Sample records for rover program developments

  1. Development of "Remotely Operated Vehicles for Education and Research" (ROVERs)

    NASA Astrophysics Data System (ADS)

    Gaines, J. E.; Bland, G.; Bydlowski, D.

    2017-12-01

    The University of South Florida is a team member for the AREN project which develops educational technologies for data acquisition. "Remotely Operated Vehicles for Education and Research" (ROVERs) are floatable data acquisition systems used for Earth science measurements. The USF partnership was productive in the first year, resulting in new autonomous ROVER platforms being developed and used during a 5 week STEM summer camp by middle school youth. ROVERs were outfitted with GPS and temperature sensors and programmed to move forward, backwards, and to turn autonomously using the National Instruments myRIO embedded system. GLOBE protocols were used to collect data. The outreach program's structure lended itself to accomplishing an essential development effort for the AREN project towards the use of the ROVER platform in informal educational settings. A primary objective of the partnership is curriculum development to integrate GLOBE protocols and NASA technology and hardware/ROVER development wher new ROVER platforms are explored. The USF partnership resulted in two design prototypes for ROVERs, both of which can be created from recyclable materials for flotation and either 3D printed or laser cut components. In addition, both use the National Instruments myRIO for autonomous control. We will present two prototypes designed for use during the USF outreach program, the structure of the program, and details on the fabrication of prototype Z during the program by middle school students. Considering the 5-year objective of the AREN project is to "develop approaches, learning plans, and specific tools that can be affordably implemented nationwide (globally)", the USF partnership is key as it contributes to each part of the objective in a unique and impactful way.

  2. Academic Skills Rovers: A Just in Time Peer Support Initiative for Academic Skills and Literacy Development

    ERIC Educational Resources Information Center

    Copeman, Peter; Keightley, Polly

    2014-01-01

    In 2013 the University of Canberra (UC) initiated a program of peer-assisted academic skills help, the Academic Skills Rovers program, with the goal of providing drop-in peer learning support to students at campus locations where they congregate to study. The Academic Skills Rovers were initially recruited from the teacher education discipline,…

  3. Control technique for planetary rover

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya

    1994-01-01

    Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.

  4. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  5. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  6. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  7. An Analog Rover Exploration Mission for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program into the Ontario Science Center (OSC) to educate and fascinate people of all ages.

  8. United States planetary rover status: 1989

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna L. S.; Dias, William C.

    1990-01-01

    A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.

  9. Viking '79 Rover study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.

  10. Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thomas, Hans; Lau, Sonie (Technical Monitor)

    1998-01-01

    Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.

  11. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  12. Development and testing of laser-induced breakdown spectroscopy for the Mars Rover Program : elemental analysis at stand-off distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.

    2003-01-01

    One of the most Fundamental pieces of information about any planetary body is the elemental cornposition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks for which direct contact is possible. These in-situ analyses require that the lander or rover be in contact with the sample

  13. Bringing Terramechanics to bear on Planetary Rover Design

    NASA Astrophysics Data System (ADS)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real-time processing issues; improvements in modelling of vehicle slippage and traction; study of methods to achieve rover design robustness. This paper will present the charter of the ISTVS Rovers Technical Group and its upcoming activities and therefore will be of a programmatic nature.

  14. Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.

  15. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  16. Students, Teachers, and Scientists Partner to Explore Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.

    2003-12-01

    The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).

  17. International testing of a Mars rover prototype

    NASA Astrophysics Data System (ADS)

    Kemurjian, Alexsandr Leonovich; Linkin, V.; Friedman, L.

    1993-03-01

    Tests on a prototype engineering model of the Russian Mars 96 Rover were conducted by an international team in and near Death Valley in the United States in late May, 1992. These tests were part of a comprehensive design and testing program initiated by the three Russian groups responsible for the rover development. The specific objectives of the May tests were: (1) evaluate rover performance over different Mars-like terrains; (2) evaluate state-of-the-art teleoperation and autonomy development for Mars rover command, control and navigation; and (3) organize an international team to contribute expertise and capability on the rover development for the flight project. The range and performance that can be planned for the Mars mission is dependent on the degree of autonomy that will be possible to implement on the mission. Current plans are for limited autonomy, with Earth-based teleoperation for the nominal navigation system. Several types of television systems are being investigated for inclusion in the navigation system including panoramic camera, stereo, and framing cameras. The tests used each of these in teleoperation experiments. Experiments were included to consider use of such TV data in autonomy algorithms. Image processing and some aspects of closed-loop control software were also tested. A micro-rover was tested to help consider the value of such a device as a payload supplement to the main rover. The concept is for the micro-rover to serve like a mobile hand, with its own sensors including a television camera.

  18. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  19. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  20. Driving on the surface of Mars with the rover sequencing and visualization program

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2005-01-01

    Operating a rover on Mars is not possible using teleoperations due to the distance involved and the bandwith limitations. To operate these rovers requires sophisticated tools to make operators knowledgeable of the terrain, hazards, features of interest, and rover state and limitations, and to support building command sequences and rehearsing expected operations. This paper discusses how the Rover Sequencing and Visualization program and a small set of associated tools support this requirement.

  1. Centralized Planning for Multiple Exploratory Robots

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony

    2005-01-01

    A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.

  2. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  3. The ExoMars Rover Science Archive: Status and Plans

    NASA Astrophysics Data System (ADS)

    Heather, D.; Lim, T.; Metcalfe, L.

    2017-09-01

    The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The ExoMars Rover and Surface Platform deliveries will be among the first data in the PSA to be formatted according to the new PDS4 Standards, and will be the first rover data to be hosted within the archive at all. The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). This presentation will outline the current plans for archiving of the ExoMars Rover and Surface Platform science data.

  4. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  5. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  6. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.

  7. Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.

  8. Update on Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.

  9. Developing Tools and Technologies to Meet MSR Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2013-01-01

    This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.

  10. Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers

    NASA Astrophysics Data System (ADS)

    Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka

    2017-05-01

    Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.

  11. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  13. Shark as viewed by Sojourner Rover

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This close-up image of Shark, in the Bookshelf at the back of the Rock Garden, was taken by Sojourner Rover on Sol 75. Also in the image are Half Dome (right) and Desert Princess (lower right). At the bottom left, a thin 'crusty' soil layer has been disturbed by the rover wheels.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  14. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  15. Ambler - An autonomous rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  16. Environmental Test Program for the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; VanVelzer, Paul L.

    2004-01-01

    On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.

  17. Rover concepts for lunar exploration

    NASA Technical Reports Server (NTRS)

    Connolly, John F.

    1993-01-01

    The paper describes the requirements and design concepts developed for the First Lunar Outpost (FLO) and the follow-on lunar missions by the Human Planet Surface Project Office at the Johnson Space Center, which include inputs from scientists, technologists, operators, personnel, astronauts, mission designers, and program managers. Particular attention is given to the requirements common to all rover concepts, the precursor robotic missions, the FLO scenario and capabilities, and the FLO evolution.

  18. Proposing an International Collaboration on Lightweight Autonomous Vehicles to Conduct Scientific Traverses and Surveys over Antarctica and the Surrounding Sea Ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Behar, Alberto

    2004-01-01

    We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.

  19. Project of the planetary terrain analogs research for technology development and education in geodesy and image processing.

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen

    2013-04-01

    The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as: spectrometer, odometer, solar radiation sensor, temperature sensor, wind sensor, magnetometer and radiation detector. The first version of the MExRover is operational and now is in testing process. We are open to proposals of mutual exploitation of MExRover platform for science, education and outreach purposes. 3. Specification Dimensions W×L×H 600×1000×400/1700 mm Maximum weight 60 kg Payload weight 20 kg Cruising range 3 km Mean velocity 1 km/h Acknowledgements This work is supported by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract # 11.G34.31.0021 dd. 30.11.2010).

  20. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Prospecting Rovers for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.

    2007-01-01

    A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.

  2. Immersive visualization for navigation and control of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Hartman, Frank R.; Cooper, Brian; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    The Rover Sequencing and Visualization Program (RSVP) is a suite of tools for sequencing of planetary rovers, which are subject to significant light time delay and thus are unsuitable for teleoperation.

  3. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  4. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  5. The ExoMars Science Data Archive: Status and Plans

    NASA Astrophysics Data System (ADS)

    Heather, David; Barbarisi, Isa; Brumfitt, Jon; Lim, Tanya; Metcalfe, Leo; Villacorta, Antonio

    2017-04-01

    The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). These are the first data in the PSA to be formatted according to the new PDS4 Standards, and there are also significant differences in the way in which a scientist will want to query, retrieve, and use data from a suite of rover instruments as opposed to remote sensing instrumentation from an orbiter. NASA has a strong user community interaction for their rovers, and a similar approach to their 'Analysts Notebook' will be needed for the future PSA. In addition to the archiving interface itself, there are differences with the overall archiving process being followed for ExoMars compared to previous ESA planetary missions. The first level of data processing for the 2016 mission, from telemetry to raw, is completed by ESA at ESAC in Madrid, where the archive itself resides. Data continuously flow direct to the PSA, where after the given proprietary period, they will be released to the community via the user interfaces. For the rover mission, the data pipelines are being developed by European industry, in close collaboration with ESA PSA experts and with the instrument teams. The first level of data processing will be carried out for all instruments at ALTEC in Turin where the pipelines are developed, and from where the rover operations will also be run. This presentation will focus on the challenges involved in archiving the data from the ExoMars Program, and will outline the plans and current status of the system being developed to respond to the needs of the missions.

  6. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  7. Mars Rover Sample Return mission study

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1989-01-01

    The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.

  8. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages students to work scientifically and explores the interaction between scientists and engineers. This paper presents the development of the program, including the involvement of university students in the development of the rover, the software, and the collation of the scientific data. It also presents the results of the trial phase of this program including the impact on student engagement and learning outcomes.

  9. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  10. Lunokhod 2 - A retrospective Glance after 30 Years

    NASA Astrophysics Data System (ADS)

    Gromov, V.; Kemurdjian, A.; Bogatchev, A.; Koutcherenko, V.; Malenkov, M.; Matrossov, S.; Vladykin, S.; Petriga, V.; Khakhanov, Y.

    2003-04-01

    30 years have passed since the second Soviet research Lunokhod-2 rover landed on the Moon on January 16, 1973 within the framework of the Luna-21 mission. Scientific explorations of the lunar surface and space, begun with the Lunokhod-1 rover (1970-1971), were continued with Lunokhod-2. Creation of Lunokhod-1 and Lunokhod-2 marked realization of direction on study of planets using mobile self-propelled robots. Other direction connected with using planetary rovers to transport astronauts, scientific equipment and weights was realized as a result of creation of the American LRV lunar rover. Astronauts during Apollo-15 (1971), Apollo-15 (1972) and Apollo-15 (1972) missions used it. Programs of operation for Lunokhod-1,-2 on the Moon envisaged investigations of topographic and morphological peculiarities of the terrain, determination of the chemical composition and physical and mechanical properties of soil, experiments on the laser detection and ranging of the Moon and, etc. Successful fulfilment of programs was ensured, to a considerable extent, with the self-propelled chassis developed at VNIITRANSMASH to order of the Lavochkin Scientific and Production Association (NPOL). The chassis, on the one hand, ensured necessary cross-country ability for Lunokhod-1,-2, on the other hand, it was as the independent scientific instrument, which provided investigation as temperature measurement of the lunar surface, surface topography and craters distribution, physical and mechanical properties of soil with the special PROP instrument equipped with the penetrometer, chassis traction-cohesive characteristics, upper surface layer by a character its deformation by the mover, etc. A number of improvements of Lunokhod-2 improving its operating characteristics were performed on the basis of results of Lunokhod-1 operation. Lunokhod-1,-2 operation confirmed that automatic mobile robots can be used as effective means for studying planets and their satellites. At the same time, an operational experience of Lunokhod-1,-2, also American LRV rover, given extensive material, which as being used while developing and manufacturing chassis and their systems for new-generation planetary rovers, as well as special equipment to Earth-based tests. The present paper considers features of the Lunochod-2 design, some results of the Lunokhod-1,-2 operation on the Moon, examples of locomotion systems for new-generation rovers with the ski-walking, wheel-walking and hopping movers. A brief review of locomotion system demonstrators (IDD-1,-2, IARES, LRMC, JRover-1,-2, etc), developed at VNIITRANSMASH and Science &Technology Rover Co. Ltd. to order of ESA and foreign organizations taking part in space explorations. The locomotion systems description for the RoSA-2 project and ExoMaDeR model for "ExoMars-2009" project, developed by RCL in cooperation and to order of ESA, is given.

  11. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved) where the best models from each school or group are brought together for a celebratory showcase exhibit and judging. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning.

  12. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  13. Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine

    2013-01-01

    The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.

  14. Mars Rover Curriculum: Impact Assessment and Evaluation

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Carlson, C.; Nieser, K.; Slagle, E. M.; Jacobs, L. T.; Kapral, A. J.

    2014-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover: the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 140 Mars Rover teachers from the 2012-2013 and 2013-2014 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. So far ~40 teachers have participated with responses still coming in. A total of 675 students from the 2013-2014 cohort were invited to submit brief self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching "Earth and the solar system and universe" increased "Quite a bit" as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased "Quite a bit" as a result of their participation in the MRC program in the following areas: "Getting students interested in and curious about science" (63%); "Teaching science as a co-inquirer with students" (56%); and "Continually find better ways to teach science" (59%). Student outcome analysis is pending correlation with final progress reports for the participating students.

  15. Planetary Rover Robotics Experiments in Education: HUSAR-5, the NXT-Based Rover Model for Measuring the Planetary Surface

    NASA Astrophysics Data System (ADS)

    Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.

    2014-11-01

    We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.

  16. Overhead View of Area Surrounding Pathfinder

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Overhead view of the area surrounding the Pathfinder lander illustrating the Sojourner traverse. Red rectangles are rover positions at the end of sols 1-30. Locations of soil mechanics experiments, wheel abrasion experiments, and APXS measurements are shown. The A numbers refer to APXS measurements as discussed in the paper by Rieder et al. (p. 1770, Science Magazine, see image note). Coordinates are given in the LL frame.

    The photorealistic, interactive, three-dimensional virtual reality (VR) terrain models were created from IMP images using a software package developed for Pathfinder by C. Stoker et al. as a participating science project. By matching features in the left and right camera, an automated machine vision algorithm produced dense range maps of the nearfield, which were projected into a three-dimensional model as a connected polygonal mesh. Distance and angle measurements can be made on features viewed in the model using a mouse-driven three-dimensional cursor and a point-and-click interface. The VR model also incorporates graphical representations of the lander and rover and the sequence and spatial locations at which rover data were taken. As the rover moved, graphical models of the rover were added for each position that could be uniquely determined using stereo images of the rover taken by the IMP. Images taken by the rover were projected into the model as two-dimensional 'billboards' to show the proper perspective of these images.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  17. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.

  18. The Mars Science Laboratory Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher; Frankovich, John; Yates, Phillip; Wells Jr, George H.; Losey, Robert

    2009-01-01

    In the Touchdown Test Program for the Mars Science Laboratory (MSL) mission, a facility was developed to use a full-scale rover vehicle and an overhead winch system to replicate the Skycrane landing event.

  19. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  20. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.

  1. In-Situ Pointing Correction and Rover Microlocalization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Lorre, Jean J.

    2010-01-01

    Two software programs, marstie and marsnav, work together to generate pointing corrections and rover micro-localization for in-situ images. The programs are based on the PIG (Planetary Image Geometry) library, which handles all mission dependencies. As a result, there is no mission-specific code in either of these programs. This software corrects geometric seams in images as much as possible.

  2. Lithium-Ion Battery Program Status

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  3. KSC-03pd1232

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover program, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory. The chip will be placed on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  4. Impact Assessment on Teachers of Student-led, Inquiry-based Planetary Science Instruction in Grades 3-8

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Slagle, E. M.; Carlson, C.; Nieser, K.

    2015-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on Mars. A total of 195 Mars Rover teachers from the 2012-2013, 2013-2014, and 2014-2015 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. A total of 1300 students from the 2013-2014 and 2014-2015 cohort wereinvited to submit self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching "Earth and the solar system and universe" increased "Quite a bit" as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased "Quite a bit" as a result of their participation in the MRC program in the following areas: "Getting students interested in and curious about science" (63%); "Teaching science as a co-inquirer with students" (56%); and "Continually find better ways to teach science" (59%). A key finding is that 354/365 responding students in the 2014-2015 cohort report substantial increase in science excitement owing to participation in the program.

  5. An advanced terrain modeler for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Hunter, E. L.

    1980-01-01

    A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.

  6. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    Crowds gather around the scientifically-themed Mars rover concept vehicle at the Kennedy Space Center Visitor Complex. It is a part of the "Summer of Mars" program designed to provide a survey of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  7. Mars Rover Missions and Science Education: A Decade of Education and Public Outreach Using the Mars Exploration Rover Mission at the New Mexico Museum of Natural History and Science

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Crumpler, L. S.

    2014-07-01

    New Mexico Museum of Natural History & Science exhibits and educational programming related to the MER mission reached over two million museum visitors through exhibits and over 15,000 participants in targeted educational programs.

  8. Using Mobile Peer Mentors for Student Engagement: Student Rovers in the Learning Commons

    ERIC Educational Resources Information Center

    Tout, Dan; Pancini, Geri; McCormack, Rob

    2014-01-01

    This paper presents findings from a 2010 evaluation of Victoria University's Student Rover program, an on-campus work-based learning program in which mobile student mentors are employed and deployed within the university's Learning Commons to provide "just-in-time" and "just-in-place" learning support to other students. Student…

  9. CIS-lunar space infrastructure lunar technologies: Executive summary

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program.

  10. Mars Rover Curriculum: Teacher Self Reporting of Increased Frequency and Confidence in their Science and Language Arts Instruction

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Carlson, C.; Nieser, K.; Slagle, E.

    2013-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 65 Mars Rover teachers from the 2012-2013 cohort were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. In total, 29 teachers participated in the survey. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. In addition, they were asked to rate the degree to which they felt their confidence increased in the past year as a result of their participation in the MRC program. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching 'Earth and the solar system and universe' increased 'Quite a bit' as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. In addition, the vast majority reported believing that their confidence increased somewhat to quite a bit as a result of their participation in the MRC program (81-96%). The most striking increases were the percentage of teachers who felt their confidence increased 'Quite a bit' as a result of their participation in the MRC program in the following areas: 'Getting students interested in and curious about science' (63%); 'Teaching science as a co-inquirer with students' (56%); and 'Continually find better ways to teach science' (59%). The areas where teachers reported the least amount of increase were those related to: Fostering student reading comprehension skills during science instruction and learning and integrating reading language arts into my science teaching. This outcome, however, is not surprising as many teachers reported not implementing the language arts, comprehension and vocabulary aspects of the program. The program training for last year did not explicitly cover the language arts components in detail or with support.

  11. Assessment of Impact on Students and Teachers of Student-led, inquiry-based planetary science instruction in Grades 3-8

    NASA Astrophysics Data System (ADS)

    Bering, Edgar Andrew; Carlson, Coleen; Nieser, Kenneth; Slagle, Elana

    2015-11-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 195 Mars Rover teachers from the 2012-2013, 2013-2014, and 2014-2015 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. So far ~90 teachers have participated with responses still coming in. A total of 1300 students from the 2013-2014 and 2014-2015 cohort were invited to submit brief self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching “Earth and the solar system and universe” increased “Quite a bit” as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased “Quite a bit” as a result of their participation in the MRC program in the following areas: “Getting students interested in and curious about science” (63%); “Teaching science as a co-inquirer with students” (56%); and “Continually find better ways to teach science” (59%). Student outcome analysis is pending correlation with final progress reports for the participating students. A key finding is that 354/365 responding students in the 2014-2015 cohort report substantial increase in science excitement owing to participation in the program.

  12. What Time is it on Mars?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of the martian sundial onboard the Mars Exploration Rover Spirit was processed by students in the Red Rover Goes to Mars program to impose hour markings on the face of the dial. The position of the shadow of the sundial's post within the markings indicates the time of day and the season, which in this image is 12:17 p.m. local solar time, late summer. A team of 16 students from 12 countries were selected by the Planetary Society to participate in this program. This image was taken on Mars by the rover's panoramic camera.

  13. KSC-03pd1235

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, places on MER-1 a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  14. A conceptual design and operational characteristics for a Mars rover for a 1979 or 1981 Viking science mission

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.; Wessel, V. W.

    1974-01-01

    The feasibility of a small Mars rover for use on a 1979 or 1981 Viking mission was studied and a preliminary design concept was developed. Three variations of the concept were developed to provide comparisons in mobility and science capability of the rover. Final masses of the three rover designs were approximately 35 kg, 40 kg, and 69 kg. The smallest rover is umbilically connected to the lander for power and communications purposes whereas the larger two rovers have secondary battery power and a 2-way very high frequency communication link to the lander. The capability for carrying Viking rovers (including development system) to the surface of Mars was considered first. It was found to be feasible to carry rovers of over 100 kg. Virtually all rover systems were then studied briefly to determine a feasible system concept and a practical interface with the comparable system of a 1979 or 1981 lander vehicle.

  15. KSC-03pd1231

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Tom Shain, the MER ATLO logistics manager, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. He and Jim Lloyd, also with the program, will place the chip on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  16. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  17. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  18. Mars rover local navigation and hazard avoidance

    NASA Technical Reports Server (NTRS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  19. Mars Rover Local Navigation And Hazard Avoidance

    NASA Astrophysics Data System (ADS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-03-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  20. Curiosity Arm Holding Steady, Sol 915

    NASA Image and Video Library

    2015-03-06

    This image from the Navigation Camera (Navcam) on NASA's Curiosity Mars rover shows the position in which the rover held its arm for several days after a transient short circuit triggered onboard fault-protection programming to halt arm activities on Feb. 27, 2015, the 911th Martian day, or sol, of the rover's work on Mars. The rover team chose to hold the arm in the same position for several days of tests to diagnose the underlying cause of the Sol 911 event. Observations with instruments on the rover's mast continued during this period. The Navcam took this image on March 4, 2015, during Sol 915. http://photojournal.jpl.nasa.gov/catalog/PIA19147

  1. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.

  2. Applied design methodology for lunar rover elastic wheel

    NASA Astrophysics Data System (ADS)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  3. Software for Displaying Data from Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Backers, Paul; Norris, Jeffrey; Vona, Marsette; Steinke, Robert

    2003-01-01

    Science Activity Planner (SAP) DownlinkBrowser is a computer program that assists in the visualization of processed telemetric data [principally images, image cubes (that is, multispectral images), and spectra] that have been transmitted to Earth from exploratory robotic vehicles (rovers) on remote planets. It is undergoing adaptation to (1) the Field Integrated Design and Operations (FIDO) rover (a prototype Mars-exploration rover operated on Earth as a test bed) and (2) the Mars Exploration Rover (MER) mission. This program has evolved from its predecessor - the Web Interface for Telescience (WITS) software - and surpasses WITS in the processing, organization, and plotting of data. SAP DownlinkBrowser creates Extensible Markup Language (XML) files that organize data files, on the basis of content, into a sortable, searchable product database, without the overhead of a relational database. The data-display components of SAP DownlinkBrowser (descriptively named ImageView, 3DView, OrbitalView, PanoramaView, ImageCubeView, and SpectrumView) are designed to run in a memory footprint of at least 256MB on computers that utilize the Windows, Linux, and Solaris operating systems.

  4. KSC-03pd1234

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, points to the place on MER-1 where he will place a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  5. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    NASA Astrophysics Data System (ADS)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  6. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.

  9. Development and Testing of Laser-induced Breakdown Spectroscopy for the Mars Rover Program: Elemental Analyses at Stand-Off Distances

    NASA Technical Reports Server (NTRS)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.; Harris, R. D.; Maurice, S.

    2003-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental composition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks to which direct contact is possible. These in- situ analyses require that the lander or rover be in contact with the sample. In addition to in-situ instrumentation, the present generation of rovers carry instruments that operate at stand-off distances. The Mini-TES is an example of a stand-off instrument on the MER rovers. Other examples for future missions include infrared point spectrometers and microscopic-imagers that can operate at a distance. The main advantage of such types of analyses is obvious: the sensing element does not need to be in contact or even adjacent to the target sample. This opens up new sensing capabilities. For example, targets that cannot be reached by a rover due to impassable terrain or targets positioned on a cliff face can now be accessed using stand-off analysis. In addition, the duty cycle of stand-off analysis can be much greater than that provided by in-situ measurements because the stand-off analysis probe can be aimed rapidly at different features of interest eliminating the need for the rover to actually move to the target. Over the past five years we have been developing a stand-off method of elemental analysis based on atomic emission spectroscopy called laser-induced breakdown spectroscopy (LIBS). A laser-produced spark vaporizes and excites the target material, the elements of which emit at characteristic wavelengths. Using this method, material can be analyzed from within a radius of several tens of meters from the instrument platform. A relatively large area can therefore be sampled from a simple lander without requiring a rover or sampling arms. The placement of such an instrument on a rover would allow the sampling of locations distant from the landing site. Here we give a description of the LIBS method and its advantages. We discuss recent work on determining its characteristics for Mars exploration, including accuracy, detection limits, and suitability for determining the presence of water ice and hydrated minerals. We also give a description of prototype instruments we have tested in field settings.

  10. Remote image analysis for Mars Exploration Rover mobility and manipulation operations

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Deen, Robert G.; Bonitz, Robert G.

    2005-01-01

    NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.

  11. Converting CSV Files to RKSML Files

    NASA Technical Reports Server (NTRS)

    Trebi-Ollennu, Ashitey; Liebersbach, Robert

    2009-01-01

    A computer program converts, into a format suitable for processing on Earth, files of downlinked telemetric data pertaining to the operation of the Instrument Deployment Device (IDD), which is a robot arm on either of the Mars Explorer Rovers (MERs). The raw downlinked data files are in comma-separated- value (CSV) format. The present program converts the files into Rover Kinematics State Markup Language (RKSML), which is an Extensible Markup Language (XML) format that facilitates representation of operations of the IDD and enables analysis of the operations by means of the Rover Sequencing Validation Program (RSVP), which is used to build sequences of commanded operations for the MERs. After conversion by means of the present program, the downlinked data can be processed by RSVP, enabling the MER downlink operations team to play back the actual IDD activity represented by the telemetric data against the planned IDD activity. Thus, the present program enhances the diagnosis of anomalies that manifest themselves as differences between actual and planned IDD activities.

  12. Rover deployment system for lunar landing mission

    NASA Astrophysics Data System (ADS)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  13. ExoMars Mission 2016, Orbiter Module Power System Architecture (Based On An Unregulated Bus & MPPT Controlled Step-Down Voltage Regulators)

    NASA Astrophysics Data System (ADS)

    Digoin, JJ.; Boutelet, E.

    2011-10-01

    The main objective of the ExoMars program is to demonstrate key flight in situ enabling technologies in support of the European ambitions for future exploration missions and to pursue fundamental scientific investigations. Two missions are foreseen within the ExoMars program for the 2016 and 2018 launch opportunities to Mars. The 2016 mission is an ESA led mission that will supply a Mars Orbiter Module (OM) carrying an Entry Descent module (EDM) and NASA/ESA scientific instruments. The 2018 mission is a NASA led mission bringing one ESA rover and one NASA rover onto the Mars surface. This paper presents the OM Electrical Power Sub- system (EPS) design achieved at the end of pre- development phase. The main aspects addressed are: - EPS major constraints due to mission and environment, a succinct description of the power units, - Trade-off analyses results leading to the selected EPS architecture, - Preliminary results of electrical and energy simulations, - EPS units development plan.

  14. Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.

  15. Cislunar space infrastructure: Lunar technologies

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Continuing its emphasis on the creation of a cisluar infrastructure as an appropriate and cost-effective method of space exploration and development, the University of Colorado explores the technologies necessary for the creation of such an infrastructure, namely (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologes. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by automation and robotics (LOARS). Under direction from the NASA Office of Exploration, automation and robotics have been extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a 'buddy system', these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of lunar resources and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar Environmentally Controlled Life Support System. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the lunar surface. Physiochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ lunar resources will be both tested and used within this bio-volume. Second phase development on the lunar surface calls for manned operations. Repairs and reconfiguration of the initial framework will ensue. An autonomously initiated, manned Lunar Oasis can become an essential component of the United States space program. The Lunar Oasis will provide support to science, technology, and commerce. It will enable more cost-effective space exploration to the planets and beyond.

  16. Robust Coordination for Large Sets of Simple Rovers

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against rover failures and changing environments. In experimental simulations we show that our method scales well with large numbers of rovers in addition to being robust against noisy sensor inputs and noisy servo control. The results show that our method is able to scale to large numbers of rovers and achieves up to 400% performance improvement over standard machine learning methods.

  17. 'RAT' Hole on 'Pilbara' (pre-RAT)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity broke its own record for the deepest hole ground into a rock on another planet with a 7.2-millimeter (about 0.28-inch) grind on the rock 'Pilbara,' on the rover's 86th sol on Mars.

    This image is from the rover's panoramic camera and features Pilbara before the rover ground into it with its rock abrasion tool. After careful examination of the rock, the rock abrasion tool engineers determined that the upper left portion (visible in this image) of Pilbara was the safest area to grind. The now familiar 'blueberries,' or spherules, are present in this rock, however, they do not appear in the same manner as other berries examined during this mission. Reminiscent of a golf tee, the blueberries sit atop a 'stem,' thus making them even more of an obstacle through which to grind. The left side of the rock is relatively berry-free and proved to be an ideal spot for the procedure.

    The team has developed a new approach to commanding the rock abrasion tool that allows for more aggressive grinding parameters. The tool is now programmed, in the event of a stall, to retreat from its target and attempt to grind again. This allows the grinder to essentially reset itself instead of aborting its sequence altogether and waiting for further commands from rover planners.

  18. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    USGS Publications Warehouse

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.

    2012-01-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  19. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  20. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  1. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  3. Instrument Deployment for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.

  4. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  5. Mars: 2010 - 2020

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2006-01-01

    This slide presentation reviews the Mars Exploration program for the current decade and beyond. The potential items for procurements for the Mars Science Laboratory (MSL) are discussed, as well as future technology investments to enable to continued development of exploration of Mars by rovers and orbiters that are planned and envisioned for future missions.

  6. Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the studies on one particular part of the Mars Lander/Rover (MLR) system are contained: the Balloon Rover. This component vehicle was selected for further research and design because of the lack of technical literature on this subject, as compared to surface rover technology. Landing site selection; balloon system development and deployment; optics and communications; and the payload power supply are described.

  7. 78 FR 19742 - Centennial Challenges: 2014 Night Rover Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-032] Centennial Challenges: 2014 Night... Centennial Challenges 2014 Night Rover Challenge. SUMMARY: This notice is issued in accordance with 51 U.S.C.... Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest...

  8. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  9. Electrostatic Charging of the Pathfinder Rover

    NASA Technical Reports Server (NTRS)

    Siebert, Mark W.; Kolecki, Joseph C.

    1996-01-01

    The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.

  10. Sojourner Rover Tracks in Compressible Soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner's observations in the Ares region on Mars raise and answer questions about the origins of the rocks and other deposits found there. Deposits are not the same everywhere. In compressible soil, a rover wheel produced ruts with steep walls, marginal slumps, and nearly perfect reflective casts of the spacing between the cleats.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  11. 2005 Earth-Mars Round Trip

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  12. Self-Directed Cooperative Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Morris, Robert (Technical Monitor)

    2003-01-01

    The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.

  13. RACER: Effective Race Detection Using AspectJ

    NASA Technical Reports Server (NTRS)

    Bodden, Eric; Havelund, Klaus

    2008-01-01

    The limits of coding with joint constraints on detected and undetected error rates Programming errors occur frequently in large software systems, and even more so if these systems are concurrent. In the past, researchers have developed specialized programs to aid programmers detecting concurrent programming errors such as deadlocks, livelocks, starvation and data races. In this work we propose a language extension to the aspect-oriented programming language AspectJ, in the form of three new built-in pointcuts, lock(), unlock() and may be Shared(), which allow programmers to monitor program events where locks are granted or handed back, and where values are accessed that may be shared amongst multiple Java threads. We decide thread-locality using a static thread-local objects analysis developed by others. Using the three new primitive pointcuts, researchers can directly implement efficient monitoring algorithms to detect concurrent programming errors online. As an example, we expose a new algorithm which we call RACER, an adoption of the well-known ERASER algorithm to the memory model of Java. We implemented the new pointcuts as an extension to the Aspect Bench Compiler, implemented the RACER algorithm using this language extension and then applied the algorithm to the NASA K9 Rover Executive. Our experiments proved our implementation very effective. In the Rover Executive RACER finds 70 data races. Only one of these races was previously known.We further applied the algorithm to two other multi-threaded programs written by Computer Science researchers, in which we found races as well.

  14. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  15. Development and Buildup of a Stirling Radioisotope Generator Electrical Simulator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.; Spina, Dan C.

    2008-01-01

    This paper describes the development of a Stirling Radioisotope Generator (SRG) Simulator for use in a prototype lunar robotic rover. The SRG developed at NASA Glenn Research Center (GRC) is a promising power source for the robotic exploration of the sunless areas of the moon. The simulator designed provides a power output similar to the SRG output of 5.7 A at 28 Vdc, while using ac wall power as the input power source. The designed electrical simulator provides rover developers the physical and electrical constraints of the SRG supporting parallel development of the SRG and rover. Parallel development allows the rover design team to embrace the SRG s unique constraints while development of the SRG is continued to a flight qualified version.

  16. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  17. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  18. Exomars 2018 Rover Pasteur Payload Sample Analysis

    NASA Astrophysics Data System (ADS)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.

    The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.

  19. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    The evolution of NASA's planning for planetary rovers (that is robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that was developed to achieve the desired capabilities is reviewed. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. Robotic vehicles and their associated control systems, developed in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission, are described. Goals suggested at the time for such a MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions are presented. Some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible are described.

  20. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. In Situ Surface Characterization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Leger, Patrick C.; Yanovsky, Igor

    2011-01-01

    Operation of in situ space assets, such as rovers and landers, requires operators to acquire a thorough understanding of the environment surrounding the spacecraft. The following programs help with that understanding by providing higher-level information characterizing the surface, which is not immediately obvious by just looking at the XYZ terrain data. This software suite covers three primary programs: marsuvw, marsrough, and marsslope, and two secondary programs, which together use XYZ data derived from in situ stereo imagery to characterize the surface by determining surface normal, surface roughness, and various aspects of local slope, respectively. These programs all use the Planetary Image Geometry (PIG) library to read mission-specific data files. The programs themselves are completely multimission; all mission dependencies are handled by PIG. The input data consists of images containing XYZ locations as derived by, e.g., marsxyz. The marsuvw program determines surface normals from XYZ data by gathering XYZ points from an area around each pixel and fitting a plane to those points. Outliers are rejected, and various consistency checks are applied. The result shows the orientation of the local surface at each point as a unit vector. The program can be run in two modes: standard, which is typically used for in situ arm work, and slope, which is typically used for rover mobility. The difference is primarily due to optimizations necessary for the larger patch sizes in the slope case. The marsrough program determines surface roughness in a small area around each pixel, which is defined as the maximum peak-to-peak deviation from the plane perpendicular to the surface normal at that pixel. The marsslope program takes a surface normal file as input and derives one of several slope-like outputs from it. The outputs include slope, slope rover direction (a measure of slope radially away from the rover), slope heading, slope magnitude, northerly tilt, and solar energy (compares the slope with the Sun s location at local noon). The marsuvwproj program projects a surface normal onto an arbitrary plane in space, resulting in a normalized 3D vector, which is constrained to lie in the plane. The marsuvwrot program rotates the vectors in a surface normal file, generating a new surface normal file. It also can change coordinate systems for an existing surface normal file. While the algorithms behind this suite are not particularly unique, what makes the programs useful is their integration into the larger in situ image processing system via the PIG library. They work directly with space in situ data, understanding the appropriate image metadata fields and updating them properly. The secondary programs (marsuvwproj, marsuvwrot) were originally developed to deal with anomalous situations on Opportunity and Spirit, respectively, but may have more general applicability.

  2. A Review of Gas-Cooled Reactor Concepts for SDI Applications

    DTIC Science & Technology

    1989-08-01

    710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests

  3. Bringing NASA Technology Down to Earth

    NASA Technical Reports Server (NTRS)

    Lockney, Daniel P.; Taylor, Terry L.

    2018-01-01

    Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.

  4. Delivering Images for Mars Rover Science Planning

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.

  5. Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng

    2015-01-01

    Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.

  6. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art

    2004-01-01

    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  7. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  8. CRAFT: Collaborative Rover and Astronauts Future Technology

    NASA Astrophysics Data System (ADS)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  9. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  10. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  11. A Mars Rover Mission Simulation on Kilauea Volcano

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.

  12. Experiments with a small behaviour controlled planetary rover

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Desai, Rajiv S.; Gat, Erann; Ivlev, Robert; Loch, John

    1993-01-01

    A series of experiments that were performed on the Rocky 3 robot is described. Rocky 3 is a small autonomous rover capable of navigating through rough outdoor terrain to a predesignated area, searching that area for soft soil, acquiring a soil sample, and depositing the sample in a container at its home base. The robot is programmed according to a reactive behavior control paradigm using the ALFA programming language. This style of programming produces robust autonomous performance while requiring significantly less computational resources than more traditional mobile robot control systems. The code for Rocky 3 runs on an eight bit processor and uses about ten k of memory.

  13. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Sam Scimemi, director, NASA's International Space Station Program, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  14. Improved low temperature performance of lithium ion cells with low ethylene carbonate content electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M.; Ratnakumar, B. V.; Surampudi, S.; Crott, H.; Tice, D.; Staniewicz, R.

    2001-01-01

    Lithium-ion rechargeable batteries are being developed for various aerospace applications under a NASA-DoD interagency program. For the projected missions, lithium ion batteries need to be further improved, i.e., low temperature performance for Mars Landers, Rovers, and Penetrators and cycle life for the Orbiters and LEO and GEO satellites.

  15. Task Adaptive Walking Robots for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Hickey, Gregory; Kennedy, Brett; Aghazarian, Hrand

    2000-01-01

    There are exciting opportunities for robot science that lie beyond the reach of current manipulators, rovers, balloons, penetrators, etc. Examples include mobile explorations of the densely cratered Mars highlands, of asteroids, and of moons. These sites are believed to be rich in geologic history and mineralogical detail, but are difficult to robotically access and sample. The surface terrains are rough and changeable, with variable porosity and dust layering; and the small bodies present further challenges of low-temperature, micro-gravity environments. Even the more benign areas of Mars are highly variegated in character (>VL2 rock densities), presenting significant risk to conventional rovers. The development of compact walking robots would have applications to the current mission set for Mars surface exploration, as well as enabling future Mars Outpost missions, asteroid rendezvous missions for the Solar System Exploration Program (SSE) and the mechanical assembly/inspection of large space platforms for the Human Exploration and Development of Spaces (HEDS).

  16. Geospatial Authentication

    NASA Technical Reports Server (NTRS)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication.

  17. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the rolling mode, i.e. when the rover is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. Case studies that demonstrate the capabilities of the rover in rolling mode and parametric analyses that investigate the dependence of the rover's mobility on its design are presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future. It represents an important step toward developing a rover capable of traversing a variety of terrains that are impassible by the current fleet of rover designs, and thus has the potential to revolutionize planetary surface exploration.

  19. Design of a Lunar Quick-Attach Mechanism to Hummer Vehicle Mounting Interface

    NASA Technical Reports Server (NTRS)

    Grismore, David A.

    2010-01-01

    This report presents my work experiences while I was an intern with NASA (National Aeronautic and Space Administration) in the Spring of2010 at the Kennedy Space Center (KSC) launch facility in Cape Canaveral, Florida as a member of the NASA USRP (Undergraduate Student Research Program) program. I worked in the Surface Systems (NE-S) group during the internship. Within NE-S, two ASRC (Arctic Slope Regional Corporation) contract engineers, A.J. Nick and Jason Schuler, had developed a "Quick-Attach" mechanism for the Chariot Rover, the next generation lunar rover. My project was to design, analyze, and possibly fabricate a mounting interface between their "Quick-Attach" and a Hummer vehicle. This interface was needed because it would increase their capabilities to test the Quick Attach and its various attachments, as they do not have access to a Chariot Rover at KSC. I utilized both Pro Engineer, a 3D CAD software package, and a Coordinate Measuring Machine (CMM) known as a FAROarm to collect data and create my design. I relied on hand calculations and the Mechanica analysis tool within Pro Engineer to perform stress analysis on the design. After finishing the design, I began working on creating professional level CAD drawings and issuing them into the KSC design database known as DDMS before the end of the internship.

  20. A Comparison Between The NORCAT Rover Test Results and the ISRU Excavation System Model Predictions Results

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.

    2012-01-01

    An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.

  1. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in existence for over two years and has been used by teachers and students from across the US. The Mars Exploration Student Data Team Program was created and prototyped during the Mars Exploration Rover mission this past January through April. Over 500 students from 25 schools from across the US participated in real-time data analysis using the Mars Odyssey and Mars Global Surveyor infrared instruments -Thermal Emission Spectrometer - TES and THEMIS to monitor the rover landing sites. This program utilized a virtual team format and allowed high school students to collaborate with other teams that were, at times, thousands of miles away to implement real-time observations. This program will be carried forward to several of the upcoming missions. Finally, the Athena Student Intern Program is the higher end of involvement for students and teachers. These students and teachers were competitively selected to spend a week during the mission operations of the rovers at JPL. All of these programs have a common thread..ownership of the experience. By empowering the next generation of learners with the knowledge that they can be part of their future through such immersive experiences before they reach college, they will be ready to take on harder challenges that will reach higher towards new frontiers

  2. Evolving directions in NASA's planetary rover requirements and technology

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-10-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  3. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  4. Mobile Robot Localization by Remote Viewing of a Colored Cylinder

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Litwin, T.; Matthies, L.

    1995-01-01

    A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.

  5. Zephyr: A Landsailing Rover for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  6. Application of CFS to a Lunar Rover: Resource Prospector (RP)

    NASA Technical Reports Server (NTRS)

    Cannon, Howard

    2017-01-01

    Resource Prospector (RP) is a lunar mission sponsored by NASA's Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP mission's lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload. In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to Matlab/Simulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.

  7. Application of the Core Flight System to a Lunar Rover

    NASA Technical Reports Server (NTRS)

    Cannon, Howard

    2017-01-01

    Resource Prospector (RP) is a lunar mission sponsored by NASAs Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP missions lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload.In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to MatlabSimulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.

  8. Diversity of soils near rover deploy region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The surface near the rover's egress from the lander contains mainly bright red drift (#1), dark gray rocks such as Cradle (# 3), soil intermediate in color to the rocks and drift (#2), and dark red soil on and around the rock Lamb (#4). Globally, Mars is characterized by similar color variations. The spectra, measured using the full 13-color capability of the Imager for Mars Pathfinder (IMP), provide evidence for the mineralogy of the unweathered rocks and highly weathered red soils.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech).

  9. Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro

    2004-01-01

    System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.

  10. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data

    NASA Astrophysics Data System (ADS)

    Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.

    Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel testbed and in the RCET system-level testbed, the latter permitting drawbar pull vs. slip measurements for complete rover development vehicles under controlled and homogeneous soil conditions. Required modifications of the wheel-soil model, in particular related to modelling the effect of wheel slip, are discussed. To strengthen the model validation base, we have run single wheel measurements using a spare MER Mars rover wheel and have performed comparisons with MER actual mobility performance data, available through one of us (LR) who is a member of the MER Athena science team. Corresponding results will be presented. Keywords: rovers, wheel, soil, mobility, vehicle performance, RCET (Rover Chassis Evaluation Tools), MER (Mars Exploration Rover mission) 2

  11. A preliminary study of Mars rover/sample return missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not been studied in as much detail as the sample return functions of the mission.

  12. Sources Sought for Innovative Scientific Instrumentation for Scientific Lunar Rovers

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1993-01-01

    Lunar rovers should be designed as integrated scientific measurement systems that address scientific goals as their main objective. Scientific goals for lunar rovers are presented. Teleoperated robotic field geologists will allow the science team to make discoveries using a wide range of sensory data collected by electronic 'eyes' and sophisticated scientific instrumentation. rovers need to operate in geologically interesting terrain (rock outcrops) and to identify and closely examine interesting rock samples. Enough flight-ready instruments are available to fly on the first mission, but additional instrument development based on emerging technology is desirable. Various instruments that need to be developed for later missions are described.

  13. Evaluation of simple deployment mechanism of multiple rovers by microgravity experiments using a drop tower

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, Tetsuo; Yano, Hajime; Kubota, Takashi; Adachi, Tadashi; Ishigami, Genya

    2012-07-01

    Introduction, Japan has announced the official development of ``Hayabusa-2'', the second sample return mission to a Near-Earth asteroid. When the development is made smoothly, Hayabusa-2 will be launched in 2014. The predecessor spacecraft ``Hayabusa'' made a great success when it returned to the Earth in June 2010 with a capsule containing some particles obtained from S-type asteroid ``Itokawa.'' Rover system, The authors installed a tiny hopping rover called ``MINERVA'' into Hayabusa spacecraft. MINERVA weights only 591[g] but has an autonomous exploration capability on the microgravity environment on the small solar system bodies. MINERVA was successfully deployed from the mother spacecraft on 12 Nov 2005 at the vicinity of the target asteroid. But unfortunately it became a solar orbiting satellite since the relative position and the speed of the mother spacecraft around the target asteroid were worst. Nevertheless it worked well, demonstrating an autnomous capability and had survived until the comunication link was lost. The authors plan to install some rovers also into Hayabusa-2. The total concept is the same but this time multiple rovers are considered. Deployment mechanism, Two rovers are installed in one container and are developed at the same time. The maximum allowed weight for the container including two rovers is 2.5[kg] and we have to seek for a simple and a light-weighted deployment system. We developed a new deployment system drastically sophisticated from the one used for MINERVA in Hayabusa mission. Both the cover and the rovers are pushed by the springs after the tightly winded wire has been cut by the deployment trigger form the spacecraft. The new deployment system enables the following things. The cover and the rovers are deployed in different directions in one action. The uncertainty of the deployment speed is decreased. Microgravity experiment, Thanks to the courtesy of DLR (German Aerospace Center) based on the international cooperation between Germany and Japan on the development of Hayabusa-2 spacecraft, we had an opprotunity to evaluate the performance of the above mentioned deployment system by using the drop tower in Bremen. We made six drops in January 2012 to look at the speed and the direction of the cover and the rovers using various parameters, which were all performed successfully. This paper reports the result of the microgravity experiments.

  14. KSC-03pd0516

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  15. KSC-03PD-0516

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  16. Space Art "Wheel of Optimism"

    NASA Image and Video Library

    2006-12-14

    Artist EV Day visited the Jet Propulsion Laboratory to learn about the Mars Exploration Rovers. She so intrigued the Mars scientists that she was given a sample rover wheel to work with in creating a piece of art titled "Wheel of Optimism" for NASA. Day took the wheel and created a Martian world within it complete with organic plantlife, rocks and a Martian landscape in the background. Day poetically grapples with the age old question of whether life on Mars exists or whether it is just an figment of our science fiction imaginations. Rover Tire, mixed media, 9-1/4 (diameter)x8 (depth). 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  17. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy

    2006-01-01

    In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.

  18. A Wind-powered Rover for a Low-Cost Venus Mission

    NASA Technical Reports Server (NTRS)

    Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.

    2013-01-01

    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

  19. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.

  20. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  1. Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.

    1999-01-01

    To adequately explore high priority landing sites, scientists require rovers with greater mobility. Therefore, future Mars missions will involve rovers capable of traversing tens of kilometers (vs. tens of meters traversed by Mars Pathfinder's Sojourner). However, the current process by which scientists interact with a rover does not scale to such distances. A single science objective is achieved through many iterations of a basic command cycle: (1) all data must be transmitted to Earth and analyzed; (2) from this data, new targets are selected and the necessary information from the appropriate instruments are requested; (3) new commands are then uplinked and executed by the spacecraft and (4) the resulting data are returned to Earth, starting the process again. Experience with rover tests on Earth shows that this time intensive process cannot be substantially shortened given the limited data downlink bandwidth and command cycle opportunities of real missions. Sending complete multicolor panoramas at several waypoints, for example, is out of the question for a single downlink opportunity. As a result, long traverses requiring many science command cycles would likely require many weeks, months or even years, perhaps exceeding rover design life or other constraints. Autonomous onboard science analyses can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands, for example acquiring and returning spectra of "interesting" rocks along with the images in which they were detected. Such approaches, coupled with appropriate navigational software, address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing algorithms to enable such intelligent decision making by autonomous spacecraft. Reflecting the ultimate level of ability we aim for, this program has been dubbed the "Grad Student on Mars Project". We envision, for example, an appropriately intelligent Athena-like rover at the Pathfinder landing site might be able to traverse over the ridge towards "Twin Peaks" to obtain better information on the stratigraphy of these "streamlined islands" or of the size, composition and morphology of boulders located on them. Along the traverse, the intelligent rover would collect and analyze images and obtain spectra of geologically interesting features or regions. The intelligent rover might also traverse further up Arcs Vallis, and find additional paleoflood stage indicators such as slackwater deposits. Recognizing additional regions where boulders are imbricated, noting changes in their size, distribution, morphology, composition and the associated changes in channel geometry would yield important information on the outflow channel's paleoflood history, Representative images and associated supporting data from these locations could be downlinked to Earth along with the data requested by scientists from the previous uplink opportunity. Our initial work has focused on recognizing geologically interesting portions of images. Here we summarize some of the algorithms to date.

  2. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  3. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  4. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  5. Development of Testing Station for Prototype Rover Thermal Subsystem

    NASA Technical Reports Server (NTRS)

    Burlingame, Kaitlin

    2010-01-01

    In order to successfully and efficiently explore the moon or other planets, a vehicle must be built to assist astronauts as they travel across the surface. One concept created to meet this need is NASA's Space Exploration Vehicle (SEV). The SEV, a small pressurized cabin integrated onto a 12-wheeled chassis, can support two astronauts up to 14 days. Engineers are currently developing the second generation of the SEV, with the goal of being faster, more robust, and able to carry a heavier payload. In order to function properly, the rover must dissipate heat produced during operation and maintain an appropriate temperature profile inside the rover. If these activities do not occur, components of the rover will start to break down, eventually leading to the failure of the rover. On the rover, these requirements are the responsibility of the thermal subsystem. My project for the summer was to design and build a testing station to facilitate the design and testing of the new thermal subsystem. As the rover develops, initial low fidelity parts can be interchanged for the high fidelity parts used on the rover. Based on a schematic of the proposed thermal system, I sized and selected parts for each of the components in the thermal subsystem. For the components in the system that produced heat but had not yet been finalized or fabricated, I used power resistors to model their load patterns. I also selected all of the fittings to put the system together and a mounting platform to support the testing station. Finally, I implemented sensors at various points in the system to measure the temperature, pressure, and flow rate, and a data acquisition system to collect this information. In the future, the information from these sensors will be used to study the behavior of the subsystem under different conditions and select the best part for the rover.

  6. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  7. Lunar Regenerative Fuel Cell (RFC) Reliability Testing for Assured Mission Success

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2009-01-01

    NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) Regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated," these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development.When well-known reliability estimation techniques are applied to the hydrogen oxygen RFC to determine the amount of testing that will be required to assure RFC unit reliability over life of the mission, the analysis indicates the reliability testing phase by itself will take at least 2 yr, and could take up to 6 yr depending on the number of QA units that are built and tested and the individual unit reliability that is desired. The cost and schedule impacts of reliability development need to be considered in NASA's Exploration Technology Development Program (ETDP) plans, since life cycle testing to build meaningful reliability data is the only way to assure "return to the moon, this time to stay, then on to Mars" mission success.

  8. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  9. Rover Slip Validation and Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2009-01-01

    A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.

  10. Overview of Human Factors and Habitability at NASA

    NASA Technical Reports Server (NTRS)

    Connolly, Janis; Arch, M.; Kaiser, Mary

    2009-01-01

    This slide presentation reviews the ongoing work on human factors and habitability in the development of the Constellation Program. The focus of the work is on how equipment, spacecraft design, tools, procedures and nutrition be used to improve the health, safety and efficiency of the crewmembers. There are slides showing the components of the Constellation Program, and the conceptual designs of the Orion Crew module, the lunar lander, (i.e., Altair) the microgravity EVA suit, and the lunar surface EVA suit, the lunar rover, and the lunar surface system infrastructure.

  11. Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klarer, Paul R.

    1992-01-01

    Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.

  12. Student Interns Work on Mars

    NASA Technical Reports Server (NTRS)

    Bowman, C. D.; Bebak, M.; Bollen, D. M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.

    2004-01-01

    The exceptional imagery and data acquired by the Mars Exploration Rovers since their January 2004 landing have captured the attention of scientists, the public, and students and teachers worldwide. One aspect of particular interest lies with a group of high school teachers and students actively engaged in the Athena Student Interns Program. The Athena Student Interns Program (ASIP) is a joint effort between NASA s Mars Public Engagement Office and the Athena Science Investigation that began in early 1999 as a pilot student-scientist research partnership program associated with the FIDO prototype Mars rover field test . The program is designed to actively engage high school students and their teachers in Mars exploration and scientific inquiry. In ASIP, groups of students and teachers from around the country work with mentors from the mission s Athena Science Team to carry out an aspect of the mission.

  13. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  14. Using Multi-Core Systems for Rover Autonomy

    NASA Technical Reports Server (NTRS)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  15. Performance Characteristics of Lithium Ion Prototype Cells for 2003 Mars Sample Return Athena Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R.; Surampudi, S.; Marsh, R. A.

    2000-01-01

    A viewgraph presentation outlines the mission objectives and power subsystem for the Mars Sample Return (MSR) Athena Rover. The NASA-DOD (depth of discharge) Interagency Li Ion program objectives are discussed. Evaluation tests performed at JPL are listed, and test results are shown for the Li-Ion cell initial capacity, charge/discharge capacity, voltage and ratio, specific energy, watt-hour efficiency, and cell voltage at various temperatures.

  16. Lunar rovers and local positioning system

    NASA Astrophysics Data System (ADS)

    Avery, James; Su, Renjeng

    1991-11-01

    Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running.

  17. Lunar rovers and local positioning system

    NASA Technical Reports Server (NTRS)

    Avery, James; Su, Renjeng

    1991-01-01

    Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running. The rover system is able to perform simple tasks such as sensing and signaling; coordination systems which allow construction tasks to begin were established, and soon coordinated teams of robots in the laboratory will be able to manipulate common objects.

  18. Mars methane analogue mission: Mission simulation and rover operations at Jeffrey Mine and Norbestos Mine Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2015-05-01

    The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.

  19. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  20. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  1. Scarecrow

    NASA Image and Video Library

    2007-10-04

    The team developing NASA Mars Science Laboratory calls this test rover Scarecrow because the vehicle does not include a computer brain. Mobility engineers use this test rover to evaluate mobility and suspension performance.

  2. MFPG. The Role of Coatings in the Prevention of Mechanical Failures. Proceedings of the 23rd Meeting of the Mechanical Failures Prevention Group, Held at the National Bureau of Standards, Gaithersburg, Maryland on October 29-31, 1975

    DTIC Science & Technology

    1976-09-01

    testing evaluation and production process development . This coated microspherical fuel particle has been successfully developed over a period of...this reliable concept began with attempts to blend ceramic (oxide or carbide) fuel powders into a graphite matrix in the early concepts of ROVER, HTGR ...lubricants. An ongoing program at the Naval Air Development Center is investigating how some parameters affect corro- sion between solid film

  3. Analysis and Evaluation of Deployment Mechanism of a Tiny Rover in a Microgravity by Drop Tower Experiments

    NASA Astrophysics Data System (ADS)

    Nagaoka, Kenji; Yano, Hajime; Yoshimitsu, Tetsuo; Yoshida, Kazuya; Kubota, Takashi; Adachi, Tadashi; Kurisu, Masamitsu; Yatsunami, Hiroyuki; Kuroda, Yoji

    This presentation introduces the analysis and evaluation of a deployment mechanism of a tiny rover by ZARM drop tower experiments. The mechanism is installed on the MINERVA-II2 system in the Hayabusa-2 project performed by JAXA. The MINERVA-II2 system includes a small exploration rover, and the rover will be released from the Hayabusa-2 spacecraft to the asteroid surface. After the rover lands on the surface, it will move over the surface and conduct scientific measurements. To achieve such a challenging mission, the deployment mechanism of the rover is one of the significant components. In particular, controlling the rover's landing velocity against the asteroid surface is required with high-reliability mechanism. In the MINERVA-II2 system, a reliable deployment mechanism using a metal spring is installed. By the simple mechanism, the rover's releasing velocity will be controlled within a required value. Although the performance evaluation and analysis are necessary before launch, it is difficult to experiment the deployment performance three-dimensionally on ground. In the MINERVA-II2 project, with the cooperation of ZARM, DLR and JAXA, we conducted microgravity experiments using a ZARM drop tower to examine the deployment performance in a three-dimensional microgravity. During the experiments, motion of the deployment mechanism and the rover were captured by an external camera mounted on the dropping chamber. After the drop, we analyzed the rover's releasing velocity based on image processing of the camera data. The experimental results confirmed that the deployment mechanism is feasible and reliable for controlling the rover's releasing velocity. In addition to the experiments, we analyzed a mechanical friction resistance of the mechanism from a theoretical viewpoint. These results contribute to design of spring stiffness and feedback to the development of the MINERVA-II2 flight model. Finally, the drop tower experiments were accomplished based on the agreement on the Hayabusa-2 project by DLR-JAXA. The chamber for the experiments was used, which was developed by the Hayabusa-2 project. In the experiments, we received technical and operations supports from ZARM. We sincerely express our acknowledgement to ZARM, DLR and JAXA.

  4. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these and other algorithms and demonstrate their performance during a recent rover field test.

  5. The supercam instrument on the NASA Mars 2020 mission: optical design and performance

    NASA Astrophysics Data System (ADS)

    Perez, R.; Parès, Laurent P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, Ph.; McCabe, K.; Maurice, S.; Wiens, R. C.

    2017-09-01

    NASA is developing the MARS 2020 mission, which includes a rover that will land and operate on the surface of Mars. MARS 2020, scheduled for launch in July, 2020, is designed to conduct an assessment of Mars' past habitability, search for potential biosignatures, demonstrate progress toward the future return of samples to Earth, and contribute to NASA's Human Exploration and Space Technology Programs.

  6. Autonomous control of roving vehicles for unmanned exploration of the planets

    NASA Technical Reports Server (NTRS)

    Yerazunis, S. W.

    1978-01-01

    The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.

  7. Autonomous Instrument Placement for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Leger, P. Chris; Maimone, Mark

    2009-01-01

    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.

  8. The Athena Mars Rover Investigation

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  9. Measuring planetary field parameters by scattered "SSSS" from the Husar-5 Rover

    NASA Astrophysics Data System (ADS)

    Lang, A.; Kocsis, A.; Balaskó, D.; Csóka, B.; Molnar, B.; Sztojka, A.; Bejó, M.; Joób, Z.

    2017-09-01

    HUSAR-5 Rover reloaded: 2 years ago the Hunveyor-Husar Team in our school made yet a similar project. The ground idea was, we try to keep step with the main trends in the space research, in our recent case with the so called MSSM (Micro Sized Space- Mothership) and NPSDR (Nano, Pico Space Devices and Robots). [1]Of course, we do not want to scatter the smaller probe-cubes from a mothership, but from the Husar rover, and to do it on the planetary surface after landing. We have fabricated the rover with the ejecting tower and we have shown it on the EPSC 2015.The word "reloaded" means not only a new shape of the bullets, but a new mission with a new team. There are more pupils working in this project. The new bullets "SSSS" will be printed by a 3D printer.The microcontroller in bullets can be programmed with Arduino, so the "new generation" is able to do it.

  10. Mixed-Initiative Activity Planning for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna

    2005-01-01

    One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team.

  11. Cerebellum Augmented Rover Development

    NASA Technical Reports Server (NTRS)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  12. ExoMars: ESA's mission to search for signs of life on the red planet

    NASA Astrophysics Data System (ADS)

    Gardini, B.; Vago, J. L.; Baglioni, P.; Kminek, G.; Gianfiglio, G.

    In the framework of its Aurora Exploration Program in 2011 the European Space Agency ESA plans to launch the ExoMars mission ExoMars will deliver two science elements to the Martian surface a Rover carrying the Pasteur scientific payload and a small fixed surface station ---the Geophysics Environment Package GEP The Rover s scientific objectives are 1 To search for signs of past and present life and 2 To characterise in the shallow subsurface the vertical distribution profile for water and geochemical composition The science goals of GEP are 1 to measure geophysics parameters necessary to understand the planet s long-term internal evolution and habitability and 2 to characterise the local environment and identify hazards to future human missions Over its planned 6-month lifetime the Rover will travel a few kilometres searching for traces of past and present signs of life It will do this by collecting and analysing samples from within surface rocks and from underground ---down to 2-m depth The very powerful combination of mobility with the capability to access locations where organic molecules might be well preserved is unique to this mission ExoMars will have the right tools to try to answer the question of whether life ever arose on the red planet The ExoMars mission contains two other elements a Carrier and a Descent Module The Carrier will bring the Descent Module to Mars and release it from the hyperbolic arrival trajectory The Descent Module s objective is to safely deploy the Rover and the GEP ---developing a robust

  13. Java PathExplorer: A Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We describe recent work on designing an environment called Java PathExplorer for monitoring the execution of Java programs. This environment facilitates the testing of execution traces against high level specifications, including temporal logic formulae. In addition, it contains algorithms for detecting classical error patterns in concurrent programs, such as deadlocks and data races. An initial prototype of the tool has been applied to the executive module of the planetary Rover K9, developed at NASA Ames. In this paper we describe the background and motivation for the development of this tool, including comments on how it relates to formal methods tools as well as to traditional testing, and we then present the tool itself.

  14. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Fong, Terry; Bualat, Maria; Allan, Mark B; Bouyssounouse, Xavier; Cohen, Tamar

    2013-01-01

    During Summer 2013, we conducted a series of tests to examine how astronauts in the In- ternational Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed mission, in which an astronaut in lunar orbit remotely operates a planetary rover to deploy a radio telescope on the lunar farside. In this paper, we present the design, implementation, and preliminary test results.

  15. Overview of the NASA automation and robotics research program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Larsen, Ron

    1985-01-01

    NASA studies over the last eight years have identified five opportunities for the application of automation and robotics technology: (1) satellite servicing; (2) system monitoring, control, sequencing and diagnosis; (3) space manufacturing; (4) space structure assembly; and (5) planetary rovers. The development of these opportunities entails two technology R&D thrusts: telerobotics and system autonomy; both encompass such concerns as operator interface, task planning and reasoning, control execution, sensing, and systems integration.

  16. Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example.

    ERIC Educational Resources Information Center

    Fetterman, David; Bowman, Cassie

    2002-01-01

    Empowerment evaluation helps people improve their programs using self-evaluation. Empowerment evaluation has three steps: establishing a mission; taking stock of the most significant activities; and planning for the future by establishing goals, strategies, and criteria for evidence. A NASA experiential program for small, distributed groups of…

  17. Exomars 2018 Rover Pasteur Payload

    NASA Astrophysics Data System (ADS)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.

    ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.

  18. Unmanned surface traverses of Mars and Moon: Science objectives, payloads, operations

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Choate, R.

    1973-01-01

    Science objectives and properties to be measured are outlined for long surface traverse missions on Mars and the Moon, with remotely-controlled roving vehicles. A series of candidate rover payloads is proposed for each planet, varying in weight, cost, purpose, and development needed. The smallest weighs 35 kg; the largest almost 300 kg. A high degree of internal control will be needed on the Mars rover, including the ability to carry out complex science sequences. Decision-making by humans in the Mars mission includes supervisory control of rover operations and selection of features and samples of geological and biological interest. For the lunar mission, less control on the rover and more on earth is appropriate. Science portions of the rover mission profile are outlined, with timelines and mileage breakdowns. Operational problem areas for Mars include control, communications, data storage, night operations, and the mission operations system. For the moon, science data storage on the rover would be unnecessary and control much simpler.

  19. Software for Secondary-School Learning About Robotics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.

    2005-01-01

    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.

  20. The real-time control of planetary rovers through behavior modification

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1991-01-01

    It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.

  1. Parallel, Real-Time and Pipeline Data Reduction for the ROVER Sub-mm Heterodyne Polarimeter on the JCMT with ACSIS and ORAC-DR

    NASA Astrophysics Data System (ADS)

    Leech, J.; Dewitt, S.; Jenness, T.; Greaves, J.; Lightfoot, J. F.

    2005-12-01

    ROVER is a rotating waveplate polarimeter for use with (sub)mm heterodyne instruments, particularly the 16 element focal plane Heterodyne Array Receiver HARP tep{Smit2003} due for commissioning on the JCMT in 2004. The ROVER/HARP back-end will be a digital auto-correlation spectrometer, known as ACSIS, designed specifically for the demanding data volumes from the HARP array receiver. ACSIS is being developed by DRAO, Penticton and UKATC. This paper will describe the data reduction of ROVER polarimetry data both in real-time by ACSIS-DR, and through the ORAC-DR data reduction pipeline.

  2. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Astrophysics Data System (ADS)

    Rucker, M. A.

    2017-06-01

    NASA has accumulated a wealth of experience between the Apollo program and robotic Mars rover programs, but key differences between those missions and a human Mars mission that will require unique approaches to mitigate potential dust storm concerns.

  3. Overview of the Mars Science Laboratory Parachute Decelerator Subsystem

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan

    2007-01-01

    In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.

  4. Rovers for intelligent, agile traverse of challenging terrain

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Huntsberger, T.; Pirjanian, P.; Dubowsky, S.; Iagnemma, K.; Sujan, V.

    2003-01-01

    Planetary surface mobility has to date been limited to benign locations. If rover systems could be developed for more challenging terrain, e.g., sloped and irregularly feathered areas, then planetary science opportunities would be greatly expanded.

  5. Sundial Lands on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Two views of a sundial called the MarsDial can be seen in this image taken on Mars by the Mars Exploration Rover Spirit's panoramic camera. These calibration instruments, positioned on the solar panels of both Spirit and the Mars Exploration Rover Opportunity, are tools for both scientists and educators. Scientists use the sundial to adjust the rovers' panoramic cameras, while students participating in NASA's Red Rover Goes to Mars program will monitor the dial to track time on Mars. Students worldwide will also have the opportunity to build their own Earth sundial and compare it to that on Mars.

    The left image was captured near martian noon when the Sun was very high in the sky. The right image was acquired later in the afternoon when the Sun was lower in sky, casting longer shadows. The colored blocks in the corners of the sundial are used to fine-tune the panoramic camera's sense of color. Shadows cast on the sundial help scientists adjust the brightness of images.

    The sundial is embellished with artwork from children, and displays the word Mars in 17 different languages.

  6. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  7. Development and Engineering Design in Support of "Rover Ranch": A K-12 Outreach Software Project

    NASA Technical Reports Server (NTRS)

    Pascali, Raresh

    2003-01-01

    A continuation of the initial development started in the summer of 1999, the body of work performed in support of 'ROVer Ranch' Project during the present fellowship dealt with the concrete concept implementation and resolution of the related issues. The original work performed last summer focused on the initial examination and articulation of the concept treatment strategy, audience and market analysis for the learning technologies software. The presented work focused on finalizing the set of parts to be made available for building an AERCam Sprint type robot and on defining, testing and implementing process necessary to convert the design engineering files to VRML files. Through reverse engineering, an initial set of mission critical systems was designed for beta testing in schools. The files were created in ProEngineer, exported to VRML 1.0 and converted to VRML 97 (VRML 2.0) for final integration in the software. Attributes for each part were assigned using an in-house developed JAVA based program. The final set of attributes for each system, their mutual interaction and the identification of the relevant ones to be tracked, still remain to be decided.

  8. Mars Exploration Rover Operations with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Jeffrey S. Norris; Powell, Mark W.; Vona, Marsette A.; Backes, Paul G.; Wick, Justin V.

    2005-01-01

    The Science Activity Planner (SAP) is the primary science operations tool for the Mars Exploration Rover mission and NASA's Software of the Year for 2004. SAP utilizes a variety of visualization and planning capabilities to enable the mission operations team to direct the activities of the Spirit and Opportunity rovers. This paper outlines some of the challenging requirements that drove the design of SAP and discusses lessons learned from the development and use of SAP in mission operations.

  9. Modeling and Simulation of the Dynamics of Dissipative, Inelastic Spheres with Applications to Planetary Rovers and Gravitational Billiards

    NASA Astrophysics Data System (ADS)

    Hartl, Alexandre E.

    This dissertation provides a thorough treatment on the dynamic modeling and simulation of spherical objects, and its applications to planetary rovers and gravitational billiards. First, the equations governing the motion of a wind-driven spherical rover are developed, and a numerical procedure for their implementation is shown. Dynamic simulations (considering the Earth and Mars atmospheres) for several terrain types and conditions illustrate how a rover may maneuver across flat terrain, channels and craters. The effects of aerodynamic forces on the rover's motion is studied. The results show the wind force may both push and hinder the rover's motion while sliding, rolling and bouncing. The rover will periodically transition between these modes of movement when the rover impacts sloped surfaces. Combinations of rolling and bouncing may be a more effective means of transport for a rover traveling through a channel when compared to rolling alone. The aerodynamic effects, of drag and the Magnus force, are contributing factors to the possible capture of the rover by a crater. Next, a strategy is formulated for creating randomized Martian rock fields based on statistical models, where the rover's interactions with these fields are analyzed. Novel procedures for creating randomized Martian rock fields are presented, where optimization techniques allow terrain generation to coincide with the rover's motion. Efficient collision detection routines reduce the number of tests of potential collisions between the rover and the terrain while establishing new contact constraints. The procedures allow for the exploration of large regions of terrain while minimizing computational costs. Simulations demonstrate that bouncing is the rover's dominant mode of travel through the rock fields. Monte-Carlo simulations illustrate how the rover's down-range position depends on the rover design and atmospheric conditions. Moreover, the simulations verify the rover's capacity for long distance travel over Martian rock fields. Finally, a mathematical model that captures the essential dynamics required for describing the motion of a real world billiard for arbitrary boundaries is presented. The model considers the more realistic situation of an inelastic, rotating, gravitational billiard in which there are retarding forces due to air resistance and friction. The simulations demonstrate that the parabola has stable, periodic motion, while the wedge and hyperbola, at high driving frequencies, appear chaotic. The hyperbola, at low driving frequencies, behaves similarly to the parabola, and has regular motion. Direct comparisons are made between the model's predictions and previously published experimental data. The representation of the coefficient of restitution employed in the model resulted in good agreement with the experimental data for all boundary shapes investigated. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.

  10. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  11. An update on Lab Rover: A hospital material transporter

    NASA Technical Reports Server (NTRS)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  12. First Image from a Mars Rover Choosing a Target

    NASA Image and Video Library

    2010-03-23

    This true-color image is the result of the first observation of a target selected autonomously by NASA Mars Exploration Rover Opportunity using newly developed and uploaded software named Autonomous Exploration for Gathering Increased Science, or AEGIS.

  13. TU Berlin Rover Family for Terrestrial Testing of Complex Planetary Mission Scenarios

    NASA Astrophysics Data System (ADS)

    Kryza, L.; Brieß, K.

    2018-04-01

    The TU Berlin has developed a family of planetary rovers for educational use and research activities. The paper will introduce these cost-effective systems, which can be used for analogue mission demonstration on Earth.

  14. Opportunity on 'Cabo Frio' (Simulated)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006).

    This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  15. Design and Manufacturing of Extremely Low Mass Flight Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  16. Planning for execution monitoring on a planetary rover

    NASA Technical Reports Server (NTRS)

    Gat, Erann; Firby, R. James; Miller, David P.

    1990-01-01

    A planetary rover will be traversing largely unknown and often unknowable terrain. In addition to geometric obstacles such as cliffs, rocks, and holes, it may also have to deal with non-geometric hazards such as soft soil and surface breakthroughs which often cannot be detected until rover is in imminent danger. Therefore, the rover must monitor its progress throughout a traverse, making sure to stay on course and to detect and act on any previously unseen hazards. Its onboard planning system must decide what sensors to monitor, what landmarks to take position readings from, and what actions to take if something should go wrong. The planning systems being developed for the Pathfinder Planetary Rover to perform these execution monitoring tasks are discussed. This system includes a network of planners to perform path planning, expectation generation, path analysis, sensor and reaction selection, and resource allocation.

  17. Axel Robotic Platform for Crater and Extreme Terrain Exploration

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A.; Matthews, Jaret B.; Edlund, Jeffrey A.; Burdick, Joel W.; Abad-Manterola, Pablo

    2012-01-01

    To be able to conduct science investigations on highly sloped and challenging terrains, it is necessary to deploy science payloads to such locations and collect and process in situ samples. A tethered robotic platform has been developed that is capable of exploring very challenging terrain. The Axel rover is a symmetrical rover that is minimally actuated, can traverse arbitrary paths, and operate upside-down or right-side up. It can be deployed from a larger platform (rover, lander, or aerobot) or from a dual Axel configuration. Axel carries and manages its own tether, reducing damage to the tether during operations. Fundamentally, Axel is a two-wheeled rover with a symmetric body and a trailing link. Because the primary goal is minimal complexity, this version of the Axel rover uses only four primary actuators to control its wheels, tether, and a trailing link. A fifth actuator is used for level winding of tether onto Axel s spool.

  18. Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1989-01-01

    Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s

  19. Supporting Increased Autonomy for a Mars Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa

    2008-01-01

    This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.

  20. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2018-02-06

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  1. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008.more » The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.« less

  2. A Raman Spectrometer for the ExoMars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Canora, C. P.; Seoane, L.; Rodríguez, P.; Canchal, R.; Gallego, P.; Ramos, G.; López, G.; Prieto, J. A. R.; Santiago, A.; Santamaría, P.; Colombo, M.; Belenguer, T.; Forni, O.

    2017-09-01

    The Raman project is devoted to the development of a Raman spectrometer and the support science associated for the rover EXOMARS mission to be launched in 2020. ExoMars is a double mission with two different launch opportunities, first one launched in March 2016 allowed to put in orbit the TGO with the communication system for the next mission. And the second one in 2020, deploying a rover which includes for the first time in the robotic exploration of Mars, a drill capable to obtain samples from the subsurface up to 2 meters depth. These samples will be crushed into a fine powder and delivered to the analytical instruments suite inside the rover by means of a dosing station. The EQM has been already qualified under a very demanding thermo mechanical environment, and under EMC tests, finally achieving required scientific performances. The RLS Engineering and Qualification Model has been manufactured and is expected to be delivered by May 2017, after a full qualification testing campaign developed during 2016 Q4, and 2017 Q1. It will finally delivered to ESA, by July 2017. December 2017 at TAS-I premises will do RLS FM delivery to ESA, for its final integration on the ExoMars 2020 Rover.

  3. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  4. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  5. Real-time operating system for a multi-laser/multi-detector system

    NASA Technical Reports Server (NTRS)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  6. MSR Fetch Rover Capability Development at the Canadian Space Agency

    NASA Astrophysics Data System (ADS)

    Picard, M.; Hipkin, V.; Gingras, D.; Allard, P.; Lamarche, T.; Rocheleau, S. G.; Gemme, S.

    2018-04-01

    Describes Fetch Rover technology testing during CSA's 2016 Mars Sample Return Analogue Deployment which demonstrated autonomous navigation to 'cache depots' of M-2020-like sample tubes, acquisition of six such tubes, and transfer to a MAV mock up.

  7. Autonomous Image Analysis for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Bandari, E.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to preferentially transmit "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high-resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. We are currently investigating the possibility of reconstructing a 3D surface from a sequence of images acquired by a robotic arm camera. This would then allow the return of a single completely in focus image constructed only from those portions of individual images that lie within the camera's depth of field. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these algorithms and their performance during a recent rover field test.

  8. Positive-Buoyancy Rover for Under Ice Mobility

    NASA Technical Reports Server (NTRS)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  9. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    NASA Technical Reports Server (NTRS)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  10. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  11. The Use of Nanomaterials to Achieve NASA's Exploration Program Power Goals

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2009-01-01

    This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.

  12. Student Participation in Mars Sample Return Rover Field Tests, Silver Lake, California

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Arvidson, R. E.; Bowman, J. D.; Dunham, C. D.; Backes, P.; Baumgartner, E. T.; Bell, J.; Dworetzky, S. C.; Klug, S.; Peck, N.

    2000-01-01

    An integrated team of students and teachers from four high schools across the country developed and implemented their own mission of exploration and discovery using the Mars Sample Return prototype rover, FIDO, at Silver Lake in the Mojave Desert.

  13. Space robotics in the '90s

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F.

    1989-01-01

    The use of telerobots and rovers in space missions is examined. The functioning of the telerobots and rovers and their proposed applications are described. Research developments needed to design robots for specific environments and functions are described. Examples of NASA robotics projects are presented.

  14. A Capable and Temporary Test Facility on a Shoestring Budget: The MSL Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher V.; Frankovich, John K.; Yates, Philip; Wells, George, Jr.; Robert, Losey

    2008-01-01

    The Mars Science Laboratory mission (MSL) has undertaken a developmental Touchdown Test Program that utilizes a full-scale rover vehicle and an overhead winch system to replicate the skycrane landing event. Landing surfaces consisting of flat and sloped granular media, planar, rigid surfaces, and various combinations of rocks and slopes were studied. Information gathered from these tests was vital for validating the rover analytical model, validating certain design or system behavior assumptions, and for exploring events and phenomenon that are either very difficult or too costly to model in a credible way. This paper describes this test program, with a focus on the creation of test facility, daily test operations, and some of the challenges faced and lessons learned along the way.

  15. Micro-technology for planetary exploration and education

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Varsi, Giulio

    1991-01-01

    The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.

  16. A Rover Operations Protocol for Maintaining Compliance with Planetary Protection Requirements

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Vasavada, Ashwin

    2016-07-01

    The Mars Science Laboratory (MSL) mission, with its Curiosity rover, arrived at Gale Crater in August 2012 with the scientific objective of assessing the past and present habitability of the landing site area. It is not a life detection mission, but one that uses geological, geochemical, and environmental measurements to understand whether past and present conditions could have supported life. The MSL mission is designated Planetary Protection Category IVa, with specific restrictions on the landing site and surface operations. In particular, the mission is prohibited from introducing any hardware into a Mars Special Region, as defined by COSPAR policy and in NASA document NPR 8020.12D. Fluid-formed features such as recurring slope lineae are included in this prohibition. Finally, any evidence suggesting the presence of Special Regions or flowing liquid at the actual MSL landing site shall be communicated to the NASA Planetary Protection Officer immediately, and physical contact by the rover with such features shall be entirely avoided. The MSL Project has recently developed and instituted a protocol in daily rover operations to ensure ongoing compliance with its planetary protection categorization. A particular challenge comes from the fact that the characteristics of potential Special Regions may not be obvious in the rover downlink data (e.g., landscape images, chemical measurements, or meteorology), or easily distinguishable from characteristics of other processes that do not imply Special Regions. For this reason, the first step in the process would be for the lead scientist for that day of operations (a role that rotates through senior scientists on the mission) to scrutinize all the targets that may receive interaction by rover hardware, such as targets for arm contact, or paths for wheel contact. Based on the expertise of the lead scientist, and definitions of Mars Special Regions, if any features of concern are identified, the other scientists on duty that day would be brought into a discussion. Typically the tactical team has a mix of experts in geology, astrobiology, geological materials, geochemistry, and meteorology. If this team cannot rule out the concern of introducing rover hardware into a potential Special Region, arm and wheel usage would be prohibited in that day's planning. This halt in tactical operations would allow a separate Special Regions Team to re-consider the data more deliberately, but still on timeline that would allow rover operations to resume as quickly as possible. This team is chosen in advance to have a broad range of expertise that can weigh the evidence for a potential Special Region, including representatives from the institutional planetary protection organization and involvement of the MSL Project Manager. If this team cannot rule out the concern, rover operations continue to hold while the NASA Planetary Protection Office is engaged to determine the best course of action for the mission. It is worth noting that evidence of modern, fluid-formed features at Gale Crater is not expected and would represent a major scientific discovery for the mission and Mars Exploration Program. However, this low-likelihood outcome still requires vigilance to ensure compliance with planetary protection requirements.

  17. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  18. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    NASA Astrophysics Data System (ADS)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  19. Curiosity: How to Boldly Go...

    NASA Technical Reports Server (NTRS)

    Pyrzak, Guy

    2013-01-01

    Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars.

  20. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  1. The MITy micro-rover: Sensing, control, and operation

    NASA Technical Reports Server (NTRS)

    Malafeew, Eric; Kaliardos, William

    1994-01-01

    The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.

  2. KSC-2011-2275

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – Robotics Engineer Michael Garrett from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., talks about the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. JPL unveiled an inflatable, full-size model of the rover at the competition. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  3. Intelligent Rover Execution for Detecting Life in the Atacama Desert

    NASA Technical Reports Server (NTRS)

    Baskaran, Vijayakumar; Muscettola, Nicola; Rijsman, David; Plaunt, Chris; Fry, Chuck

    2006-01-01

    On-board supervisory execution is crucial for the deployment of more capable and autonomous remote explorers. Planetary science is considering robotic explorers operating for long periods of time without ground supervision while interacting with a changing and often hostile environment. Effective and robust operations require on-board supervisory control with a high level of awareness of the principles of functioning of the environment and of the numerous internal subsystems that need to be coordinated. We describe an on-board rover executive that was deployed on a rover as past of the "Limits of Life in the Atacama Desert (LITA)" field campaign sponsored by the NASA ASTEP program. The executive was built using the Intelligent Distributed Execution Architecture (IDEA), an execution framework that uses model-based and plan-based supervisory control of its fundamental computational paradigm. We present the results of the third field experiment conducted in the Atacama desert (Chile) in August - October 2005.

  4. Human-Automation Allocations for Current Robotic Space Operations

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice.

  5. UNITE 3D Rover Summer Workshop: An Overview and Assessment

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Deal, Walter F.; Tuluri, Francis

    2017-01-01

    UNITE is a program sponsored by the Army Educational Outreach Program (AEOP, 2015). The STEM Enrichment Activities of AEOP are designed to spark student interest in science, technology, engineering, and mathematics, especially among the underserved and those in earlier grades and educators by providing exciting, engaging, interactive, hands-on…

  6. Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward

    1999-01-01

    Miniature rovers with articulated mobility mechanisms are being developed for planetary surface exploration on Mars and small solar system bodies. These vehicles are designed to be capable of autonomous recovery from overturning during surface operations. This paper describes a computational means of developing motion behaviors that achieve the autonomous recovery function. It proposes a control software design approach aimed at reducing the effort involved in developing self-righting behaviors. The approach is based on the integration of evolutionary computing with a dynamics simulation environment for evolving and evaluating motion behaviors. The automated behavior design approach is outlined and its underlying genetic programming infrastructure is described.

  7. The Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; French, R. A.; Nall, M. E.; Muery, K. G.

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses.

  8. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  9. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  10. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  11. Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem

    NASA Technical Reports Server (NTRS)

    Younse, Paulo J.; Dicicco, Matthew A.; Morgan, Albert R.

    2012-01-01

    A report describes the PLuto (programmable logic) Mars Technology Rover, a mid-sized FIDO (field integrated design and operations) class rover with six fully drivable and steerable cleated wheels, a rocker-bogey suspension, a pan-tilt mast with panorama and navigation stereo camera pairs, forward and rear stereo hazcam pairs, internal avionics with motor drivers and CPU, and a 5-degrees-of-freedom robotic arm. The technology rover was integrated with an arm-mounted percussive coring tool, microimager, and sample handling encapsulation containerization subsystem (SHEC). The turret of the arm contains a percussive coring drill and microimager. The SHEC sample caching system mounted to the rover body contains coring bits, sample tubes, and sample plugs. The coring activities performed in the field provide valuable data on drilling conditions for NASA tasks developing and studying coring technology. Caching of samples using the SHEC system provide insight to NASA tasks investigating techniques to store core samples in the future.

  12. Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation

    NASA Technical Reports Server (NTRS)

    Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad

    1999-01-01

    The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.

  13. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  14. In Situ Resource Utilization For Mobility In Mars Exploration

    NASA Astrophysics Data System (ADS)

    Hartman, Leo

    There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.

  15. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  16. Telecommunications for Mars Rovers and Robotic Mission

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  17. Telecommunications for Mars Rovers and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  18. Design and Demonstration of a Miniature Lidar System for Rover Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Benjamin

    2010-01-01

    A basic small and portable lidar system for rover applications has been designed. It uses a 20 Hz Nd:YAG pulsed laser, a 4-inch diameter telescope receiver, a custom-built power distribution unit (PDU), and a custom-built 532 nm photomultiplier tube (PMT) to measure the lidar signal. The receiving optics have been designed, but not constructed yet. LabVIEW and MATLAB programs have also been written to control the system, acquire data, and analyze data. The proposed system design, along with some measurements, is described. Future work to be completed is also discussed.

  19. Scaling Up Decision Theoretic Planning to Planetary Rover Problems

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Dearden, Richard; Washington, Rich

    2004-01-01

    Because of communication limits, planetary rovers must operate autonomously during consequent durations. The ability to plan under uncertainty is one of the main components of autonomy. Previous approaches to planning under uncertainty in NASA applications are not able to address the challenges of future missions, because of several apparent limits. On another side, decision theory provides a solid principle framework for reasoning about uncertainty and rewards. Unfortunately, there are several obstacles to a direct application of decision-theoretic techniques to the rover domain. This paper focuses on the issues of structure and concurrency, and continuous state variables. We describes two techniques currently under development that address specifically these issues and allow scaling-up decision theoretic solution techniques to planetary rover planning problems involving a small number of goals.

  20. Small image laser range finder for planetary rover

    NASA Technical Reports Server (NTRS)

    Wakabayashi, Yasufumi; Honda, Masahisa; Adachi, Tadashi; Iijima, Takahiko

    1994-01-01

    A variety of technical subjects need to be solved before planetary rover navigation could be a part of future missions. The sensors which will perceive terrain environment around the rover will require critical development efforts. The image laser range finder (ILRF) discussed here is one of the candidate sensors because of its advantage in providing range data required for its navigation. The authors developed a new compact-sized ILRF which is a quarter of the size of conventional ones. Instead of the current two directional scanning system which is comprised of nodding and polygon mirrors, the new ILRF is equipped with the new concept of a direct polygon mirror driving system, which successfully made its size compact to accommodate the design requirements. The paper reports on the design concept and preliminary technical specifications established in the current development phase.

  1. Lunar, Cislunar, Near/Farside Laser Retroreflectors for the Accurate: Positioning of Landers/Rovers/Hoppers/Orbiters, Commercial Georeferencing, Test of Relativistic Gravity, and Metrics of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Currie, D.; Ciocci, E.; Contessa, S.; Delle Monache, G.; March, R.; Martini, M.; Mondaini, C.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Bianco, G.; Vittori, R.; Chandler, J.; Murphy, T.; Maiello, M.; Petrassi, M.; Lomastro, A.

    2017-10-01

    We developed next-generation lunar, cislunar, near/farside laser retroreflectors for the improved/accurate: Positioning of landers/rovers/hoppers/orbiters, commercial georeferencing, test of relativistic gravity, and metrics of the lunar interior.

  2. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  3. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Assemby, test, and launch operations for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wallace, Matthew T.; Hardy, Paul V.; Romero, Raul A.; Salvo, Christopher G.; Shain, Thomas W.; Thompson, Arthur D.; Wirth, John W.

    2005-01-01

    In January of 2004, NASA's twin Mars rovers, Spirit and Opportunity, successfully landed on opposite sides of the Red Planet after a seven month Earth to Mars cruise period. Both vehicles have operated well beyond their 90 day primary mission design life requirements. The Assembly, Test, and Launch Operations (ATLO) program for these missions presented unique technical and schedule challenges to the team at the Jet Propulsion Laboratory (JPL). Among these challenges were a highly compressed schedule and late deliveries leading to extended double shift staffing, dual spacecraft operations requiring test program diversification and resource arbitration, multiple atypical test configurations for airbag/rocket landings and surface mobility testing, and verification of an exceptionally large number of separations, deployments, and mechanisms. This paper discusses the flight system test philosophies and approach, and presents lessons learned.

  5. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions.

    PubMed

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.

  6. SeaRover: An Emerging Technology for Sea Surface Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.

    2005-12-01

    Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power payload simplifies instrument design and integration. Enabling Technology for SeaRover - SeaRover's capabilities are made possible by advances in technologies developed during NASA planetary exploration missions: (1) Adaptive control (2) Automated data analysis (3) Communications management (4) Computer vision (5) Interactive 3D User Interfaces (6) Intelligent energy management (7) Long-duration operations planning (8) Multi-vehicle coordinated action As an example of what SeaRover could be used for, we envision augmenting existing monthly monitoring cruises in Monterey Bay with a SeaRover. Each month, the Center for Integrated Marine Technology (UC-Santa Cruz) conducts shipboard surveys of Monterey Bay. This requires 2-3 full days of ship time (weather dependent), 14 scientists, and 2 crew members. Operations are currently limited by sea-state, transit speed, and cost. SeaRover could provide all of the underway measurements and some of the hydrographic station measurements faster, more frequently, and for a fraction of the cost.

  7. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selectedmore » over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.« less

  8. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  9. Mars Rover Step Toward Possible Resumption of Drilling

    NASA Image and Video Library

    2017-10-23

    NASA's Curiosity Mars rover conducted a test on Oct. 17, 2017, as part of the rover team's development of a new way to use the rover's drill. This image from Curiosity's front Hazard Avoidance Camera (Hazcam) shows the drill's bit touching the ground during an assessment of measurements by a sensor on the rover's robotic arm. Curiosity used its drill to acquire sample material from Martian rocks 15 times from 2013 to 2016. In December 2016, the drill's feed mechanism stopped working reliably. During the test shown in this image, the rover touched the drill bit to the ground for the first time in 10 months. The image has been adjusted to brighten shaded areas so that the bit is more evident. The date was the 1,848th Martian day, or sol, of Curiosity's work on Mars In drill use prior to December 2016, two contact posts -- the stabilizers on either side of the bit -- were placed on the target rock while the bit was in a withdrawn position. Then the motorized feed mechanism within the drill extended the bit forward, and the bit's rotation and percussion actions penetrated the rock. A promising alternative now under development and testing -- called feed-extended drilling -- uses motion of the robotic arm to directly advance the extended bit into a rock. In this image, the bit is touching the ground but the stabilizers are not. In the Sol 1848 activity, Curiosity pressed the drill bit downward, and then applied smaller sideways forces while taking measurements with a force/torque sensor on the arm. The objective was to gain understanding about how readings from the sensor can be used during drilling to adjust for any sideways pressure that might risk the bit becoming stuck in a rock. While rover-team engineers are working on an alternative drilling method, the mission continues to examine sites on Mount Sharp, Mars, with other tools. https://photojournal.jpl.nasa.gov/catalog/PIA22063

  10. Adaptive Caching Concept

    NASA Image and Video Library

    2015-06-10

    This diagram, superimposed on a photo of Martian landscape, illustrates a concept called "adaptive caching," which is in development for NASA's 2020 Mars rover mission. In addition to the investigations that the Mars 2020 rover will conduct on Mars, the rover will collect carefully selected samples of Mars rock and soil and cache them to be available for possible return to Earth if a Mars sample-return mission is scheduled and flown. Each sample will be stored in a sealed tube. Adaptive caching would result in a set of samples, up to the maximum number of tubes carried on the rover, being placed on the surface at the discretion of the mission operators. The tubes holding the collected samples would not go into a surrounding container. In this illustration, green dots indicate "regions of interest," where samples might be collected. The green diamond indicates one region of interest serving as the depot for the cache. The green X at upper right represents the landing site. The solid black line indicates the rover's route during its prime mission, and the dashed black line indicates its route during an extension of the mission. The base image is a portion of the "Everest Panorama" taken by the panoramic camera on NASA's Mars Exploration Rover Spirit at the top of Husband Hill in 2005. http://photojournal.jpl.nasa.gov/catalog/PIA19150

  11. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  12. 78 FR 55762 - National Environmental Policy Act; Mars 2020 Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... set of soil and rock samples that could be returned to Earth in the future, and test new technology to... include the use of one multi-mission radioisotope thermoelectric generator (MMRTG) for rover electrical... would use the proven design and technology developed for the Mars Science Laboratory mission and rover...

  13. Exomars Mission Achievements

    NASA Astrophysics Data System (ADS)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    ExoMars is the first step of the European Space Agency's Aurora Exploration Programme. Comprising two missions, the first one launched in 2016 and the second one to be launched in 2020, ExoMars is a program developed in a broad ESA and Roscosmos co-operation, with significant contribution from NASA that addresses the scientific question of whether life ever existed on Mars and demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface . Thales Alenia Space is the overall prime contractor of the Exomars program leading a large industrial team The Spacecraft Composite (SCC), consisting of a Trace Gas Orbiter (TGO) and an EDL (Entry Descend and Landing) Demonstrator Module (EDM) named Schiaparelli, has been launched on 14 March 2016 from the Baikonur Cosmodrome by a Proton Launcher. The two modules will separate on 16 October 2016 after a 7 months cruise. The TGO will search for evidence of methane and other atmospheric gases that could be signatures of active biological or geological processes on Mars and will provide communications relay for the 2020 surface assets. The Schiaparelli module will prove the technologies required to safely land a payload on the surface of Mars, with a package of sensors aimed to support the reconstruction of the flown trajectory and the assessment of the performance of the EDL subsystems. For the second Exomars mission a space vehicle composed of a Carrier Module (CM) and a Descent Module (DM), whose Landing Platform (LP) will house a Rover, will begin a 7 months long trip to Mars in August 2020. In 2021 the Descent Module will be separated from the Carrier to carry out the entry into the planet's atmosphere and subsequently make the Landing Platform and the Rover land gently on the surface of Mars. While the LP will continue to measure the environmental parameters of the landing site, the Rover will begin exploration of the surface, which is expected to last 218 Martian days (approx. 230 Earth days). During the exploration the Rover will use the TGO-2016 for the communications with Earth. This paper will outline the Exomars 2016 mission design, first in flight achievement and performance results and provide a description of the major design drivers of the 2020 mission, with a view to highlight lessons learnt aspects that must be considered for future mission design.

  14. Autonomous localisation of rovers for future planetary exploration

    NASA Astrophysics Data System (ADS)

    Bajpai, Abhinav

    Future Mars exploration missions will have increasingly ambitious goals compared to current rover and lander missions. There will be a need for extremely long distance traverses over shorter periods of time. This will allow more varied and complex scientific tasks to be performed and increase the overall value of the missions. The missions may also include a sample return component, where items collected on the surface will be returned to a cache in order to be returned to Earth, for further study. In order to make these missions feasible, future rover platforms will require increased levels of autonomy, allowing them to operate without heavy reliance on a terrestrial ground station. Being able to autonomously localise the rover is an important element in increasing the rover's capability to independently explore. This thesis develops a Planetary Monocular Simultaneous Localisation And Mapping (PM-SLAM) system aimed specifically at a planetary exploration context. The system uses a novel modular feature detection and tracking algorithm called hybrid-saliency in order to achieve robust tracking, while maintaining low computational complexity in the SLAM filter. The hybrid saliency technique uses a combination of cognitive inspired saliency features with point-based feature descriptors as input to the SLAM filter. The system was tested on simulated datasets generated using the Planetary, Asteroid and Natural scene Generation Utility (PANGU) as well as two real world datasets which closely approximated images from a planetary environment. The system was shown to provide a higher accuracy of localisation estimate than a state-of-the-art VO system tested on the same data set. In order to be able to localise the rover absolutely, further techniques are investigated which attempt to determine the rover's position in orbital maps. Orbiter Mask Matching uses point-based features detected by the rover to associate descriptors with large features extracted from orbital imagery and stored in the rover memory prior the mission launch. A proof of concept is evaluated using a PANGU simulated boulder field.

  15. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  16. Rover mast calibration, exact camera pointing, and camara handoff for visual target tracking

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Ansar, Adnan I.; Steele, Robert D.

    2005-01-01

    This paper presents three technical elements that we have developed to improve the accuracy of the visual target tracking for single-sol approach-and-instrument placement in future Mars rover missions. An accurate, straightforward method of rover mast calibration is achieved by using a total station, a camera calibration target, and four prism targets mounted on the rover. The method was applied to Rocky8 rover mast calibration and yielded a 1.1-pixel rms residual error. Camera pointing requires inverse kinematic solutions for mast pan and tilt angles such that the target image appears right at the center of the camera image. Two issues were raised. Mast camera frames are in general not parallel to the masthead base frame. Further, the optical axis of the camera model in general does not pass through the center of the image. Despite these issues, we managed to derive non-iterative closed-form exact solutions, which were verified with Matlab routines. Actual camera pointing experiments aver 50 random target image paints yielded less than 1.3-pixel rms pointing error. Finally, a purely geometric method for camera handoff using stereo views of the target has been developed. Experimental test runs show less than 2.5 pixels error on high-resolution Navcam for Pancam-to-Navcam handoff, and less than 4 pixels error on lower-resolution Hazcam for Navcam-to-Hazcam handoff.

  17. Exomars VisLoc- The Visual Localisation System for the Exomars Rover

    NASA Astrophysics Data System (ADS)

    Ward, R.; Hamilton, W.; Silva, N.; Pereira, V.

    2016-08-01

    Maintaining accurate knowledge of the current position of vehicles on the surface of Mars is a considerable problem. The lack of an orbital GPS means that the absolute position of a rover at any instant is very difficult to determine, and with that it is difficult to accurately and safely plan hazard avoidance manoeuvres.Some on-board methods of determining the evolving POSE of a rover are well known, such as using wheel odometry to keep a log of the distance travelled. However there are associated problems - wheels can slip in the martial soil providing odometry readings which can mislead navigation algorithms. One solution to this is to use a visual localisation system, which uses cameras to determine the actual rover motion from images of the terrain. By measuring movement from the terrain an independent measure of the actual movement can be obtained to a high degree of accuracy.This paper presents the progress of the project to develop a the Visual Localisation system for the ExoMars rover (VisLoc). The core algorithmm used in the system is known as OVO (Oxford Visual Odometry), developed at the Mobile Robotics Group at the University of Oxford. Over a number of projects this system has been adapted from its original purpose (navigation systems for autonomous vehicles) to be a viable system for the unique challenges associated with extra-terrestrial use.

  18. Estimation and Control for Autonomous Coring from a Rover Manipulator

    NASA Technical Reports Server (NTRS)

    Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max

    2010-01-01

    A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.

  19. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-26

    The fifth marned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  1. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  2. Development of a Rover Simulation to Assess Operational Proficiency Following Long Duration Spaceflights

    NASA Technical Reports Server (NTRS)

    DeDios, Y. E.; Dean, S. L.; Rpsemtja (. K/); < acdpig (as/ J/ G/); Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration space transits, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely control pressurized rovers designed to explore the new environment. We describe a rover simulation developed to quantify post-flight decrements in operational proficiency following International Space Station expeditions. The rover simulation consists of a serial presentation of discrete tasks to be completed as quickly and accurately as possible. Each task consists of 1) perspective taking using a map that defines a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilizes a Stewart-type motion base (CKAS, Australia), single seat cabin with triple scene projection covering approximately 150 horizontal by 40 vertical, and joystick controller. The software was implemented using Unity3 with next-gen PhysX engine to tightly synchronize simulation and motion platform commands. Separate C# applications allow investigators to customize session sequences with different lighting and gravitational conditions, and then execute tasks to be performed as well as record performance data. Preliminary tests resulted in low incidence of motion sickness (<15% unable to complete first session), with only negligible after effects and symptoms after familiarization sessions. Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to other vehicle designs to provide a platform to safely assess how sensorimotor and cognitive function impact manual control performance.

  3. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  4. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  5. Russian contribution to the ExoMars project

    NASA Astrophysics Data System (ADS)

    Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.

    2014-04-01

    The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented

  6. Reflectance calibration and shadow effect of VNIS spectra acquired by the Yutu rover

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Lin, Yang-Ting; Liu, Bin; Yang, Wei; He, Zhi-Ping; Xing, Wei-Fan

    2015-09-01

    Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR spectra near its landing site in Mare Imbrium. The radiance images were reduced through repairing bad lines and bad points, and applying flat field correction, and then were converted into reflectance values based on the solar irradiance and angles of incidence. A significant shadow effect was observed in the VIS/NIR image. The shadowed regions show lower reflectance with a darkening trend compared with illuminated regions. The reflectance increased by up to 24% for entire images and 17% for the VIS/NIR-SWIR overlapping regions after shadow correction. The correction for the shadow effect will remarkably decrease the estimate of FeO content, by up to 4.9 wt.% in this study. The derived FeO contents of CD-005∼008 after shadow correction are around 18.0 wt.%.

  7. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  8. TA-03-0035 Press Building – D&D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasenack, Marvin Leroy

    The Press Building was constructed in 1954 with 15,073 ft 2 of floor space. It was built to house a 5000 ton double action Lake Erie hydraulic press and a uranium casting area. Missions included uranium activities associated with the Nuclear Weapons and Rover Rocket programs. At the end of the Rover program, the building continued to support various uranium materials science projects until the building was placed into a cold and dark status in 2013 and then was demolished in 2017. The building interior, the press, and associated systems were radiological contaminated and disposed of as low level waste.more » The demolition of this building opened up valuable real estate in the TA-3 area for the future construction of an ~11,000 Sq. Ft. Biosafety Level 2 laboratory and office building. This building will support the ongoing Bioscience Division mission at the laboratory.« less

  9. The ExoMars science data archive: status and plans

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    The ExoMars program, a cooperation between ESA and Roscosmos, comprises two missions: the Trace Gas Orbiter, to be launched in 2016, and a rover and surface platform, due for launch in 2018. This will be the first time ESA has operated a rover, and the archiving and management of the science data to be returned will require a significant effort in development of the new Planetary Science Archive (PSA). The ExoMars mission data will also be formatted according to the new PDS4 Standards, based in XML, and this will be the first data of that format to be archived in the PSA. There are significant differences in the way in which a scientist will want to query, retrieve, and use data from a suite of rover instruments as opposed to remote sensing instrumentation from an orbiter. The PSA data holdings and the accompanying services are currently driven more towards the management of remote sensing data, so some significant changes will be needed. Among them will be a much closer link to the operational information than is currently available for our missions. NASA have a strong user community interaction with their analysts notebook, which provides detailed operational information to explain why, where and when operations took place. A similar approach will be needed for the future PSA, which is currently being designed. In addition to the archiving interface itself, there are differences with the overall archiving process being followed for ExoMars compared to previous ESA planetary missions. The Trace Gas Orbiter data pipelines for the first level of processing from telemetry to raw data, will be hosted directly by ESA's ground segment at ESAC in Madrid, where the archive itself resides. Data will have a continuous flow direct to the PSA, where after the given proprietary period, it will be directly released to the community via the new user interface. For the rover mission, the data pipelines are being developed by European industry, in close collaboration with ESA PSA experts and with the instrument teams. The first level of data processing will be carried out for all instruments at ALTEC in Turin where the pipelines are developed, and from where the rover operations will also be run. The PDS4 data will be directly produced and used for planning purposes within the operations centre before being passed on the the PSA for long term archiving. While this has clear advantages in the long-term regarding the timely population of the archive with at least the first level of data, the outsourcing of the pipelines to industry introduces complications. Firstly, it is difficult to have the necessary expertise on hand to train the individuals designing the pipelines, and to define the archiving conventions needed to meet the scientific needs of the mission. It also introduces issues in terms of driving the schedule, as industry is committed to making deliveries within fixed budgets and time-frames that may not necessarily be in line with the needs of archiving, and may not be able to respond well to the ongoing evolution of the PDS4 standards. This presentation will focus on the challenges involved in archiving rover data for the PSA, and will outline the plans and current status of the system being developed to respond to the needs of the mission.

  10. Construction of the Hunveyor-Husar space probe model system for planetary science education and analog studies and simulations in universities and colleges of Hungary.

    NASA Astrophysics Data System (ADS)

    Bérczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokiny, A.; Drommer, B.; Gucsik, A.; Pintér, A.; Kovács, Zs.

    Several teachers and students had the possibility to visit International Space Camp in the vicinity of the MSFC NASA in Huntsville Alabama USA where they learned the success of simulators in space science education To apply these results in universities and colleges in Hungary we began a unified complex modelling in planetary geology robotics electronics and complex environmental analysis by constructing an experimental space probe model system First a university experimental lander HUNVEYOR Hungarian UNiversity surVEYOR then a rover named HUSAR Hungarian University Surface Analyser Rover has been built For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies for the Husar the idea and example was the Pathfinder s rover Sojouner rover The first step was the construction of the lander a year later the rover followed The main goals are 1 to build the lander structure and basic electronics from cheap everyday PC compatible elements 2 to construct basic experiments and their instruments 3 to use the system as a space activity simulator 4 this simulator contains lander with on board computer for works on a test planetary surface and a terrestrial control computer 5 to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits 6 to use the complex system in education for in situ understanding complex planetary environmental problems 7 to build various planetary environments for application of the

  11. Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1989-01-01

    Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for Low Earth Orbit (LEO) applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated sink temperature. The mass advantage of dynamic systems is significantly reduced for this application due to Mars' elevated background temperature.

  12. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    NASA Astrophysics Data System (ADS)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two soil sensors,(1) the Wheel Leg Soil Interaction Observation (WLSIO) system, and (2) a Dynamic Plate (DP). These two soil sensors are designed by [2] and proposed to evaluate the trafficability of terrain in front of the primary rover. While the main body houses the WLSIO system, the DP sensor is mounted to the rover via an electro-mechanical interface (EMI) [7], providing a modular payload bay. Within the FASTER approach the scout rover will travel ahead of a primary exploration rover acting as 'remote' sensor platform. This requires a specialized software setup for the scout rover, allowing to safely follow a predefined path while conducting soil measurements. The general operational concept of the scout rover acting in a dual rover team is addressed while focusing on the scout rover software implementation to allow autonomous traversal. A set of integration tests for dual rover operations is planned using the Coyote II and/or Coyote III platforms. Furthermore, it is intended to perform proof of concept field trials with Coyote III as scout rover and the ExoMars breadboard BRIDGET [1] as primary rover. Along with the test results from interface integration testing, the first test results of dual rover field operation may be presented.

  13. Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The accomplishments of the Utah State University (USU) Mars Lander/Rover (MLR) design class during the Winter Quarter are delineated and explained. Environment and trajectory, ground systems, balloon system, and payload system are described. Results from this effort will provide a valid and useful basis for further studies of Mars exploratory vehicles.

  14. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; hide

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  15. Diversity of soils near rover deploy region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The surface near the rover's egress from the lander contains bright red drift (#1), dark gray rocks such as Cradle (#3), soil intermediate in color to the rocks and drift (#2), and dark red soil on and around the rock Lamb (#4). Globally, Mars is characterized by similar color variations. The spectra of these sites have been ratioed to the drift to highlight their differences. The rocks are less red and have less of a bend in the spectrum at visible wavelengths, indicating less ferric minerals and a more unweathered composition than drift. The intermediate colored soils appear intermediate in the spectral properties as well. The dark red soil at Lamb is darker than drift by about equally as red; the curvature of spectrum at visible wavelengths indicates either more ferric minerals or a larger particle size.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech).

  16. Autonomous Navigation by a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand

    2005-01-01

    ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

  17. Top of Mars Rover Curiosity Remote Sensing Mast

    NASA Image and Video Library

    2011-04-06

    The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities.

  18. Activity Planning for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.

  19. Students Race Rovers on a Martian and Lunar-themed Obstacle Course

    NASA Image and Video Library

    2017-01-05

    NASA's Human Exploration Rover Challenge encourages STEM-based research and development of new technologies focusing on current plans to explore planets, moons, asteroids and comets -- all members of the solar system family. This year's race will be held March 30 - April 1, 2017, at the U.S. Space & Rocket Center in Huntsville, Alabama. The challenge will focus on designing, constructing and testing technologies for mobility devices to perform in these different environments, and it will provide valuable experiences that engage students in the technologies and concepts that will be needed in future exploration missions. Rovers will be human-powered and carry two students, one female and one male, over a half-mile obstacle course of simulated extraterrestrial terrain of craters, boulders, ridges, inclines, crevasses and depressions. Follow them on social media at: TWITTER: https://twitter.com/RoverChallenge FACEBOOK: https://www.facebook.com/roverchallenge/ Or visit the website at: www.nasa.gov/roverchallenge

  20. Exploration of Planetary Terrains with a Legged Robot as a Scout Adjunct to a Rover

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Kirchner, Frank; Spenneberg, Dirk; Hanratty, James

    2004-01-01

    The Scorpion robot is an innovative, biologically inspired 8-legged walking robot. It currently runs a novel approach to control which utilizes a central pattern generator (CPG) and local reflex action for each leg. From this starting point we are proposing to both extend the system's individual capabilities and its capacity to function as a "scout", cooperating with a larger wheeled rover. For this purpose we propose to develop a distributed system architecture that extends the system's capabilities both in the direction of high level planning and execution in collaboration with a rover, and in the direction of force-feedback based low level behaviors that will greatly enhance its ability to walk and climb in rough varied terrains. The final test of this improved ability will be a rappelling experiment where the Scorpion explores a steep cliff side in cooperation with a rover that serves as both anchor and planner/executive.

  1. Results from Automated Cloud and Dust Devil Detection Onboard the MER

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark

    2008-01-01

    We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.

  2. Amorphous Rover

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.

  3. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  4. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  5. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema

    Wiens, Roger

    2018-01-16

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  6. Mars to earth optical communication link for the proposed Mars Sample Return mission roving vehicle

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L., Jr.

    The Mars Sample Return (MSR) mission planed for 1989 will deploy a rover from its landing craft to survey the Martian surface. During traversals of the rover from one site to the next in search of samples, three-dimensional images from a pair of video cameras will be transmitted to earth; the terrestrial operators will then send back high level direction commands to the rover. Attention is presently given to the effects of wind and dust on communications, the architecture of the optical communications package, and the identification of technological areas requiring further development for MSR incorporation.

  7. Robotics Algorithms Provide Nutritional Guidelines

    NASA Technical Reports Server (NTRS)

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat

  8. A Small Lunar Rover for Reconnaissance in the Framework of ExoGeoLab Project, System Level Design

    NASA Astrophysics Data System (ADS)

    Noroozi, A.; Ha, L.; van Dalen, P.; Maas, A.; de Raedt, S.; Poulakis, P.; Foing, B. H.

    2009-04-01

    Scientific research is based on accurate measurement and so depends on the possibilities of accurate instruments. In planetary science and exploration it is often difficult or even impossible in some cases to gather accurate and direct information from a specified target. It is important to gather as much information as possible to be able to analyze and extract scientific data from them. One possibility to do so is to send equipments to the target and perform the measurements locally. The measurement data is then sent to base station for further analysis. To send measurement instruments to measurement point it is important to have a good estimation of the environmental situation there. This information can be collected by sending a pilot rover to the area of interest to collect visual information. The aim of this work is to develop a tele-operated small rover, Google Lunar X-Prize (GLXP) class, which is capable of surviving in the Moon environment and perform reconnaissance to provide visual information to base station of ExoGeoLab project of ESA/ESTEC. Using the state of the art developments in electronics, software and communication technologies allows us to achieve increase in accuracy while reducing size and power consumption. Target mass of the rover is lees than 5 kg and its target dimension is 300 x 60 x 80 mm3. The small size of the rover gives the possibility of accessing places which are normally out of reach. The required power for operation and the cost of launch is considerably reduced compared to large rovers which makes the mission more cost effective. The mission of the rover is to capture high resolution images and transmit them to base station. Data link between lover and base station is wireless and rover should supply its own energy. The base station can be either a habitat or a relay station. The navigation of the rover is controlled by an operator in a habitat who has a view from the stereo camera on the rover. This stereo camera gives image information to the base and gives the possibility for future autonomous navigation by using three-dimensional image recognition software. As the navigation view should have minimum delay, the resolution of stereo camera is not very high. The rover design is divided into four work packages. These work packages are remote imaging, remote manual navigation, locomotion and structure, and power system. Remote imaging work package is responsible for capturing high resolution images, transmitting image data to base station via wireless link and store the data for further processing. Remote manual navigation is handling the tele-operation. It collects stereo images and navigation sensor readouts, transmits stereo images and navigation data to base station via wireless link, displays the image and sensor status in a real-time fashion on operator's monitor, receives command from operator's joystick, transfers navigation commands to rover via wireless link, and operates the actuators accordingly. Locomotion and structure takes care of designing the body structure and locomotion system based on the Moon environment specifications. The target specifications of rover locomotion system are maximum speed of 200 m/h, maximum acceleration of 0.554 m/s2, and maximum slope angle of 20˚ . The power system for the rover includes the solar panel, batteries and power electronics mounted on the rover. The energy storage in the rover should be able to survive for minimum 500 m movement on the moon. Subsequently, it should provide energy for other sub-systems to communicate, navigate and transmit the data. Considering the harsh environmental issues on the Moon such as dust, temperature range and radiation, it is vital for the mission that these issues are considered in the design to correctly dimension reliability and if necessary redundancy. Corrosion resistive material should be used to ensure the survival of mechanical structure, moving parts and other sensitive parts such as electronics. High temperature variation should be considered in the design of structure and electronics and finally electronics should be radiation protected.

  9. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KLARER,PAUL R.; BINDER,ALAN B.; LENARD,ROGER X.

    A preliminary set of requirements for a robotic rover mission to the lunar polar region are described and assessed. Tasks to be performed by the rover include core drill sample acquisition, mineral and volatile soil content assay, and significant wide area traversals. Assessment of the postulated requirements is performed using first order estimates of energy, power, and communications throughput issues. Two potential rover system configurations are considered, a smaller rover envisioned as part of a group of multiple rovers, and a larger single rover envisioned along more traditional planetary surface rover concept lines.

  11. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  12. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  13. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  14. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  15. Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Coste, K.; Schriener, T. M.

    2005-12-01

    The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.

  16. Archiving Data From the 2003 Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2002-12-01

    The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.

  17. Saga, A Small Advanced Geochemistry Assembly With Micro-rover For The Exploration Of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Brueckner, J.; Saga Team

    During future lander missions on Mars, Moon, or Mercury, it is highly advisable to extend the reach of instruments and to bring them to the actual sites of interest to measure in-situ selected surface samples (rocks, soils, or regolith). Particularly, geo- chemical measurements (determination of chemistry, mineralogy, and surface texture) are of utmost importance, because they provide key data on the nature of the sur- face samples. The obtained data will contribute to the classification of these samples. On Mars, weathering processes can also be studied provided some grinding tools are available. Also, the existence of ancient water activities, if any, can be searched for (e.g. sediments, hydroxides, hydrated minerals, or evaporates). The combined geo- chemical data sets of several samples and one/or several landing sites provide an im- portant base for the understanding of planetary surface processes and, hence, plan- etary evolution. A light-weight integrated instrument package and a micro-rover is proposed for future geochemical investigations. SAGA (Small Advanced Geochem- istry Assembly) will consist of several small geochemistry instruments and a tool that are packaged in a compact payload cab: the chemical Alpha Particle X-Ray Spec- trometer (APXS), the mineralogical Mössbauer Spectrometer (MIMOS), the textural close-up camera (MIROCAM), and a blower/grinder tool. These instruments have or will get flight heritage on upcoming ESA and NASA missions. The modularity of the concept permits to attach SAGA to any deployment device, specially, to the pro- posed small, lightweight micro-rover (dubbed SAGA?XT). Micro-rover technology has been developed for many years in Europe. One of the most advanced concepts is the tracked micro-rover SNanokhodT, developed recently in the frame of ESASs & cedil; Technology Research Programme (TRP). It has a total mass of about 3.5 kg (includ- ing payload and parts on the lander). This micro-rover is designed to drive to different target sites in the vicinity of a (small) lander. In the framework of the upcoming ESA Aurora programme, the further development of surface-mobile robots will be an im- portant technology area to improve control, navigation, and guidance of a micro-rover and the accurate docking of its instruments on selected targets.

  18. Size Comparison: Three Generations of Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  19. Rover 2 Moved to Workstand

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 28, 2003

    The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars. Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  20. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  1. NASA Mars rover: a testbed for evaluating applications of covariance intersection

    NASA Astrophysics Data System (ADS)

    Uhlmann, Jeffrey K.; Julier, Simon J.; Kamgar-Parsi, Behzad; Lanzagorta, Marco O.; Shyu, Haw-Jye S.

    1999-07-01

    The Naval Research Laboratory (NRL) has spearheaded the development and application of Covariance Intersection (CI) for a variety of decentralized data fusion problems. Such problems include distributed control, onboard sensor fusion, and dynamic map building and localization. In this paper we describe NRL's development of a CI-based navigation system for the NASA Mars rover that stresses almost all aspects of decentralized data fusion. We also describe how this project relates to NRL's augmented reality, advanced visualization, and REBOT projects.

  2. Newest is Biggest: Three Generations of NASA Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  3. Ground Processing of Data From the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, Jesse; Sturdevant, Kathryn; Noble, David

    2006-01-01

    A computer program implements the Earth side of the protocol that governs the transfer of data files generated by the Mars Exploration Rovers. It also provides tools for viewing data in these files and integrating data-product files into automated and manual processes. It reconstitutes files from telemetry data packets. Even if only one packet is received, metadata provide enough information to enable this program to identify and use partial data products. This software can generate commands to acknowledge received files and retransmit missed parts of files, or it can feed a manual process to make decisions about retransmission. The software uses an Extensible Markup Language (XML) data dictionary to provide a generic capability for displaying files of basic types, and uses external "plug-in" application programs to provide more sophisticated displays. This program makes data products available with very low latency, and can trigger automated actions when complete or partial products are received. The software is easy to install and use. The only system requirement for installing the software is a Java J2SE 1.4 platform. Several instances of the software can be executed simultaneously on the same machine.

  4. Mars Rover/Sample Return - Phase A cost estimation

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Spadoni, Daniel J.

    1990-01-01

    This paper presents a preliminary cost estimate for the design and development of the Mars Rover/Sample Return (MRSR) mission. The estimate was generated using a modeling tool specifically built to provide useful cost estimates from design parameters of the type and fidelity usually available during early phases of mission design. The model approach and its application to MRSR are described.

  5. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2017-12-09

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  6. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    The potential capability of NTP is game changing for space exploration. A first generation NCPS could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Near-term NCPS systems would provide a foundation for the development of significantly more advanced, higher performance systems. John F. Kennedy made his historic special address to Congress on the importance of space on May 25, 1961, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. John F. Kennedy also made a second request, "Secondly... accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself." The investment in the Rover nuclear rocket program provided the foundation of technology that gives us assurance for greater performing rockets that are capable of taking us further into space. Combined with current technologies, the vision to go beyond the Moon and to the very end of the solar system can be realized with space nuclear propulsion and power.

  7. MRSR: Rationale for a Mars Rover/Sample Return mission

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1992-01-01

    The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.

  8. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Ken Edgett, principal investigator, MAHLI Camera, Mars Exploration Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  9. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  10. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael

    2012-01-01

    This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within 2-3 cm of the target.

  11. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  12. Carbide fuels for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.

    1991-09-01

    A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.

  13. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  14. Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.

  15. Mars Exploration Rovers as Virtual Instruments for Determination of Terrain Roughness and Physical Properties

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Lindemann, R.; Matijevic, J.; Richter, L.; Sullivan, R.; Haldemann, A.; Anderson, R.; Snider, N.

    2003-01-01

    The two 2003 Mars Exploration Rovers (MERs), in combination with the Athena Payload, will be used as virtual instrument systems to infer terrain properties during traverses, in addition to using the rover wheels to excavate trenches, exposing subsurface materials for remote and in-situ observations. The MERs are being modeled using finite element-based rover system transfer functions that utilize the distribution of masses associated with the vehicle, together with suspension and wheel dynamics, to infer surface roughness and mechanical properties from traverse time series data containing vehicle yaw, pitch, roll, encoder counts, and motor currents. These analyses will be supplemented with imaging and other Athena Payload measurements. The approach is being validated using Sojourner data, the FIDO rover, and experiments with MER testbed vehicles. In addition to conducting traverse science and associated analyses, trenches will be excavated by the MERs to depths of approximately 10-20 cm by locking all but one of the front wheels and rotating that wheel backwards so that the excavated material is piled up on the side of the trench away from the vehicle. Soil cohesion and angle of internal friction will be determined from the trench telemetry data. Emission spectroscopy and in-situ observations will be made using the Athena payload before and after imaging. Trenching and observational protocols have been developed using Sojourner results; data from the FIDO rover, including trenches dug into sand, mud cracks, and weakly indurated bedrock; and experiments with MER testbed rovers. Particular attention will be focused on Mini-TES measurements designed to determine the abundance and state of subsurface water (e.g. hydrated, in zeolites, residual pore ice?) predicted to be present from Odyssey GRS/NS/HEND data.

  16. View Northward from Spirit's Winter Roost

    NASA Technical Reports Server (NTRS)

    2006-01-01

    One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.'

    Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete.

    This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right.

    This is an approximate true-color rendering combining exposures taken through three of the panoramic camera's filters. The filters used are centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.

  17. Touch the comet! Testing of the "Rosetta's Comet Touchdown" educational kit in the Széchenyi István High School, Sopron, Hungary.

    NASA Astrophysics Data System (ADS)

    Lang, A.; Wesely, N.; Soós, B.; Sléber, B.; Majnovics, Z.; Ettingshausen, M.; Bodnár, L.; Németh, A.; Roos, M.

    2011-10-01

    In our school works a course in robotics where students build and program robots from a LEGO MINDSTORMS kit. We took part in the Hunveyor- Husar project with a Mars rover based on a rover model kit, of which the operating arms are built out of LEGO and controlled by an MINDSTORMS NXT computer. We presented our rover on the EPSC in Rome last September 2010 We presented our rover on the EPSC in Rome in September 2010. At that same conference the "Rosetta's Comet Touchdown" educational kit was officially presented. We were very interested and in conversation with the people from the project, we agreed that our school in Sopron would also participate in testing the kit. . The kit comes with a set of Interdisciplinary Activity Sheets (IAS, downloadable from Vimeo channel1) and a great feature is that the proposed activities in the IAS cover three areas: science, art/history and engineering. The 31 students from our class divided up in groups and each group chose a different topic: History of comets in Hungarian culture; Designing a T-shirt; Research on comets; Hungary in the Rosetta mission; Animation of Rosetta's orbit in space; building a LEGO MINDSTORM model; a film was made of the activities . In this presentation we report in particular the activities of the LEGO building team.

  18. LANL Researcher Roger Wiens Discusses ChemCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2012-02-15

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Redmore » Planet on August 5, 2012.« less

  19. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  20. Spatial Coverage Planning for a Planetary Rover

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.

  1. Virtual Rover Takes its First Turn

    NASA Image and Video Library

    2004-01-13

    This image shows a screenshot from the software used by engineers to drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course for the rover. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige. This image depicts the state of the rover before it backed up and turned 45 degrees on Sol 11 (01-13-04). http://photojournal.jpl.nasa.gov/catalog/PIA05063

  2. Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.

    2004-01-01

    The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.

  3. KSC-03pd0752

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers align the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  4. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  5. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  6. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  7. Merits of a Locality Sample for Accomplishing Mars Exploration Goals: The First Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Draper, D. S.; Bogard, D. D.; Agee, C. B.; McKay, G. A.; Jones, J. H.

    2002-05-01

    A major stumbling block to a Mars sample return (MSR) mission is the seemingly prohibitive cost of maximizing sample diversity. The use of rovers, sophisticated on-board instrumentation, and various sample selection techniques are perceived by some to be necessary to maximize the scientific return by making it possible to acquire as diverse a suite of samples as possible. Here, we argue that many key science goals of the Mars Exploration Program may be accomplished by returning only a "locality sample" at a well-chosen landing site. A locality sample would be local regolith consisting of soil, windblown fines, and lithic fragments (plus Martian atmosphere). We argue that even the simplest sample return mission could revolutionize our understanding of the planet, without requiring the large outlays for technology development currently envisioned. By the time a MSR mission could realistically be flown, it is reasonable to expect that information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to make a good choice of landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; understanding the role and history of water and other volatiles; helping to interpret remotely-sensed spectral data; and understanding the planet as a system. The value of such samples has been studied exhaustively for decades and detailed in publications dating back at least to 1974. A locality sample can further the search for life by identifying, among other things, trace quantities of surface organics, biogenic elements and their isotopic compositions, evidence for water in the form of hydrous minerals and/or cements, the nature of the Martian soil oxidant, trace biomarkers, and evidence for clay-forming processes. The role of water will be better understood by revealing, in addition, whether interactions between soil/rocks and the Martian atmosphere have recently occurred, and whether there are currently pathways among cyclic reservoirs (e.g. for carbon). Fundamental information regarding the current atmosphere is certain to be gained as well. Interpreting remotely-sensed data will be greatly strengthened by providing ground truth in the form of mineralogy and lithology of sample materials and by allowing an estimate of the extent of regolith gardening by impacts, the nature and thickness of dust coatings and/or alteration rinds, the nature of Martian layered deposits, and the extent to which materials like the Martian meteorites are present at the surface. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. The much-discussed alternative, a mission built around a very capable rover, has several large drawbacks. First, the mass and expense of making the rover highly autonomous diminishes science return. Second, the rover represents a single-point failure; if the rover is stranded, the samples cannot be returned. Third, there is no demonstrable positive correlation between roving ability/range and sampling diversity. A simple locality-sample MSR mission provides the foundation for later, targeted return missions. Such a mission "follows the water" down into surface minerals and soils, and uniquely provides understanding of the surface environment that will best enable us to target the most promising sites to look for life.

  8. FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.

    2002-08-01

    The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.

  9. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  10. Rover Family Photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.

  11. Rover Family Photo

    NASA Image and Video Library

    2003-02-26

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around NASA Rover 2 and its predecessor, a flight spare of the Pathfinder mission Sojourner rover, named Marie Curie.

  12. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  13. Tele-Operated Lunar Rover Navigation Using Lidar

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Allan, Mark B.; Utz, Hans, Heinrich; Deans, Matthew C.; Bouyssounouse, Xavier; Choi, Yoonhyuk; Fluckiger, Lorenzo; Lee, Susan Y.; To, Vinh; Loh, Jonathan; hide

    2012-01-01

    Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors.

  14. A Battery Health Monitoring Framework for Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  15. Mechanical Design and Testing of an Instrumented Rocker-Bogie Mobility System for the Kapvik Micro-Rover

    NASA Astrophysics Data System (ADS)

    Setterfield, T.

    The rocker-bogie mobility system is a six-wheeled mobility system with the ability to equilibrate ground pressure amongst its wheels and traverse obstacles up to one wheel diameter in height; it has been used previously on NASA's Sojourner, Spirit, Opportunity and Curiosity rovers. This paper presents the mechanical design of an instrumented rocker-bogie mobility system for Kapvik, a 30 kg planetary micro-rover prototype developed for the Canadian Space Agency. The design of the wheel drive system is presented, including: motor selection, gear train selection, and performance limits. The design of a differential mechanism, which minimizes the pitch angle of the rover body, is provided. Design considerations for the integration of single-axis force sensors above the wheel hubs are presented. Structural analysis of the rocker and bogie links is outlined. The cross-hill and uphill-downhill static stability of Kapvik is investigated. Load cell and joint position data from testing during obstacle negotiation and uphill operation are presented.

  16. a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization

    NASA Astrophysics Data System (ADS)

    Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.

    2017-07-01

    Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  17. KSC-03pd0753

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers check alignment of the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  18. KSC-03pd0756

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd0754

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  20. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further needs.

  1. Automation &robotics for future Mars exploration

    NASA Astrophysics Data System (ADS)

    Schulte, W.; von Richter, A.; Bertrand, R.

    2003-04-01

    Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another site. In the frame of near-term Mars exploration a dedicated exobiology mission is envisaged. Scientific and technical studies for a facility to detect the evidence of past of present life have been carried out under ESA contract. Mars soil/rock samples are to be analyzed for their morphology, organic and inorganic composition using a suite of scientific instruments. Robotic devices, e.g. for the acquisition, handling and onboard processing of Mars sample material retrieved from different locations, and surface mobility are important elements in a fully automated mission. Necessary robotic elements have been identified in past studies. Their realization can partly be based on heritage of existing space hardware, but will require dedicated development effort.

  2. KSC-03pd0209

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lift the cover from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  3. KSC-03pd0916

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker makes the final launch preparations on the rover equipment deck (RED) for the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  4. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. KSC-03pd0212

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  6. KSC-03pd0210

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers get ready to remove the plastic covering from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  7. KSC-03pd0785

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility check different parts of the Mars Exploration Rover-2 (MER-2) after testing the rover's mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  8. KSC-03pd0213

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility move the Mars Exploration Rover -2 to a workstand in the high bay. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  9. KSC-03pd1832

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A science briefing on the Mars Exploration Rover (MER) missions is held for the media at Kennedy Space Center. From left, the participants are Donald Savage, NASA Public Information Officer; Dr. Ed Weiler, Associate Administrator for Space Science, NASA Headquarters; Dr. Jim Garvin, Mars lead scientist, NASA Headquarters; Dr. Cathy Weitz, MER program scientist, NASA Headquarters; Dr. Joy Crisp, MER project scientist, Jet Propulsion Laboratory; and Dr. Steve Squyres, Mer principal investigator, Cornell Univeristy, Ithaca, N.Y. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  10. Lightweight rovers for Mars science exploration and sample return

    NASA Astrophysics Data System (ADS)

    Schenker, Paul S.; Sword, Lee F.; Ganino, A. J.; Bickler, Donald B.; Hickey, G. S.; Brown, D. K.; Baumgartner, Eric T.; Matthies, Larry H.; Wilcox, Brian H.; Balch, T.; Aghazarian, H.; Garrett, M. S.

    1997-09-01

    We report on the development of new mobile robots for Mars exploration missions. These 'lightweight survivable rover (LSR)' systems are of potential interest to both space and terrestrial applications, and are distinguished from more conventional designs by their use of new composite materials, collapsible running gear, integrated thermal-structural chassis, and other mechanical features enabling improved mobility and environmental robustness at reduced mass, volume, and power. Our first demonstrated such rover architecture, LSR-1, introduces running gear based on 2D composite struts and 3D machined composite joints, a novel collapsible hybrid composite-aluminum wheel design, a unit-body structural- thermal chassis with improved internal temperature isolation and stabilization, and a spot-pushbroom laser/CCD sensor enabling accurate, fast hazard detection and terrain mapping. LSR-1 is an approximately .7 $MIL 1.0 meter(Lambda) 2(W X L) footprint six-wheel (20 cm dia.) rocker-bogie geometry vehicle of approximately 30 cm ground clearance, weighing only 7 kilograms with an onboard .3 kilogram multi-spectral imager and spectroscopic photometer. By comparison, NASA/JPL's recently flown Mars Pathfinder rover Sojourner is an 11+ kilogram flight experiment (carrying a 1 kg APXS instrument) having approximately .45 X .6 meter(Lambda) 2(WXL) footprint and 15 cm ground clearance, and about half the warm electronics enclosure (WEE) volume with twice the diurnal temperature swing (-40 to +40 degrees Celsius) of LSR- 1 in nominal Mars environments. We are also developing a new, smaller 5 kilogram class LSR-type vehicle for Mars sample return -- the travel to, localization of, pick-up, and transport back to an Earth return ascent vehicle of a sample cache collected by earlier science missions. This sample retrieval rover R&D prototype has a completely collapsible mobility system enabling rover stowage to approximately 25% operational volume, as well an actively articulated axle, allowing changeable pose of the wheel strut geometry for improved transverse and manipulation characteristics.

  11. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  12. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  13. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  14. The PRo3D View Planner - interactive simulation of Mars rover camera views to optimise capturing parameters

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Ortner, Thomas; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard

    2017-04-01

    High resolution Digital Terrain Models (DTM) and Digital Outcrop Models (DOM) are highly useful for geological analysis and mission planning in planetary rover missions. PRo3D, developed as part of the EU-FP7 PRoViDE project, is a 3D viewer in which orbital DTMs and DOMs derived from rover stereo imagery can be rendered in a virtual environment for exploration and analysis. It allows fluent navigation over planetary surface models and provides a variety of measurement and annotation tools to complete an extensive geological interpretation. A key aspect of the image collection during planetary rover missions is determining the optimal viewing positions of rover instruments from different positions ('wide baseline stereo'). For the collection of high quality panoramas and stereo imagery the visibility of regions of interest from those positions, and the amount of common features shared by each stereo-pair, or image bundle is crucial. The creation of a highly accurate and reliable 3D surface, in the form of an Ordered Point Cloud (OPC), of the planetary surface, with a low rate of error and a minimum of artefacts, is greatly enhanced by using images that share a high amount of features and a sufficient overlap for wide baseline stereo or target selection. To support users in the selection of adequate viewpoints an interactive View Planner was integrated into PRo3D. The users choose from a set of different rovers and their respective instruments. PRo3D supports for instance the PanCam instrument of ESA's ExoMars 2020 rover mission or the Mastcam-Z camera of NASA's Mars2020 mission. The View Planner uses a DTM obtained from orbiter imagery, which can also be complemented with rover-derived DOMs as the mission progresses. The selected rover is placed onto a position on the terrain - interactively or using the current rover pose as known from the mission. The rover's base polygon and its local coordinate axes, and the chosen instrument's up- and forward vectors are visualised. The parameters of the instrument's pan and tilt unit (PTU) can be altered via the user interface, or alternatively calculated by selecting a target point on the visualised DTM. In the 3D view, the visible region of the planetary surface, resulting from these settings and the camera field-of-view is visualised by a highlighted region with a red border, representing the instruments footprint. The camera view is simulated and rendered in a separate window and PTU parameters can be interactively adjusted, allowing viewpoints, directions, and the expected image to be visualised in real-time in order to allow users the fine-tuning of these settings. In this way, ideal viewpoints and PTU settings for various rover models and instruments can efficiently be defined, resulting in an optimum imagery of the regions of interest.

  15. Precise and Scalable Static Program Analysis of NASA Flight Software

    NASA Technical Reports Server (NTRS)

    Brat, G.; Venet, A.

    2005-01-01

    Recent NASA mission failures (e.g., Mars Polar Lander and Mars Orbiter) illustrate the importance of having an efficient verification and validation process for such systems. One software error, as simple as it may be, can cause the loss of an expensive mission, or lead to budget overruns and crunched schedules. Unfortunately, traditional verification methods cannot guarantee the absence of errors in software systems. Therefore, we have developed the CGS static program analysis tool, which can exhaustively analyze large C programs. CGS analyzes the source code and identifies statements in which arrays are accessed out of bounds, or, pointers are used outside the memory region they should address. This paper gives a high-level description of CGS and its theoretical foundations. It also reports on the use of CGS on real NASA software systems used in Mars missions (from Mars PathFinder to Mars Exploration Rover) and on the International Space Station.

  16. Software Reuse in the Planetary Context: The JPL/MIPL Mars Program Suite

    NASA Technical Reports Server (NTRS)

    Deen, Robert

    2012-01-01

    Reuse greatly reduces development costs. Savings can be invested in new/improved capabilities Or returned to sponsor Worth the extra time to "do it right" Operator training greatly reduced. MIPL MER personnel can step into MSL easily because the programs are familiar. Application programs much easier to write. Can assume core capabilities exist already. Multimission Instrument (Image) Processing Lab at MIPL Responsible for the ground-based instrument data processing for (among other things) all recent in-situ Mars missions: Mars Pathfinder Mars Polar Lander (MPL) Mars Exploration Rovers (MER) Phoenix Mars Science Lab (MSL) Responsibilities for in-situ missions Reconstruction of instrument data from telemetry Systematic creation of Reduced Data Records (RDRs) for images Creation of special products for operations, science, and public outreach In the critical path for operations MIPL products required for planning the next Sol s activities

  17. KSC-03pd0764

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  18. KSC-03pd0765

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover (MER) sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd0762

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - A worker in the Payload Hazardous Servicing Facility makes adjustments on one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  20. KSC-03pd0784

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) has rotated. Atop the rover can be seen the cameras, mounted on a Pancam Mast Assembly (PMA). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  1. KSC-03pd0761

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility look over one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  2. KSC-03pd0758

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. - One of the Mars Exploration Rovers (MER) sits on a stand in the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  3. KSC-03pd0211

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - After being cleaned up, the Mars Exploration Rover -2 is ready to be moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  4. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  5. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  6. Demonstrating Robotic Autonomy in NASA's Intelligent Systems Project

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Smith, Ben; Estlin, Tara; Pedersen, Liam

    2004-01-01

    This paper will provide an overview of NASA's investments in autonomy during the past five years within the Intelligent Systems Project, with particular attention paid to investments that have resulted in mission infusion of autonomy technology, in particular, into the recent Mars Exploration Rover (MER) mission. The content of the paper will be divided into two primary topic areas: a technical overview of the component technologies developed under the program, and a programmatic overview of the history and organization of the NASA IS project itself, with a focus on describing the program elements related to autonomy and intelligent robotics. The paper will also provide an overview of the September 2004 autonomy demonstrations, including a discussion of objectives, organization, and preliminary results (to the extent they are available before the submission deadline).

  7. Software Construction and Analysis Tools for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

  8. Rovers as Geological Helpers for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  9. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2003, Taipei, Taiwan, September 2003, pp. 2287-2292. [4] www.gumstix.com [5] M. G. Lewis, P. M. Sharkey, A plug and play architecture for emergent behaviour in robot control, Proceedings Configuration an Control Aspects of Mechatronics, Ilmeneau, Germany, September 1997. 2

  10. Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Siebert, Mark W.

    1998-01-01

    Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp -9) C, and average arc time of 1 msec, arcs can also occur with estimated arc currents approaching 10 milliamperes (mA). Discharges of this magnitude could interfere with the operation of sensitive electrical or electronic elements and logic circuits. Sojourner rover wheel tested in laboratory before launch to Mars. Before launch, we believed that the dust would become triboelectrically charged as it was moved about and compacted by the rover wheels. In all cases observed in the laboratory, the test wheel charged positively, and the wheel tracks charged negatively. Dust samples removed from the laboratory wheel averaged a few ones to tens of micrometers in size (clay size). Coarser grains were left behind in the wheel track. On Mars, grain size estimates of 2 to 10 mm were derived for the Martian surface materials from the Viking Gas Exchange Experiment. These size estimates approximately match the laboratory samples. Our tentative conclusion for the Sojourner observations is that fine clay-sized particles acquired an electrostatic charge during rover traverses and adhered to the rover wheels, carrying electrical charge to the rover. Since the Sojourner rover carried no instruments to measure this mission's onboard electrical charge, confirmatory measurements from future rover missions on Mars are desirable so that the physical and electrical properties of the Martian surface dust can be characterized. Sojourner was protected by discharge points, and Faraday cages were placed around sensitive electronics. But larger systems than Sojourner are being contemplated for missions to the Martian surface in the foreseeable future. The design of such systems will require a detailed knowledge of how they will interact with their environment. Validated environmental interaction models and guidelines for the Martian surface must be developed so that design engineers can test new ideas prior to cutting hardware. These models and guidelines cannot be validated without actual flighata. Electrical charging of vehicles and, one day, astronauts moving across the Martian surface may have moderate to severe consequences if large potential differences develop. The observations from Sojourner point to just such a possibility. It is desirable to quantify these results. The various lander/rover missions being planned for the upcoming decade provide the means for doing so. They should, therefore, carry instruments that will not only measure vehicle charging but characterize all the natural and induced electrical phenomena occurring in the environment and assess their impact on future missions.

  11. Supporting lander and rover operation: a novel super-resolution restoration technique

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Muller, Jan-Peter

    2015-04-01

    Higher resolution imaging data is always desirable to critical rover engineering operations, such as landing site selection, path planning, and optical localisation. For current Mars missions, 25cm HiRISE images have been widely used by the MER & MSL engineering team for rover path planning and location registration/adjustment. However, 25cm is not high enough resolution to be able to view individual rocks (≤2m in size) or visualise the types of sedimentary features that rover onboard cameras might observe. Nevertheless, due to various physical constraints (e.g. telescope size and mass) from the imaging instruments themselves, one needs to be able to tradeoff spatial resolution and bandwidth. This means that future imaging systems are likely to be limited to resolve features larger than 25cm. We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution image from the non-redundant sub-pixel information contained in multiple lower resolution raw images [Tao & Muller 2015]. We will demonstrate with experiments performed using 5-10 overlapped 25cm HiRISE images for MER-A, MER-B & MSL to resolve 5-10cm super resolution images that can be directly compared to rover imagery at a range of 5 metres from the rover cameras but in our case can be used to visualise features many kilometres away from the actual rover traverse. We will demonstrate how these super-resolution images together with image understanding software can be used to quantify rock size-frequency distributions as well as measure sedimentary rock layers for several critical sites for comparison with rover orthorectified image mosaic to demonstrate optimality of using our super-resolution resolved image to better support future lander and rover operation in future. We present the potential of super-resolution for virtual exploration to the ˜400 HiRISE areas which have been viewed 5 or more times and the potential application of this technique to all of the ESA ExoMars Trace Gas orbiter CaSSiS stereo, multi-angle and colour camera images from 2017 onwards. Acknowledgements: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No.312377 PRoViDE.

  12. Mechanism for Deploying a Long, Thin-Film Antenna from a Rover

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Matthews, B.; Nesnas, Issa A.; Zarzhitsky, Dimitri

    2013-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. A radio antenna can be realized by using polyimide film as a substrate, with a conducting substance deposited on it. Such an antenna can be rolled into a small volume for transport, then deployed by unrolling, and a robotic rover offers a natural means of unrolling a polyimide film-based antenna. An antenna deployment mechanism was developed that allows a thin film to be deposited onto a ground surface, in a controlled manner, using a minimally actuated rover. The deployment mechanism consists of two rollers, one driven and one passive. The antenna film is wrapped around the driven roller. The passive roller is mounted on linear bearings that allow it to move radially with respect to the driven roller. Springs preload the passive roller against the driven roller, and prevent the tightly wrapped film from unspooling or "bird's nesting" on the driven spool. The antenna deployment mechanism is integrated on the minimally-actuated Axel rover. Axel is a two-wheeled rover platform with a trailing boom that is capable of traversing undulated terrain and overcoming obstacles of a wheel radius in height. It is operated by four motors: one that drives each wheel; a third that controls the rotation of the boom, which orients the body mounted sensors; and a fourth that controls the rover's spool to drive the antenna roller. This low-mass axle-like rover houses its control and communication avionics inside its cylindrical body. The Axel rover teleoperation software has an auto-spooling mode that allows a user to automatically deploy the thin-film antenna at a rate proportional to the wheel speed as it drives the rover along its trajectory. The software allows Axel to deposit the film onto the ground to prevent or minimize relative motion between the film and the terrain to avoid the risk of scraping and antenna with the terrain.

  13. Rover-based visual target tracking validation and mission infusion

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  14. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  15. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  16. Rover/NERVA-derived near-term nuclear propulsion

    NASA Technical Reports Server (NTRS)

    1993-01-01

    FY-92 accomplishments centered on conceptual design and analyses for 25, 50, and 75 K engines with emphasis on the 50 K engine. During the first period of performance, flow and energy balances were prepared for each of these configurations and thrust-to-weight values were estimated. A review of fuel technology and key data from the Rover/NERVA program established a baseline for proven reactor performance and areas of enhancement to meet near-term goals. Studies were performed of the criticality and temperature profiles for probable fuel and moderator loadings for the three engine sizes, with a more detailed analysis of the 50 K size. During the second period of performance, analyses of the 50 K engine continued. A chamber/nozzle contour was selected and heat transfer and fatigue analyses were performed for likely construction materials. Reactor analyses were performed to determine component radiation heating rates, reactor radiation fields, water immersion poisoning requirements, temperature limits for restartability, and a tie-tube thermal analysis. Finally, a brief assessment of key enabling technologies was made, with a view toward identifying development issues and identification of the critical path toward achieving engine qualification within 10 years.

  17. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  18. The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Westa, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.

    2011-01-01

    NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions. The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems. At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability). A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  19. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  20. She's an Engineer

    NASA Image and Video Library

    2016-11-05

    Junior Girl Scouts from two locals conceils, Girl Scouts of Central Maryland and Girl Scouts of Nations Capital, participated in She's an Engineer! Girl Scout program on November 3, 2016. They met with female NASA engineers and tested rover models in simulated I&T stations to explore the Engineering Design process.

  1. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Dr. Jim Green, NASA‘s Planetary Science Division Director and Head of Mars Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. An Ontology for Requesting Distant Robotic Action: A Case Study in Naming and Action Identification for Planning on the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.; Shalin, Valerie L.; Bass, Deborah S.

    2004-01-01

    This paper focuses on the development and use of the abbreviated names as well as an emergent ontology associated with making requests for action of a distant robotic rover during the 2003-2004 NASA Mars Exploration Rover (MER) mission, run by the Jet Propulsion Laboratory. The infancy of the domain of Martian telerobotic science, in which specialists request work from a rover moving through the landscape, as well as the need to consider the interdisciplinary teams involved in the work required an empirical approach. The formulation of this ontology is grounded in human behavior and work practice. The purpose of this paper is to identify general issues for an ontology of action (specifically for requests for action), while maintaining sensitivity to the users, tools and the work system within a specific technical domain. We found that this ontology of action must take into account a dynamic environment, changing in response to the movement of the rover, changes on the rover itself, as well as be responsive to the purposeful intent of the science requestors. Analysis of MER mission events demonstrates that the work practice and even robotic tool usage changes over time. Therefore, an ontology must adapt and represent both incremental change and revolutionary change, and the ontology can never be more than a partial agreement on the conceptualizations involved. Although examined in a rather unique technical domain, the general issues pertain to the control of any complex, distributed work system as well as the archival record of its accomplishments.

  3. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  4. View Northward from Spirit's Winter Roost (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.'

    Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete.

    This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right.

    This view is presented in false color to emphasize differences among rock and soil materials. It combines exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.

  5. Mobility analysis, simulation, and scale model testing for the design of wheeled planetary rovers

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel A.; Eisen, Howard J.

    1993-01-01

    The use of computer based techniques to model and simulate wheeled rovers on rough natural terrains is considered. Physical models of a prototype vehicle can be used to test the correlation of the simulations in scaled testing. The computer approaches include a quasi-static planar or two dimensional analysis and design tool based on the traction necessary for the vehicle to have imminent mobility. The computer program modeled a six by six wheel drive vehicle of original kinematic configuration, called the Rocker Bogie. The Rocker Bogie was optimized using the quasi-static software with respect to its articulation parameters prior to fabrication of a prototype. In another approach used, the dynamics of the Rocker Bogie vehicle in 3-D space was modeled on an engineering workstation using commercial software. The model included the complex and nonlinear interaction of the tire and terrain. The results of the investigation yielded numerical and graphical results of the rover traversing rough terrain on the earth, moon, and Mars. In addition, animations of the rover excursions were also generated. A prototype vehicle was then used in a series of testbed and field experiments. Correspondence was then established between the computer models and the physical model. The results indicated the utility of the quasi-static tool for configurational design, as well as the predictive ability of the 3-D simulation to model the dynamic behavior of the vehicle over short traverses.

  6. A Risk-Constrained Multi-Stage Decision Making Approach to the Architectural Analysis of Mars Missions

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)

    2012-01-01

    This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.

  7. Archaeological field survey automation: concurrent multisensor site mapping and automated analysis

    NASA Astrophysics Data System (ADS)

    Józefowicz, Mateusz; Sokolov, Oleksandr; Meszyński, Sebastian; Siemińska, Dominika; Kołosowski, Przemysław

    2016-04-01

    ABM SE develops mobile robots (rovers) used for analog research of Mars exploration missions. The rovers are all-terrain exploration platforms, carrying third-party payloads: scientific instrumentation. "Wisdom" ground penetrating radar for Exomars mission has been tested onboard, as well as electrical resistivity module and other devices. Robot has operated in various environments, such as Central European countryside, Dachstein ice caves or Sahara, Morocco (controlled remotely via satellite from Toruń, Poland. Currently ABM SE works on local and global positioning system for a Mars rover basing on image and IMU data. This is performed under a project from ESA. In the next Mars rover missions a Mars GIS model will be build, including an acquired GPR profile, DEM and regular image data, integrated into a concurrent 3D terrain model. It is proposed to use similar approach in surveys of archaeological sites, especially those, where solid architecture remains can be expected at shallow depths or being partially exposed. It is possible to deploy a rover that will concurrently map a selected site with GPR, 2D and 3D cameras to create a site model. The rover image processing algorithms are capable of automatic tracing of distinctive features (such as exposed structure remains on a desert ground, differences in color of the ground, etc.) and to mark regularities on a created map. It is also possible to correlate the 3D map with an aerial photo taken under any angle to achieve interpretation synergy. Currently the algorithms are an interpretation aid and their results must be confirmed by a human. The advantages of a rover over traditional approaches, such as a manual cart or a drone include: a) long hours of continuous work or work in unfavorable environment, such as high desert, frozen water pools or large areas, b) concurrent multisensory data acquisition, c) working from the ground level enables capturing of sites obstructed from the air (trees), d) it is possible to control the platform from a remote location via satellite, with only servicing person on the site and the survey team operating from their office, globally. The method is under development. The team contributing to the project includes also: Oleksii Sokolov, Michał Koepke, Krzysztof Rydel, Michał Stypczyński, Maciej Ślęk, Łukasz Zapała, Michał Dąbrowski.

  8. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  9. Spirit Ascent Movie, Rover's-Eye View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A movie assembled from frames taken by the rear hazard-identification camera on NASA's Mars Exploration Rover Spirit shows the last few days of the rover's ascent to the crest of 'Husband Hill' inside Mars' Gusev Crater. The rover was going in reverse. Rover planners often drive Spirit backwards to keep wheel lubrication well distributed. The images in this clip span a timeframe from Spirit's 573rd martian day, or sol (Aug, 13, 2005) to sol 582 (Aug. 22, 2005), the day after the rover reached the crest. During that period, Spirit drove 136 meters (446 feet),

  10. Planetary rover robotics experiment in education: carbonate rock collecting experiment of the Husar-5 rover

    NASA Astrophysics Data System (ADS)

    Szalay, Kristóf; Lang, Ágota; Horváth, Tamás; Prajczer, Péter; Bérczi, Szaniszló

    2013-04-01

    Introduction: The new experiment for the Husar-5 educational space probe rover consists of steps of the technology of procedure of finding carbonate speci-mens among the rocks on the field. 3 main steps were robotized: 1) identification of carbonate by acid test, 2) measuring the gases liberated by acid, and 3) magnetic test. Construction of the experiment: The basis of the robotic realization of the experiment is a romote-controlled rover which can move on the field. Onto this rover the mechanism of the experiments were built from Technics LEGO elements and we used LEGO-motors for making move these experiments. The operation was coordinated by an NXT-brick which was suitable to programming. Fort he acetic-test the drops should be passed to the selected area. Passing a drop to a locality: From the small holder of the acid using densified gas we pump some drop onto the selected rock. We promote this process by pumpig the atmospheric gas into another small gas-container, so we have another higher pressure gas there. This is pumped into the acid-holder. The effect of the reaction is observed by a wireless onboard camera In the next step we can identify the the liberated gas by the gas sensor. Using it we can confirm the liberation of the CO2 gas without outer observer. The third step is the controll of the paramagnetic properties.. In measuring this feature a LEGO-compass is our instrumentation. We use a electric current gener-ated magnet. During the measurements both the coil and the gas-sensor should be positioned to be near to the surface. This means, that a lowering and an uplifting machinery should be constructed. Summary: The sequence of the measurement is the following. 1) the camera - after giving panorama images - turns toward the soil surface, 2) the dropping onto the rock surface 3) at the same time the gas-sensor starts to move down above the rock 4) the compass sensor also moves down on the arm which holds both the gas-sensor and the compass-sensor 5) evaluation of the gas-sensor data 6) if CO2 is present the magnet-test begins, therefore the rovers moves forward into a good position for the coil lowering 7) after magnetization the rover moves backward in order to be in the position that the compass-sesnsor can measure the angle. 8) the last 2 operations are repeated in a small turned position of the rover 9) final calculation of the paramagnetic measurement 10) summary of the 3 tests

  11. PISCES: A "Stepping Stone" to International Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank

    2007-01-01

    The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.

  12. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles; Canham, John

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  13. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  14. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles D.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  15. NASA Mars Rover Curiosity at JPL, Side View

    NASA Image and Video Library

    2011-04-06

    The rover for NASA Mars Science Laboratory mission, named Curiosity, is about 3 meters 10 feet long, not counting the additional length that the rover arm can be extended forward. The front of the rover is on the left in this side view.

  16. Curiosity: The Next Mars Rover Artist Concept

    NASA Image and Video Library

    2011-05-19

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. The rover examines a rock on Mars with a set of tools at the end of the rover arm.

  17. Test Rover Aids Preparations in California for Curiosity Rover on Mars

    NASA Image and Video Library

    2012-05-11

    NASA Mars Science Laboratory mission team members ran mobility tests on the test rover called Scarecrow on sand dunes near Death Valley, Ca. in early May 2012 in preparation for operating the Curiosity rover, currently en route to Mars.

  18. The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Traverse in a Planetary Suit

    NASA Technical Reports Server (NTRS)

    Vos, Jessica R.; Gernhardt, Michael L.; Lee, Lesley

    2007-01-01

    As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited EVA crew member exploring the surface of the Moon to "walk-back" to the habitat in the event of a rover breakdown, taking into consideration the planned EVA tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member s safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km Walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the Lunar Walkback Test . The test was designed not only to determine the feasibility of a 10 km excursion, but also to collect human performance, biomedical, and biomechanical data relevant to optimizing space suit design and life support system sizing. These data will also be used to develop follow-on studies to understand interrelationships of such key parameters as suit mass, inertia, suit pressure, and center of gravity (CG), and the respective influences of each on human performance.

  19. Path planning for planetary rover using extended elevation map

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo

    1994-01-01

    This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.

  20. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  1. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  2. Sample Acquisition and Caching architecture for the Mars Sample Return mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.

    This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.

  3. 'X' Marks the Spot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map of the Mars Exploration Rover Opportunity's new neighborhood at Meridiani Planum, Mars, shows the surface features used to locate the rover. By imaging these 'bumps' on the horizon from the perspective of the rover, mission members were able to pin down the rover's precise location. The image consists of data from the Mars Global Surveyor orbiter, the Mars Odyssey orbiter and the descent image motion estimation system located on the bottom of the rover.

  4. Pathfinder Lander Rover Recharge System, and MARCO POLO Controls and ACME Regolith Feed System Controls and Integration

    NASA Technical Reports Server (NTRS)

    Tran, Sarah Diem

    2015-01-01

    This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.

  5. Curiosity analyzes Martian soil samples

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  6. Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.

  7. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  8. Airbag Seams Leave Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  9. Inlet Cover On the Curiosity Rover

    NASA Image and Video Library

    2018-06-04

    The drill bit of NASA's Curiosity Mars rover over one of the sample inlets on the rover's deck. The inlets lead to Curiosity's onboard laboratories. This image was taken on Sol 2068 by the rover's Mast Camera (Mastcam). https://photojournal.jpl.nasa.gov/catalog/PIA22327

  10. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  11. Evaluation of off-road terrain with static stereo and monoscopic displays

    NASA Technical Reports Server (NTRS)

    Yorchak, John P.; Hartley, Craig S.

    1990-01-01

    The National Aeronautics and Space Administration is currently funding research into the design of a Mars rover vehicle. This unmanned rover will be used to explore a number of scientific and geologic sites on the Martian surface. Since the rover can not be driven from Earth in real-time, due to lengthy communication time delays, a locomotion strategy that optimizes vehicle range and minimizes potential risk must be developed. In order to assess the degree of on-board artificial intelligence (AI) required for a rover to carry out its' mission, researchers conducted an experiment to define a no AI baseline. In the experiment 24 subjects, divided into stereo and monoscopic groups, were shown video snapshots of four terrain scenes. The subjects' task was to choose a suitable path for the vehicle through each of the four scenes. Paths were scored based on distance travelled and hazard avoidance. Study results are presented with respect to: (1) risk versus range; (2) stereo versus monocular video; (3) vehicle camera height; and (4) camera field-of-view.

  12. A comparison of energy conversion systems for meeting the power requirements of manned rover for Mars missions

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Morley, Nicholas; Cataldo, Robert; Bloomfield, Harvey

    1990-01-01

    Several types of conversion systems of interest for a nuclear Mars manned application are examined, including: free-piston Stirling engines (FPSE), He/Xe closed Brayton cycle (CBC), CO2 open Brayton, and SiGe/GaP thermoelectric systems. Optimization studies were conducted to determine the impact of the conversion system on the overall mass of the nuclear power system and the mobility power requirement of the rover vehicle. The results of an analysis of a manned Mars rover equipped with a nuclear reactor power system show that the free-piston Stirling engine and the He/Xe closed Brayton cycle are the best available options for minimizing the overall mass and electric power requirements of the rover vehicle. While the current development of Brayton technology is further advanced than that of FPSE, the FPSE could provide approximately 13.5 percent lower mass than the He/Xe closed Brayton system. Results show that a specific mass of 160 is achievable with FPSE, for which the mass of the radiation shield (2.8 tons) is about half that for He/Xe CBC (5 tons).

  13. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  14. KSC-03pd1249

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 1 (MER-1) as it is moved to the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  15. KSC-03pd1250

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  16. KSC-03pd1251

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  17. The mass of massive rover software

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1993-01-01

    A planetary rover, like a spacecraft, must be fully self contained. Once launched, a rover can only receive information from its designers, and if solar powered, power from the Sun. As the distance from Earth increases, and the demands for power on the rover increase, there is a serious tradeoff between communication and computation. Both of these subsystems are very power hungry, and both can be the major driver of the rover's power subsystem, and therefore the minimum mass and size of the rover. This situation and software techniques that can be used to reduce the requirements on both communication and computation, allowing the overall robot mass to be greatly reduced, are discussed.

  18. Crane Lowers Aeroshell

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 31, 2003

    In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd1221

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  20. KSC-03pd0771

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  1. KSC-03pd0957

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen in the foreground after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  2. KSC-03pd0909

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers gather around the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  3. KSC-03pd1223

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - While workers watch the process, the petals on the lander close up around the Mars Exploration Rover 2 (MER-A). The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  4. KSC-03pd0232

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. KSC-03pd0913

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers begin closing the solar panels on the Mars Exploration Rover 2 (MER-2) for flight stow. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  6. KSC-03pd0438

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on a rotation stand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  7. KSC-03pd0230

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is being prepared for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  8. KSC-03pd0768

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover-2 (MER-2) is ready for solar array testing in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  9. KSC-03pd0786

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) is tested for mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  10. KSC-03pd0234

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  11. KSC-03pd0457

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- Technicians secure the aeroshell for Mars Exploration Rover 2 to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25, 2003.

  12. KSC-03pd0439

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on end after rotation in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  13. KSC-03pd0236

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  14. KSC-03pd0235

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell as it is lowered toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  15. KSC-03pd0440

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. - During processing, workers in the Payload Hazardous Servicing Facility work on part of the aeroshell for Mars Exploration Rover 2. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  16. KSC-03pd0955

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - A worker examines the Mars Exploration Rover 1 (MER-1) after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  17. KSC-03pd0911

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker checks a component of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  18. KSC-03pd0886

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rests on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  19. KSC-03pd0958

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - On the Mars Exploration Rover 1 (MER-1), the science boom, below the front petal, is deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  20. KSC-03pd0910

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers make additional checks of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  1. KSC-03pd0793

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  2. KSC-03pd0914

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - After closing the solar panels for flight stow, workers examine the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  3. Arusha Rover Deployable Medical Workstation

    NASA Technical Reports Server (NTRS)

    Boswell, Tyrone; Hopson, Sonya; Marzette, Russell; Monroe, Gilena; Mustafa, Ruqayyah

    2014-01-01

    The NSBE Arusha rover concept offers a means of human transport and habitation during long-term exploration missions on the moon. This conceptual rover calls for the availability of medical supplies and equipment for crew members in order to aid in mission success. This paper addresses the need for a dedicated medical work station aboard the Arusha rover. The project team investigated multiple options for implementing a feasible deployable station to address both the medical and workstation layout needs of the rover and crew. Based on layout specifications and medical workstation requirements, the team has proposed a deployable workstation concept that can be accommodated within the volumetric constraints of the Arusha rover spacecraft

  4. Mars rover 1988 concepts

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna Shirley; Penn, Thomas J.; Dias, William C.

    1989-01-01

    Results of FY88 studies of a sample-collecting Mars rover are presented. A variety of rover concepts are discussed which include different technical approaches to rover functions. The performance of rovers with different levels of automation is described and compared to the science requirement for 20 to 40 km to be traversed on the Martian surface and for 100 rock and soil samples to be collected. The analysis shows that a considerable amount of automation in roving and sampling is required to meet this requirement. Additional performance evaluation shows that advanced RTG's producing 500 W and 350 WHr of battery storage are needed to supply the rover.

  5. Characterization of Fillite as a planetary soil simulant in support of rover mobility assessment in high-sinkage/high-slip environments

    NASA Astrophysics Data System (ADS)

    Edwards, Michael

    This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction. Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests. The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m 3, which is similar to that of Martian regolith (about 3.7 -- 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 -- 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, results in smaller bearing and shearing resistances allowing for better simulation of the intended high-sinkage, high-slip behavior for rover mobility studies. The results of the normal bevameter tests were used to determine parameters for two models available in the literature - the Bekker model and the New Model of Mobility (N2M) model. These parameters were then used to predict the sinkage of a Spirit rover wheel if the rover were to be used on Fillite. The predicted sinkage of a Spirit rover wheel in Fillite was 84% of the wheel diameter, which was within the observed sinkage of 50 to 90% of the wheel diameter of the Spirit rover on Mars. Shear bevameter tests were also performed on Fillite to assess the shear stresses and shear deformations imparted by wheels under torsional loads. The results compared well to the estimated shear stresses and deformations of Martian soil caused by the wheels of the Spirit rover. When compared to other simulants (e.g. GRC-1), the pressure-sinkage and shear stress-shear deformation behaviors of Fillite confirm that Fillite is more suitable for high-sinkage and high-slip rover studies than other typical simulants derived from natural terrestrial soils and rocks.

  6. Onboard planning for geological investigations using a rover team

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca

    2004-01-01

    This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.

  7. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  8. Pebbles, Cobbles, and Sockets

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Rover image of 'Shark' (upper left center), 'Half Dome' (upper right), and a small rock (right foreground) reveal textures and structures not visible in lander camera images. These rocks are interpreted as conglomerates because their surfaces have rounded protrusions up to several centimeters in size. It is suggested that the protrusions are pebbles and granules.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  9. Sojourner Rover View of Sockets and Pebbles

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Well-rounded objects, like the ones in this image, were not seen at the Viking sites. These are thought to be pebbles liberated from sedimentary rocks composed of cemented silts, sands and rounded fragments; such rocks are called conglomerates. The 'sockets' could be the former sites of such pebbles.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the rock 'Chimp' was taken by the Sojourner rover's right front camera on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  11. Stereo Images of Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This stereo image pair of the rock 'Chimp' was taken by the Sojourner rover's front cameras on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  12. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is the official three-member crew portrait of the Apollo 15 (SA-510). Pictured from left to right are: David R. Scott, Mission Commander; Alfred M. Worden Jr., Command Module pilot; and James B. Irwin, Lunar Module pilot. The fifth marned lunar landing mission, Apollo 15 (SA-510), lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle (LRV), or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. The astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  13. The Design of Two Nano-Rovers for Lunar Surface Exploration in the Context of the Google Lunar X Prize

    NASA Astrophysics Data System (ADS)

    Gill, E.; Honfi Camilo, L.; Kuystermans, P.; Maas, A. S. B. B.; Buutfeld, B. A. M.; van der Pols, R. H.

    2008-09-01

    This paper summarizes a study performed by ten students at the Delft University of Technology on a lunar exploration vehicle suited for competing in the Google Lunar X Prize1. The design philosophy aimed at a quick and simple design process, to comply with the mission constraints. This is achieved by using conventional technology and performing the mission with two identical rovers, increasing reliability and simplicity of systems. Both rovers are however capable of operating independently. The required subsystems have been designed for survival and operation on the lunar surface for an estimated mission lifetime of five days. This preliminary study shows that it is possible for two nano-rovers to perform the basic exploration tasks. The mission has been devised such that after launch the rovers endure a 160 hour voyage to the Moon after which they will land on Sinus Medii with a dedicated lunar transfer/lander vehicle. The mission outline itself has the two nano-rovers travelling in the same direction, moving simultaneously. This mission characteristic allows a quick take-over of the required tasks by the second rover in case of one rover breakdown. The main structure of the rovers will consist of Aluminium 2219 T851, due to its good thermal properties and high hardness. Because of the small dimensions of the rovers, the vehicles will use rigid caterpillar tracks as locomotion system. The track systems are sealed from lunar dust using closed track to prevent interference with the mechanisms. This also prevents any damage to the electronics inside the tracks. For the movement speed a velocity of 0.055 m/s has been determined. This is about 90% of the maximum rover velocity, allowing direct control from Earth. The rovers are operated by a direct control loop, involving the mission control center. In order to direct the rovers safely, a continuous video link with the Earth is necessary to assess its immediate surroundings. Two forward pointing navigational cameras aid the human controller by obtaining stereoscopic images. An additional navigational camera in the rear is used as a contingency to drive rearwards. All navigational cameras have a maximal resolution of 640 by 480 pixels. Each rover has one main High Definition (HD) camera capable of acquiring still images and videos. These cameras have a resolution of 1920 by 1080 pixels and a frame rate of 60 frames per second. Resolution and sampling rates can be modified to accommodate data transmission constraints. To comply with the self portrait requirement imposed by the Google Lunar X Prize, the rovers will take images of each other, capturing 50% of the surface exploration system on the still image. As a contingency, both vehicles are also capable composing self portraits from an assembly of multiple images of its own structure, similar to the panoramic images. The camera is positioned above the rover on a mast providing two degrees of freedom for the camera to be able to rotate 360º horizontally and from -45º to 90º vertically. Both rovers are equipped with an omni-directional antenna. A WiMax system is used for all communication with the lander vehicle. The communication is done via the commonly used TCP/IP, which can be easily integrated in the software systems of the mission. The lander vehicle itself will act as a relay station for the data transfer with the ground station on Earth. The selected Digital Signal Processor (D.S.P.) has been specifically designed for compressing raw HD format using little power. The D.S.P. is capable of compressing the raw video data while at the same time performing remaining tasks such as navigation. Since the D.S.P. is designed for Earth use, it has to be adapted to cope with the lunar environment. This can be achieved by proper implication of radiation shielding. As the primary power source Gallium-Arsenide solar panels are used. These are the most efficient solar panels to date. Additionally, a Lithium-Ion battery is used as the secondary power source. In total at least 45Wh of energy are needed to complete the mission. A passive thermal system has been found to comply with the thermal requirements of the rovers. Therefore white paint and optical solar reflectors are used. These have a high emissivity and low absorption. The most striking characteristic for the rover mission is the miniaturization of components, allowing a small and low-mass rover design. Also, the use of adapted offthe- shelf components would dramatically reduce costs with respect to proven space grade components. The typical short mission lifetime allows this approach. It must be noted however that to ensure correct functionality of these components in space, they have to be customized and adapted to cope with vacuum and high radiation levels. Based on the achieved results, the Delft University of Technology is currently looking for partnerships in further development of a design capable of competing in the Google Lunar X Prize.

  14. Design of a Mars rover and sample return mission

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  15. Enabling Autonomous Rover Science through Dynamic Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa

    2005-01-01

    This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.

  16. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  17. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-10-20

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  18. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    ScienceCinema

    None

    2018-06-06

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  19. Robotic Astrobiology: Searching for Life with Rovers

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Wettergreen, D. S.; Team, L.

    2006-05-01

    The Life In The Atacama (LITA) project has developed and field tested a long-range, solar-powered, automated rover platform (Zoe) and a science payload assembled to search for microbial life in the Atacama desert. Life is hardly detectable over most of the extent of the driest desert on Earth. Its geological, climatic, and biological evolution provides a unique training ground for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars. LITA opens the path to a new generation of rover missions that will transition from the current study of habitability (MER) to the upcoming search for, and study of, habitats and life on Mars. Zoe's science payload reflects this transition by combining complementary elements, some directed towards the remote sensing of the environment (geology, morphology, mineralogy, weather/climate) for the detection of conditions favorable to microbial habitats and oases along survey traverses, others directed toward the in situ detection of life' signatures (biological and physical, such as biological constructs and patterns). New exploration strategies specifically adapted to the search for microbial life were designed and successfully tested in the Atacama between 2003-2005. They required the development and implementation in the field of new technological capabilities, including navigation beyond the horizon, obstacle avoidance, and "science-on-the-fly" (automated detection of targets of science value), and that of new rover planning tools in the remote science operation center.

  20. EXPLORING MARS WITH SOLAR-POWERED ROVERS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.

  1. The first lunar outpost: The design reference mission and a new era in lunar science

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.

    1993-01-01

    The content of the First Lunar Outpost (FLO) Design Reference Mission has been formulated and a 'strawman' science program has been established. The mission consists of two independent launches using heavy lift vehicles that land directly on the lunar surface. A habitat module and support systems are flown to the Moon first. After confirmation of a successful deployment of the habitat systems, the crewed lunar lander is launched and piloted to within easy walking distance (2 km) of the habitat. By eliminating the Apollo style lunar orbit rendezvous, landing sites at very high latitudes can be considered. A surface rover and the science experiments will accompany the crew. The planned stay time is 45 days, two lunar days and one night. A payload of 3.3 metric tons will support a series of geophysics, geology, astronomy, space physics, resource utilization, and life science experiments. Sample return is 150 to 200 kg. The rover is unpressurized and can carry four astronauts or two astronauts and 500 kg of payload. The rover can also operate in robotic mode with the addition of a robotics package. The science and engineering experiment strategy is built around a representative set of place holder experiments.

  2. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  3. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  4. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2004-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  5. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  6. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    NASA Technical Reports Server (NTRS)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  7. Microrover Nanokhod enhancing the scientific output of the ExoMars Lander

    NASA Astrophysics Data System (ADS)

    Klinkner, Sabine; Bernhardt, Bodo; Henkel, Hartmut; Rodionov, Daniel; Klingelhoefer, Goestar

    The Nanokhod rover is a small and mobile exploration platform carrying out in-situ exploration by transporting and operating scientific instruments to interesting samples beyond the landing point. The microrover has a volume of 160x65x250mm (3) it weighs 3.2kg including a payload mass of 1kg and it has a peak power of 5W. The scientific model payload of the rover is a Geochemistry Instrument Package Facility (GIPF), which analyses the chemical and mineralogical composition of planetary surfaces. It consists of: An Alpha-Particle-Xray-spectrometer, a Mößbauer spectrometer and a miniature imaging system. The amount of science which can be performed within the operating range of the lander is limited since there are only few reachable, scientific interesting objects. By travelling to new sites with the aid of a microrover, the additional reach enhances the mission output and provides a significant increase in scientific return. The implementation of the Nanokhod rover on the ExoMars Lander increases its operating range by a radius of several meters, requiring only a minor mass impact of few kilograms. The Nanokhod rover is a tethered vehicle based on a Russian concept. It stays connected to the Lander via thin cables throughout the mission. This connection is used for power supply to the rover as well as the transmission of commands and scientific data. This solution minimises the communication unit and eliminates the power subsystems on the rover side, saving valuable mass and thus improving the payload to system mass ratio. By removing the power storage subsystem on the rover side, the mobile system provides a high thermal robustness and allows the system to easily survive Martian nights. The locomotion of the rover is provided by tracks. This is the optimised locomotion method on a soft and sandy surface for such a small, low-mass system, allowing even to negotiate steep slopes. The tracks enable a large contact surface of the vehicle, thus reducing its contact pressure. The sinkage is minimised reducing the bulldozing effect and increasing the traction. The central Payload Cabine has 2 (Degree of Freedom) DOF, allowing inherently robust deployment and precise payload positioning. The two drives for lifting and rotating the Payload Cabine (PLC) provides a robust and repetitive accuracy for a congruent positioning of all payload instruments on the same sample. Furthermore the PLC drives can be used for climbing and overcoming obstacles. The latest developments on the Nanokhod rover have prepared the concept for a mission scenario on the Mercury surface. The mechanical design of the Nanokhod rover was developed from a conceptual stage to an engineering model which is able to withstand the demanding conditions of the Mercury mission such as: Surface temperature of -180(°) °C, significant mass restrictions, limited power and energy supply, operational surface covered with fine dust, shock loads of 200g for 20ms and high Vacuum. With the building and testing of the engineering model the concept achieved a Technical Readiness Level (TRL) of 5 to 6, and solutions were found for a set of requirements with a high complexity. With these design requirements exceeding most mission conditions of the ExoMars lander, the current design is well-prepared for the Mars scenario.

  8. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  9. KSC-2011-2273

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  10. KSC-2011-2274

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  11. KSC-2011-2276

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  12. Automated science target selection for future Mars rovers: A machine vision approach for the future ESA ExoMars 2018 rover mission

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Muller, Jan-Peter

    2013-04-01

    The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009), Stereo workstation for Mars rover image analysis, in EPSC (Europlanets), Potsdam, Germany, EPSC2009-390

  13. KSC-03pd0883

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers adjust the position of the Mars Exploration Rover-2 (MER-2) on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  14. KSC-03pd1224

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  15. KSC-03pd0795

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  16. KSC-03pd1225

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  17. KSC-03pd0791

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  18. KSC-03pd0790

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  19. KSC-03pd0879

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) into position over the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  20. KSC-03pd0881

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the Mars Exploration Rover-2 (MER-2) onto the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

Top