability. Furthermore, when performing the routine analysis of the raw milk samples, no false positive or negative results were obtained. PMID:20379812
Most U.S. Adults Support Routine Child Vaccine
... 163392.html Most U.S. Adults Support Routine Child Vaccine Survey finds 80 percent have positive view of ... Americans believe that the benefits of the MMR vaccine outweigh any risks. Nearly three-quarters of the ...
User's Manual: Routines for Radiative Heat Transfer and Thermometry
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
VIEW OF BUILDING 122 EXAMINATION FACILITIES THAT SUPPORT ROUTINE EMPLOYEE ...
VIEW OF BUILDING 122 EXAMINATION FACILITIES THAT SUPPORT ROUTINE EMPLOYEE AND SUBCONTRACTOR PHYSICAL EXAMINATIONS. (10/85) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO
Survey of US Correctional Institutions for Routine HCV Testing
Kurth, Ann E.; Bazerman, Lauri; Solomon, Liza; Patry, Emily; Rich, Josiah D.; Kuo, Irene
2015-01-01
To ascertain HCV testing practices among US prisons and jails, we conducted a survey study in 2012, consisting of medical directors of all US state prisons and 40 of the largest US jails, that demonstrated a minority of US prisons and jails conduct routine HCV testing. Routine voluntary HCV testing in correctional facilities is urgently needed to increase diagnosis, enable risk-reduction counseling and preventive health care, and facilitate evaluation for antiviral treatment. PMID:25393180
Work routinization and implications for ergonomic exposure assessment.
Gold, Judith E; Park, Jung-Soon; Punnett, Laura
2006-01-15
Jobs in many modern settings, including manufacturing, service, agriculture and construction, are variable in their content and timing. This prompts the need for exposure assessment methods that do not assume regular work cycles. A scheme is presented for classifying levels of routinization to inform development of an appropriate exposure assessment strategy for a given occupational setting. Five levels of routinization have been defined based on the tasks of which the job is composed: 1) a single scheduled task with a regular work cycle; 2) multiple cyclical tasks; 3) a mix of cyclical and non-cyclical tasks; 4) one non-cyclical task; 5) multiple non-cyclical tasks. This classification, based primarily on job observation, is illustrated through data from a study of automobile manufacturing workers (n = 1200), from which self-assessed exposures to physical and psychosocial stressors were also obtained. In this cohort, decision latitude was greater with higher routinization level (p < 0.0001), and the least routinized jobs showed the lowest self-reported exposure to physical ergonomic stressors. The job analysis checklist developed for non-routinized jobs is presented, and limitations of the task analysis method utilized in the study are discussed. A work sampling approach to job analysis is recommended as the most efficient way to obtain a comparable unbiased exposure estimate across all routinization levels.
Kabir, Khairul; Haidar, Azzam; Tomov, Stanimire; Dongarra, Jack J
2015-01-01
The manycore paradigm shift, and the resulting change in modern computer architectures, has made the development of optimal numerical routines extremely challenging. In this work, we target the development of numerical algorithms and implementations for Xeon Phi coprocessor architecture designs. In particular, we examine and optimize the general and symmetric matrix-vector multiplication routines (gemv/symv), which are some of the most heavily used linear algebra kernels in many important engineering and physics applications. We describe a successful approach on how to address the challenges for this problem, starting with our algorithm design, performance analysis and programing model and moving to kernel optimization. Our goal, by targeting low-level and easy to understand fundamental kernels, is to develop new optimization strategies that can be effective elsewhere for use on manycore coprocessors, and to show significant performance improvements compared to existing state-of-the-art implementations. Therefore, in addition to the new optimization strategies, analysis, and optimal performance results, we finally present the significance of using these routines/strategies to accelerate higher-level numerical algorithms for the eigenvalue problem (EVP) and the singular value decomposition (SVD) that by themselves are foundational for many important applications.
Breakthrough performance of linear-DNA on ion-exchange membrane columns.
Ma Montesinos-Cisneros, Rosa; Ortega, Jaime; Guzmán, Roberto; Tejeda-Mansir, Armando
2006-07-01
Breakthrough performance of linear-DNA adsorption on ion-exchange membrane columns was theoretically and experimentally investigated using batch and fixed-bed systems. System dispersion curves showed the absence of flow non-idealities in the experimental arrangement. Breakthrough curves were not significantly affected by flow-rate or inlet solution concentration. In the theoretical analysis a model was integrated by the serial coupling of the membrane transport model and the system dispersion model. A transport model that considers finite kinetic rate and column dispersed flow was used in the study. A simplex optimization routine coupled to the solution of the partial differential model equations was employed to estimate the maximum adsorption capacity constant, the equilibrium desorption constant and the forward interaction rate-constant, which are the parameters of the membrane transport model. Through this approach a good prediction of the adsorption phenomena is obtained for inlet concentrations and flow rates greater than 0.2 mg/ml and 0.16 ml/min.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
LINPACK. Simultaneous Linear Algebraic Equations
Miller, M.A.
1990-05-01
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
LINPACK. Simultaneous Linear Algebraic Equations
Dongarra, J.J.
1982-05-02
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
TOF plotter—a program to perform routine analysis time-of-flight mass spectral data
NASA Astrophysics Data System (ADS)
Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth
2004-03-01
The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x- y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems.
NASA Astrophysics Data System (ADS)
Young, T.
This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...
Routine outcome measures in Norway: Only partly implemented.
Ruud, Torleif
2015-01-01
Norway has not had any strategy exclusively for the implementation of routine outcome measurement in the mental health services, but some efforts have been made as part of strategies for a national patient register and quality indicators. Fifteen years after the decision to make the rating of the Global Assessment of Functioning scale (GAF) mandatory at admission and discharge of each treatment episode in adult mental health services, this is still not fully implemented. An unknown and probably very low proportion of mental health services use GAF as a routine outcome measure in everyday clinical practice. Well-established electronic patient records in the mental health services and established procedures for reporting routine data to the National Patient Register should make it possible to collect and use routine outcome data. Implementation of routine outcome measurement in mental health services must be done with due emphasis on the critical steps in the various phases of the implementation process. The regional health authorities have a key role in establishing electronic systems that make relevant outcome measurements available in a seamless way for clinicians as well as for patients, and by contributing to a culture where quality and outcome are valued and given priority.
Cyclophosphamide administration routine in autoimmune rheumatic diseases: a review.
Teles, Kaian Amorim; Medeiros-Souza, Patrícia; Lima, Francisco Aires Correa; Araújo, Bruno Gedeon de; Lima, Rodrigo Aires Correa
2016-09-17
Cyclophosphamide (CPM) is an alkylating agent widely used for the treatment of malignant neoplasia and which can be used in the treatment of multiple rheumatic diseases. Medication administration errors may lead to its reduced efficacy or increased drug toxicity. Many errors occur in the administration of injectable drugs. The present study aimed at structuring a routine for cyclophosphamide use, as well as creating a document with pharmacotherapeutic guidelines for the patient. The routine is schematized in three phases: pre-chemotherapy (pre-ChT), administration of cyclophosphamide, and post-chemotherapy (post-ChT), taking into account the drugs to be administered before and after cyclophosphamide in order to prevent adverse effects, including nausea and hemorrhagic cystitis. Adverse reactions can alter laboratory tests; thus, this routine included clinical management for changes in white blood cells, platelets, neutrophils, and sodium, including cyclophosphamide dose adjustment in the case of kidney disease. Cyclophosphamide is responsible for other rare-but serious-side effects, for instance, hepatotoxicity, severe hyponatremia and heart failure. Other adverse reactions include hair loss, amenorrhea and menopause. In this routine, we also entered guidelines to post-chemotherapy patients. The compatibility of injectable drugs with the vehicle used has been described, as well as stability and infusion times. The routine aimed at the rational use of cyclophosphamide, with prevention of adverse events and relapse episodes, factors that may burden the health care system.
Clinician's Attitudes to the Introduction of Routine Weighing in Pregnancy
Beckmann, Michael M.; Wilkinson, Shelley A.
2016-01-01
Background. Excessive gestational weight gain poses significant short- and long-term health risks to both mother and baby. Professional bodies and health services increasingly recommend greater attention be paid to weight gain in pregnancy. A large Australian tertiary maternity hospital plans to facilitate the (re)introduction of routine weighing of all women at every antenatal visit. Objective. To identify clinicians' perspectives of barriers and enablers to routinely weighing pregnant women and variations in current practice, knowledge, and attitudes between different staff groups. Method. Forty-four maternity staff from three professional groups were interviewed in four focus groups. Staff included midwives; medical staff; and dietitians. Transcripts underwent qualitative content analysis to identify and examine barriers and enablers to the routine weighing of women throughout pregnancy. Results. While most staff supported routine weighing, various concerns were raised. Issues included access to resources and staff; the ability to provide appropriate counselling and evidence-based interventions; and the impact of weighing on patients and the therapeutic relationship. Conclusion. Many clinicians supported the practice of routine weighing in pregnancy, but barriers were also identified. Implementation strategies will be tailored to the discrete professional groups and will address identified gaps in knowledge, resources, and clinician skills and confidence. PMID:27446614
NASA Astrophysics Data System (ADS)
Hilbert, Bryan
2012-10-01
These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.
NASA Astrophysics Data System (ADS)
Hilbert, Bryan
2013-10-01
These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.
Klinger, Dane H; Dale, Jonathan J; Machado, Benjamin E; Incardona, John P; Farwell, Charles J; Block, Barbara A
2015-09-15
During the 2010 Deepwater Horizon incident, the continuous release of crude oil from the damaged Macondo 252 wellhead on the ocean floor contaminated surface water habitats for pelagic fish for more than 12weeks. The spill occurred across pelagic, neritic and benthic waters, impacting a variety of ecosystems. Chemical components of crude oil are known to disrupt cardiac function in juvenile fish, and here we investigate the effects of oil on the routine metabolic rate of chub mackerel, Scomber japonicus. Mackerel were exposed to artificially weathered Macondo 252 crude oil, prepared as a Water Accommodated Fraction (WAF), for 72 or 96h. Routine metabolic rates were determined pre- and post-exposure using an intermittent-flow, swim tunnel respirometer. Routine energetic demand increased in all mackerels in response to crude oil and reached statistical significance relative to unexposed controls at 96h. Chemical analyses of bile from exposed fish revealed elevated levels of fluorescent metabolites, confirming the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in the exposure WAF. The observed increase in metabolic demand is likely attributable to the bioenergetic costs of contaminant detoxification. These results indicate that short-term exposure (i.e. days) to oil has sub-lethal toxicity to mackerel and results in physiological stress during the active spill phase of the incident.
Solution of 3-dimensional time-dependent viscous flows. Part 1: Investigation of candidate algoriths
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1979-01-01
There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow to aid in the design of helicopter rotors. Numerical algorithms are examined to determine their overall suitability for the efficient and routine solution of an appropriate system of partial differential equations. It is concluded that a consistently split time linearized block implicit scheme using either quintic B spline collocation or the generalized operator compact implicit approach to generate a fourth order accurate algorithm is particularly well suited for use on the present problem. High cell Reynolds number behavior leads to favoring the generalized operator compact implicit approach over the quintic B spline collocation method.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
Routine Work Environment Stress and PTSD Symptoms in Police Officers
Maguen, Shira; Metzler, Thomas J.; McCaslin, Shannon E.; Inslicht, Sabra S.; Henn-Haase, Clare; Neylan, Thomas C.; Marmar, Charles R.
2013-01-01
This study examined the relationship between routine work environment stress and posttraumatic stress disorder (PTSD) symptoms in a sample of police officers (N = 180) who were first assessed during academy training and reassessed 1-year later. In a model that included gender, ethnicity, traumatic exposure prior to entering the academy, current negative life events, and critical incident exposure over the last year, routine work environment stress was most strongly associated with PTSD symptoms. We also found that routine work environment stress mediated the relationship between critical incident exposure and PTSD symptoms and between current negative life events and PTSD symptoms. Ensuring that the work environment is functioning optimally protects against the effects of duty-related critical incidents and negative life events outside police service. PMID:19829204
Pulse processing routines for neutron time-of-flight data
NASA Astrophysics Data System (ADS)
Žugec, P.; Weiß, C.; Guerrero, C.; Gunsing, F.; Vlachoudis, V.; Sabate-Gilarte, M.; Stamatopoulos, A.; Wright, T.; Lerendegui-Marco, J.; Mingrone, F.; Ryan, J. A.; Warren, S. G.; Tsinganis, A.; Barbagallo, M.
2016-03-01
A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.
Guide to good practices for shift routines and operating practices
1998-12-01
This Guide to Good Practices is written to enhance understanding of, and provide direction for, ``Shift Routines and Operating Practices,`` Chapter 2 of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing shift routines and operating practices. ``Shift Routines and Operating Practices`` is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for a high standard of professional conduct and sound operating practices to promote safe and efficient operations. Recently, guidance pertaining to this element has been strengthened for nuclear power reactors. This additional guidance is given in Appendix C for information purposes. Though this guidance and good practices pertain to nuclear power reactors, DOE sites may choose to use a graded approach for implementing these in nuclear facilities.
Implementing routine outcome measurement in psychiatric rehabilitation services in Israel.
Roe, David; Gelkopf, Marc; Gornemann, Miriam Isolde; Baloush-Kleinman, Vered; Shadmi, Efrat
2015-01-01
In this article we present the design, development and implementation of the Psychiatric Rehabilitation Routine Outcome Measurement (PR-ROM) project, the first systematic effort to implement mental health routine outcome measures in Israel. The goal of the PR-ROM is to provide updated information about the process and impact of psychiatric rehabilitation services in Israel and to establish a sustainable infrastructure and foundation for routine outcome monitoring of rehabilitation services to improve care, inform policy, generate incentives for service improvement, increase informed decision-making and provide data for research purposes. The rehabilitation services evaluated and the characteristics of the population being served are described and the methods and nature of the collected data as well as some preliminary findings are presented. We discuss the major barriers encountered, our efforts to deal with them and lessons learned during the process. We conclude with a description of the current state of the initiative and plans for the future.
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.H.
1980-01-01
Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.
1983-01-01
Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
Routine nasal packing follwoing nasal surgery-Is it necessary?
Basha, S I; Gupta, D; Kaluskar, S K
2005-01-01
The practice of routine nasal packing after nasal surgery is usually customary and not evidence based. Post operative complications, while uncoumon, are sometimes pack related. A retrospective analysis of 110 patients who underwent a variety of nasal operations was performed to determine the incidence of complications when nasal packs were not routinely inserted 9 cases (8.2%) [6 out of these were revision surgeries] needed nasal packing for haemostasis at the end of surgery. 4 cases (3.6%) required to be packed in the immediate post operative period. One patient who required nasal packing developed a unilateral adhesion. No patient developed septal hematoma. The need for routine nasal packing is not supported. Packing should be indicated where there continuous bleeding at.
Monochromatic, Rosseland mean, and Planck mean opacity routine
NASA Astrophysics Data System (ADS)
Semenov, D.
2006-11-01
Several FORTRAN77 codes were developed to compute frequency-dependent, Rosseland and Planck mean opacities of gas and dust in protoplanetary disks. The opacities can be computed for an ensemble of dust grains having various compositions (ices, silicates, organics, etc), sizes, topologies (homogeneous/composite aggregates, homogeneous/layered/composite spheres, etc.), porosities, and dust-to-gas ratio. Several examples are available. In addition, a very fast opacity routine to be used in modeling of the radiative transfer in hydro simulations of disks is available upon request (10^8 routine calls require about 30s on Pentium 4 3.0GHz).
Jones, Blake L; Fiese, Barbara H
2014-01-01
Many daily routines and behaviors are related to the prevalence of obesity. This study investigated the association between routines and behaviors that act as protective factors related to lower prevalence of obesity in parents (BMI ≥ 30 kg/m(2)) and overweight in preschool children (BMI ≥ 85th percentile). Socio-demographic characteristics were assessed in relation to protective routines (PRs), and prevalence of obesity/overweight data from 337 preschool children and their parents. The two PRs assessed with parents included adequate sleep (≥7 h/night) and family mealtime routine (scoring higher than the median score). The four PRs assessed in children included adequate sleep (≥10 h/night), family mealtime routine, limiting screen-viewing time (≤2 h/day of TV, video, DVD), and not having a bedroom TV. Overall, 27.9% of parents were obese and 22.8% of children were overweight, and 39.8% of the parents had both parent PRs, and only 11.6% of children had all four child PRs. Results demonstrated that several demographic factors were significantly related to the use of PRs for parents and children. The lack of PRs was related to increased risk for overweight in children, but not for obesity in parents. However, in the adjusted models the overall cumulative benefits of using PRs was not significant in children either. In the multivariate adjusted logistic regression models, the only significant individual PR for children was adequate sleep. In a path analysis model, parent sleep was related to child sleep, which was in turn related to decreased obesity. Overall, findings suggest that parent and child PRs, especially sleep routines, within a family can be associated and may play an important role in the health outcomes of both parents and children. Understanding the mechanisms that influence how and when parents and children use these PRs may be promising for developing targeted family-based obesity-prevention efforts.
Back to Schooling: Challenging Implicit Routines and Change
ERIC Educational Resources Information Center
Gorodetsky, Malka; Barak, Judith
2009-01-01
Engestrom and others have suggested that major barriers towards school change are rooted in the hidden, implicit aspects of daily school life that are taken for granted. These constitute the school's taken-for-granted routines, which mold teachers' affordances and constraints within the school, without their awareness. The present paper provides…
Matrix algebra routines for the Acorn Archimedes microcomputer: example applications.
Fielding, A
1988-08-01
A set of matrix algebra routines have been written, as BASICV procedures, for the Acorn Archimedes microcomputer. It is shown that these procedures are executed so quickly that programs, which require matrix algebra computations, can be written in interpreted BASIC. Two example applications, reciprocal averaging and principal components analysis, are demonstrated.
32 CFR 318.14 - Blanket routine uses.
Code of Federal Regulations, 2010 CFR
2010-07-01
...—Disclosure When Requesting Information. A record from a system of records maintained by a Component may be..., or other benefit. (d) Routine Use—Disclosure of Requested Information. A record from a system of... of Personnel Management. A record from a system of records subject to the Privacy Act and...
Preschool Children's Memory for Repeated Changes in the Lunch Routine.
ERIC Educational Resources Information Center
Krackow, Elisa
An experiment examined the possibilities that: (1) repeated deviations in a routine event become fused into the general event representation (GER) for that event; and (2) when deviations go unreported, it is because they have been forgotten. Preschool children were interviewed to get their script reports before and after repeated deviations in the…
Developing Corpus-Based Materials to Teach Pragmatic Routines
ERIC Educational Resources Information Center
Bardovi-Harlig, Kathleen; Mossman, Sabrina; Vellenga, Heidi E.
2015-01-01
This article describes how to develop teaching materials for pragmatics based on authentic language by using a spoken corpus. The authors show how to use the corpus in conjunction with textbooks to identify pragmatic routines for speech acts and how to extract appropriate language samples and adapt them for classroom use. They demonstrate how to…
Increasing Day Care Staff Members' Interactions during Caregiving Routines.
ERIC Educational Resources Information Center
Venn, Martha L.; Wolery, Mark
1992-01-01
Four paraprofessional staff members in a mainstreamed day care program were trained to engage in positive interactive behaviors during diaper changing. Results indicated that staff increased frequency of game playing and other interactive behaviors during diapering, but increases were not generalized to feeding routines. (Author/JDD)
The Effect of Instruction on Pragmatic Routines in Academic Discussion
ERIC Educational Resources Information Center
Bardovi-Harlig, Kathleen; Mossman, Sabrina; Vellenga, Heidi E.
2015-01-01
This study investigates the effect of instruction on the acquisition of pragmatic routines used in academic discussion, specifically expressions of agreement, disagreement, and clarification. Thirty-seven learners, including an experimental group of 26 students and a control group of 11 students, participated in the study. Five intact classes…
32 CFR 1701.31 - General routine uses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTELLIGENCE ADMINISTRATION OF RECORDS UNDER THE PRIVACY ACT OF 1974 Routine Uses Applicable to More Than One..., criminal, administrative or regulatory in nature, and whether arising by general statute, particular... ODNI in connection with potential or actual civil, criminal, administrative, judicial or...
32 CFR 1701.31 - General routine uses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTELLIGENCE ADMINISTRATION OF RECORDS UNDER THE PRIVACY ACT OF 1974 Routine Uses Applicable to More Than One..., criminal, administrative or regulatory in nature, and whether arising by general statute, particular... ODNI in connection with potential or actual civil, criminal, administrative, judicial or...
Routine Activities and Sexual Harassment in the Workplace.
ERIC Educational Resources Information Center
De Coster, Stacy; Estes, Sarah Beth; Mueller, Charles W.
1999-01-01
In criminology, routine activities of potential victims can be used to predict victimization. Application to organizational sexual harassment data shows that organizational features (proximity in job location, supervisor or work group guardianship) and individual characteristics (target attractiveness) can predict sexual harassment victimization,…
Routine Metabolic Rate of Channel Catfish Ictalurus punctatus Fry
Technology Transfer Automated Retrieval System (TEKTRAN)
Channel catfish eggs are typically incubated at high density and are often subjected to sub-optimum dissolved oxygen (DO) concentrations while in the hatchery. Since DO plays an important role in the development, hatch rate, and growth of catfish eggs and fry, we measured routine metabolic rate of ...
Keeping Track: Using Routine-Based Instruction and Monitoring.
ERIC Educational Resources Information Center
Raver, Sharon
2003-01-01
This article reviews routine-based teaching and monitoring and offers guidelines for using these strategies to track the progress of individual children with disabilities. The Individual Activity-Objective Matrix and the Group-Objective Matrix are explained as ways to help teachers to structure opportunities for a child to learn and practice…
HATS: A Design Procedure for Routine Business Documents.
ERIC Educational Resources Information Center
Baker, William H.
2001-01-01
Describes an approach to teaching students a basic design process for routine business documents like memos, letters, and reports. Outlines the design principles of HATS (Headings, Access, Typography, and Spacing), how they apply in before-and-after fashion to various documents, and discusses an assignment in which students redesign an existing…
Rasch Analysis of the Routines-Based Interview Implementation Checklist
ERIC Educational Resources Information Center
Boavida, Tânia; Akers, Kate; McWilliam, R. A.; Jung, Lee Ann
2015-01-01
The Routines-Based Interview (RBI) is useful for developing functional outcomes/goals, for establishing strong relationships with families, and for assessing the family's true needs. In this study, the authors investigated the psychometric properties of the RBI Implementation Checklist, conducted by 120 early intervention professionals,…
School Bus Crash Rates on Routine and Nonroutine Routes
ERIC Educational Resources Information Center
O'Neal, Elizabeth; Ramirez, Marizen; Hamann, Cara; Young, Tracy; Stahlhut, Mary; Peek-Asa, Corinne
2014-01-01
Background: Although prior research has established that school buses are a safe form of transportation, crashes can produce catastrophic consequences. School buses have 2 types of routes: predictable, routine routes that take children to and from school and less predictable, nonroutine routes for school events. No studies have examined school bus…
Rethinking the Hidden Curriculum: Daily Routine in Slovene Preschools
ERIC Educational Resources Information Center
Zorec, Marcela Batistic; Došler, Anita Jug
2016-01-01
In Slovenia there is a unitary system of early education for all preschool-aged children. Since the vast majority of children attend full-day programmes, the daily routine represents a significant part of life for children in kindergarten. When systemic and curricular reform of preschools was introduced at the end of the twentieth century, lot of…
Creating Masterpieces: How Course Structures and Routines Enable Student Performance
ERIC Educational Resources Information Center
Dean, Kathy Lund; Fornaciari, Charles J.
2014-01-01
Over a five-year period, we made a persistent observation: Course structures and routines, such as assignment parameters, student group process rules, and grading schemes were being consistently ignored. As a result, we got distracted by correcting these structural issues and were spending less time on student assignment performance. In this…
Daily Routines and Sleep Disorders in Visually Impaired Children.
ERIC Educational Resources Information Center
Troster, Heinrich; And Others
1996-01-01
Assessed sleep disorders in 265 visually impaired and 67 non-disabled 10- to 72-month olds. Found that infants with visual impairments had more difficulties in falling asleep and in sleeping through the night than nonhandicapped children. Also found a relationship between sleep disorders and the regularity of children's daily routine and…
32 CFR 318.14 - Blanket routine uses.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interest of simplicity, economy and to avoid redundancy. (b) Routine Use—Law Enforcement. If a system of... to the OMB in connection with the review of private relief legislation as set forth in OMB Circular A-19 at any stage of the legislative coordination and clearance process as set forth in that...
32 CFR 318.14 - Blanket routine uses.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interest of simplicity, economy and to avoid redundancy. (b) Routine Use—Law Enforcement. If a system of... to the OMB in connection with the review of private relief legislation as set forth in OMB Circular A-19 at any stage of the legislative coordination and clearance process as set forth in that...
32 CFR 318.14 - Blanket routine uses.
Code of Federal Regulations, 2012 CFR
2012-07-01
... interest of simplicity, economy and to avoid redundancy. (b) Routine Use—Law Enforcement. If a system of... to the OMB in connection with the review of private relief legislation as set forth in OMB Circular A-19 at any stage of the legislative coordination and clearance process as set forth in that...
32 CFR 318.14 - Blanket routine uses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... interest of simplicity, economy and to avoid redundancy. (b) Routine Use—Law Enforcement. If a system of... to the OMB in connection with the review of private relief legislation as set forth in OMB Circular A-19 at any stage of the legislative coordination and clearance process as set forth in that...
Optimization of Routine Monitoring of Workers Exposed to Plutonium Aerosols.
Davesne, Estelle; Quesne, Benoit; De Vita, Antoine; Chojnacki, Eric; Blanchardon, Eric; Franck, Didier
2016-10-01
In case of incidental confinement failure, mixed oxide (MOX) fuel preparation may expose workers to plutonium aerosols. Due to its potential toxicity, occupational exposure to plutonium compounds should be kept as low as reasonably achievable. To ensure the absence of significant intake of radionuclides, workers at risk of internal contamination are monitored by periodic bioassay planned in a routine monitoring programme. From bioassay results, internal dose may be estimated. However, accurate dose calculation relies on known exposure conditions, which are rarely available when the exposure is demonstrated by routine monitoring only. Therefore, internal dose calculation is subject to uncertainty from unknown exposure conditions and from activity measurement variability. The present study calculates the minimum detectable dose (MDD) for a routine monitoring programme by considering all plausible conditions of exposure and measurement uncertainty. The MDD evaluates the monitoring quality and can be used for optimization. Here, MDDs were calculated for the monitoring of workers preparing MOX fuel. Uncertain parameters were modelled by probability distributions defined according to information provided by experts of routine monitoring, of workplace radiological protection and of bioassay analysis. Results show that the current monitoring is well adapted to potential exposure. A sensitivity study of MDD highlights high dependence on exposure condition modelling. Integrating all expert knowledge is therefore crucial to obtain reliable MDD estimates, stressing the value of a holistic approach to worker monitoring.
[Prenatal ultrasound diagnosis of complex heart abnormality in routine screening].
Kronich, W; Salzer-Muhar, U; Strigl, E; Gerstner, G J
1990-02-01
Case report on a severe cardial malformation associated with trisomia 21, diagnosed by ultrasound-screening in the 34th week of gestation. Further diagnostic evaluation of the case and therapeutic management are described. The problems of modern malformation diagnostics by routine ultrasound scanning in pregnancy are discussed.
Asymptomatic Gastric Band Erosion Detected during Routine Gastroduodenoscopy
Yun, Gee Young; Kim, Woo Sub; Kim, Hye Jin; Kang, Sun Hyung; Moon, Hee Seok; Sung, Jae Kyu; Jeong, Hyun Yong
2016-01-01
The incidence of gastric band erosion has decreased to 1%. Gastric band erosion can manifest with various clinical symptoms, although some patients remain asymptomatic. We present a case of a mostly asymptomatic patient who was diagnosed with gastric band erosion during a routine health check-up. A 32-year-old man without any underlying diseases except for non-alcoholic fatty liver underwent laparoscopic adjustable gastric band surgery in 2010. He had no significant complications postoperatively. He underwent routine health check-ups with near-normal gastroduodenoscopic findings through 2014. However, in 2015, routine gastroduodenoscopy showed that the gastric band had eroded into the stomach. His gastric band was removed laparoscopically, and the remaining gastric ulcer perforation was repaired using an omental patch. Due to the early diagnosis, the infection was not serious. The patient was discharged on postoperative day 3 with oral antibiotics. This patient was fortunately diagnosed early by virtue of a routine health check-up; thus, eliminating the possibility of serious complications. PMID:26867553
Infant/Toddler Caregiving: A Guide to Routines. Second Edition.
ERIC Educational Resources Information Center
Gonzalez-Mena, Janet
Intended for use in conjunction with videos illustrating key concepts and caregiving techniques, this guide focuses on how the daily routines of caring for infants and toddlers can become opportunities for promoting the child's learning and development and for deepening the relationship between child and caregiver. Special attention is given to…
Validating soil phosphorus routines in the SWAT model
Technology Transfer Automated Retrieval System (TEKTRAN)
Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...
Vigilance, Precaution and Routine Behavior - The Socio-cultural Impact
2011-03-01
H., Mort, J. and Eilam, D. Obsessive - Compulsive Disorder ( OCD ): A disorder of pessimal (non-functional) motor behavior. Acta Psychiatrica... compulsive cleaning and compulsive checking in obsessive - compulsive disorder . European Neuropsychopharmacology, in press. 4. Eilam, D., Izhar, R., and...everyday routines: The counterpart of compulsive rituals. Behavioural Brain Research, 212 (2010): 90-95. 2. Zor, R., Keren, H., Hermesh, H., Szechtman
Glogs as Non-Routine Problem Solving Tools in Mathematics
ERIC Educational Resources Information Center
Devine, Matthew T.
2013-01-01
In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…
Film flow of a suspension down an inclined plane.
Li, Xiaofan; Pozrikidis, C
2003-05-15
A method is developed for simulating the film flow of a suspension of rigid particles with arbitrary shapes down an inclined plane in the limit of vanishing Reynolds number. The problem is formulated in terms of a system of integral equations of the first and second kind for the free-surface velocity and the traction distribution along the particle surfaces involving the a priori unknown particle linear velocity of translation and angular velocity of rotation about designated centres. The problem statement is completed by introducing scalar constraints that specify the force and torque exerted on the individual particles. A boundary-element method is implemented for solving the governing equations for the case of a two-dimensional periodic suspension. The system of linear equations arising from numerical discretization is solved using a preconditioner based on a particle-cluster iterative method recently developed by Pozrikidis (2000 Engng Analysis Bound. Elem. 25, 19-30). Numerical investigations show that the generalized minimal residual (GMRES) method with this preconditioner is significantly more efficient than the plain GMRES method used routinely in boundary-element implementations. Extensive numerical simulations for solitary particles and random suspensions illustrate the effect of the particle shape, size and aspect ratio in semi-finite shear flow, and the effect of free-surface deformability in film flow.
Visual routines are associated with specific graph interpretations.
Michal, Audrey L; Franconeri, Steven L
2017-01-01
We argue that people compare values in graphs with a visual routine - attending to data values in an ordered pattern over time. Do these visual routines exist to manage capacity limitations in how many values can be encoded at once, or do they actually affect the relations that are extracted? We measured eye movements while people judged configurations of a two-bar graph based on size only ("[short tall] or [tall short]?") and contrast only ("[light dark] or [dark light]?"). Participants exhibited visual routines in which they systematically attended to a specific feature (or "anchor point") in the graph; in the size task, most participants inspected the taller bar first, and in the contrast task, most participants attended to the darker bar first. Participants then judged configurations that varied in both size and contrast (e.g., [short-light tall-dark]); however, only one dimension was task-relevant (varied between subjects). During this orthogonal task, participants overwhelmingly relied on the same anchor point used in the single-dimension version, but only for the task-relevant dimension (e.g., taller bar for the size-relevant task). These results suggest that visual routines are associated with specific graph interpretations. Responses were also faster when task-relevant and task-irrelevant anchor points appeared on the same object (congruent) than on different objects (incongruent). This interference from the task-irrelevant dimension suggests that top-down control may be necessary to extract relevant relations from graphs. The effect of visual routines on graph comprehension has implications for both science, technology, engineering, and mathematics pedagogy and graph design.
Cost effectiveness of routine duodenal biopsies in iron deficiency anemia
Broide, Efrat; Matalon, Shay; Kriger-Sharabi, Ofra; Richter, Vered; Shirin, Haim; Leshno, Moshe
2016-01-01
AIM To investigate the cost effectiveness of routine small bowel biopsies (SBBs) in patients with iron deficiency anemia (IDA) independent of their celiac disease (CD) serology test results. METHODS We used a state transition Markov model. Two strategies were compared: routine SBBs during esophagogastroduodenoscopy (EGD) in all patients with IDA regardless their celiac serology status (strategy A) vs SBBs only in IDA patients with positive serology (strategy B). The main outcomes were quality adjusted life years (QALY), average cost and the incremental cost effectiveness ratio (ICER). One way sensitivity analysis was performed on all variables and two way sensitivity analysis on selected variables were done. In order to validate the results, a Monte Carlo simulation of 100 sample trials with 10, and an acceptability curve were performed. RESULTS Strategy A of routine SBBs yielded 19.888 QALYs with a cost of $218.10 compared to 19.887 QALYs and $234.17 in strategy B. In terms of cost-effectiveness, strategy A was the dominant strategy, as long as the cost of SBBs stayed less than $67. In addition, the ICER of strategy A was preferable, providing the cost of biopsy stays under $77. Monte Carlo simulation demonstrated that strategy A yielded the same QALY but with lower costs than strategy B. CONCLUSION Our model suggests that EGD with routine SBBs is a cost-effective approach with improved QALYs in patients with IDA when the prevalence of CD is 5% or greater. SBBs should be a routine screening tool for CD among patients with IDA, regardless of their celiac antibody status. PMID:27678365
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
NASA Technical Reports Server (NTRS)
Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)
1992-01-01
A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Linear phase compressive filter
McEwan, Thomas E.
1995-01-01
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.
Linear phase compressive filter
McEwan, T.E.
1995-06-06
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.
Chen, Qingwen; Narayanan, Kumaran
2015-01-01
Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
System interaction with linear and nonlinear characteristics
Lin, C.W. ); Tseng, W.S. )
1991-01-01
This book is covered under some of the following topics: seismic margins in piping systems, vibrational power flow in a cylindrical shell, inelastic pipework dynamics and aseismic design, an efficient method for dynamic analysis of a linearly elastic piping system with nonlinear supports.
Richter, B.
1985-12-01
A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.
Linear Equations: Equivalence = Success
ERIC Educational Resources Information Center
Baratta, Wendy
2011-01-01
The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…
Alfonso, R; Belinchon, I
2001-01-01
Linear eruptions are sometimes associated with systemic diseases and they may also be induced by various drugs. Paradoxically, such acquired inflammatory skin diseases tend to follow the system of Blaschko's lines. We describe a case of unilateral linear drug eruption caused by ibuprofen, which later became bilateral and generalized.
Linearization of Robot Manipulators
NASA Technical Reports Server (NTRS)
Kreutz, Kenneth
1987-01-01
Four nonlinear control schemes equivalent. Report discusses theory of nonlinear feedback control of robot manipulator, emphasis on control schemes making manipulator input and output behave like decoupled linear system. Approach, called "exact external linearization," contributes efforts to control end-effector trajectories, positions, and orientations.
Friend, Sarah; Fulkerson, Jayne A.; Neumark-Sztainer, Dianne; Garwick, Ann; Flattum, Colleen Freech; Draxten, Michelle
2015-01-01
Little is known about the continuation of family meals from childhood to parenthood. This study aims to examine associations between parents’ report of eating family meals while growing up and their current family meal frequency, routines, and expectations. Baseline data were used from the Healthy Home Offerings via the Mealtime Environment (HOME) Plus study, a randomized controlled trial with a program to promote healthful behaviors and family meals at home. Participants (160 parent/child dyads) completed data collection in 2011–2012 in the Minneapolis/St. Paul, MN metropolitan area. Parents were predominately female (95%) and white (77%) with a mean age of 41.3 years. General linear modeling examined relationships between parents’ report of how often they ate family meals while growing up and their current family meal frequency, routines and expectations as parents, controlling for parent age, education level and race. Parental report of eating frequent family meals while growing up was positively and significantly associated with age, education and self-identification as white (all p<0.05). Compared to those who ate family meals less than three times/week or four to five times/week, parents who ate six to seven family meals/week while growing up reported significantly more frequent family meals with their current family (4.0, 4.2 vs 5.3 family meals/week, p=.001). Eating frequent family meals while growing up was also significantly and positively associated with having current regular meal routines and meal expectations about family members eating together (both p<.05). Promoting family meals with children may have long-term benefits over generations. PMID:25485670
Linear models: permutation methods
Cade, B.S.; Everitt, B.S.; Howell, D.C.
2005-01-01
Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...
NASA Technical Reports Server (NTRS)
Clancy, John P.
1988-01-01
The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.
Cryogenic Neutron Protein Crystallography: routine methods and potential benefits
Weiss, Kevin L; Tomanicek, Stephen J; NG, Joseph D
2014-01-01
The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.
Limiting the use of routine radiography for acute ankle injuries.
Cockshott, W. P.; Jenkin, J. K.; Pui, M.
1983-01-01
In the diagnosis of ankle injuries routine radiography is often productive. An international survey of the average number of radiographs made of injured ankles suggested that two projections are adequate to detect fractures. This was confirmed in a prospective study of 242 patients coming to a hospital emergency department with recent ankle injuries. All the fractures could be identified on an anteroposterior or a lateral projection, although some were more obvious on an oblique view. As well, all the fractures were associated with malleolar soft-tissue swelling. Thus, radiography for acute ankle injuries could safely be restricted to patients with soft-tissue swelling, and fractures could be diagnosed using only two routine projections, though for management purposes additional projections might be needed. With a policy of limiting the use of radiography substantial cost reductions are possible. Images FIG. 1 PMID:6407744
Analysis of routine communication in the air traffic control system
NASA Technical Reports Server (NTRS)
Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle
1990-01-01
The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.
The concentration of criminal victimization and patterns of routine activities.
Kuo, Shih-Ya; Cuvelier, Steven J; Sheu, Chuen-Jim; Zhao, Jihong Solomon
2012-06-01
Although many repeat victimization studies have focused on describing the prevalence of the phenomenon, this study attempted to explain variations in the concentration of victimization by applying routine activities as a theoretical model. A multivariate analysis of repeat victimization based on the 2005 Taiwan criminal victimization data supported the general applicability of the routine activity model developed in Western culture for predicting repeat victimization. Findings that diverged from Western patterns included family income to assault, gender to robbery, and marital status, family income, and major activity to larceny incidents. These disparities illustrated the importance of considering the broader sociocultural context in the association between risk predictors and the concentration of criminal victimization. The contradictory results and nonsignificant variance also reflected untapped information on respondents' biological features and psychological tendencies. Future victimization research would do well to integrate measurements that are sensitive to salient sociocultural elements of the society being studied and individuals' biological and psychological traits.
Analysis of routine communication in the air traffic control system
NASA Astrophysics Data System (ADS)
Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle
1990-08-01
The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.
RNAi as a Routine Route Toward Breast Cancer Therapy
2009-09-01
a third -generation shRNA library 2. collection of cell lines for screening within the proposed program 6 3. determination that microRNAs can...08-1-0572 TITLE: RNAi as a routine route toward breast cancer therapy PRINCIPAL INVESTIGATOR: Gregory J. Hannon, Ph.D... therapy 5a. CONTRACT NUMBER W81XWH – 08 – 1 - 0572 5b. GRANT NUMBER BC076047 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Fast native-SAD phasing for routine macromolecular structure determination.
Weinert, Tobias; Olieric, Vincent; Waltersperger, Sandro; Panepucci, Ezequiel; Chen, Lirong; Zhang, Hua; Zhou, Dayong; Rose, John; Ebihara, Akio; Kuramitsu, Seiki; Li, Dianfan; Howe, Nicole; Schnapp, Gisela; Pautsch, Alexander; Bargsten, Katja; Prota, Andrea E; Surana, Parag; Kottur, Jithesh; Nair, Deepak T; Basilico, Federica; Cecatiello, Valentina; Pasqualato, Sebastiano; Boland, Andreas; Weichenrieder, Oliver; Wang, Bi-Cheng; Steinmetz, Michel O; Caffrey, Martin; Wang, Meitian
2015-02-01
We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.
A transportation system for routine visits to Mars
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1988-01-01
A conceptual transportation system designed for routing visits to Mars is described. The system is planned to provide routine support for a base population of roughly 20 people on Mars. The system utilizes in situ resource production to support Mars missions and generates artificial gravity while delivering additional consumables. The system uses cycling space stations for support. Possible lunar resource capabilities, taxi vehicles, and technology and human issues are examined.
C-statistic fitting routines: User's manual and reference guide
NASA Technical Reports Server (NTRS)
Nousek, John A.; Farwana, Vida
1991-01-01
The computer program is discussed which can read several input files and provide a best set of values for the functions provided by the user, using either C-statistic or the chi(exp 2) statistic method. The program consists of one main routine and several functions and subroutines. Detail descriptions of each function and subroutine is presented. A brief description of the C-statistic and the reason for its application is also presented.
Changing the game: exploring infants' participation in early play routines
Fantasia, Valentina; Fasulo, Alessandra; Costall, Alan; López, Beatriz
2014-01-01
Play has proved to have a central role in children's development, most notably in rule learning (Piaget, 1965; Sutton-Smith, 1979) and negotiation of roles and goals (Garvey, 1974; Bruner et al., 1976). Yet very little research has been done on early play. The present study focuses on early social games, i.e., vocal-kinetic play routines that mothers use to interact with infants from very early on. We explored 3-month-old infants and their mothers performing a routine game first in the usual way, then in two violated conditions: without gestures and without sound. The aim of the study is to investigate infants' participation and expectations in the game and whether this participation is affected by changes in the multimodal format of the game. Infants' facial expressions, gaze, and body movements were coded to measure levels of engagement and affective state across the three conditions. Results showed a significant decrease in Limbs Movements and expressions of Positive Affect, an increase in Gaze Away and in Stunned Expression when the game structure was violated. These results indicate that the violated game conditions were experienced as less engaging, either because of an unexpected break in the established joint routine, or simply because they were weaker versions of the same game. Overall, our results suggest that structured, multimodal play routines may constitute interactional contexts that only work as integrated units of auditory and motor resources, representing early communicative contexts which prepare the ground for later, more complex multimodal interactions, such as verbal exchanges. PMID:24936192
New routines for algebraic programming of the Dirac equation
Cotaescu, I.I.; Vulcanov, D.N.
1997-04-01
We present new procedures in the REDUCE language for algebraic programming of the Dirac equation on curved space-time. The main part of the program is a package of routines defining the Pauli and Dirac matrix algebras. Then the Dirac equation is obtained using the facilities of the EXCALC package. Finally we present some results obtained after running our procedures for the Dirac equation on several curved space-times.
Getting through to circadian oscillators: why use constant routines?
NASA Technical Reports Server (NTRS)
Duffy, Jeanne F.; Dijk, Derk-Jan
2002-01-01
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.
RIALTO (Routine Inflight Assessment of Lower Tropospheric Oxidants)
NASA Astrophysics Data System (ADS)
Bottenheim, J.; Strapp, W.; Hoenninger, G.; Kobelka, W.; Netcheva, S.; Tarasick, D.; Dalziel, J.; Beauchamp, S.
2005-12-01
In spite of large advances in knowledge of tropospheric chemistry in the latter part of the 20th century, the database of routine observations is embarrassingly sparse. The large majority of observations are limited to surface measurements of only a few species, and most of those are in urban/suburban locations. Regularly obtained vertical profile data are limited to ozone from sondes or ozone DIALs. Routine observations from space promise to improve the situation but actual profile information will still be hard to obtain. A major obstacle to a routine measurement program in the vertical is expense, since it requires lifting an observing system to several altitudes above ground, and then having it return to ground level after performing the desired measurements. One solution to this problem is to make use of existing infrastructure, i.e. to mount measurement equipment onboard aircraft already in service. This approach has been pioneered by such programs as MOZAIC and CARIBIC, where systems are incorporated in luggage compartments of large commercial passenger aircraft. RIALTO is based on the same concept. However, instead of large passenger aircraft our design is based on a small, fully automated instrument package that can fly on small planes already in operation. A first instrument package consisting of a 2B ozone monitor, two mini MAXDOAS spectrometers, and assorted control and data storage equipment was assembled and installed in the nose cone of a twin engine King Air aircraft that made routine sorties in the summer of 2004 from Halifax, N.S. out over the Atlantic Ocean. In this presentation we will expand on the RIALTO concept, present first results obtained in 2004, and discuss current and future plans.
Dissociations in routine behaviour across patients and everyday tasks.
Forde, Emer M E; Humphreys, Glyn W
2002-01-01
We present a single case study of a patient, FK, who was severely impaired on routine, everyday tasks, such as preparing a cup of tea. We used the action coding system developed by Schwartz et al. to provide quantitative and qualitative measures of his performance in a number of experimental manipulations. In section A, we established FK's baseline performance on a range of tasks with (a) task-congruent objects only and (b) task-congruent objects and semantic distracters. In section B, we aimed to facilitate FK's performance by (a) giving him a pictorial representation of the goal, (b) giving him a set of written commands to follow, (c) giving him one command at a time, (d) demonstrating how the task should be performed and (e) dividing the task into smaller subgoals. We compared FK's performance with another patient, HG, to establish if there are qualitative differences between patients with 'action disorganization syndrome'. In section C, we aimed to hinder FK's performance by interrupting his execution of routine tasks. By comparing the factors that facilitated and impaired FK's performance in sections B and C, we hoped to isolate the key cognitive processes required to generate and control routine behaviour. In section D, we investigated how task demands impact on our ability to complete different everyday activities. The results of these experiments have important clinical implications for rehabilitation programmes for patients with action disorganization syndrome and can also help to distinguish between contemporary theoretical accounts of routine behaviour. In particular, we propose that patients who can be classified under the umbrella term of 'action disorganization syndrome' do not all have a reduction to 'non-specific cognitive resources' but can have qualitatively different impairments to a specialized action production system.
Jensen, Andrew; Boyle, Justin; Khanna, Sankalp
2012-01-01
We describe the development of a method to distil routinely collected clinical data into patient flow information to aid hospital bed management. Using data from state-wide emergency department and inpatient clinical information systems, a user-friendly interface was developed to visualise patient flow conditions for a particular hospital. The historical snapshots employ a variable time scale, allowing flow to be visualised across a day, week, month or year. Flow information includes occupancy, arrival and departure rates, length-of-stay and access block observations, which can be filtered by age, departure status, diagnosis, elective status, triage category, and admission unit. The tool may be helpful in supporting hospital bed managers in their daily decision making.
Pediatric Mastocytosis: Routine Anesthetic Management for a Complex Disease
Carter, Melody C.; Uzzaman, Ashraf; Scott, Linda M.; Metcalfe, Dean D.; Quezado, Zenaide
2009-01-01
BACKGROUND Pediatric mastocytosis consists of a spectrum of clinical variants characterized by increased numbers of resident mast cells in various organ systems. Mast cells are instrumental in mediating anaphylaxis and patients with mastocytosis are at risk to develop provoked and unprovoked episodes of anaphylaxis. METHODS The authors examined peri-anesthetic records of patients with pediatric mastocytosis who were anesthetized for diagnostic and surgical procedures from 1993 to 2006. In addition, the authors conducted a literature review of the experience of the use anesthetics in pediatric mastocytosis. RESULTS Twenty-two patients with pediatric mastocytosis, with a median age of 3.2 years (range 6 months to 20 years) at the time of the procedure, were anesthetized for 29 diagnostic and surgical procedures. All variants of the disease are represented in this series. Most patients had a history of flushing, pruritus, GERD and abdominal pain; one patient had history of spontaneous anaphylaxis. Routine anesthetic techniques were used and despite the complexity of the disease, the peri-operative courses were uncomplicated and without serious adverse events. CONCLUSIONS We review the main features of pediatric mastocytosis, its anesthetic and perioperative implications, and describe a practical approach to the anesthetic management of pediatric patients with the disease. While many drugs used routinely in anesthesia reportedly cause mast cell degranulation, deviations from routine anesthesia techniques are not necessarily warranted. However, an understanding of the anesthetic implications of the disease and meticulous preparation to treat possible adverse events are advised. PMID:18633019
Routine prophylactic antibiotic use in the management of snakebite
Tagwireyi, Dexter D; Ball, Douglas E; Nhachi, Charles FB
2001-01-01
Background Routine antibiotic prophylaxis following snakebite is not recommended but evidence suggests that it may be common practice in Zimbabwe. This study set out to determine and describe the extent of this practice at Parirenyatwa Hospital, a large teaching hospital in Zimbabwe Methods A retrospective case review (1996 to 1999 inclusive) of all cases of snakebite was undertaken at Parirenyatwa Hospital. Cases with a diagnosis of snakebite, presenting within 24 hours of the bite and with no complications or concurrent illness were defined as "routine prophylactic antibiotic use". Results From 78 cases which satisfied the inclusion criteria, 69 (88.5%) received antibiotics. Ten different antibiotics from 6 different classes were used with penicillins the most commonly prescribed (benzylpenicillin in 29% of cases, alone or in combination). Over 40% of antibiotics were given parenterally although all patients were conscious on admission. The total cost of antibiotics used was estimated at US$522.98. Conclusion Routine prophylactic use of antibiotics in snakebite at Parirenyatwa Hospital is common practice. This may highlight the lack of a clearly defined policy leading to wasteful inappropriate antibiotic use which is costly and may promote bacterial antibiotic resistance. Further work is required to investigate the reasons for this practice and to design appropriate interventions to counter it. PMID:11710972
CERES: A Set of Automated Routines for Echelle Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Espinoza, Néstor
2017-03-01
We present the Collection of Elemental Routines for Echelle Spectra (CERES). These routines were developed for the construction of automated pipelines for the reduction, extraction, and analysis of spectra acquired with different instruments, allowing the obtention of homogeneous and standardized results. This modular code includes tools for handling the different steps of the processing: CCD image reductions; identification and tracing of the echelle orders; optimal and rectangular extraction; computation of the wavelength solution; estimation of radial velocities; and rough and fast estimation of the atmospheric parameters. Currently, CERES has been used to develop automated pipelines for 13 different spectrographs, namely CORALIE, FEROS, HARPS, ESPaDOnS, FIES, PUCHEROS, FIDEOS, CAFE, DuPont/Echelle, Magellan/Mike, Keck/HIRES, Magellan/PFS, and APO/ARCES, but the routines can be easily used to deal with data coming from other spectrographs. We show the high precision in radial velocity that CERES achieves for some of these instruments, and we briefly summarize some results that have already been obtained using the CERES pipelines.
An epilepsy information system to support routine and research.
Griep, P; van den Berg, N; Doelman, J; Starrenburg, R
1996-07-01
An epilepsy information system is described that supports routine patient care, research, and medical management. The patient's clinical data is ordered in time by the date of the patient contact when the data was collected. The clinical data is also classified into six categories. An unrestricted text group has text subjects in each of these groups as well as in a general free text area. The system is integrated with other information subsystems (e.g. patient registration, clinical chemistry laboratory, EEG department and pharmacy) as well as with the routinely used text processor. Data inquiries for research and medical management purposes are programmed in a Structured Query Language (SQL). The data needed to answer these queries are taken from the data collected in daily routine. The integration of the system is very useful because data only have to be entered once and can be used when and where needed. Patient data stored in this system is more accessible in general as well as more usable for research purposes compared with the patient data previously stored only on paper.