Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant'Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina
2016-12-01
Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.
Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant’Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina
2016-01-01
Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi. PMID:27984589
Maréchal, Alexandre; Zou, Lee
2015-01-01
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications. PMID:25403473
Maréchal, Alexandre; Zou, Lee
2015-01-01
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Belanger, Kenneth D; Griffith, Amanda L; Baker, Heather L; Hansen, Jeanne N; Kovacs, Laura A Simmons; Seconi, Justin S; Strine, Andrew C
2011-09-01
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J
2015-02-01
Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Da Silveira, Rita De Cássia Viveiros; Da Silva, Marcelo Santos; Nunes, Vinícius Santana; Perez, Arina Marina; Cano, Maria Isabel Nogueira
2013-04-01
We have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan´s genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.
RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.
Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong
2016-12-19
ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Replication Protein A-1 Has a Preference for the Telomeric G-rich Sequence in Trypanosoma cruzi.
Pavani, Raphael Souza; Vitarelli, Marcela O; Fernandes, Carlos A H; Mattioli, Fabio F; Morone, Mariana; Menezes, Milene C; Fontes, Marcos R M; Cano, Maria Isabel N; Elias, Maria Carolina
2018-05-01
Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Physical and functional interactions of Caenorhabditis elegans WRN-1 helicase with RPA-1.
Hyun, Moonjung; Park, Sojin; Kim, Eunsun; Kim, Do-Hyung; Lee, Se-Jin; Koo, Hyeon-Sook; Seo, Yeon-Soo; Ahn, Byungchan
2012-02-21
The Caenorhabditis elegans Werner syndrome protein, WRN-1, a member of the RecQ helicase family, has a 3'-5' DNA helicase activity. Worms with defective wrn-1 exhibit premature aging phenotypes and an increased level of genome instability. In response to DNA damage, WRN-1 participates in the initial stages of checkpoint activation in concert with C. elegans replication protein A (RPA-1). WRN-1 helicase is stimulated by RPA-1 on long DNA duplex substrates. However, the mechanism by which RPA-1 stimulates DNA unwinding and the function of the WRN-1-RPA-1 interaction are not clearly understood. We have found that WRN-1 physically interacts with two RPA-1 subunits, CeRPA73 and CeRPA32; however, full-length WRN-1 helicase activity is stimulated by only the CeRPA73 subunit, while the WRN-1(162-1056) fragment that harbors the helicase activity requires both the CeRPA73 and CeRPA32 subunits for the stimulation. We also found that the CeRPA73(1-464) fragment can stimulate WRN-1 helicase activity and that residues 335-464 of CeRPA73 are important for physical interaction with WRN-1. Because CeRPA73 and the CeRPA73(1-464) fragment are able to bind single-stranded DNA (ssDNA), the stimulation of WRN-1 helicase by RPA-1 is most likely due to the ssDNA binding activity of CeRPA73 and the direct interaction of WRN-1 and CeRPA73.
Byrne, Brendan M; Oakley, Gregory G
2018-04-20
The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance. An alternative form of RPA, termed aRPA, is formed by a complex of RPA4 with RPA1 and RPA3. aRPA is expressed differentially in cells compared to canonical RPA and has been shown to inhibit canonical RPA function while allowing for regular maintenance of cell viability. Interestingly, while aRPA is defective in DNA replication and cell cycle progression, it was shown to play a supporting role in nucleotide excision repair and recombination. The binding domains of canonical RPA interact with a growing number of partners involved in numerous genome maintenance processes. The protein interactions of the RPA-ssDNA complex are not only governed by competition between the binding proteins but also by post-translation modifications such as phosphorylation. Phosphorylation of RPA2 is an important post-translational modification of the RPA complex, and is essential for directing context-specific functions of the RPA complex in the DNA damage response. Due to the importance of RPA in cellular metabolism, it was identified as an appealing target for chemotherapeutic drug development that could be used in future cancer treatment regimens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee
2014-01-01
Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808
Park, Chin-Ju; Lee, Joon-Hwa; Choi, Byong-Seok
2005-01-01
Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA. PMID:16043636
Hirakawa, Hidetada; Oda, Yasuhiro; Phattarasukol, Somsak; Armour, Christopher D; Castle, John C; Raymond, Christopher K; Lappala, Colin R; Schaefer, Amy L; Harwood, Caroline S; Greenberg, E Peter
2011-05-01
The Rhodopseudomonas palustris transcriptional regulator RpaR responds to the RpaI-synthesized quorum-sensing signal p-coumaroyl-homoserine lactone (pC-HSL). Other characterized RpaR homologs respond to fatty acyl-HSLs. We show here that RpaR functions as a transcriptional activator, which binds directly to the rpaI promoter. We developed an RNAseq method that does not require a ribosome depletion step to define a set of transcripts regulated by pC-HSL and RpaR. The transcripts include several noncoding RNAs. A footprint analysis showed that purified His-tagged RpaR (His(6)-RpaR) binds to an inverted repeat element centered 48.5 bp upstream of the rpaI transcript start site, which we mapped by S1 nuclease protection and primer extension analyses. Although pC-HSL-RpaR bound to rpaI promoter DNA, it did not bind to the promoter regions of a number of RpaR-regulated genes not in the rpaI operon. This indicates that RpaR control of these other genes is indirect. Because the RNAseq analysis allowed us to track transcript strand specificity, we discovered that there is pC-HSL-RpaR-activated antisense transcription of rpaR. These data raise the possibility that this antisense RNA or other RpaR-activated noncoding RNAs mediate the indirect activation of genes in the RpaR-controlled regulon.
Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee
2014-01-23
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.
Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; ...
2015-04-08
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ RPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensusmore » sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σ RPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ RPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensusmore » sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σ RPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.« less
Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming
2012-08-01
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.
RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J
2015-10-15
We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Hirakawa, Hidetada; Oda, Yasuhiro; Phattarasukol, Somsak; Armour, Christopher D.; Castle, John C.; Raymond, Christopher K.; Lappala, Colin R.; Schaefer, Amy L.; Harwood, Caroline S.; Greenberg, E. Peter
2011-01-01
The Rhodopseudomonas palustris transcriptional regulator RpaR responds to the RpaI-synthesized quorum-sensing signal p-coumaroyl-homoserine lactone (pC-HSL). Other characterized RpaR homologs respond to fatty acyl-HSLs. We show here that RpaR functions as a transcriptional activator, which binds directly to the rpaI promoter. We developed an RNAseq method that does not require a ribosome depletion step to define a set of transcripts regulated by pC-HSL and RpaR. The transcripts include several noncoding RNAs. A footprint analysis showed that purified His-tagged RpaR (His6-RpaR) binds to an inverted repeat element centered 48.5 bp upstream of the rpaI transcript start site, which we mapped by S1 nuclease protection and primer extension analyses. Although pC-HSL-RpaR bound to rpaI promoter DNA, it did not bind to the promoter regions of a number of RpaR-regulated genes not in the rpaI operon. This indicates that RpaR control of these other genes is indirect. Because the RNAseq analysis allowed us to track transcript strand specificity, we discovered that there is pC-HSL-RpaR-activated antisense transcription of rpaR. These data raise the possibility that this antisense RNA or other RpaR-activated noncoding RNAs mediate the indirect activation of genes in the RpaR-controlled regulon. PMID:21378182
Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants
Aklilu, Behailu B.; Culligan, Kevin M.
2016-01-01
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species. PMID:26858742
RPA and POT1: friends or foes at telomeres?
Flynn, Rachel Litman; Chang, Sandy; Zou, Lee
2012-02-15
Telomere maintenance in cycling cells relies on both DNA replication and capping by the protein complex shelterin. Two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomere 1 (POT1) play critical roles in DNA replication and telomere capping, respectively. While RPA binds to ssDNA in a non-sequence-specific manner, POT1 specifically recognizes singlestranded TTAGGG telomeric repeats. Loss of POT1 leads to aberrant accumulation of RPA at telomeres and activation of the ataxia telangiectasia and Rad3-related kinase (ATR)-mediated checkpoint response, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. The requirement for both POT1 and RPA in telomere maintenance and the antagonism between the two proteins raises the important question of how they function in concert on telomeric ssDNA. Two interesting models were proposed by recent studies to explain the regulation of POT1 and RPA at telomeres. Here, we discuss how these models help unravel the coordination, and also the antagonism, between POT1 and RPA during the cell cycle.
Oakley, Greg G; Tillison, Kristin; Opiyo, Stephen A; Glanzer, Jason G; Horn, Jeffrey M; Patrick, Steve M
2009-08-11
Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2, and RPA3 subunits that binds to single-stranded DNA (ssDNA) with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11-RAD50-NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-double-stranded DNA (dsDNA) junctions or breaks, and promote the restart of DNA replication. Here, we demonstrate that RPA2 phosphorylation regulates the assembly of DNA damage-induced RPA and MRN foci. Using purified proteins, we observe a direct interaction between RPA with both NBS1 and MRE11. By utilizing RPA bound to ssDNA, we demonstrate that substituting RPA with phosphorylated RPA or a phosphomimetic weakens the interaction with the MRN complex. Also, the N-terminus of RPA1 is a critical component of the RPA-MRN protein-protein interaction. Deletion of the N-terminal oligonucleotide-oligosaccharide binding fold (OB-fold) of RPA1 abrogates interactions of RPA with MRN and individual proteins of the MRN complex. Further identification of residues critical for MRN binding in the N-terminus of RPA1 shows that substitution of Arg31 and Arg41 with alanines disrupts the RPA-MRN interaction and alters cell cycle progression in response to DNA damage. Thus, the N-terminus of RPA1 and phosphorylation of RPA2 regulate RPA-MRN interactions and are important in the response to DNA damage.
Diamond, Spencer; Rubin, Benjamin E.; Shultzaberger, Ryan K.; Chen, You; Barber, Chase D.; Golden, Susan S.
2017-01-01
Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light–dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day. PMID:28074036
Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming
2013-01-01
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086
Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling.
Choi, Jun-Hyuk; Lindsey-Boltz, Laura A; Kemp, Michael; Mason, Aaron C; Wold, Marc S; Sancar, Aziz
2010-08-03
ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Lindsey-Boltz, Laura A.; Reardon, Joyce T.; Wold, Marc S.; Sancar, Aziz
2012-01-01
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair. PMID:22948311
Lindsey-Boltz, Laura A; Reardon, Joyce T; Wold, Marc S; Sancar, Aziz
2012-10-19
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.
The RPA Atomization Energy Puzzle.
Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I
2010-01-12
There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob
2012-09-30
We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.
The multi-replication protein A (RPA) system--a new perspective.
Sakaguchi, Kengo; Ishibashi, Toyotaka; Uchiyama, Yukinobu; Iwabata, Kazuki
2009-02-01
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
Bates, J E; Mezei, P D; Csonka, G I; Sun, J; Ruzsinszky, A
2017-01-10
Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.
RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.
Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing
2017-01-27
DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.
Wildlife, fish, and biodiversity [Chapter 11
Curtis Flather
2016-01-01
The 2010 Resources Planning Act (RPA) Assessment (2010 RPA) reviewed recent trends in wildlife, fish, and biodiversity, showing varied responses, depending on the resource, suggesting varied conditions that depend on region, species group, or habitat type. For this RPA Update, we focused on four topics that were motivated by questions stemming from 2010 RPA...
Puszynska, Anna M; O'Shea, Erin K
2017-01-01
The transcription factor RpaA is the master regulator of circadian transcription in cyanobacteria, driving genome-wide oscillations in mRNA abundance. Deletion of rpaA has no effect on viability in constant light conditions, but renders cells inviable in cycling conditions when light and dark periods alternate. We investigated the mechanisms underlying this viability defect, and demonstrate that the rpaA- strain cannot maintain appropriate energy status at night, does not accumulate carbon reserves during the day, and is defective in transcription of genes crucial for utilization of carbohydrate stores at night. Reconstruction of carbon utilization pathways combined with provision of an external carbon source restores energy charge and viability of the rpaA- strain in light/dark cycling conditions. Our observations highlight how a circadian output pathway controls and temporally coordinates essential pathways in carbon metabolism to maximize fitness of cells facing periodic energy limitations. DOI: http://dx.doi.org/10.7554/eLife.23210.001 PMID:28430105
Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi
2011-06-24
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.
Feldkamp, Michael D; Frank, Andreas O; Kennedy, J Phillip; Patrone, James D; Vangamudi, Bhavatarini; Waterson, Alex G; Fesik, Stephen W; Chazin, Walter J
2013-09-17
Replication protein A (RPA) is the primary single-stranded DNA (ssDNA) binding protein in eukaryotes. The N-terminal domain of the RPA70 subunit (RPA70N) interacts via a basic cleft with a wide range of DNA processing proteins, including several that regulate DNA damage response and repair. Small molecule inhibitors that disrupt these protein-protein interactions are therefore of interest as chemical probes of these critical DNA processing pathways and as inhibitors to counter the upregulation of DNA damage response and repair associated with treatment of cancer patients with radiation or DNA-damaging agents. Determination of three-dimensional structures of protein-ligand complexes is an important step for elaboration of small molecule inhibitors. However, although crystal structures of free RPA70N and an RPA70N-peptide fusion construct have been reported, RPA70N-inhibitor complexes have been recalcitrant to crystallization. Analysis of the P61 lattice of RPA70N crystals led us to hypothesize that the ligand-binding surface was occluded. Surface reengineering to alter key crystal lattice contacts led to the design of RPA70N E7R, E100R, and E7R/E100R mutants. These mutants crystallized in a P212121 lattice that clearly had significant solvent channels open to the critical basic cleft. Analysis of X-ray crystal structures, target peptide binding affinities, and (15)N-(1)H heteronuclear single-quantum coherence nuclear magnetic resonance spectra showed that the mutations do not result in perturbations of the RPA70N ligand-binding surface. The success of the design was demonstrated by determining the structure of RPA70N E7R soaked with a ligand discovered in a previously reported molecular fragment screen. A fluorescence anisotropy competition binding assay revealed this compound can inhibit the interaction of RPA70N with the peptide binding motif from the DNA damage response protein ATRIP. The implications of the results are discussed in the context of ongoing efforts to design RPA70N inhibitors.
Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry.
Zhao, Weixing; Vaithiyalingam, Sivaraja; San Filippo, Joseph; Maranon, David G; Jimenez-Sainz, Judit; Fontenay, Gerald V; Kwon, Youngho; Leung, Stanley G; Lu, Lucy; Jensen, Ryan B; Chazin, Walter J; Wiese, Claudia; Sung, Patrick
2015-07-16
The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Xingwang; Chang, Yuxiao; Xin, Xiaodong; Zhu, Chunmei; Li, Xianghua; Higgins, James D.; Wu, Changyin
2013-01-01
Replication protein A (RPA) is a conserved heterotrimeric protein complex comprising RPA1, RPA2, and RPA3 subunits involved in multiple DNA metabolism pathways attributable to its single-stranded DNA binding property. Unlike other species possessing a single RPA2 gene, rice (Oryza sativa) possesses three RPA2 paralogs, but their functions remain unclear. In this study, we identified RPA2c, a rice gene preferentially expressed during meiosis. A T-DNA insertional mutant (rpa2c) exhibited reduced bivalent formation, leading to chromosome nondisjunction. In rpa2c, chiasma frequency is reduced by ∼78% compared with the wild type and is accompanied by loss of the obligate chiasma. The residual ∼22% chiasmata fit a Poisson distribution, suggesting loss of crossover control. RPA2c colocalized with the meiotic cohesion subunit REC8 and the axis-associated protein PAIR2. Localization of REC8 was necessary for loading of RPA2c to the chromosomes. In addition, RPA2c partially colocalized with MER3 during late leptotene, thus indicating that RPA2c is required for class I crossover formation at a late stage of homologous recombination. Furthermore, we identified RPA1c, an RPA1 subunit with nearly overlapping distribution to RPA2c, required for ∼79% of chiasmata formation. Our results demonstrate that an RPA complex comprising RPA2c and RPA1c is required to promote meiotic crossovers in rice. PMID:24122830
Fowler, Sandy; Maguin, Pascal; Kalan, Sampada; Loayza, Diego
2018-06-22
DNA damage response pathways are essential for genome stability and cell survival. Specifically, the ATR kinase is activated by DNA replication stress. An early event in this activation is the recruitment and phosphorylation of RPA, a single stranded DNA binding complex composed of three subunits, RPA70, RPA32 and RPA14. We have previously shown that the LIM protein Ajuba associates with RPA, and that depletion of Ajuba leads to potent activation of ATR. In this study, we provide evidence that the Ajuba-RPA interaction occurs through direct protein contact with RPA70, and that their association is cell cycle-regulated and is reduced upon DNA replication stress. We propose a model in which Ajuba negatively regulates the ATR pathway by directly interacting with RPA70, thereby preventing inappropriate ATR activation. Our results provide a framework to further our understanding of the mechanism of ATR regulation in human cells in the context of cellular transformation.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias
2013-04-05
For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenvi, Neil; Yang, Yang; Yang, Weitao
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less
NASA Astrophysics Data System (ADS)
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-07-01
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.
Stability and pre-formulation development of a plant-produced anthrax vaccine candidate.
Jones, R Mark; Burke, Michael; Dubose, Devon; Chichester, Jessica A; Manceva, Slobodanka; Horsey, April; Streatfield, Stephen J; Breit, Jeff; Yusibov, Vidadi
2017-10-04
Second generation anthrax vaccines focus on the use of recombinant protective antigen (rPA) to elicit a strong, toxin neutralizing antibody responses in immunized subjects. The main difference between the rPA vaccines compared to the current licensed vaccine, anthrax vaccine absorbed (AVA), is the rPA vaccines are highly purified preparations of only rPA. These second generation rPA vaccines strive to elicit strong immune responses with substantially fewer doses than AVA while provoking less side effects. Many of the rPA candidates have shown to be effective in pre-clinical studies, but most of the second generation molecules have stability issues which reduce their efficacy over time. These stability issues are evident even under refrigerated conditions and thus emphasis has been directed to stabilizing the rPA molecule and determining an optimized final formulation. Stabilization of vaccines for long-term storage is a major challenge in the product development life cycle. The effort required to identify suitable formulations can be slow and expensive. The ideal storage for stockpiled vaccines would allow the candidate to withstand years of storage at ambient temperatures. The Fraunhofer Center for Molecular Biotechnology is developing a plant-produced rPA vaccine candidate that shows instability when stored under refrigerated conditions in a solution, as is typical for rPA vaccines. Increased stability of our plant-produced rPA vaccine candidate was achieved in a spray dried powder formulation that could eliminate the need for conventional cold chain allowing greater confidence to stockpile vaccine for civilian and military biodefense. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gong, Yi; de Lange, Titia
2010-11-12
We previously proposed that POT1 prevents ATR signaling at telomeres by excluding RPA from the single-stranded TTAGGG repeats. Here, we use a Shld1-stabilized degron-POT1a fusion (DD-POT1a) to study the telomeric ATR kinase response. In the absence of Shld1, DD-POT1a degradation resulted in rapid and reversible activation of the ATR pathway in G1 and S/G2. ATR signaling was abrogated by shRNAs to ATR and TopBP1, but shRNAs to the ATM kinase or DNA-PKcs did not affect the telomere damage response. Importantly, ATR signaling in G1 and S/G2 was reduced by shRNAs to RPA. In S/G2, RPA was readily detectable at dysfunctional telomeres, and both POT1a and POT1b were required to exclude RPA and prevent ATR activation. In G1, the accumulation of RPA at dysfunctional telomeres was strikingly less, and POT1a was sufficient to repress ATR signaling. These results support an RPA exclusion model for the repression of ATR signaling at telomeres. Copyright © 2010 Elsevier Inc. All rights reserved.
Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neto, J.L. Siqueira; Instituto de Biologia, UNICAMP, Campinas, SP; Lira, C.B.B.
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 ismore » a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.« less
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Replication protein A: directing traffic at the intersection of replication and repair.
Oakley, Greg G; Patrick, Steve M
2010-06-01
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.
Flynn, Rachel Litman; Centore, Richard C; O'Sullivan, Roderick J; Rai, Rekha; Tse, Alice; Songyang, Zhou; Chang, Sandy; Karlseder, Jan; Zou, Lee
2011-03-24
Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.
Identification of proteins that may directly interact with human RPA.
Nakaya, Ryou; Takaya, Junichiro; Onuki, Takeshi; Moritani, Mariko; Nozaki, Naohito; Ishimi, Yukio
2010-11-01
RPA, which consisted of three subunits (RPA1, 2 and 3), plays essential roles in DNA transactions. At the DNA replication forks, RPA binds to single-stranded DNA region to stabilize the structure and to assemble other replication proteins. Interactions between RPA and several replication proteins have been reported but the analysis is not comprehensive. We systematically performed the qualitative analysis to identify RPA interaction partners to understand the protein-protein interaction at the replication forks. We expressed in insect cells the three subunits of human RPA, together with one replication protein, which is present at the forks under normal conditions and/or under the replication stress conditions, to examine the interaction. Among 30 proteins examined in total, it was found that at least 14 proteins interacted with RPA. RPA interacted with MCM3-7, MCM-BP and CDC45 proteins among the proteins that play roles in the initiation and the elongation of the DNA replication. RPA bound with TIPIN, CLASPIN and RAD17, which are involved in the DNA replication checkpoint functions. RPA also bound with cyclin-dependent kinases and an amino-terminal fragment of Rb protein that negatively regulates DNA replication. These results suggest that RPA interacts with the specific proteins among those that play roles in the regulation of the replication fork progression.
Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.
Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S
2013-10-01
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
G9a coordinates with the RPA complex to promote DNA damage repair and cell survival.
Yang, Qiaoyan; Zhu, Qian; Lu, Xiaopeng; Du, Yipeng; Cao, Linlin; Shen, Changchun; Hou, Tianyun; Li, Meiting; Li, Zhiming; Liu, Chaohua; Wu, Di; Xu, Xingzhi; Wang, Lina; Wang, Haiying; Zhao, Ying; Yang, Yang; Zhu, Wei-Guo
2017-07-25
Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.
Aparicio-Ting, Fabiola E; Farris, Megan; Courneya, Kerry S; Schiller, Ashley; Friedenreich, Christine M
2015-05-05
Few studies have examined recreational physical activity (RPA) after participating in a structured exercise intervention. More specifically, little is known about the long-term effects of exercise interventions in post-menopausal women. This study had two objectives: 1) To compare RPA in postmenopausal women in the exercise group and the control group 12 months after the end of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial; and 2) To apply the Theory of Planned Behaviour (TPB) to identify predictors of RPA 12 months post-intervention among women in the exercise group. Self-reported RPA 12-months post-intervention from a validated questionnaire was used to estimate RPA levels for control group (118/160, 74% response) and exercise group participants (126/160, 79% response). Bivariate analysis was used to compare RPA between exercise and control group participants and to identify TPB variables for multivariate analysis. Logistic regression was applied to TPB data collected from self- administered questionnaires at end of trial by exercise group participants (126/160, 79% response) to identify predictors of long-term RPA. At 12 months post-intervention, 62% of women in the exercise group were active compared to 58% of controls (p = 0.52). Of the TPB constructs examined, self-efficacy (OR =2.98 (1.08-8.20)) and behavioural beliefs (OR = 1.46 (1.03-2.06)) were identified as predictors of RPA for exercise group participants. Levels of RPA in the exercise and control groups were comparable 12 months post intervention, indicating that participation in the ALPHA trial was associated with increased physical activity in previously inactive women, regardless of randomization into either the exercise group or in the control group. Exercise interventions that promote self-efficacy and positive behavioural beliefs have the potential to have long-term impacts on physical activity behaviour, although further research is needed to examine additional psychological, social and environmental predictors of long-term RPA in post-menopausal women. ClinicalTrials.gov NCT00522262.
Nyhuis, Tara J; Masini, Cher V; Taufer, Kirsten L; Day, Heidi E W; Campeau, Serge
2016-01-01
The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.
Nyhuis, Tara J.; Masini, Cher V.; Taufer, Kirsten L.; Day, Heidi E.W.; Campeau, Serge
2016-01-01
The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 minutes of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-hr intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-minutes to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similarly attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress. PMID:26998558
A simple but fully nonlocal correction to the random phase approximation
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.
2011-03-01
The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.
Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jia; Yu, Eun Young; Yang, Yuting
2010-09-02
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the twomore » components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBP{alpha}-{beta} complex.« less
Dynamic binding of replication protein a is required for DNA repair
Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.
2016-01-01
Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385
Dpb11 may function with RPA and DNA to initiate DNA replication.
Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L
2017-01-01
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C.
2017-01-01
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. PMID:27903895
Human PrimPol activity is enhanced by RPA.
Martínez-Jiménez, María I; Lahera, Antonio; Blanco, Luis
2017-04-10
Human PrimPol is a primase belonging to the AEP superfamily with the unique ability to synthesize DNA primers de novo, and a non-processive DNA polymerase able to bypass certain DNA lesions. PrimPol facilitates both mitochondrial and nuclear replication fork progression either acting as a conventional TLS polymerase, or repriming downstream of blocking lesions. In vivo assays have shown that PrimPol is rapidly recruited to sites of DNA damage by interaction with the human replication protein A (RPA). In agreement with previous findings, we show here that the higher affinity of RPA for ssDNA inhibits PrimPol activities in short ssDNA templates. In contrast, once the amount of ssDNA increases up to a length in which both proteins can simultaneously bind ssDNA, as expected during replicative stress conditions, PrimPol and RPA functionally interact, and their binding capacities are mutually enhanced. When using M13 ssDNA as template, RPA stimulated both the primase and polymerase activities of PrimPol, either alone or in synergy with Polε. These new findings supports the existence of a functional PrimPol/RPA association that allows repriming at the exposed ssDNA regions formed in the leading strand upon replicase stalling.
Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun
2015-10-01
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proton stopping using a full conserving dielectric function in plasmas at any degeneracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barriga-Carrasco, Manuel D.
2010-10-15
In this work, we present a dielectric function including the three conservation laws (density, momentum and energy) when we take into account electron-electron collisions in a plasma at any degeneracy. This full conserving dielectric function (FCDF) reproduces the random phase approximation (RPA) and Mermin ones, which confirms this outcome. The FCDF is applied to the determination of the proton stopping power. Differences among diverse dielectric functions in the proton stopping calculation are minimal if the plasma electron collision frequency is not high enough. These discrepancies can rise up to 2% between RPA values and the FCDF ones, and to 8%more » between the Mermin ones and FCDF ones. The similarity between RPA and FCDF results is not surprising, as all conservation laws are also considered in RPA dielectric function. Even for plasmas with low collision frequencies, those discrepancies follow the same behavior as for plasmas with higher frequencies. Then, discrepancies do not depend on the plasma degeneracy but essentially do on the value of the plasma collision frequency.« less
The ATR Signaling Pathway Is Disabled during Infection with the Parvovirus Minute Virus of Mice
Adeyemi, Richard O.
2014-01-01
ABSTRACT The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. IMPORTANCE Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway. PMID:24965470
The ATR signaling pathway is disabled during infection with the parvovirus minute virus of mice.
Adeyemi, Richard O; Pintel, David J
2014-09-01
The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine
Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.
2013-01-01
There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by CD and ATR-FTIR, while functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unitdose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over two years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by IM immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine, or an attractive vaccine platform for other mucosally transmitted diseases. PMID:21905034
Dpb11 may function with RPA and DNA to initiate DNA replication
Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P.
2017-01-01
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation. PMID:28467467
Ervin G. Schuster; Michael A. Krebs
2003-01-01
The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974, as amended, directs the Forest Service to prepare and update a renewable resources assessment that would include "a description of Forest Service programs and responsibilities , their interrelationships, and the relationship of these programs and responsibilities to public and private...
Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C
2017-01-25
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
Maltseva, Ekaterina A.
2018-01-01
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA. PMID:29320546
Krasikova, Yuliya S; Rechkunova, Nadejda I; Maltseva, Ekaterina A; Lavrik, Olga I
2018-01-01
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.
A new structural framework for integrating replication protein A into DNA processing machinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosey, Chris A; Yan, Chunli; Tsutakawa, Susan E
2013-01-01
By coupling the protection and organization of ssDNA with the recruitment and alignment of DNA processing factors, Replication Protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA manages to coordinate the biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA s DNA binding activity, combining small-angle x-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA s DNA-binding core. It has been long held that RPA engages ssDNA in three stages, but our data reveal that RPA undergoes two rather than threemore » transitions as it binds ssDNA. In contrast to previous models, RPA is more compact when fully engaged on 20-30 nucleotides of ssDNA than when DNA-free, and there is no evidence for significant population of a highly compacted structure in the initial 8-10 nucleotide binding mode. These results provide a new framework for understanding the integration of ssDNA into DNA processing machinery and how binding partners may manipulate RPA architecture to gain access to the substrate.« less
Brown, Bruce K; Cox, Josephine; Gillis, Anita; VanCott, Thomas C; Marovich, Mary; Milazzo, Mark; Antonille, Tanya Santelli; Wieczorek, Lindsay; McKee, Kelly T; Metcalfe, Karen; Mallory, Raburn M; Birx, Deborah; Polonis, Victoria R; Robb, Merlin L
2010-11-05
The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. ClinicalTrials.gov NCT00057525.
Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.
Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min
2016-09-01
The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.
Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong
2015-10-15
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5' strand to generate 3' ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5'->3' directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3'->5' helicase activity and DNA2's 5'->3' ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong
2015-01-01
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3′->5′ helicase activity and DNA2's 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. PMID:26227969
S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas.
Rector, Jeff; Kapil, Sasha; Treude, Kelly J; Kumm, Phyllis; Glanzer, Jason G; Byrne, Brendan M; Liu, Shengqin; Smith, Lynette M; DiMaio, Dominick J; Giannini, Peter; Smith, Russell B; Oakley, Greg G
2017-02-07
Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC.
Chen, C-M; Liu, J-J; Chou, C-W; Lai, C-H; Wu, L-T
2015-10-01
To investigate the biochemical and functional properties of an extracellular protease, RpA, in Ralstonia pickettii WP1 isolated from water supply systems. An extracellular protease was identified and characterized from R. pickettii WP1. A mutant strain WP1M2 was created from strain WP1 by mini-Tn5 transposition. The culture filtrates from WP1M2 had a lower cytotoxic effect than the parental WP1 on several mammalian cell lines. Cloning and sequence analysis revealed the Tn5 transposon inserted at a protease gene (rpA) which is 81% homologous to prtA and aprX genes of Pseudomonas fluorescens. The rpA gene encodes a 482-residue protein showing sequence similarity to metalloproteases of the serralysin family. The RpA protein was expressed in Escherichia coli using a pET expression vector and purified as a 55 kDa molecular weight protein. Furthermore, the protease activity of RpA was inhibited by protease inhibitor and heat treatment. The in vitro cytotoxic activity of R. pickettii culture filtrates was attributed to RpA protease. An extracellular protease, RpA, was identified from R. pickettii WP1 isolated from water supply system. The RpA metalloproteases is required for the pathogenicity of R. pickettii to mammalian cell lines. © 2015 The Society for Applied Microbiology.
A new structural framework for integrating replication protein A into DNA processing machinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosey, Chris; Yan, Chunli; Tsutakawa, Susan
2013-01-17
By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamicmore » on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.« less
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.
Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees
2017-05-05
We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively
Burnham, Daniel R.; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur
2017-01-01
Abstract We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis–Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. PMID:28334870
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts
Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent
2012-01-01
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends. PMID:22354040
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.
Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent
2012-04-18
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
RPA homologs and ssDNA processing during meiotic recombination.
Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle
2016-06-01
Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.
Stable dry powder formulation for nasal delivery of anthrax vaccine.
Wang, Sheena H; Kirwan, Shaun M; Abraham, Soman N; Staats, Herman F; Hickey, Anthony J
2012-01-01
There is a current biodefense interest in protection against anthrax. Here, we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by recombinant protective antigen (rPA) delivered intranasally with a novel mucosal adjuvant, a mast cell activator compound 48/80 (C48/80). The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D(50) = 25 μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy, whereas functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unit-dose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over 2 years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by intramuscular immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine or an attractive vaccine platform for other mucosally transmitted diseases. Copyright © 2011 Wiley-Liss, Inc.
David N. Wear
2011-01-01
Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...
Interaction of the Tumor Suppressor p53 with Replication Protein A.
1996-08-01
The DNA replication factor RPA physically associates with the tumor suppressor protein p53, an interaction that could be important for the function...binding single-stranded DNA, this mutant of RPA fails to support DNA replication . Therefore the region of RPA which interacts with p53 is essential for...of p53, p21/WAFl/CIPl, inhibits the cell-cycle by associating with cyclin-cdk kinases. It also inhibits DNA replication by interacting with a
Schultz-Larsen, Kirsten; Rahmanfard, Naghmeh; Holst, Claus
2012-01-01
Few studies have explored the associations of reported PA (RPA) with the processes underlying the development of disability. The present study was performed to explore RPA among older persons and its association with onset of functional dependence and mortality. Among a probability sample of 1782 community-living persons, aged 75-83 years, we evaluated the 1021 who reported no disability in basic activities of daily living. Participants were followed for a median of 8.34 years in public registers to determine onset of disability and mortality. RPA predicted mortality in older women (HR=1.77, 95%CI=1.42-2.19) and men (HR=1.65, 95%CI=1.27-2.14) over long time intervals. The effect of RPA persisted among permanently disabled older women, after adjusting for age, baseline vulnerability and grade of disability. Low RPA was independently associated with risk of incident disability (HR=1.56, 95%CI=1.10-2.23) in men. Among older women, the association between RPA and incidence of disability was attenuated in analyses that controlled for baseline mobility function. Thus, the association between physical activity and mortality reflected processes different from those underlying a simple relation between physical activity, disability and mortality. Physical activity was an ubiquitous predictor of longevity, but only for women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Shuttle GPS R/PA evaluation analysis and performance tradeoff study
NASA Technical Reports Server (NTRS)
Booth, R. W. D.; Lindsey, W. C.
1978-01-01
Primary responsibility was understanding and analyzing the various GPS receiver functions as they relate to the shuttle environment. These receiver functions included acquisition properties of the sequential detector, acquisition and tracking properties of the various receiver phase locked loops, and the techniques of sequential receiver operation. In addition to these areas, support was provided in the areas of oscillator stability requirements, antenna management, and navigation filter requirements, including preposition aiding.
Recolin, Bénédicte; Van Der Laan, Siem; Maiorano, Domenico
2012-01-01
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation. PMID:22187152
Renaud, Emilie; Rosselli, Filippo
2013-01-01
To cope with ultraviolet C (UVC)-stalled replication forks and restart DNA synthesis, cells either undergo DNA translesion synthesis (TLS) by specialised DNA polymerases or tolerate the lesions using homologous recombination (HR)-based mechanisms. To gain insight into how cells manage UVC-induced stalled replication forks, we analysed the molecular crosstalk between the TLS DNA polymerases Polη and Rev1, the double-strand break repair (DSB)-associated protein MDC1 and the FANC pathway. We describe three novel functional interactions that occur in response to UVC-induced DNA lesions. First, Polη and Rev1, whose optimal expression and/or relocalisation depend on the FANC core complex, act upstream of FANCD2 and are required for the proper relocalisation of monoubiquitinylated FANCD2 (Ub-FANCD2) to subnuclear foci. Second, during S-phase, Ub-FANCD2 and MDC1 relocalise to UVC-damaged nuclear areas or foci simultaneously but independently of each other. Third, Ub-FANCD2 and MDC1 are independently required for optimal BRCA1 relocalisation. While RPA32 phosphorylation (p-RPA32) and RPA foci formation were reduced in parallel with increasing levels of H2AX phosphorylation and MDC1 foci in UVC-irradiated FANC pathway-depleted cells, MDC1 depletion was associated with increased UVC-induced Ub-FANCD2 and FANCD2 foci as well as p-RPA32 levels and p-RPA32 foci. On the basis of the previous observations, we propose that the FANC pathway participates in the rescue of UVC-stalled replication forks in association with TLS by maintaining the integrity of ssDNA regions and by preserving genome stability and preventing the formation of DSBs, the resolution of which would require the intervention of MDC1. PMID:23365640
NASA Astrophysics Data System (ADS)
Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg
2017-11-01
The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.
ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri
2013-11-21
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.
Civil mini-RPA's for the 1980's: Avionics design considerations. [remotely piloted vehicles
NASA Technical Reports Server (NTRS)
Karmarkar, J. S.
1975-01-01
A number of remote sensing or surveillance tasks (e.g., fire fighting, crop monitoring) in the civilian sector of our society may be performed in a cost effective manner by use of small remotely piloted aircraft (RPA). This study was conducted to determine equipment (and the associated technology) that is available, and that could be applied to the mini-RPA and to examine the potential applications of the mini-RPA with special emphasis on the wild fire surveillance mission. The operational considerations of using the mini-RPA as affected by government regulatory agencies were investigated. These led to equipment requirements (e.g., infra-red sensors) over and above those for the performance of the mission. A computer technology survey and forecast was performed. Key subsystems were identified, and a distributed microcomputer configuration, that was functionally modular, was recommended. Areas for further NASA research and development activity were also identified.
Kapoor, Reetika; Srivastava, Nishant; Kumar, Shailender; Saritha, R K; Sharma, Susheel Kumar; Jain, Rakesh Kumar; Baranwal, Virendra Kumar
2017-09-01
Recombinase polymerase amplification (RPA) is a rapid, isothermal amplification method with high specificity and sensitivity. In this study, an assay was developed and evaluated for the detection of banana bunchy top virus (BBTV) in infected banana plants. Three oligonucleotide primer pairs were designed from the replicase initiator protein gene sequences of BBTV to function both in RPA as well as in polymerase chain reaction (PCR). A total of 133 symptomatic as well as asymptomatic banana leaf samples from various cultivars were collected from the different regions of India and evaluated for BBTV infection using the RPA assay. BBTV was efficiently detected using crude leaf sap in RPA and the results obtained were consistent with PCR-based detection using purified DNA as template. To our knowledge, this is the first report of reliable diagnosis of BBTV infection by RPA using crude leaf sap as a template.
Yamane, Arito; Robbiani, Davide F; Resch, Wolfgang; Bothmer, Anne; Nakahashi, Hirotaka; Oliveira, Thiago; Rommel, Philipp C; Brown, Eric J; Nussenzweig, Andre; Nussenzweig, Michel C; Casellas, Rafael
2013-01-31
Activation-induced cytidine deaminase (AID) promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in the G1 phase. RPA is a single-stranded DNA (ssDNA)-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR), such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here, we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, recombination-activating genes (RAG), or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in the S-G2/M phase is extensive, ATM independent, and associated with Rad51 accumulation. In the S-G2/M phase, RPA increases in nonhomologous-end-joining-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during class switch recombination represents salvage of unrepaired breaks by homology-based pathways during the S-G2/M phase of the cell cycle. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Gibb, Bryan; Ye, Ling F.; Gergoudis, Stephanie C.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.
2014-01-01
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein necessary for all aspects of DNA metabolism involving an ssDNA intermediate, including DNA replication, repair, recombination, DNA damage response and checkpoint activation, and telomere maintenance [1], [2], [3]. The role of RPA in most of these reactions is to protect the ssDNA until it can be delivered to downstream enzymes. Therefore a crucial feature of RPA is that it must bind very tightly to ssDNA, but must also be easily displaced from ssDNA to allow other proteins to gain access to the substrate. Here we use total internal reflection fluorescence microscopy and nanofabricated DNA curtains to visualize the behavior of Saccharomyces cerevisiae RPA on individual strands of ssDNA in real-time. Our results show that RPA remains bound to ssDNA for long periods of time when free protein is absent from solution. In contrast, RPA rapidly dissociates from ssDNA when free RPA is present in solution allowing rapid exchange between the free and bound states. In addition, the S. cerevisiae DNA recombinase Rad51 and E. coli single-stranded binding protein (SSB) also promote removal of RPA from ssDNA. These results reveal an unanticipated exchange between bound and free RPA suggesting a binding mechanism that can confer exceptionally slow off rates, yet also enables rapid displacement through a direct exchange mechanism that is reliant upon the presence of free ssDNA-binding proteins in solution. Our results indicate that RPA undergoes constant microscopic dissociation under all conditions, but this is only manifested as macroscopic dissociation (i.e. exchange) when free proteins are present in solution, and this effect is due to mass action. We propose that the dissociation of RPA from ssDNA involves a partially dissociated intermediate, which exposes a small section of ssDNA allowing other proteins to access to the DNA. PMID:24498402
Sommers, Joshua A.; Banerjee, Taraswi; Hinds, Twila; Wan, Bingbing; Wold, Marc S.; Lei, Ming; Brosh, Robert M.
2014-01-01
Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism. PMID:24895130
Awate, Sanket; Brosh, Robert M
2017-06-08
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.
Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee
2017-01-01
R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700
Awate, Sanket; Brosh, Robert M.
2017-01-01
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies. PMID:28594346
Rohrman, Brittany; Richards-Kortum, Rebecca
2015-02-03
Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.
RPA-mediated unfolding of systematically varying G-quadruplex structures.
Ray, Sujay; Qureshi, Mohammad H; Malcolm, Dominic W; Budhathoki, Jagat B; Celik, Uğur; Balci, Hamza
2013-05-21
G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
RPA-Mediated Unfolding of Systematically Varying G-Quadruplex Structures
Ray, Sujay; Qureshi, Mohammad H.; Malcolm, Dominic W.; Budhathoki, Jagat B.; Çelik, Uğur; Balci, Hamza
2013-01-01
G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations. PMID:23708363
The nuclear DEK interactome supports multi-functionality.
Smith, Eric A; Krumpelbeck, Eric F; Jegga, Anil G; Prell, Malte; Matrka, Marie M; Kappes, Ferdinand; Greis, Kenneth D; Ali, Abdullah M; Meetei, Amom R; Wells, Susanne I
2018-01-01
DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Linh, Dang Khanh; Khanh, Nguyen Quoc
2018-03-01
We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas-Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower Sd. Using the finite-temperature RPA, we calculate temperature and density dependence of Sd in BLG on SiO2, HfO2 substrates and suspended BLG for different values of interlayer distance c and distance between the first layer and the substrate d.
NASA Astrophysics Data System (ADS)
Olsen, Thomas
2017-09-01
The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6,Sr2CuO3,Sr2CuTeO6 , and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions. It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be obtained with DFT+U, which is significantly simpler from a computational point of view.
Human systems integration in remotely piloted aircraft operations.
Tvaryanas, Anthony P
2006-12-01
The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.
Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar
2010-06-04
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome. Copyright 2010 Elsevier B.V. All rights reserved.
Diphenylpyrazoles as Replication Protein A inhibitors
Waterson, Alex G.; Kennedy, J. Phillip; Patrone, James D.; ...
2014-11-11
Replication Protein A is the primary eukaryotic ssDNA binding protein that has a central role in initiating the cellular response to DNA damage. RPA recruits multiple proteins to sites of DNA damage via the N-terminal domain of the 70 kDa subunit (RPA70N). Here we describe the optimization of a diphenylpyrazole carboxylic acid series of inhibitors of these RPA–protein interactions. Lastly, we evaluated substituents on the aromatic rings as well as the type and geometry of the linkers used to combine fragments, ultimately leading to submicromolar inhibitors of RPA70N protein–protein interactions.
The helicase domain of Polθ counteracts RPA to promote alt-NHEJ.
Mateos-Gomez, Pedro A; Kent, Tatiana; Deng, Sarah K; McDevitt, Shane; Kashkina, Ekaterina; Hoang, Trung M; Pomerantz, Richard T; Sfeir, Agnel
2017-12-01
Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.
Bernhardt, Denise; Adeberg, Sebastian; Bozorgmehr, Farastuk; Opfermann, Nils; Hoerner-Rieber, Juliane; König, Laila; Kappes, Jutta; Thomas, Michael; Herth, Felix; Heußel, Claus Peter; Warth, Arne; Debus, Jürgen; Steins, Martin; Rieken, Stefan
2017-08-01
The purpose of this study was to evaluate prognostic factors associated with overall survival (OS) and neurological progression free survival (nPFS) in small-cell lung cancer (SCLC) patients with brain metastases who received whole-brain radiotherapy (WBRT). From 2003 to 2015, 229 SCLC patients diagnosed with brain metastases who received WBRT were analyzed retrospectively. In this cohort 219 patients (95%) received a total photon dose of 30 Gy in 10 fractions. The prognostic factors evaluated for OS and nPFS were: age, Karnofsky Performance Status (KPS), number of brain metastases, synchronous versus metachronous disease, initial response to chemotherapy, the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) class and thoracic radiation. Median OS after WBRT was 6 months and the median nPFS after WBRT was 11 months. Patients with synchronous cerebral metastases had a significantly better median OS with 8 months compared to patients with metachronous metastases with a median survival of 3 months (p < 0.0001; HR 0.46; 95% CI 0.31-0.67). Based on RPA classification median survival after WBRT was 17 months in RPA class I, 7 months in class II and 3 months in class III (p < 0.0001). Karnofsky performance status scale (KPS < 70%) was significantly associated with OS in both univariate (HR 2.84; p < 0.001) and multivariate analyses (HR 2.56; p = 0.011). Further, metachronous brain metastases (HR 1.8; p < 0.001), initial response to first-line chemotherapy (HR 0.51, p < 0.001) and RPA class III (HR 2.74; p < 0.001) were significantly associated with OS in univariate analysis. In multivariate analysis metachronous disease (HR 1.89; p < 0.001) and initial response to chemotherapy (HR 0.61; p < 0.001) were further identified as significant prognostic factors. NPFS was negatively significantly influenced by poor KPS (HR 2.56; p = 0.011), higher number of brain metastases (HR 1.97; p = 0.02), and higher RPA class (HR 2.26; p = 0.03) in univariate analysis. In this series, the main prognostic factors associated with OS were performance status, time of appearance of intracranial disease (synchronous vs. metachronous), initial response to chemotherapy and higher RPA class. NPFS was negatively influenced by poor KPS, multiplicity of brain metastases, and higher RPA class in univariate analysis. For patients with low performance status, metachronous disease or RPA class III, WBRT should be weighed against supportive therapy with steroids alone or palliative chemotherapy.
Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.
Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin
2016-09-01
Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new structural framework for integrating replication protein A into DNA processing machinery
Brosey, Chris A.; Yan, Chunli; Tsutakawa, Susan E.; Heller, William T.; Rambo, Robert P.; Tainer, John A.; Ivanov, Ivaylo; Chazin, Walter J.
2013-01-01
By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA’s DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA’s DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways. PMID:23303776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Du; Yang, Weitao
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Zhang, Du; Yang, Weitao
2016-10-13
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Shuttle GPS R/PA configuration and specification study
NASA Technical Reports Server (NTRS)
Booth, R. W. D.
1979-01-01
Changes in the technical specifications for a global positioning system (GPS) receiving system dedicated to space shuttle use are presented. Various hardware functions including acquisition, tracking, and measurement are emphasized. The anti-jam performance of the baseline GPS systems are evaluated. Other topics addressed include: the impact on R/PA design of the use of ground based transmitters; problems involved with the use of single channel tests sets; utility of various R/PA antenna interconnections topologies; the choice of the averaging interval for delta range measurements; and the use of interferometry techniques for the computation of orbiter attitude were undertaken.
STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function
Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.
2016-01-01
Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379
The UNG2 Arg88Cys variant abrogates RPA-mediated recruitment of UNG2 to single-stranded DNA.
Torseth, Kathrin; Doseth, Berit; Hagen, Lars; Olaisen, Camilla; Liabakk, Nina-Beate; Græsmann, Heidi; Durandy, Anne; Otterlei, Marit; Krokan, Hans E; Kavli, Bodil; Slupphaug, Geir
2012-06-01
In human cell nuclei, UNG2 is the major uracil-DNA glycosylase initiating DNA base excision repair of uracil. In activated B cells it has an additional role in facilitating mutagenic processing of AID-induced uracil at Ig loci and UNG-deficient patients develop hyper-IgM syndrome characterized by impaired class-switch recombination and disturbed somatic hypermutation. How UNG2 is recruited to either error-free or mutagenic uracil processing remains obscure, but likely involves regulated interactions with other proteins. The UNG2 N-terminal domain contains binding motifs for both proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), but the relative contribution of these interactions to genomic uracil processing is not understood. Interestingly, a heterozygous germline single-nucleotide variant leading to Arg88Cys (R88C) substitution in the RPA-interaction motif of UNG2 has been observed in humans, but with unknown functional relevance. Here we demonstrate that UNG2-R88C protein is expressed from the variant allele in a lymphoblastoid cell line derived from a heterozygous germ line carrier. Enzyme activity as well as localization in replication foci of UNG2-R88C was similar to that of WT. However, binding to RPA was essentially abolished by the R88C substitution, whereas binding to PCNA was unaffected. Moreover, we show that disruption of the PCNA-binding motif impaired recruitment of UNG2 to S-phase replication foci, demonstrating that PCNA is a major factor for recruitment of UNG2 to unperturbed replication forks. Conversely, in cells treated with hydroxyurea, RPA mediated recruitment of UNG2 to stalled replication forks independently of functional PCNA binding. Modulation of PCNA- versus RPA-binding may thus constitute a functional switch for UNG2 in cells subsequent to genotoxic stress and potentially also during the processing of uracil at the immunoglobulin locus in antigen-stimulated B cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Serizawa, Toru; Higuchi, Yoshinori; Nagano, Osamu; Hirai, Tatsuo; Ono, Junichi; Saeki, Naokatsu; Miyakawa, Akifumi
2012-12-01
The authors conducted validity testing of the 5 major reported indices for radiosurgically treated brain metastases- the original Radiation Therapy Oncology Group's Recursive Partitioning Analysis (RPA), the Score Index for Radiosurgery in Brain Metastases (SIR), the Basic Score for Brain Metastases (BSBM), the Graded Prognostic Assessment (GPA), and the subclassification of RPA Class II proposed by Yamamoto-in nearly 2500 cases treated with Gamma Knife surgery (GKS), focusing on the preservation of neurological function as well as the traditional endpoint of overall survival. The authors analyzed data from 2445 cases treated with GKS by the first author (T.S.), the primary surgeon. The patient group consisted of 1716 patients treated between January 1998 and March 2008 (the Chiba series) and 729 patients treated between April 2008 and December 2011 (the Tokyo series). The interval from the date of GKS until the date of the patient's death (overall survival) and impaired activities of daily living (qualitative survival) were calculated using the Kaplan-Meier method, while the absolute risk for two adjacent classes of each grading system and both hazard ratios and 95% confidence intervals were estimated using the Cox proportional hazards model. For overall survival, there were highly statistically significant differences between each two adjacent patient groups characterized by class or score (all p values < 0.001), except for GPA Scores 3.5-4.0 and 3.0. The SIR showed the best statistical results for predicting preservation of neurological function. Although no other grading systems yielded statistically significant differences in qualitative survival, the BSBM and the modified RPA appeared to be better than the original RPA and GPA. The modified RPA subclassification, proposed by Yamamoto, is well balanced in scoring simplicity with respect to case number distribution and statistical results for overall survival. However, a new or revised grading system is necessary for predicting qualitative survival and for selecting the optimal treatment for patients with brain metastasis treated by GKS.
Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.
Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.
1990-01-01
1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737
Optimized effective potential method and application to static RPA correlation
NASA Astrophysics Data System (ADS)
Fukazawa, Taro; Akai, Hisazumi
2015-03-01
The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.
RPA Field Simulations:Dilemma Training for Legal and Ethical Decision Making
2015-11-07
Simulation Two phases in RPA Field Simulation – classroom phase and field phase Purpose: link theoretical understanding/ moral reasoning with...rapid, informed decision-making/ moral behavior IRREGULAR WARFARE U.S. dominates conventional warfare, but irregular warfare falls under Things...aspects: Mental simulation of action Modify Implement Will it work? MORAL REASONING/BEHAVIOR Military-Leader Responsibility requires
ERIC Educational Resources Information Center
Rimal, Rajiv N.; Real, Kevin
2003-01-01
Introduces the risk perception attitude (RPA) framework that categorizes individuals into one of four attitudinal groups: responsive, avoidance, proactive, and indifference. Conducts two studies using college students as subjects. Finds that when risk and efficacy are made salient, people's risk perception guides most of their subsequent actions,…
Xia, Xiaoming; Yu, Yongxin; Hu, Linghao; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie
2015-04-01
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) causes mortality or runt deformity syndrome in penaeid shrimps and is responsible for significant economic losses in the shrimp aquaculture industry. Here, we describe a novel real-time isothermal recombinase polymerase amplification (RPA) assay developed for IHHNV detection. Using IHHNV plasmid standards and DNA samples from a variety of organisms, we evaluated the ability of the IHHNV-RPA assay to detect IHHNV based on analysis of its sensitivity, specificity, rapidity, and reproducibility. Probit analysis of eight independent experimental replicates indicated satisfactory performance of the RPA assay, which is sufficiently sensitive to detect as few as 4 copies of the IHHNV genome within 7 min at 39 °C with 95 % reliability. Therefore, this rapid RPA method has great potential for applications, either in field use or as a point of care diagnostic technique.
Mead, Erin; Roser-Renouf, Connie; Rimal, Rajiv N.; Flora, June A.; Maibach, Edward W.; Leiserowitz, Anthony
2012-01-01
Global climate change is likely to have significant impacts on public health. Effective communication is critical to informing public decision making and behavior to mitigate climate change. An effective method of audience segmentation, the risk perception attitude (RPA) framework has been previously tested with other health behaviors and classifies people into 4 groups on the basis of their perceptions of risk and beliefs about personal efficacy. The 4 groups – indifference (low risk, weak efficacy), proactive (low risk, strong efficacy), avoidance (high risk, weak efficacy), and responsive (high risk, strong efficacy) – are hypothesized to differ in their self-protective behaviors and in their motivations to seek information. In this paper, we extend the RPA framework in two ways. First, we use it at the household level to determine whether parental classifications into the 4 groups are associated with their teenage children’s classification into the same 4 groups. Second, we predict adolescent information-seeking behaviors on the basis of their and their parents’ membership in the 4 RPA groups. Results (N = 523 parent-adolescent pairs) indicated that parental membership in the 4 RPA groups was significantly associated with children’s membership in the same 4 groups. Furthermore, the RPA framework was a significant predictor of adolescent information-seeking: those in the responsive and avoidance groups sought more information on climate change than the indifference group. Family communication on global warming was positively associated with adolescents’ information-seeking. Implications for interventions are discussed. PMID:22866024
Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA.
Takahashi, Daisuke; Sato, Koichi; Hirayama, Emiko; Takata, Minoru; Kurumizaka, Hitoshi
2015-09-01
Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
De Tullio, Luisina; Kaniecki, Kyle; Kwon, Youngho; Crickard, J Brooks; Sung, Patrick; Greene, Eric C
2017-10-17
Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second) in the 3'→5' direction along ssDNA saturated with replication protein A (RPA). We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok
2016-06-21
In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches
NASA Astrophysics Data System (ADS)
Dadsetani, Mehrdad; Nejatipour, Reihan
2018-02-01
Ab initio calculations based on many-body perturbation theory have been used to study the electronic and optical properties of AgGaO2 in rhombohedral, hexagonal, and orthorhombic phases. GW calculations showed that AgGaO2 is an indirect-bandgap semiconductor in all three phases with energy bandgap of 2.35 eV, 2.23 eV, and 2.07 eV, in good agreement with available experimental values. By solving the Bethe-Salpeter equation (BSE) using the full potential linearized augmented plane wave basis, optical properties of the AgGaO2 polymorphs were calculated and compared with those obtained using the GW-corrected random phase approximation (RPA) and with existing experimental data. Strong anisotropy in the optical absorption spectra was observed, and the excitonic structures which were absent in the RPA calculations were reproduced in GWBSE calculations, in good agreement with the optical absorption spectrum of the rhombohedral phase. While modifying peak positions and intensities of the absorption spectra, the GWBSE gave rise to the redistribution of oscillator strengths. In comparison with the z-polarized response, excitonic effects in the x-polarized response were dominant. In the x- (and y-) polarized responses of r- and h-AgGaO2, spectral features and excitonic effects occur at the lower energies, but in the case of o-AgGaO2, the spectral structures of the z-polarized response occur at lower energies. In addition, the low-energy loss functions of AgGaO2 were calculated and compared using the GWBSE approach. Spectral features in the energy loss function components near the bandgap region were attributed to corresponding excitonic structures in the imaginary part of the dielectric function.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
Quantum currents and pair correlation of electrons in a chain of localized dots
NASA Astrophysics Data System (ADS)
Morawetz, Klaus
2017-03-01
The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.
NASA Astrophysics Data System (ADS)
Nieves, Juan; Sobczyk, Joanna E.
2017-08-01
In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle-hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (≤ 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the σμ /σe ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.
Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.
Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A
1990-07-01
1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor-mediated) or toward the contractile effect of neurokinin B in the rat portal vein (NK3 receptor-mediated). 6. These results provide pharmacological evidence for heterogeneity of NK2 receptors in the RPA and HT. The NK2 receptors present in these tissues are not discriminated by natural tachykinins or selective agonists, but are recognized with very different affinity by NK2 receptor antagonists.
Pavani, R S; Fernandes, C; Perez, A M; Vasconcelos, E J R; Siqueira-Neto, J L; Fontes, M R; Cano, M I N
2014-12-20
Replication protein A-1 (RPA-1) is a single-stranded DNA-binding protein involved in DNA metabolism. We previously demonstrated the interaction between LaRPA-1 and telomeric DNA. Here, we expressed and purified truncated mutants of LaRPA-1 and used circular dichroism measurements and molecular dynamics simulations to demonstrate that the tertiary structure of LaRPA-1 differs from human and yeast RPA-1. LaRPA-1 interacts with telomeric ssDNA via its N-terminal OB-fold domain, whereas RPA from higher eukaryotes show different binding modes to ssDNA. Our results show that LaRPA-1 is evolutionary distinct from other RPA-1 proteins and can potentially be used for targeting trypanosomatid telomeres. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Sukhodolets, Karen E.; Hickman, Alison B.; Agarwal, Sunita K.; Sukhodolets, Maxim V.; Obungu, Victor H.; Novotny, Elizabeth A.; Crabtree, Judy S.; Chandrasekharappa, Settara C.; Collins, Francis S.; Spiegel, Allen M.; Burns, A. Lee; Marx, Stephen J.
2003-01-01
Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. PMID:12509449
A psychometric evaluation of the Swedish version of the Responses to Positive Affect questionnaire.
Olofsson, Malin Elisabeth; Boersma, Katja; Engh, Johannes; Wurm, Matilda
2014-11-01
Previous research mainly focused on responses to negative affect in relation to depression, and less on responses to positive affect. Cognitive responses to positive affect are interesting in the context of emotion regulation and emotion disorders: positive rumination is associated to hypomania risk and bipolar disorder. There is to date no questionnaire in Swedish that captures the phenomena of cognitive response styles. The aim of this study was to investigate the replicability of the Responses to Positive Affect questionnaire (RPA) in a newly translated Swedish version and to test its psychometric properties. Swedish undergraduates (n = 111) completed a set of self-report questionnaires in a fixed order. The hypothesized three-factor model was largely replicated in the subscales Self-focused positive rumination, Emotion-focused positive rumination and Dampening. The two positive rumination subscales were strongly associated with each other and current positive affect. The subscales showed acceptable convergent and incremental validity with concurrent measures of depression, hypomania, anxiety, repetitive negative thinking, and positive and negative affect. The model explained 25% of the variance in hypomania, but fell short in the explanation of depression. The Swedish version of the RPA shows satisfactory reliability and initial findings from a student sample indicate that it is a valid measure comparable with the original RPA questionnaire. RESULTS give emphasis to the importance of further exploration of cognitive response styles in relation to psychopathology.
A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination
Dubois, Jean-Christophe; Yates, Maïlyn; Gaudreau-Lapierre, Antoine; Clément, Geneviève; Cappadocia, Laurent; Gaudreau, Luc
2017-01-01
Abstract RPA-coated single-stranded DNA (RPA–ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA–ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR. PMID:28666352
NASA Astrophysics Data System (ADS)
Ziaei, Vafa; Bredow, Thomas
2017-11-01
We propose a simple many-body based screening mixing strategy to considerably enhance the performance of the Bethe-Salpeter equation (BSE) approach for prediction of excitation energies of molecular systems. This strategy enables us to closely reproduce results of highly correlated equation of motion coupled cluster singles and doubles (EOM-CCSD) through optimal use of cancellation effects. We start from the Hartree-Fock (HF) reference state and take advantage of local density approximation (LDA) based random phase approximation (RPA) screening, denoted as W0-RPA@LDA with W0 as the dynamically screened interaction built upon LDA wave functions and energies. We further use this W0-RPA@LDA screening as an initial screening guess for calculation of quasiparticle energies in the framework of G0W0 @HF. The W0-RPA@LDA screening is further injected into the BSE. By applying such an approach on a set of 22 molecules for which the traditional G W /BSE approaches fail, we observe good agreement with respect to EOM-CCSD references. The reason for the observed good accuracy of this mixing ansatz (scheme A) lies in an optimal damping of HF exchange effect through the W0-RPA@LDA strong screening, leading to substantial decrease of typically overestimated HF electronic gap, and hence to better excitation energies. Further, we present a second multiscreening ansatz (scheme B), which is similar to scheme A with the exception that now the W0-RPA@HF screening is used in the BSE in order to further improve the overestimated excitation energies of carbonyl sulfide (COS) and disilane (Si2H6 ). The reason for improvement of the excitation energies in scheme B lies in the fact that W0-RPA@HF screening is less effective (and weaker than W0-RPA@LDA), which gives rise to stronger electron-hole effects in the BSE.
Beyond mean-field description of Gamow-Teller resonances and β-decay
NASA Astrophysics Data System (ADS)
Niu, Yifei; Colò, Gianluca; Vigezzi, Enrico; Bai, Chunlin; Niu, Zhongming; Sagawa, Hiroyuki
2018-02-01
β-decay half-lives set the time scale of the rapid neutron capture process, and are therefore essential for understanding the origin of heavy elements in the universe. The random-phase approximation (RPA) based on Skyrme energy density functionals is widely used to calculate the properties of Gamow-Teller (GT) transitions, which play a dominant role in β-decay half-lives. However, the RPA model has its limitations in reproducing the resonance width and often overestimates β-decay half-lives. To overcome these problems, effects beyond mean-field can be included on top of the RPA model. In particular, this can be obtained by taking into account the particle-vibration coupling (PVC). Within the RPA+PVC model, we successfully reproduce the experimental GT resonance width and β-decay half-lives in magic nuclei. We then extend the formalism to superfluid nuclei and apply it to the GT resonance in 120Sn, obtaining a good reproduction of the experimental strength distribution. The effect of isoscalar pairing is also discussed.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
Regulation of the flow rate of liquid-metal coolants on experimental stands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, F.A.; Laptev, G.I.
Systems for automatic regulation of the flow rate of alkali metals, based on the series ENIV, VIN, and TsLIN three-phase electromagnetic pumps with a pumping rate of 0.5-200 m/sup 3/ per hour, were evaluated. The stability of each system was investigated by the method of undamped oscillations. The possibility of employing the analog temperature regulators VRT-2, RPA-T, and R113 was assessed. The functions performed by the most suitable automatic regulation unit, the RPA-T, were described. The limiting period of flow rate oscillations with a maximum gain of the RPA-T in alkali metal regulation systems equaled about 0.5 sec and themore » minimum integration time of the RPA-T was an order of magnitude longer than the optimal interval. Use of the systems on experimental stands enabled raising the quality of the studies and expanding the zone of servicing of the facilities by the same personnel.« less
Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S
2016-09-15
Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association
NASA Astrophysics Data System (ADS)
Malkoff, Donald B.
1997-07-01
The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.
McEvoy, Peter M; Hyett, Matthew P; Ehring, Thomas; Johnson, Sheri L; Samtani, Suraj; Anderson, Rebecca; Moulds, Michelle L
2018-05-01
Repetitive negative thinking (RNT) is a cognitive process that is repetitive, passive, relatively uncontrollable, and focused on negative content, and is elevated in emotional disorders including depression and anxiety disorders. Repetitive positive thinking is associated with bipolar disorder symptoms. The unique contributions of positive versus negative repetitive thinking to emotional symptoms are unknown. The first aim of this study was to use confirmatory factor analyses to evaluate the psychometrics of two transdiagnostic measures of RNT, the Repetitive Thinking Questionnaire (RTQ-10) and Perseverative Thinking Questionnaire (PTQ), and a measure of repetitive positive thinking, the Responses to Positive Affect (RPA) Questionnaire. The second aim was to determine incremental predictive utility of these measures. All measures were administered to a sample of 2088 undergraduate students from the Netherlands (n = 992), Australia (n = 698), and America (n = 398). Unidimensional, bifactor, and three-factor models were supported for the RTQ-10, PTQ, and RPA, respectively. A common factor measured by all PTQ items explained most variance in PTQ scores suggesting that this measure is essentially unidimensional. The RNT factor of the RTQ-10 demonstrated the strongest predictive utility, although the PTQ was also uniquely although weakly associated with anxiety, depression, and mania symptoms. The RPA dampening factor uniquely predicted anxiety and depression symptoms, suggesting that this scale is a separable process to RNT as measured by the RTQ-10 and PTQ. Findings were cross-sectional and need to be replicated in clinical samples. Transdiagnostic measures of RNT are essentially unidimensional, whereas RPA is multidimensional. RNT and RPA have unique predictive utility. Copyright © 2018 Elsevier B.V. All rights reserved.
Force regulated dynamics of RPA on a DNA fork
Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf
2016-01-01
Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742
Prakash, Aishwarya; Natarajan, Amarnath; Marky, Luis A.; Ouellette, Michel M.; Borgstahl, Gloria E. O.
2011-01-01
Replication protein A (RPA), a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA-) binding domains (DBDs) A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties. PMID:21772997
Analytic Interatomic Forces in the Random Phase Approximation
NASA Astrophysics Data System (ADS)
Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-03-01
We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.
DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders
2003-05-01
Alkylating minor groove DNA binder adozelesin is capable of inhibiting DNA replication in treated cells through a trans-acting mechanism. The trans... replication in vitro. Using purified proteins in DNA replication initiation assays, we found that RPA purified from cells treated with adozelesin in not...adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40 DNA
Cdc45-induced loading of human RPA onto single-stranded DNA
Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut
2017-01-01
Abstract Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. PMID:28100698
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
NASA Astrophysics Data System (ADS)
Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.
2015-10-01
We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
Anthrax vaccine powder formulations for nasal mucosal delivery.
Jiang, Ge; Joshi, Sangeeta B; Peek, Laura J; Brandau, Duane T; Huang, Juan; Ferriter, Matthew S; Woodley, Wendy D; Ford, Brandi M; Mar, Kevin D; Mikszta, John A; Hwang, C Robin; Ulrich, Robert; Harvey, Noel G; Middaugh, C Russell; Sullivan, Vincent J
2006-01-01
Anthrax remains a serious threat worldwide as a bioterror agent. A second-generation anthrax vaccine currently under clinical evaluation consists of a recombinant Protective Antigen (rPA) of Bacillus anthracis. We have previously demonstrated that complete protection against inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and formulation development of such powder formulations. The physical stability of rPA was studied in solution as a function of pH and temperature using circular dichroism (CD), and UV-visible absorption and fluorescence spectroscopies. Extensive aggregation of rPA was observed at physiological temperatures. An empirical phase diagram, constructed using a combination of CD and fluorescence data, suggests that rPA is most thermally stable within the pH range of 6-8. To identify potential stabilizers, a library of GRAS excipients was screened using an aggregation sensitive turbidity assay, CD, and fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7-8 using trehalose as stabilizer and a CpG-containing oligonucleotide adjuvant. SFD formulations displayed substantial improvement in storage stability over liquid formulations. In combination with noninvasive intranasal delivery, such powder formulations may offer an attractive approach for mass biodefense immunization.
Gao, Weifang; Huang, Hailong; Zhu, Peng; Yan, Xiaojun; Fan, Jianzhong; Jiang, Jinpo; Xu, Jilin
2018-05-01
Salmonella is a major pathogen that causes acute foodborne outbreaks worldwide. Seafood, particularly shellfish, is a proven source of Salmonella spp. infection because many people prefer to eat it raw or lightly cooked. However, traditional identification methods are too time-consuming and complex to detect contamination of bacteria in the food chain in a timely manner, and few studies have aimed to identify Salmonella in shellfish early in the supply chain. We herein developed a method for rapid detection of Salmonella in shellfish based on the method of recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD), which targets the invasion gene A (invA). The RPA-LFD was able to function at 30-45 °C, and at the temperature of 40 °C, it only took 8 min of amplification to reach the test threshold of amplicons. The established method had both a good specificity and a sensitivity of 100 fg DNA per reaction (20 µL). Regarding practical performance, RPA-LFD performed better than real-time PCR. Another advantage of RPA-LFD is that it was capable of being performed without expensive equipments. Thus, RPA-LFD has potential for further development as a detection kit for Salmonella in shellfish and other foods under field conditions.
Force regulated dynamics of RPA on a DNA fork.
Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf
2016-07-08
Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability.
Safa, Layal; Delagoutte, Emmanuelle; Petruseva, Irina; Alberti, Patrizia; Lavrik, Olga; Riou, Jean-François; Saintomé, Carole
2014-08-01
Replication protein A (RPA) is a single-stranded DNA binding protein that plays an essential role in telomere maintenance. RPA binds to and unfolds G-quadruplex (G4) structures formed in telomeric DNA, thus facilitating lagging strand DNA replication and telomerase activity. To investigate the effect of G4 stability on the interactions with human RPA (hRPA), we used a combination of biochemical and biophysical approaches. Our data revealed an inverse relationship between G4 stability and ability of hRPA to bind to telomeric DNA; notably small G4 ligands that enhance G4 stability strongly impaired G4 unfolding by hRPA. To gain more insight into the mechanism of binding and unfolding of telomeric G4 structures by RPA, we carried out photo-crosslinking experiments to elucidate the spatial arrangement of the RPA subunits along the DNA strands. Our results showed that RPA1 and RPA2 are arranged from 5' to 3' along the unfolded telomeric G4, as already described for unstructured single-stranded DNA, while no contact is possible with RPA3 on this short oligonucleotide. In addition, these data are compatible with a 5' to 3' directionality in G4 unfolding by hRPA. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Function of ZFAND3 in the DNA Damage Response
2013-06-01
Department of Defense Breast Cancer Program Era of Hope Conference August 2011 iv. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D...Analysis of protein dynamics at active, stalled and collapsed replication forks; Vanderbilt Institute of Chemical and Physical Biology August 2011...BRIP1 MED16 FANCD2 COMT TONSL FANCI CUL2 TRRAP MDC1 DMD UNG PDS5B DNPH1 WRN POLE FANCI RFC1 INCENP RPA1 JMJD6 SART3 KIAA1598 BLM SMARCAD1 NBAS BRIP1
BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity.
Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D; Brown, Grant W
2012-01-01
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.
Pursell, Erica R; Vélez-Rendón, Daniela; Valdez-Jasso, Daniela
2016-11-01
In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.
Model-Mapped RPA for Determining the Effective Coulomb Interaction
NASA Astrophysics Data System (ADS)
Sakakibara, Hirofumi; Jang, Seung Woo; Kino, Hiori; Han, Myung Joon; Kuroki, Kazuhiko; Kotani, Takao
2017-04-01
We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named "model-mapped RPA" takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4.
Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex
Witosch, Justine; Wolf, Eva; Mizuno, Naoko
2014-01-01
The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395
Diamond, Spencer; Jun, Darae; Rubin, Benjamin E; Golden, Susan S
2015-04-14
Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.
Cdc45-induced loading of human RPA onto single-stranded DNA.
Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank
2017-04-07
Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Graf, Daniel; Schurkus, Henry F.; Ochsenfeld, Christian
2018-05-01
We present efficient methods to calculate beyond random phase approximation (RPA) correlation energies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propagator in conjunction with an atomic orbital formalism. Further improvements are achieved using integral screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormalized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables calculating beyond RPA correlation energies for significantly larger molecules than possible to date, thereby extending the applicability of these methods to a wider range of chemical systems.
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-11-02
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.
The Diagnostics of the External Plasma for the Plasma Rocket
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1997-01-01
The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space. an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device to 1 x 10(exp 4) - 1.16 x 10(exp 6)K(p= 10(exp 10) - 10(exp 14)/cu cm ). The magnetic field used to contain the plasma has a magnitude of 2 - 10k Gauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. A RPA is being developed in a process which involves the investigation of several prototypes. The first prototype has been tested on a thermal plasma. The knowledge gained from its development and testing were applied to the development of a RPA for collimated plasma. The prototypes consist of four equally spaced grids and an ion collector. The outermost grid is a ground. The second grid acts as a bias to repel electrons. The third is a variable v voltage ion suppressor. Grid four (inner grid) acts to repel secondary electrons, being biased equal to the first. Knowledge gained during these two stages are being applied to the development of a high temperature RPA Testing of this device involves the determination of its output parameters. sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output. it is compared to the output from a Langmuir or Faraday probe.
Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.
Witosch, Justine; Wolf, Eva; Mizuno, Naoko
2014-11-10
The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Doping evolution of spin and charge excitations in the Hubbard model
Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...
2015-11-05
We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less
Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A
2014-10-13
Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
Murphy, Anar K.; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I.; Chowdhury, Dipanjan; Schildkraut, Carl L.
2014-01-01
Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. PMID:25113031
Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.
Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A
2014-08-18
Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.
Herbst, A; Kapellen, T; Schober, E; Graf, C; Meissner, T; Holl, R W
2015-05-01
Regular physical activity (RPA) is a major therapeutic recommendation in children and adolescents with type 2 diabetes mellitus (T2DM). We evaluated the association between frequency of RPA and metabolic control, cardiovascular risk factors, and treatment regimes. The Pediatric Quality Initiative (DPV), including data from 225 centers in Germany and Austria, provided anonymous data of 578 patients (10-20 yr; mean 15.7 ± 2.1 yr; 61.9% girls) with T2DM. Patients were grouped by the frequency of their self-reported RPA per week: RPA 0, none; RPA 1, 1-2×/wk; RPA 2, >2×/wk. The frequency of RPA ranged from 0 to 9×/wk (mean 1.1×/wk ±1.5). 55.7% of the patients reported no RPA (58.1% of the girls). Hemoglobin A1c (HbA1c) differed significantly among RPA groups (p < 0.002), being approximately 0.8 percentage points lower in RPA 2 compared to RPA 0. Body mass index (BMI-SDS) was higher in the groups with less frequent RPA (p < 0.00001). Multiple regression analysis revealed a negative association between RPA and HbA1c (p < 0.0001) and between RPA and BMI-SDS (p < 0.01). The association between RPA and high density lipoprotein (HDL)-cholesterol was positive (p < 0.05), while there was no association to total cholesterol, low density lipoprotein (LDL)-cholesterol or triglycerides. Approximately 80% of the patients received pharmacological treatment (oral antidiabetic drugs and/or insulin) without differences between RPA groups. More than half of the adolescents with T2DM did not perform RPA. Increasing physical activity was associated with a lower HbA1c, a lower BMI-SDS, a higher HDL-cholesterol, but not with a difference in treatment regime. These results suggest that regular exercise is a justified therapeutic recommendation for children and adolescents with T2DM. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.
Keitel, Wendy A
2006-08-01
Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.
Kachura, Melissa A; Hickle, Colin; Kell, Sariah A; Sathe, Atul; Calacsan, Carlo; Kiwan, Radwan; Hall, Brian; Milley, Robert; Ott, Gary; Coffman, Robert L; Kanzler, Holger; Campbell, John D
2016-01-01
Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important. Copyright © 2015 by The American Association of Immunologists, Inc.
Samadfam, R; Teixeira, C; Bkaily, G; Sirois, P; de Brum-Fernandes, A; D'Orleans-Juste, P
2000-01-01
The aim of the present study was to investigate the contribution of bradykinin (BK) B1 and B2 receptors in a model of type III hypersensitivity, the reverse passive Arthus reaction (RPA), in wild-type mice and transgenic B2 knockout littermates.BK (10 μg mouse−1) or bovine serum albumin (0.5 mg mouse−1) induced a sustained Evans blue extravasation for more than 80 min in naive or rabbit anti-bovine serum albumin-treated mice (RPA model), respectively. The response to the two stimuli was prevented by the B2 receptor antagonist, HOE-140, but not by [Leu8]desArg9-BK (B1 receptor antagonist).In contrast to the wild-type littermates, RPA and bradykinin were unable to trigger an increase in plasma extravasation in B2 knockout mice.Furthermore, endothelin-1 (5 μg mouse−1) and a selective NK-1 receptor agonist [Sar9,Met (O2)11]-SP (20 μg mouse−1), triggered a significant increase in peritoneal plasma extravasation in both wild-type and B2 knockout animals.A pretreatment with indomethacin (200 μg mouse−1) significantly reduced the RPA-induced but not the BK-induced increase in Evans blue extravasation. Furthermore, RPA, but not BK, triggered a significant indomethacin-sensitive increase in peritoneal prostaglandin E2 content.Our results suggest a pivotal role for B2 receptors in the mechanism of plasma extravasation which occurs during the reverse passive Arthus reaction in the mouse. Moreover, our results suggest an important contribution of prostanoids in the plasma leakage mechanisms triggered by RPA but not by bradykinin. PMID:10780980
Leffel, Elizabeth K; Bourdage, James S; Williamson, E Diane; Duchars, Matthew; Fuerst, Thomas R; Fusco, Peter C
2012-08-01
Inhalation anthrax is a potentially lethal form of disease resulting from exposure to aerosolized Bacillus anthracis spores. Over the last decade, incidents spanning from the deliberate mailing of B. anthracis spores to incidental exposures in users of illegal drugs have highlighted the importance of developing new medical countermeasures to protect people who have been exposed to "anthrax spores" and are at risk of developing disease. The New Zealand White rabbit (NZWR) is a well-characterized model that has a pathogenesis and clinical presentation similar to those seen in humans. This article reports how the NZWR model was adapted to evaluate postexposure prophylaxis using a recombinant protective antigen (rPA) vaccine in combination with an oral antibiotic, levofloxacin. NZWRs were exposed to multiples of the 50% lethal dose (LD(50)) of B. anthracis spores and then vaccinated immediately (day 0) and again on day 7 postexposure. Levofloxacin was administered daily beginning at 6 to 12 h postexposure for 7 treatments. Rabbits were evaluated for clinical signs of disease, fever, bacteremia, immune response, and survival. A robust immune response (IgG anti-rPA and toxin-neutralizing antibodies) was observed in all vaccinated groups on days 10 to 12. Levofloxacin plus either 30 or 100 μg rPA vaccine resulted in a 100% survival rate (18 of 18 per group), and a vaccine dose as low as 10 μg rPA resulted in an 89% survival rate (16 of 18) when used in combination with levofloxacin. In NZWRs that received antibiotic alone, the survival rate was 56% (10 of 18). There was no adverse effect on the development of a specific IgG response to rPA in unchallenged NZWRs that received the combination treatment of vaccine plus antibiotic. This study demonstrated that an accelerated two-dose regimen of rPA vaccine coadministered on days 0 and 7 with 7 days of levofloxacin therapy results in a significantly greater survival rate than with antibiotic treatment alone. Combination of vaccine administration and antibiotic treatment may be an effective strategy for treating a population exposed to aerosolized B. anthracis spores.
Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra
2006-03-06
Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.
Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David
2015-01-01
SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480
Bhat, Kamakoti P; Bétous, Rémy; Cortez, David
2015-02-13
SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-01-01
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943
Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei
2015-01-01
Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37°C followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39°C. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus.
Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei
2015-01-01
Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37oC followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39oC. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus. PMID:26161793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtrop, M.; Jordan, D.; McIlvain, T.
1998-12-01
The coincidence cross section and the interference structure function, R{sub LT}, were measured for the {sup 12}C(e,e{sup {prime}}p)thinsp{sup 11}B reaction at quasielastic kinematics and central momentum transfer of {vert_bar}{rvec q}{vert_bar}=400thinspMeV/c. The measurement was at an opening angle of {theta}{sub pq}=11{degree}, covering a range in missing energy of E{sub m}=0 to 65 MeV. The R{sub LT} structure function is found to be consistent with zero for E{sub m}{gt}50thinspMeV, confirming an earlier study which indicated that R{sub L} vanishes in this region. The integrated strengths of the p- and s-shell are compared with a distorted wave impulse approximation (DWIA) calculation. The s-shellmore » strength and shape are also compared with a Hartree Fock{endash}random phase approximation (HF-RPA) calculation. The DWIA calculation does not succeed in giving a consistent description of both the cross section data and the extracted R{sub LT} response for either shell. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation. {copyright} {ital 1998} {ital The American Physical Society}« less
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.
HARP preferentially co-purifies with RPA bound to DNA-PK and blocks RPA phosphorylation.
Quan, Jinhua; Yusufzai, Timur
2014-05-01
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.
Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Arjol-Serrano, José Luis; Suarez-Arrones, Luis; Casajús, José Antonio; Mendez-Villanueva, Alberto
2016-05-01
To examine the effects of a low-volume repeated-power-ability (RPA) training program on repeated-sprint and change-of- direction (COD) ability and functional jumping performance. Twenty-two male elite young basketball players (age 16.2 ± 1.2 y, height 190.0 ± 10.0 cm, body mass 82.9 ± 10.1 kg) were randomly assigned either to an RPA-training group (n = 11) or a control group (n = 11). RPA training consisted of leg-press exercise, twice a week for 6 wk, of 1 or 2 blocks of 5 sets × 5 repetitions with 20 s of passive recovery between sets and 3 min between blocks with the load that maximized power output. Before and after training, performance was assessed by a repeated-sprint-ability (RSA) test, a repeated-COD-ability test, a hop for distance, and a drop jump followed by tests of a double unilateral hop with the right and left legs. Within-group and between-groups differences showed substantial improvements in slowest (RSAs) and mean time (RSAm) on RSA; best, slowest and mean time on repeated-COD ability; and unilateral right and left hop in the RPA group in comparison with control. While best time on RSA showed no improvement in any group, there was a large relationship (r = .68, 90% CI .43;.84) between the relative decrement in RSAm and RSAs, suggesting better sprint maintenance with RPA training. The relative improvements in best and mean repeated-COD ability were very largely correlated (r = .89, 90% CI .77;.94). Six weeks of lowvolume (4-14 min/wk) RPA training improved several physical-fitness tests in basketball players.
Hu, Jianping; Hu, Ziheng; Zhang, Yan; Gou, Xiaojun; Mu, Ying; Wang, Lirong; Xie, Xiang-Qun
2017-01-01
Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn2+-chelated Zn-finger domain of XPA center core portion (i.e., XPA98–210) is the foundation of its biological functionality, while the displacement of the Zn2+ by toxic metal ions (such as Ni2+, a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98–210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98–210 Zn-finger after the substitution of Zn2+ by Ni2+. The results showed that Ni2+ dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98–210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98–210’s Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported structural biology information. Thus, we derived a putative cytotoxic mechanism associated with the nickel ion, where the Ni2+ disrupts the conformation of the XPA Zn-finger, directly weakening its interaction with RPA70N, and thus lowering the effectiveness of the NER process. In sum, this work not only provides a theoretical insight into the multi-protein interactions involved in the NER process and potential cytotoxic mechanism associated with Ni2+ binding in XPA, but may also facilitate rational anti-cancer drug design based on the NER mechanism. PMID:27307058
Construction and application of a new dual-hybrid random phase approximation.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Kállay, Mihály
2015-10-13
The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N(4) with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Diels-Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy.
The Diagnostics of the External Plasma for the Plasma Rocket
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1997-01-01
Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.
Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.
1980-01-01
The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.
The role of risk, efficacy, and anxiety in smokers' cancer information seeking.
Zhao, Xiaoquan; Cai, Xiaomei
2009-04-01
Using the risk perception attitude (RPA) framework and the 2005 Health Information National Trends Survey data, this research investigated the role of perceived personal risk, perceived comparative risk, response efficacy, communication efficacy, and anxiety in smokers' active cancer information seeking. The RPA predictions on the interactions between perceived personal risk and the two efficacy measures were not supported. Perceived personal risk and response efficacy were associated with cancer information seeking both directly and through the mediation of anxiety. Optimistic comparative risk perceptions were associated with less anxiety and were found to moderate the relationship between perceived personal risk and cancer information seeking. Surprisingly, communication efficacy emerged as a negative predictor of cancer information seeking. Theoretical and practical implications of these findings are discussed.
Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K
2016-12-01
Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8 μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.
Persistence of physical activity in middle age: a nonlinear dynamic panel approach.
Kumagai, Narimasa; Ogura, Seiritsu
2014-09-01
No prior investigation has considered the effects of state dependence and unobserved heterogeneity on the relationship between regular physical activity (RPA) and latent health stock (LHS). Accounting for state dependence corrects the possible overestimation of the impact of socioeconomic factors. We estimated the degree of the state dependence of RPA and LHS among middle-aged Japanese workers. The 5 years' longitudinal data used in this study were taken from the Longitudinal Survey of Middle and Elderly Persons. Individual heterogeneity was found for both RPA and LHS, and the dynamic random-effects probit model provided the best specification. A smoking habit, low educational attainment, longer work hours, and longer commuting time had negative effects on RPA participation. RPA had positive effects on LHS, taking into consideration the possibility of confounding with other lifestyle variables. The degree of state dependence of LHS was positive and significant. Increasing the intensity of RPA had positive effects on LHS and caused individuals with RPA to exhibit greater persistence of LHS compared to individuals without RPA. This result implies that policy interventions that promote RPA, such as smoking cessation, have lasting consequences. We concluded that smoking cessation is an important health policy to increase both the participation in RPA and LHS.
Nakamura, Y.; Nakamura, K.; Morrison, S. F.
2010-01-01
The central mechanism of fever induction is triggered by an action of prostaglandin E2 (PGE2) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE2 pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT thermogenesis and for cutaneous vasoconstriction by distinct sets of POA neurons. PMID:19327390
A Collimated Retarding Potential Analyzer for the Study of Magnetoplasma Rocket Plumes
NASA Technical Reports Server (NTRS)
Glover, T. W.; Chan, A. A.; Chang-Diaz, F. R.; Kittrell, C.
2003-01-01
A gridded retarding potential analyzer (RPA) has been developed to characterize the magnetized plasma exhaust of the 10 kW Variable Specific Impulse Magnetoplasma Rocket (VX-10) experiment at NASA's Advanced Space Propulsion Laboratory. In this system, plasma is energized through coupling of radio frequency waves at the ion cyclotron resonance (ICR). The particles are subsequently accelerated in a magnetic nozzle to provide thrust. Downstream of the nozzle, the RPA's mounting assembly enables the detector to make complete axial and radial scans of the plasma. A multichannel collimator can be inserted into the RPA to remove ions with pitch angles greater than approximately 1 deg. A calculation of the general collimator transmission as a function over velocity space is presented, which shows the instrument's sensitivity in detecting changes in both the parallel and perpendicular components of the ion energy. Data from initial VX-10 ICRH experiments show evidence of ion heating.
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P
2009-08-01
The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.
Serrano, Moises A.; Li, Zhengke; Dangeti, Mohan; Musich, Phillip R.; Patrick, Steve; Roginskaya, Marina; Cartwright, Brian; Zou, Yue
2012-01-01
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two distinct DNA double-strand break (DSB) repair pathways. Here we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR. PMID:22797063
Serrano, M A; Li, Z; Dangeti, M; Musich, P R; Patrick, S; Roginskaya, M; Cartwright, B; Zou, Y
2013-05-09
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.
Tsakonas, Georgios; Hellman, Fatou; Gubanski, Michael; Friesland, Signe; Tendler, Salomon; Lewensohn, Rolf; Ekman, Simon; de Petris, Luigi
2018-02-01
Whole-brain radiotherapy (WBRT) has been the standard of care for multiple NSCLC brain metastases but due to its toxicity and lack of survival benefit, its use in the palliative setting is being questioned. This was a single institution cohort study including brain metastasized lung cancer patients who received WBRT at Karolinska University Hospital. Information about Recursive Partitioning Analysis (RPA) and Graded Prognostic Assessment (GPA) scores, demographics, histopathological results and received oncological therapy were collected. Predictors of overall survival (OS) from the time of received WBRT were identified by Cox regression analyses. OS between GPA and RPA classes were compared by pairwise log rank test. A subgroup OS analysis was performed stratified by RPA class. The cohort consisted of 280 patients. RPA 1 and 2 classes had better OS compared to class 3, patients with GPA <1.5 points had better OS compared to GPA≥ 1.5 points and age >70 years was associated with worse OS (p< .0001 for all comparisons). In RPA class 2 subgroup analysis GPA ≥1.5 points, age ≤70 years and CNS surgery before salvage WBRT were independent positive prognostic factors. RPA class 3 patients should not receive WBRT, whereas RPA class 1 patients should receive WBRT if clinically indicated. RPA class 2 patients with age ≤70 years and GPA ≥1.5 points should be treated as RPA 1. WBRT should be omitted in RPA 2 patients with age >70. In RPA 2 patients with age ≤70 years and GPA <1.5 points WBRT could be a reasonable option.
Bélanger, François; Angers, Jean-Philippe; Fortier, Émile; Hammond-Martel, Ian; Costantino, Santiago; Drobetsky, Elliot; Wurtele, Hugo
2016-01-01
Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response. PMID:26578521
Heres, H M; Schoots, T; Tchang, B C Y; Rutten, M C M; Kemps, H M C; van de Vosse, F N; Lopata, R G P
2018-06-01
Assessment of limitations in the perfusion dynamics of skeletal muscle may provide insight in the pathophysiology of exercise intolerance in, e.g., heart failure patients. Power doppler ultrasound (PDUS) has been recognized as a sensitive tool for the detection of muscle blood flow. In this volunteer study (N = 30), a method is demonstrated for perfusion measurements in the vastus lateralis muscle, with PDUS, during standardized cycling exercise protocols, and the test-retest reliability has been investigated. Fixation of the ultrasound probe on the upper leg allowed for continuous PDUS measurements. Cycling exercise protocols included a submaximal and an incremental exercise to maximal power. The relative perfused area (RPA) was determined as a measure of perfusion. Absolute and relative reliability of RPA amplitude and kinetic parameters during exercise (onset, slope, maximum value) and recovery (overshoot, decay time constants) were investigated. A RPA increase during exercise followed by a signal recovery was measured in all volunteers. Amplitudes and kinetic parameters during exercise and recovery showed poor to good relative reliability (ICC ranging from 0.2-0.8), and poor to moderate absolute reliability (coefficient of variation (CV) range 18-60%). A method has been demonstrated which allows for continuous (Power Doppler) ultrasonography and assessment of perfusion dynamics in skeletal muscle during exercise. The reliability of the RPA amplitudes and kinetics ranges from poor to good, while the reliability of the RPA increase in submaximal cycling (ICC = 0.8, CV = 18%) is promising for non-invasive clinical assessment of the muscle perfusion response to daily exercise.
2017-01-01
The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. PMID:29239721
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Central efferent pathways for cold-defensive and febrile shivering.
Nakamura, Kazuhiro; Morrison, Shaun F
2011-07-15
Shivering is a remarkable somatomotor thermogenic response that is controlled by brain mechanisms. We recorded EMGs in anaesthetized rats to elucidate the central neural circuitry for shivering and identified several brain regions whose thermoregulatory neurons comprise the efferent pathway driving shivering responses to skin cooling and pyrogenic stimulation. We simultaneously monitored parameters from sympathetic effectors: brown adipose tissue (BAT) temperature for non-shivering thermogenesis and arterial pressure and heart rate for cardiovascular responses. Acute skin cooling consistently increased EMG, BAT temperature and heart rate and these responses were eliminated by inhibition of neurons in the median preoptic nucleus (MnPO) with nanoinjection of muscimol. Stimulation of the MnPO evoked shivering, BAT thermogenesis and tachycardia, which were all reversed by antagonizing GABA(A) receptors in the medial preoptic area (MPO). Inhibition of neurons in the dorsomedial hypothalamus (DMH) or rostral raphe pallidus nucleus (rRPa) with muscimol or activation of 5-HT1A receptors in the rRPa with 8-OH-DPAT eliminated the shivering, BAT thermogenic, tachycardic and pressor responses evoked by skin cooling or by nanoinjection of prostaglandin (PG) E2, a pyrogenic mediator, into the MPO. These data are summarized with a schematic model in which the shivering as well as the sympathetic responses for cold defence and fever are driven by descending excitatory signalling through the DMH and the rRPa, which is under a tonic inhibitory control from a local circuit in the preoptic area. These results provide the interesting notion that, under the demand for increasing levels of heat production, parallel central efferent pathways control the somatic and sympathetic motor systems to drive thermogenesis.
Central efferent pathways for cold-defensive and febrile shivering
Nakamura, Kazuhiro; Morrison, Shaun F
2011-01-01
Abstract Shivering is a remarkable somatomotor thermogenic response that is controlled by brain mechanisms. We recorded EMGs in anaesthetized rats to elucidate the central neural circuitry for shivering and identified several brain regions whose thermoregulatory neurons comprise the efferent pathway driving shivering responses to skin cooling and pyrogenic stimulation. We simultaneously monitored parameters from sympathetic effectors: brown adipose tissue (BAT) temperature for non-shivering thermogenesis and arterial pressure and heart rate for cardiovascular responses. Acute skin cooling consistently increased EMG, BAT temperature and heart rate and these responses were eliminated by inhibition of neurons in the median preoptic nucleus (MnPO) with nanoinjection of muscimol. Stimulation of the MnPO evoked shivering, BAT thermogenesis and tachycardia, which were all reversed by antagonizing GABAA receptors in the medial preoptic area (MPO). Inhibition of neurons in the dorsomedial hypothalamus (DMH) or rostral raphe pallidus nucleus (rRPa) with muscimol or activation of 5-HT1A receptors in the rRPa with 8-OH-DPAT eliminated the shivering, BAT thermogenic, tachycardic and pressor responses evoked by skin cooling or by nanoinjection of prostaglandin (PG) E2, a pyrogenic mediator, into the MPO. These data are summarized with a schematic model in which the shivering as well as the sympathetic responses for cold defence and fever are driven by descending excitatory signalling through the DMH and the rRPa, which is under a tonic inhibitory control from a local circuit in the preoptic area. These results provide the interesting notion that, under the demand for increasing levels of heat production, parallel central efferent pathways control the somatic and sympathetic motor systems to drive thermogenesis. PMID:21610139
RPA coordinates DNA end resection and prevents formation of DNA hairpins.
Chen, Huan; Lisby, Michael; Symington, Lorraine S
2013-05-23
Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.
Daughdrill, Gary W; Buchko, Garry W; Botuyan, Maria V; Arrowsmith, Cheryl; Wold, Marc S; Kennedy, Michael A; Lowry, David F
2003-07-15
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1-326 (hRPA70(1-326)), and a fragment of the human XPA protein, residues 98-219 (XPA-MBD). Intensity changes were observed for amide resonances in the (1)H-(15)N correlation spectrum of uniformly (15)N-labeled hRPA70(1-326) after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA70(1-326) fragment. The hRPA70(1-326) residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA70(1-326) suggests that a competitive binding mechanism mediates the formation of the RPA-XPA complex. To determine whether a ternary complex could form between hRPA70(1-326), XPA-MBD and ssDNA, a (1)H-(15)N correlation spectrum was acquired for uniformly (15)N-labeled hRPA70(1-326) after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA70(1-326) in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA70(1-326) suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA70(1-326) may be modulated by ssDNA.
Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication
Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.
1998-01-01
A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241
Tupone, Domenico; Madden, Christopher J; Cano, Georgina; Morrison, Shaun F
2011-11-02
Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.
Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian
2018-05-08
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Kadowaki, Taro; Nishiyama, Yoshitaka; Hisabori, Toru; Hihara, Yukako
2015-01-01
The redox state of the photosynthetic electron transport chain is known to act as a signal to regulate the transcription of key genes involved in the acclimation responses to environmental changes. We hypothesized that the protein thioredoxin (Trx) acts as a mediator connecting the redox state of the photosynthetic electron transport chain and transcriptional regulation, and established a screening system to identify transcription factors (TFs) that interact with Trx. His-tagged TFs and S-tagged mutated form of Trx, TrxMC35S, whose active site cysteine 35 was substituted with serine to trap the target interacting protein, were co-expressed in E. coli cells and Trx-TF complexes were detected by immuno-blotting analysis. We examined the interaction between Trx and ten OmpR family TFs encoded in the chromosome of the cyanobacterium Synechocystis sp. PCC 6803 (S.6803). Although there is a highly conserved cysteine residue in the receiver domain of all OmpR family TFs, only three, RpaA (Slr0115), RpaB (Slr0946) and ManR (Slr1837), were identified as putative Trx targets. The recombinant forms of wild-type TrxM, RpaA, RpaB and ManR proteins from S.6803 were purified following over-expression in E. coli and their interaction was further assessed by monitoring changes in the number of cysteine residues with free thiol groups. An increase in the number of free thiols was observed after incubation of the oxidized TFs with Trx, indicating the reduction of cysteine residues as a consequence of interaction with Trx. Our results suggest, for the first time, the possible regulation of OmpR family TFs through the supply of reducing equivalents from Trx, as well as through the phospho-transfer from its cognate sensor histidine kinase. PMID:25774906
Canela-Pérez, Israel; López-Villaseñor, Imelda; Cevallos, Ana María; Hernández, Roberto
2018-03-01
Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.
RPA tree-level database users guide
Patrick D. Miles; Scott A. Pugh; Brad Smith; Sonja N. Oswalt
2014-01-01
The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 calls for a periodic assessment of the Nation's renewable resources. The Forest Inventory and Analysis (FIA) program of the U.S. Forest Service supports the RPA effort by providing information on the forest resources of the United States. The RPA tree-level database (RPAtreeDB) was generated...
The phonon-coupling model for Skyrme forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyutorovich, N.; Tselyaev, V.; Speth, J., E-mail: J.Speth@fz-juelich.de
2016-11-15
A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.
Ionization potential depression and optical spectra in a Debye plasma model
NASA Astrophysics Data System (ADS)
Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich
2017-11-01
We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleiziffer, Patrick, E-mail: patrick.bleiziffer@fau.de; Krug, Marcel; Görling, Andreas
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation ofmore » EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals and eigenvalues, and the deviation reduces even further if the Coulomb kernel is scaled by a factor of 0.75 in the dRPA to reduce self-correlations in the dRPA correlation potential. For larger systems, such a non-self-consistent EXX-ACFD method is a competitive alternative to high-level wave-function-based methods, yielding higher accuracy than MP2 and CCSD methods while exhibiting a better scaling of the computational effort than CCSD or CCSD(T) methods. Moreover, EXX-ACFD methods were shown to be applicable in situation characterized by static correlation.« less
Zhang, Yongning; Wang, Jianchang; Zhang, Zhou; Mei, Lin; Wang, Jinfeng; Wu, Shaoqiang; Lin, Xiangmei
2018-04-01
Peste des petits ruminants (PPR) is a severe infectious disease of small ruminants caused by PPR virus (PPRV). Rapid and sensitive detection of PPRV is critical for controlling PPR. This report describes the development and evaluation of a conventional reverse transcription recombinase polymerase amplification (RT-RPA) assay and a real-time RT-RPA assay, targeting the PPRV N gene. Sensitivity analysis revealed that the conventional RT-RPA assay could detect 852 copies of standard PPRV RNA per reaction at 95% probability within 20 min at 41 °C, and the real-time RT-RPA assay could detect 103 copies of RNA molecules per reaction at 95% probability. Specificity analysis showed that both assays have no cross-reactivity with nucleic acid templates prepared from other selected viruses or common pathogens. Clinical evaluation using 162 ovine and hircine serum and nasal swab samples showed that the performance of both the real-time RT-RPA assay and the conventional RT-RPA assay were comparable to that of real-time RT-PCR. The overall agreements between real-time RT-PCR and real-time RT-RPA, and conventional RT-RPA were 99.4% (161/162) and 98.8% (160/162), respectively. The R 2 value of real-time RT-RPA and real-time RT-PCR was 0.900 by linear regression analysis. Our results suggest that both RT-RPA assays have a potential application in the rapid, sensitive and specific detection of PPRV. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Mingjuan; Ke, Yuehua; Wang, Xuesong; Ren, Hang; Liu, Wei; Lu, Huijun; Zhang, Wenyi; Liu, Shiwei; Chang, Guohui; Tian, Shuguang; Wang, Lihua; Huang, Liuyu; Liu, Chao; Yang, Ruifu; Chen, Zeliang
2016-06-01
Confirming Ebola virus disease (EVD), a deadly infectious disease, requires real-time RT-PCR, which takes up to a few hours to yield results. Therefore, a rapid diagnostic assay is imperative for EVD diagnosis. A rapid nucleic acid test based on recombinase polymerase amplification (EBOV-RPA) was developed to specifically detect the 2014 outbreak strains. The EBOV-RPA assay was evaluated by testing samples from suspected EVD patients in parallel with RT-PCR. An EBOV-RPA, which could be completed in 20 min, was successfully developed. Of 271 patients who tested positive for Ebola virus by RT-PCR, 264 (sensitivity: 97%, 95% CI: 95.5-99.3%) were positive by EBOV-RPA; 101 of 104 patients (specificity: 97%, 95% CI: 93.9-100%) who tested negative by RT-PCR were also negative by EBOV-RPA. The sensitivity values for samples with a Ct value of <34, which accounted for 95.59% of the samples, was 100%. Discordant samples positive by RT-PCR but negative by EBOV-RPA had significantly high Ct values. Results of external quality assessment samples with EBOV-RPA were 100%, consistent with those of RT-PCR. The EBOV-RPA assay showed 97% sensitivity and 97% specificity for all EVD samples tested, making it a rapid and sensitive test for EVD diagnosis.
Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.
Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe
2016-09-01
Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection. © 2016 The Author(s).
Two-point function of a d =2 quantum critical metal in the limit kF→∞ , Nf→0 with NfkF fixed
NASA Astrophysics Data System (ADS)
Säterskog, Petter; Meszena, Balazs; Schalm, Koenraad
2017-10-01
We show that the fermionic and bosonic spectrum of d =2 fermions at finite density coupled to a critical boson can be determined nonperturbatively in the combined limit kF→∞ ,Nf→0 with NfkF fixed. In this double scaling limit, the boson two-point function is corrected but only at one loop. This double scaling limit therefore incorporates the leading effect of Landau damping. The fermion two-point function is determined analytically in real space and numerically in (Euclidean) momentum space. The resulting spectrum is discontinuously connected to the quenched Nf→0 result. For ω →0 with k fixed the spectrum exhibits the distinct non-Fermi-liquid behavior previously surmised from the RPA approximation. However, the exact answer obtained here shows that the RPA result does not fully capture the IR of the theory.
Future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment
USDA Forest Service.
2012-01-01
The Forest and Rangeland Renewable Resources Planning Act of 1974 (RPA) mandates a periodic assessment of the conditions and trends of the Nation's renewable resources on forests and rangelands. The RPA Assessment includes projections of resource conditions and trends 50 years into the future. The 2010 RPA Assessment used a set of future scenarios to provide a...
Linda L. Langner; Peter J. Ince
2012-01-01
The Resources Planning Act (RPA) Assessment provides a nationally consistent analysis of the status and trends of the Nation's renewable forest resources. A global scenario approach was taken for the 2010 RPA Assessment to provide a shared world view of potential futures. The RPA Assessment scenarios were linked to the global scenarios and climate projections used...
Perdigão, J; Logarinho, E; Avides, M C; Sunkel, C E
1999-12-01
Replication protein A (RPA) is a highly conserved multifunctional heterotrimeric complex, involved in DNA replication, repair, recombination, and possibly transcription. Here, we report the cloning of the gene that codes for the largest subunit of the Drosophila melanogaster RPA homolog, dmRPA70. In situ hybridization showed that dmRPA70 RNA is present in developing embryos during the first 16 cycles. After this point, dm-RPA70 expression is downregulated in cells that enter a G1 phase and exit the mitotic cycle, becoming restricted to brief bursts of accumulation from late G1 to S phase. This pattern of regulated expression is also observed in the developing eye imaginal disc. In addition, we have shown that the presence of cyclin E is necessary and sufficient to drive the expression of dmRPA70 in embryonic cells arrested in G1 but is not required in tissues undergoing endoreduplication. Immunolocalization showed that in early developing embryos, the dmRPA70 protein associates with chromatin from the end of mitosis until the beginning of the next prophase in a dynamic speckled pattern that is strongly suggestive of its association with replication foci.
Usher syndrome type III can mimic other types of Usher syndrome.
Pennings, Ronald J E; Fields, Randall R; Huygen, Patrick L M; Deutman, August F; Kimberling, William J; Cremers, Cor W R J
2003-06-01
Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149-152delCAGG + insTGTCCAAT. One individual (IV:1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata albescens (RPA). The other individual is also profoundly hearing impaired, but has well-developed speech, vestibular areflexia, and retinitis pigmentosa sine pigmento (RPSP). These findings suggest that Usher syndrome type III can be clinically misdiagnosed as either Usher type I or II; that Usher syndrome patients who are profoundly hearing impaired and have normal vestibular function should be tested for USH3 mutations; and that RPA and RPSP can occur as fundoscopic manifestations of pigmentary retinopathy in Usher syndrome.
Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim
2017-11-01
Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.
Daughdrill, Gary W.; Buchko, Garry W.; Botuyan, Maria V.; Arrowsmith, Cheryl; Wold, Marc S.; Kennedy, Michael A.; Lowry, David F.
2003-01-01
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA. PMID:12853635
Woods, Charles R; Cash, Elizabeth D; Smith, Aaron M; Smith, Michael J; Myers, John A; Espinosa, Claudia M; Chandran, Swapna K
2016-09-01
The epidemiology and hospital course of children with retropharyngeal abscess (RPA) or parapharyngeal abscess (PPA) have not been fully described at the national level in the United States. Pediatric discharges for PPA and RPA were evaluated by using the Kids' Inpatient Database from 2003, 2006, 2009, and 2012. Cases were identified by using International Classification of Disease, Ninth Revision, Clinical Modification codes 478.22 and 478.24 for PPA and RPA, respectively. Nationally representative incidence data were calculated by using weighted case estimates and US census data. Demographic and cost analyses were conducted by using unweighted analyses. There were 2685 hospital discharges for PPA and 6233 hospital discharges for RPA during the 4 study years combined. The incidence of RPA increased from 2.98 per 100 000 population among children <20 years old in 2003 to 4.10 per 100 000 in 2012. The incidence of PPA peaked at 1.49 per 100 000 in 2006. Incidences were highest among children <5 years old and boys in all age groups for PPA and RPA. Winter-to-spring seasonality also was evident for both. PPA was managed surgically in 58.1% of the cases, and RPA was managed surgically in 46.7%. Surgery was performed most often on the day of admission or the following day, was more frequent at teaching hospitals, and was associated with higher hospital charges. The mean hospital length of stay was longer for children who had surgery versus those who did not (4.4 vs 3.1 days [for PPA] and 4.8 vs 3.2 days [for RPA], respectively; both P < .001). The median charges for RPA and PPA were similar. The proportions of children with RPA or PPA covered by Medicaid increased during the study period. PPA and RPA represent relatively common male-predominant childhood infections with similar epidemiologies. The incidence of hospital discharges with a diagnosis of RPA increased during the study period. Substantial proportions of children with PPA or RPA are now managed without surgery. Surgical drainage was associated with higher hospital charges and longer lengths of stay. © The Author 2015. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence
2014-01-01
A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...
Using Pair Wise Rankings in the Assessment of Adaptive Aiding
2017-02-22
Aviation Psychology (ISAP) 9 – 11 May 2017 14. ABSTRACT In remotely piloted aircraft (RPA) operations, operator cognitive workload is an important concern...Force Research Laboratory Wright-Patterson AFB, Ohio In remotely piloted aircraft (RPA) operations, operator cognitive workload is an important...model in future research. Operator cognitive workload is an important concern in remotely piloted aircraft (RPA) operations. RPA use is
Londoño, Maria A; Harmon, Carrie L; Polston, Jane E
2016-03-22
Plant viruses in the genus Begomovirus, family Geminiviridae often cause substantial crop losses. These viruses have been emerging in many locations throughout the tropics and subtropics. Like many plant viruses, they are often not recognized by plant diagnostic clinics due in large part to the lack of rapid and cost effective assays. An isothermal amplification assay, Recombinase polymerase amplification (RPA), was evaluated for its ability to detect three begomoviruses and for its suitability for use in plant diagnostic clinics. Methods for DNA extraction and separation of amplicons from proteins used in the assay were modified and compared to RPA manufacturer's protocols. The modified RPA assays were compared to PCR assays for sensitivity, use in downstream applications, cost, and speed. Recombinase polymerase amplification (RPA) assays for the detection of Bean golden yellow mosaic virus, Tomato mottle virus and Tomato yellow leaf curl virus (TYLCV) were specific, only amplifying the target viruses in three different host species. RPA was able to detect the target virus when the template was in a crude extract generated using a simple inexpensive extraction method, while PCR was not. Separation of RPA-generated amplicons from DNA-binding proteins could be accomplished by several methods, all of which were faster and less expensive than that recommended by the manufacturer. Use of these modifications resulted in an RPA assay that was faster than PCR but with a similar reagent cost. This modified RPA was the more cost effective assay when labor is added to the cost since RPA can be performed much faster than PCR. RPA had a sensitivity approximate to that of ELISA when crude extract was used as template. RPA-generated amplicons could be used in downstream applications (TA cloning, digestion with a restriction endonuclease, direct sequencing) similar to PCR but unlike some other isothermal reactions. RPA could prove useful for the cost effective detection of plant viruses by plant diagnostic clinics. It can be performed in one hour or less with a reagent cost similar to that of PCR but with a lower labor cost, and with an acceptable level of sensitivity and specificity.
Sui, Jiangdong; Lin, Yu-Fen; Xu, Kangling; Lee, Kyung-Jong; Wang, Dong; Chen, Benjamin P C
2015-07-13
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3' overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protection also involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the detailed regulation mechanism has not been clear. Here we report that hnRNP-A1 is phosphorylated by DNA-PKcs during the G2 and M phases and that DNA-PK-dependent hnRNP-A1 phosphorylation promotes the RPA-to-POT1 switch on telomeric single-stranded 3' overhangs. Consequently, in cells lacking hnRNP-A1 or DNA-PKcs-dependent hnRNP-A1 phosphorylation, impairment of the RPA-to-POT1 switch results in DNA damage response at telomeres during mitosis as well as induction of fragile telomeres. Taken together, our results indicate that DNA-PKcs-dependent hnRNP-A1 phosphorylation is critical for capping of the newly replicated telomeres and prevention of telomeric aberrations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Xing, Weiwei; Yu, Xinling; Feng, Jingtao; Sun, Kui; Fu, Wenliang; Wang, Yuanyuan; Zou, Minji; Xia, Wenrong; Luo, Zhihong; He, Hongbin; Li, Yuesheng; Xu, Donggang
2017-02-21
Current diagnostic methods for Schistosoma japonicum infection are insensitive for low-density infections. Therefore, a new diagnostic assay based on recombinase polymerase amplification (RPA) technology was established and assessed for field applification. The S.japonicum RPA assay was developed to target highly repetitive retrotransposon SjR2 gene of S japonicum, and its sensitivity and specificity were assessed by serial dilution of S. japonicum genomic DNA and other related worm genomic DNA respectively. The RPA diagnostic validity was first evaluated in 60 fecal samples from healthy people and patients, and then compared with other diagnostic tests in 200 high-risk individuals living in endemic areas. The real time RPA assay could detect 0.9 fg S. japonicum DNA within 15 min and distinguish S. japonicum from other worms. The validity analysis of RPA for the detection of S. japonicum in stool samples from 30 S. japonicum-infected patients and 30 healthy persons indicated 100% sensitivity and specificity. When testing 200 fecal or serum samples from a high-risk population, the percentage sensitivity of RPA was 100%, whereas that of indirect hemagglutination assay (IHA) and enzyme-linked immunosorbent assay (ELISA) were 80.3% and 85.2% respectively. In addition, the RPA presented better consistency with the stool-based tests than IHA and ELISA. Overall, the RPA was superior to other detection methods with respect to detection time, sensitivity, and convenience. This is the first time we applied the RPA technology to the field evaluation of S. japonicum infection. And the results suggest that RPA-based assays can be used as a promising point-of-care test for the diagnosis of schistosomiasis.
Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.
Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming
2018-03-01
Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication. Copyright © 2018 American Society for Microbiology.
Namkoong, Sim; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo
2012-10-19
Replication protein A (RPA) is a eukaryotic single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination, and human RPA interacting protein α (hRIPα) is the nuclear transporter of RPA. Here, we report the regulatory role of hRIPα protein in cell proliferation. Western blot analysis revealed that the level of hRIPα was frequently elevated in cervical tumors tissues and hRIPα knockdown by siRNA inhibited cellular proliferation through deregulation of the cell cycle. In addition, overexpression of hRIPα resulted in increased clonogenicity. These results indicate that hRIPα is involved in cell proliferation through regulation of RPA transport. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Klas, S.D.; Petrie, C.R.; Warwood, S.J.; Williams, M.S.; Olds, C.L.; Stenz, J.P.; Cheff, A.M.; Hinchcliffe, M.; Richardson, C.; Wimer, S.
2009-01-01
Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150 μg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150 μg rPA, 150 μg rPA + 150 μg of a conjugated 10-mer peptide representing the B. anthracis capsule (conj), or 150 μg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys®). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA + conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p = 0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA + conj immunized groups (p = 0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later. PMID:18703110
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
Replication protein A 32 interacts through a similar binding interface with TIPIN, XPA, and UNG2.
Ali, Seikh Imtiaz; Shin, Jae-Sun; Bae, Sung-Hun; Kim, Byoungkook; Choi, Byong-Seok
2010-07-01
The 32kDa subunit of replication protein A (RPA32) is involved in various DNA repair systems such as nucleotide excision repair, base excision repair, and homologous recombination. In these processes, RPA32 interacts with different binding partners via its C-terminal domain (RPA32C; residues 172-270). It has been reported recently that RPA32C also interacts with TIPIN during the intra-S checkpoint. To determine the significance of the interaction of RPA32C with TIPIN, we have examined the interaction mode using NMR spectroscopy and an in silico modeling approach. Here, we show that TIPIN(185-218), which shares high sequence similarity with XPA(10-43) and UNG2(56-89), is less ordered in the free state and then forms a longer alpha-helix upon binding to RPA32C. The binding interface between TIPIN(185-218) and RPA32C is similar to those of XPA and UNG2, but its mode of interaction is different. The results suggest that RPA32 is an exchange point for multiple proteins involved in DNA repair, homologous recombination, and checkpoint processes and that it binds to different partners with comparable binding affinity using a single site. Copyright 2010 Elsevier Ltd. All rights reserved.
Evaluation of Aortic Valve Replacement via the Right Parasternal Approach without Rib Removal
Hattori, Koji; Kato, Yasuyuki; Motoki, Manabu; Takahashi, Yosuke; Nishimura, Shinsuke; Shibata, Toshihiko
2014-01-01
Background: Although right parasternal approach (RPA) decreases the incidence of mediastinal infection, this approach is associated with lung hernia and flail chest. Our RPA employs thoracotomy with bending rib cartilages and wound closure performed by repositioning the ribs with underlying sheet reinforcement. Methods: We evaluated 16 patients who underwent aortic valve replacement via the RPA from January 2010 to August 2013. We compared outcomes of 15 male patients had the RPA with 30 male patients had full median sternotomy. Results: One patient with a history of radical breast cancer treatment underwent RPA with concomitant right coronary artery bypass grafting. No hospital deaths occurred. Four patients developed hospital-associated morbidity (re-exploration for bleeding, prolonged ventilation, cardiac tamponade, and perioperative myocardial infarction). There were no conversions to full median sternotomy, mediastinal infections, and lung hernias. Preoperative computed tomography showed that the distance from the right sternal border to the aortic root was significantly associated with operation times. With RPA, there was no significant difference in outcomes, despite significantly longer operation times compared with full median sternotomy. Conclusion: Our RPA provides satisfactory outcomes without lung hernia, especially in patients unsuitable for sternotomy. Preoperative computed tomography is useful for identifying appropriate candidates for the RPA. PMID:25167927
Churangsarit, Saowaphan; Chongsuvivatwong, Virasakdi
2011-08-01
Transportation physical activity (TPA) and recreational physical activity (RPA) in an urban area can be sources of physical activity (PA) in addition to working. This study was conducted in Hat Yai City Municipality, the fourth most populous city in Thailand, to describe the magnitude of these physical activities and identify their associated factors. 369 adults were selected from a random sampling of registered households. Based on the Global Physical Activity Questionnaire (GPAQ), subjects were interviewed on their modes of TPA and RPA during the past week. Hurdle regression was used to examine predictors for having PA separately from predictor of intensity of PA among the active. Metabolic equivalent (MET) of TPA and RPA were computed. Prevalence of not having TPA and RPA were 71.3% and 45.8%, respectively. TPA and RPA contributed 1.5% and 9.2% of total PA. Active commuters were more common in females 40 or more years old, less sedentary persons, and those living near shopping places. Persons having RPA were more likely to be less sedentary, whereas the intensity of RPA was higher among single persons and males. TPA and RPA in this study area were uncommon. Further strategies are needed to improve the situation, especially among sedentary persons.
Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C
2002-11-01
We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.
Resection and primary anastomosis with or without modified blow-hole colostomy for sigmoid volvulus
Coban, Sacid; Yilmaz, Mehmet; Terzi, Alpaslan; Yildiz, Fahrettin; Ozgor, Dincer; Ara, Cengiz; Yologlu, Saim; Kirimlioglu, Vedat
2008-01-01
AIM: To evaluate the efficacy of resection and primary anastomosis (RPA) and RPA with modified blow-hole colostomy for sigmoid volvulus. METHODS: From March 2000 to September 2007, 77 patients with acute sigmoid volvulus were treated. A total of 47 patients underwent RPA or RPA with modified blow-hole colostomy. Twenty-five patients received RPA (Group A), and the remaining 22 patients had RPA with modified blow-hole colostomy (Group B). The clinical course and postoperative complications of the two groups were compared. RESULTS: The mean hospital stay, wound infection and mortality did not differ significantly between the groups. Superficial wound infection rate was higher in group A (32% vs 9.1%). Anastomotic leakage was observed only in group A, with a rate of 6.3%. The difference was numerically impressive but was statistically not significant. CONCLUSION: RPA with modified blow-hole colostomy provides satisfactory results. It is easy to perform and may become a method of choice in patients with sigmoid volvulus. Further studies are required to further establish its role in the treatment of sigmoid volvulus. PMID:18810779
Feeney, Laura; Muñoz, Ivan M; Lachaud, Christophe; Toth, Rachel; Appleton, Paul L; Schindler, Detlev; Rouse, John
2017-06-01
Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C
2018-04-20
The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.
Chung, Seok Won; Song, Byung Wook; Kim, Yeun Ho; Park, Kyoung Un; Oh, Joo Han
2013-12-01
The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. To verify the effect of platelet-rich plasma (PRP) with and without porcine dermal collagen graft augmentation on tendon-to-bone healing, using the rabbit supraspinatus tendon. Controlled laboratory study. A total of 80 rabbits were randomly allocated into 4 groups (20 rabbits per group: 12 for histological and 8 for mechanical testing): repair (R), repair + patch augmentation (RPa), repair + PRP (RPr), and repair + patch + PRP (RPaPr). The right shoulder was used for experimental interventions, and the left served as a control. Six weeks after the detachment of the supraspinatus, the torn tendon was repaired in a transosseous manner, simulating double-row repair in all groups. Platelet-rich plasma was prepared and applied onto the repair site in the RPr and RPaPr groups, and the patch was used to augment the repair in the RPa and RPaPr groups. The mechanical tensile strength test was performed at 8 weeks after repair and the histological evaluation at 4 and 8 weeks. At 4 weeks, the collagen fibers were poorly organized, and fiber continuity was not established in all groups. However, vascularity and cellularity were higher with granulation tissue formation in the PRP-treated groups (RPr and RPaPr) than the nontreated groups (R and RPa). At 8 weeks, tendon-to-bone integration was much improved with more collagen fibers, and longitudinally oriented collagen fibers were visible in all groups. The PRP-treated groups showed better collagen fiber continuity and orientation than the nontreated groups; however, no distinctive difference was found between the patch-augmented groups (RPa and RPaPr) and nonaugmented groups (R and RPr). The mean load-to-failure results were 61.57 ± 29.99 N, 76.84 ± 16.08 N, 105.35 ± 33.82 N, and 117.93 ± 12.60 N for the R, RPa, RPr, and RPaPr groups, respectively, and they were significantly different between the R and RPr (P = .018), R and RPaPr (P = .002), and RPa and RPaPr (P = .029) groups. This animal study showed the enhancement of tendon-to-bone healing after local administration of autologous PRP assessed by histological and biomechanical testing in a rabbit model of chronic rotator cuff tears. However, there was little additive effect of the patch graft. The use of PRP might be a biological supplement to increase the rotator cuff healing rate, which still remains low even after successful cuff repair, but this result should be interpreted with caution regarding clinical applications.
Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Zhiyong; Zhang, Shuaijun; Li, Yanmin; Zhang, Zhidong
2017-06-01
Recombinase polymerase amplification assays using real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the gD gene of pseudorabies virus (PRV). Both assays were performed at 39 °C within 20 min. The sensitivity of the real-time RPA assay and the RPA LFD assay was 100 copies per reaction and 160 copies per reaction, respectively. Both assays did not detect DNAs from other virus or PRV negative samples. Therefore, the developed RPA assays provide a rapid, simple, sensitive and specific alternative tool for detection of PRV. Copyright © 2017. Published by Elsevier Ltd.
Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.
Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe
2016-04-01
A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.
Use of the Ribonuclease Protection Assay (RPA) for Identifying Chemicals that Elicit Hypersensitivity Responses. L.M. Plitnick, 1, D.M. Sailstad, 2, and R.J. Smialowicz, 2 1UNC, Curriculum in Toxicology, Chapel Hill, NC and 2USEPA, NHEERL, RTP, NC.
The incidence of aller...
An allele of the crm gene blocks cyanobacterial circadian rhythms.
Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S
2013-08-20
The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.
Predisposing factors and management of complications in acute tonsillitis.
Gahleitner, Constanze; Hofauer, Benedikt; Stark, Thomas; Knopf, Andreas
2016-09-01
RPA and NF was diagnosed with a sensitivity/specificity of 100%/94% in patients with acute tonsillitis and without suspicion for disease complication after ENT examination, but an age >35 years and serum CRP >15.5mg/dl. Acute tonsillitis represents a frequent disease in the otorhinolaryngology. Some patients exhibit disease aggravations resulting in (descending) peritonsillar abscess (PTA, dPTA), para-/retropharyngeal abscess (PPA, RPA), or necrotising fasciitis (NF). The study analyses the underlying predisposing factors. The retrospective cohort study includes a total of 1636 patients comprising 852 outpatients with acute bacterial tonsillitis, 279 in-patients with acute bacterial tonsillitis, 452 patients with PTA, 31 patients with dPTA/PPA, 12 patients with RPA, and 10 patients with NF. Patients were analysed for disease-related data. While leucocytes do not distinguish the sub-groups, C-reactive protein demonstrated a significant increase resulting in the highest level for RPA and NF (p < 0.0001). PTA and RPA are usually caused by streptococcus, dPTA/PPA by anaerobic bacterias, and NF mixed infections (p < 0.0001). Patients with PTA were younger than dPTA/PPA (p = 0.002) or RPA/NF (p < 0.0001). Subsequently, the rate of internistic comorbidities was significantly increased in RPA/NF (p < 0.0001). ROC-analysis identified cut-offs for age <36 years and CRP <15.5mg/dl to distinguish acute bacterial tonsillitis from RPA.
Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A.; Hufert, Frank T.; Weidmann, Manfred
2013-01-01
Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4–10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection. PMID:23977101
Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A; Hufert, Frank T; Weidmann, Manfred
2013-01-01
Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection.
Higgins, Owen; Clancy, Eoin; Forrest, Matthew S; Piepenburg, Olaf; Cormican, Martin; Boo, Teck Wee; O'Sullivan, Nicola; McGuinness, Claire; Cafferty, Deirdre; Cunney, Robert; Smith, Terry J
2018-04-01
Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.
Anthrax prevention and treatment: utility of therapy combining antibiotic plus vaccine.
Klinman, Dennis M; Yamamoto, Masaki; Tross, Debra; Tomaru, Koji
2009-12-01
The intentional release of anthrax spores in 2001 confirmed this pathogen's ability to cause widespread panic, morbidity and mortality. While individuals exposed to anthrax can be successfully treated with antibiotics, pre-exposure vaccination can reduce susceptibility to infection-induced illness. Concern over the safety and immunogenicity of the licensed US vaccine (Anthrax Vaccine Adsorbed (AVA)) has fueled research into alternatives. Second-generation anthrax vaccines based on purified recombinant protective antigen (rPA) have entered clinical trials. These rPA vaccines induce neutralizing antibodies that prevent illness, but the magnitude and duration of the resultant protective response is modest. Efforts are underway to bolster the immunogenicity of rPA by combining it with adjuvants and other immunostimulatory agents. Third generation vaccines are under development that utilize a wide variety of immunization platforms, antigens, adjuvants, delivery methods and routes of delivery to optimize the induction of a protective immunity. For the foreseeable future, vaccination will rely on first and second generation vaccines co-administered with immune adjuvants. Optimal post-exposure treatment of immunologically naive individuals should include a combination of vaccine plus antibiotic therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Deyu
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
NASA Astrophysics Data System (ADS)
Rost, E.; Shephard, J. R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self-consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the (triangle)-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to (bar p)p yields (bar lambda)lambda reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.
Feng, Zhihui; Zhang, Junran
2012-01-01
Homologous recombination (HR) is a major mechanism utilized to repair blockage of DNA replication forks. Here, we report that a sister chromatid exchange (SCE) generated by crossover-associated HR efficiently occurs in response to replication fork stalling before any measurable DNA double-strand breaks (DSBs). Interestingly, SCE produced by replication fork collapse following DNA DSBs creation is specifically suppressed by ATR, a central regulator of the replication checkpoint. BRCA1 depletion leads to decreased RPA2 phosphorylation (RPA2-P) following replication fork stalling but has no obvious effect on RPA2-P following replication fork collapse. Importantly, we found that BRCA1 promotes RAD51 recruitment and SCE induced by replication fork stalling independent of ATR. In contrast, BRCA1 depletion leads to a more profound defect in RAD51 recruitment and SCE induced by replication fork collapse when ATR is depleted. We concluded that BRCA1 plays a dual role in two distinct HR-mediated repair upon replication fork stalling and collapse. Our data established a molecular basis for the observation that defective BRCA1 leads to a high sensitivity to agents that cause replication blocks without being associated with DSBs, and also implicate a novel mechanism by which loss of cell cycle checkpoints promotes BRCA1-associated tumorigenesis via enhancing HR defect resulting from BRCA1 deficiency. PMID:21954437
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-01
The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.
Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter
2015-11-01
Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.
Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo
2017-01-19
The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Cong, Guozheng; Li, Yanmin; Zhang, Zhidong
2017-01-01
Porcine circovirus virus type II (PCV2) is the etiology of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis, nephropathy syndrome (PDNS), and necrotizing pneumonia. Rapid diagnosis tool for detection of PCV2 plays an important role in the disease control and eradication program. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PCV2 real-time RPA assay) and RPA combined with lateral flow dipstick (PCV2 RPA LFD assay) were developed targeting the PCV2 ORF2 gene. The results showed that the sensitivity of the PCV2 real-time RPA assay was 10 2 copies per reaction within 20 min at 37°C and the PCV2 RPA LFD assay had a detection limit of 10 2 copies per reaction in less than 20 min at 37°C. Both assays were highly specific for PCV2, with no cross-reactions with porcine circovirus virus type 1, foot-and-mouth disease virus, pseudorabies virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and classical swine fever virus. Therefore, the RPA assays provide a novel alternative for simple, sensitive, and specific identification of PCV2.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Cong, Guozheng; Li, Yanmin
2017-01-01
Porcine circovirus virus type II (PCV2) is the etiology of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis, nephropathy syndrome (PDNS), and necrotizing pneumonia. Rapid diagnosis tool for detection of PCV2 plays an important role in the disease control and eradication program. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PCV2 real-time RPA assay) and RPA combined with lateral flow dipstick (PCV2 RPA LFD assay) were developed targeting the PCV2 ORF2 gene. The results showed that the sensitivity of the PCV2 real-time RPA assay was 102 copies per reaction within 20 min at 37°C and the PCV2 RPA LFD assay had a detection limit of 102 copies per reaction in less than 20 min at 37°C. Both assays were highly specific for PCV2, with no cross-reactions with porcine circovirus virus type 1, foot-and-mouth disease virus, pseudorabies virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and classical swine fever virus. Therefore, the RPA assays provide a novel alternative for simple, sensitive, and specific identification of PCV2. PMID:28424790
Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Yanmin; Zhang, Zhidong
2016-10-01
Porcine parvovirus (PPV) is a major cause of swine reproductive failure and reported in many countries worldwide. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PPV real-time RPA assay) and a lateral flow dipstick (PPV RPA LFD assay) were developed targeting PPV NS1 gene. The detection limit of PPV real-time RPA assay was 300 copies per reaction within 9 min at 38 °C, while the RPA LFD assay has a detection limit of 400 copies per reaction in less than 20 min at 38 °C. In both assays, there were no cross-reactions with porcine circovirus type 2, pseudorabies virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. Based on a total of 128 clinical samples examined, the sensitivity and the specificity of the developed RPA assays for identification of PPV was 94.4% and 100%, respectively, when compared to real-time (qPCR) assay. Therefore, the RPA assay provides a rapid, sensitive and specific alternative for PPV detection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.
Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F
2017-06-01
The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.
Sizarov, Aleksander; Raimondi, Francesca; Bonnet, Damien; Boudjemline, Younes
2017-04-01
Transcatheter stent-secured Glenn anastomosis, aiming to reduce the invasiveness of palliation in patients with univentricular heart defects, has been reported in large experimental animals. The advent of biodegradable stents and tissue-engineered vascular grafts will make this procedure a reality in human patients. However, the relationship between the superior vena cava (SVC) and the right pulmonary artery (RPA) is different in humans. To characterise vascular anatomy in children with univentricular hearts, regarding technical aspects and device design for this procedure. Retrospective analysis of 35 thoracic computed tomography angiograms at a mean age of 18.1±22.4 months. Two types of arrangement between the SVC and the RPA were identified: anatomy convenient for immediate wire passage and stent deployment between the two vessels (60%); and pattern of early RPA branching, requiring the perforation wire to traverse the intervascular space to avoid entrance into the upper RPA branch (40%). In patients with the convenient vascular arrangement, the vessels were nearly perpendicular, having immediate contact, with the posterior SVC aspect partially "wrapping" the adjacent RPA in most patients. In patients with early RPA branching, the mean shortest SVC-to-central RPA distance was 4.3±2.7mm. For the total population, the mean length of proximal SVC that allowed stent deployment without covering the brachiocephalic vein was 15.6±5.1mm. A trumpet-shaped covered stent in a craniocaudal orientation reaching from the SVC into the prebranching RPA seems most suitable for achieving bidirectional Glenn anastomosis percutaneously in humans. However, the short length of the proximal SVC and the presence of early RPA branching pose challenges for optimal design of the dedicated device. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Levidou, Georgia; Ventouri, Kiriaki; Nonni, Afroditi; Gakiopoulou, Hariklia; Bamias, Aristotle; Sotiropoulou, Maria; Papaspirou, Irene; Dimopoulos, Meletios A; Patsouris, Efstratios; Korkolopoulou, Penelope
2012-07-01
Replication protein A (RPA) is an ssDNA-binding protein required for the initiation of DNA replication and the stabilization of ssDNA. Collaboration with several molecules, that is, the MCM2-7 complex, has been suggested to be imperative for its multifaceted role. In this study, we investigated the immunohistochemical expression of the RPA2 subunit in correlation with the MCM-2 and MCM-5 and Ki67 index, and assessed its prognostic significance in 76 patients with nonearly ovarian adenocarcinomas, the majority of whom had a serous histotype. RPA2 protein expression was observed in all cases, whereas the staining intensity varied from weak to strong. RPA2 expression was correlated with the tumor stage in the entire cohort and in serous tumors (P=0.0053 in both relationships). Moreover, RPA2 immunoexpression was positively correlated with MCM-2 (P=0.0001) and MCM-5 (P<0.0001) expression, but was unrelated to the Ki67 index (P>0.10). In multivariate survival analysis, RPA2 expression emerged as an independent predictor of adverse outcome (P<0.0001) along with tumor histologic grade. RPA2 remained an independent predictor of survival (P=0.002) even after adjustment for MCM-2 and MCM-5 expression and when analysis was restricted to serous carcinomas (P=0.004). Our results further support the interrelation of RPA2 protein with MCM-2 and MCM-5 in OCs. Moreover, RPA2 protein may play an important role in ovarian tumorigenesis, and may serve as a useful independent molecular marker for stratifying patients with OC in terms of prognosis.
Wu, Y D; Xu, M J; Wang, Q Q; Zhou, C X; Wang, M; Zhu, X Q; Zhou, D H
2017-08-30
Toxoplasma gondii infects all warm-blooded vertebrates, resulting in a great threat to human health and significant economic loss to the livestock industry. Ingestion of infectious oocysts of T. gondii from the environment is the major source of transmission. Detection of T. gondii oocysts by existing methods is laborious, time-consuming and expensive. The objective of the present study was to develop a recombinase polymerase amplification (RPA) method combined with a lateral flow (LF) strip for detection of T. gondii oocysts in the soil and water. The DNA of T. gondii oocysts was amplified by a pair of specific primers based on the T. gondii B1 gene over 15min at a constant temperature ranging from 30°C to 45°C using RPA. The amplification product was visualized by the lateral flow (LF) strip within 5min using the specific probe added to the RPA reaction system. The sensitivity of the established assay was 10 times higher than that of nested PCR with a lower detection limit of 0.1 oocyst per reaction, and there was no cross-reactivity with other closely related protozoan species. Fifty environmental samples were further assessed for the detection validity of the LF-RPA assay (B1-LF-RPA) and compared with nested PCR based on the B1 gene sequence. The B1-LF-RPA and nested PCR both showed that 5 out of the 50 environmental samples were positive. The B1-LF-RPA method was also proven to be sufficiently tolerant of existing inhibitors in the environment. In addition, the advantages of simple operation, speediness and cost-effectiveness make B1-LF-RPA a promising molecular detection tool for T. gondii. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe
2017-08-15
Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.
Protein dynamics during presynaptic complex assembly on individual ssDNA molecules
Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.
2014-01-01
Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049
Electroexcitation of Low-Lying Particle-Hole RPA States of 16O with WBP Interaction
NASA Astrophysics Data System (ADS)
Ali, H. Taqi; R. A., Radhi; Adil, M. Hussein
2014-12-01
The nuclear structure of 16O is studied in the framework of the particle-hole random phase approximation (ph RPA). The Hamiltonian is diagonalized within a model space with particle orbits {1d5/2,1d3/2, and 2s1/2} and the hole orbits {1p3/2 and 1p1/2} using Warburton and Brown interaction WBP. The ph RPA calculations are tested, by comparing the electron scattering form factors with the available experimental data. The results of electron scattering form factors and reduced transition strength for the states: 1-, T = 0 (7.116 MeV); 2-, T = 1 (12.968 MeV); 2-, T = 1 (20.412 MeV); and 3-, T = 0 (6.129 MeV) are interpreted in terms of the harmonic-oscillator (HO) wave functions of size parameter b. The occupation probabilities of the single particle and hole orbits are calculated. The spurious states are removed by adding the center of mass (CM) correction to the nuclear Hamiltonian. A comparison with the available experiments data is presented.
Uniform quantized electron gas
NASA Astrophysics Data System (ADS)
Høye, Johan S.; Lomba, Enrique
2016-10-01
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.
NASA Astrophysics Data System (ADS)
Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.
2017-06-01
We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.
Barney, Christian L; Walston, Steve; Zamora, Pedro; Healy, Erin H; Nolan, Nicole; Diavolitsis, Virginia M; Neki, Anterpreet; Rupert, Robert; Savvides, Panos; Agrawal, Amit; Old, Matthew; Ozer, Enver; Carrau, Ricardo; Kang, Stephen; Rocco, James; Teknos, Theodoros; Grecula, John C; Wobb, Jessica; Mitchell, Darrion; Blakaj, Dukagjin; Bhatt, Aashish D
2018-04-01
Randomized trials evaluating cisplatin versus cetuximab chemoradiation (CRT) for p16+ oropharyngeal cancer (OPC) have yet to report preliminary data. Meanwhile, as a preemptive step toward morbidity reduction, the off-trial use of cetuximab in p16+ patients is increasing, even in those who could potentially tolerate cisplatin. The purpose of this study was to compare the efficacy of cisplatin versus cetuximab CRT in the treatment of p16+ OPC and to identify prognostic factors and predictors of tumor response. Cases of p16+ OPC treated with cisplatin or cetuximab CRT at our institution from 2010 to 2014 were identified. Recursive partitioning analysis (RPA) classification was used to determine low-risk (LR-RPA) and intermediate-risk (IR-RPA) groups. Log-rank/Kaplan-Meier and Cox Regression methods were used to compare groups. We identified 205 patients who received cisplatin (n = 137) or cetuximab (n = 68) CRT in the definitive (n = 178) or postoperative (n = 27) setting. Median follow-up was 3 years. Cisplatin improved 3-year locoregional control (LRC) [92.7 vs 65.4%], distant metastasis-free survival (DMFS) [88.3 vs 71.2%], recurrence-free survival (RFS) [86.6 vs 50.6%], and overall survival (OS) [92.6 vs 72.2%] compared to cetuximab [all p < .001]. Concurrent cisplatin improved 3-year OS for LR-RPA (97.1 vs 80.3%, p < .001) and IR-RPA (97.1 vs 80.3%, p < .001) groupings. When treating p16+ OPC with CRT, the threshold for substitution of cisplatin with cetuximab should be maintained appropriately high in order to prolong survival times and optimize locoregional and distant tumor control. When cetuximab is used in cisplatin-ineligible patients, altered fractionation RT should be considered in an effort to improve LRC. Copyright © 2018 Elsevier Ltd. All rights reserved.
RPA Data Wiz users guide, version 1.0
Scott A. Pugh
2004-01-01
RPA Data Wiz is a computer application use to create summary tables, graphs, and maps of Resource Planning Act (RPA) Assessment forest information (English or metric units). Volumes for growing stock, live cull, dead salvable, netgrowth, and mortality can be estimated. Acreage, biomass, and tree count estimates are also available.
Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.
Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain
2002-01-01
In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452
Grandin, Nathalie; Charbonneau, Michel
2007-01-01
Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination. PMID:17202155
Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton
2017-01-01
Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691
Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Pang, Xiaoyu; Yuan, Wanzhe
2018-02-15
The objective of this study was to develop a dual real-time recombinase polymerase amplification (RPA) assay using exo probes for the detection and differentiation of pseudorabies virus (PRV). Specific RPA primers and probes were designed for gB and gE genes of PRV within the conserved region of viral genome. The reaction process can be completed in 20 min at 39 °C. The dual real-time RPA assay performed in the single tube was capable of specific detecting and differentiating of the wild-type PRV and gE-deleted vaccine strains, without cross-reactions with other non-targeted pig viruses. The analytical sensitivity of the assay was 10 2 copies for gB and gE genes. The dual real-time RPA demonstrated a 100% diagnostic agreement with the real-time PCR on 4 PRV strains and 37 clinical samples. Through the linear regression analysis, the R 2 value of the real-time RPA and the real-time PCR for gB and gE was 0.983 and 0.992, respectively. The dual real-time RPA assay provides an alternative useful tool for rapid, simple, and reliable detection and differentiation of PRV, especially in remote and rural areas. Copyright © 2017 Elsevier Inc. All rights reserved.
Hendriks, Lizza E L; Troost, Esther G C; Steward, Allan; Bootsma, Gerben P; De Jaeger, Katrien; van den Borne, Ben E E M; Dingemans, Anne-Marie C
2014-07-01
Median survival after diagnosis of brain metastases is, depending on the Recursive Partitioning Analysis (RPA) classes, 7.1 (class I) to 2.3 months (class III). In 2011 the Dutch guideline on brain metastases was revised, advising to withhold whole brain radiotherapy (WBRT) in RPA class III. In this large retrospective study, we evaluated the guideline's use in daily practice. Data of 428 lung cancer patients undergoing WBRT for brain metastases (2004-2012) referred from three Dutch hospitals were retrospectively analyzed. Details on Karnofsky performance score (KPS), age, control of primary tumor, extracranial metastases, histology, and survival after diagnosis of brain metastases were collected. RPA class was determined using the first four items. In total 327 patients had non-small cell lung cancer (NSCLC) and 101 small cell lung cancer (SCLC). For NSCLC, 6.1%, 71.9%, and 16.2% were classified as RPA I, II, and III, respectively, and 5.8% could not be classified. For SCLC this was 8.9%, 66.3%, 14.9%, and 9.9%, respectively. Before the revised guideline was implemented, 11.3-21.3% of WBRT patients were annually classified as RPA III. In the year thereafter, this was 13.0% (p = 0.646). Median survival (95% CI) for NSCLC RPA class I, II, and III was 11.4 (9.9-12.9), 4.0 (3.4-4.7), and 1.7 (1.3-2.0) months, respectively. For SCLC this was 7.9 (4.1-11.7), 4.7 (3.3-6.1), and 1.7 (1.5-1.8) months. Although it is advised to withhold WBRT in RPA class III patients, in daily practice 11.3-21.3% of WBRT-treated patients were classified as RPA III. The new guideline did not result in a decrease. Reasons for referral of RPA III patients despite a low KPS were not found. Despite WBRT, survival of RPA III patients remains poor and this poor outcome should be stressed in practice guidelines. Therefore, better awareness amongst physicians would prevent some patients from being treated unnecessarily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transitionmore » densities.« less
A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.
Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee
2018-01-05
The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun
2017-11-01
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.
RPA Assessment of Outdoor Recreation: Past, Current, and Future Directions
John C. Bergstrom; H. Ken Cordell
1994-01-01
In this paper, the outdoor recreation sections of the Renewable Resource Planning Act (RPA) Assessments conducted to date are reviewed. Current policy and mangement applications of the outsdoor recreation results published in 1989 Assessment are discussed also. The paper concludes with suggestions for the assemssment of outdoor recreation in future RPA Assessements...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-826-000] RPA Energy, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of RPA Energy, Inc...
Mechanochemical regulations of RPA's binding to ssDNA
NASA Astrophysics Data System (ADS)
Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie
2015-03-01
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.
Euler, Milena; Wang, Yongjie; Heidenreich, Doris; Patel, Pranav; Strohmeier, Oliver; Hakenberg, Sydney; Niedrig, Matthias; Hufert, Frank T.
2013-01-01
Syndromic panels for infectious disease have been suggested to be of value in point-of-care diagnostics for developing countries and for biodefense. To test the performance of isothermal recombinase polymerase amplification (RPA) assays, we developed a panel of 10 RPAs for biothreat agents. The panel included RPAs for Francisella tularensis, Yersinia pestis, Bacillus anthracis, variola virus, and reverse transcriptase RPA (RT-RPA) assays for Rift Valley fever virus, Ebola virus, Sudan virus, and Marburg virus. Their analytical sensitivities ranged from 16 to 21 molecules detected (probit analysis) for the majority of RPA and RT-RPA assays. A magnetic bead-based total nucleic acid extraction method was combined with the RPAs and tested using inactivated whole organisms spiked into plasma. The RPA showed comparable sensitivities to real-time RCR assays in these extracts. The run times of the assays at 42°C ranged from 6 to 10 min, and they showed no cross-detection of any of the target genomes of the panel nor of the human genome. The RPAs therefore seem suitable for the implementation of syndromic panels onto microfluidic platforms. PMID:23345286
Trenti, Loris; Biondo, Sebastiano; Golda, Thomas; Monica, Millan; Kreisler, Esther; Fraccalvieri, Domenico; Frago, Ricardo; Jaurrieta, Eduardo
2011-03-01
Hartmann's procedure (HP) still remains the most frequently performed procedure for diffuse peritonitis due to perforated diverticulitis. The aims of this study were to assess the feasibility and safety of resection with primary anastomosis (RPA) in patients with purulent or fecal diverticular peritonitis and review morbidity and mortality after single stage procedure and Hartmann in our experience. From January 1995 through December 2008, patients operated for generalized diverticular peritonitis were studied. Patients were classified into two main groups: RPA and HP. A total of 87 patients underwent emergency surgery for diverticulitis complicated with purulent or diffuse fecal peritonitis. Sixty (69%) had undergone HP while RPA was performed in 27 patients (31%). At the multivariate analysis, RPA was associated with less post-operative complications (P < 0.05). Three out of the 27 patients with RPA (11.1%) developed a clinical anastomotic leakage and needed re-operation. RPA can be safely performed without adding morbidity and mortality in cases of diffuse diverticular peritonitis. HP should be reserved only for hemodynamically unstable or high-risk patients. Specialization in colorectal surgery improves mortality and raises the percentage of one-stage procedures.
Inano, Shojiro; Sato, Koichi; Katsuki, Yoko; Kobayashi, Wataru; Tanaka, Hiroki; Nakajima, Kazuhiro; Nakada, Shinichiro; Miyoshi, Hiroyuki; Knies, Kerstin; Takaori-Kondo, Akifumi; Schindler, Detlev; Ishiai, Masamichi; Kurumizaka, Hitoshi; Takata, Minoru
2017-06-01
RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A.; Greene, Eric C.; Dockendorff, Chris
2017-01-01
Abstract An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. PMID:28934470
Yang, Yang; Qin, Xiaodong; Wang, Guangxiang; Zhang, Yuen; Shang, Youjun; Zhang, Zhidong
2015-12-02
Orf virus (ORFV) is the causative agent of Orf (also known as contagious ecthyma or contagious papular dermatitis), a severe infectious skin disease in goats, sheep and other ruminants. The rapid detection of ORFV is of great importance in disease control and highly needed. A isothermal molecular diagnostic approach, termed recombinase polymerase amplification (RPA), is considered as an novel and rapid alternative techonology to PCR assay. In the present study, a novel fluorescent probe based on RPA assay (ORFV exo RPA assay) was developed. The developed ORFV exo RPA assay was capable of as low as 100 copies of ORFV DNA /reaction and was highly specific, with no cross-reaction with closely related viruses (capripox virus, foot-and-mouth disease virus or peste des petits ruminants virus). Further assessment with clinical samples showed that the developed ORFV exo RPA assay has good correlation with qPCR assays for detection of ORFV. These results suggest that the developed ORFV exo RPA assay is suitable for rapid detection of ORFV.
Wang, Jian-Chang; Liu, Li-Bing; Han, Qing-An; Wang, Jin-Feng; Yuan, Wan-Zhe
2017-10-01
Recombinase polymerase amplification (RPA), an isothermal amplification technology, has been developed as an alternative to PCR in pathogen detection. A real-time RPA assay (rt-RPA) was developed to detect the porcine parvovirus (PPV) using primers and exo probe specific for the VP2 gene. The amplification was performed at 39°C for 20min. There was no cross-reaction with other pathogens tested. Using the recombinant plasmid pPPV-VP2 as template, the analytical sensitivity was 103 copies. The assay performance was evaluated by testing 115 field samples by rt-RPA and a real-time PCR assay. The diagnostic agreement between assays was 100%, and PPV DNA was detected in 94 samples. The R 2 value of rt-RPA and real-time PCR was 0.909 by linear regression analysis. The developed rt-RPA assay provides a useful alternative tool for rapid, simple and reliable detection of PPV in diagnostic laboratories and at point-of-care, especially in remote and rural areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Interventional closure of RPA-to-LA communication in an oligosymptomatic neonate.
Benz, Dominik C; Burkhardt, Barbara; Quandt, Daniel; Stambach, Dominik; Knirsch, Walter; Kretschmar, Oliver
2014-12-01
Direct communication between the right pulmonary artery (RPA) and the left atrium (LA) is a very rare cardiac malformation. Clinical presentation of RPA-to-LA communication depends on the size of the communication, the amount of right-to-left shunt, the patient's age, and pulmonary vascular resistance. Patients with small communications usually present oligosymptomatic and are diagnosed at an older age. A delay of diagnosis bears the risk of severe complications and needs to be prevented by proper work-up of oligosymptomatic neonates. Treatment of RPA-to-LA communications used to be performed by surgical closure, and the interventional approach has only been established as a less invasive alternative in recent years. Although patients with small RPA-to-LA communications usually present oligosymptomatic, early diagnosis and treatment is essential to prevent life-threatening complications.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Chen, Ting; Zhang, Zhidong
2016-12-01
A novel fluorescent probe-based real-time reverse transcription recombinase polymerase amplification (real-time RT-RPA) assay was developed for rapid detection of highly pathogenic type 2 porcine reproductive and respiratory syndrome virus (HP-PRRSV). The sensitivity analysis showed that the detection limit of RPA was 70 copies of HP-PRRSV RNA/reaction. The real-time RT-RPA highly specific amplified HP-PRRSV with no cross-reaction with classic PRRSV, classic swine fever virus, pseudorabies virus, and foot-and-mouth disease virus. Assessment with 125 clinical samples showed that the developed real-time RT-RPA assay was well correlated with real-time RT-qPCR assays for detection of HP-PRRSV. These results suggest that the developed real-time RT-RPA assay is suitable for rapid detection of HP-PRRSV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, Alexander V., E-mail: Dr.alexlouie@gmail.com; Department of Radiation Oncology, London Regional Cancer Program, University of Western Ontario, London, Ontario; Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts
Purpose: A prognostic model for 5-year overall survival (OS), consisting of recursive partitioning analysis (RPA) and a nomogram, was developed for patients with early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic ablative radiation therapy (SABR). Methods and Materials: A primary dataset of 703 ES-NSCLC SABR patients was randomly divided into a training (67%) and an internal validation (33%) dataset. In the former group, 21 unique parameters consisting of patient, treatment, and tumor factors were entered into an RPA model to predict OS. Univariate and multivariate models were constructed for RPA-selected factors to evaluate their relationship with OS. A nomogrammore » for OS was constructed based on factors significant in multivariate modeling and validated with calibration plots. Both the RPA and the nomogram were externally validated in independent surgical (n=193) and SABR (n=543) datasets. Results: RPA identified 2 distinct risk classes based on tumor diameter, age, World Health Organization performance status (PS) and Charlson comorbidity index. This RPA had moderate discrimination in SABR datasets (c-index range: 0.52-0.60) but was of limited value in the surgical validation cohort. The nomogram predicting OS included smoking history in addition to RPA-identified factors. In contrast to RPA, validation of the nomogram performed well in internal validation (r{sup 2}=0.97) and external SABR (r{sup 2}=0.79) and surgical cohorts (r{sup 2}=0.91). Conclusions: The Amsterdam prognostic model is the first externally validated prognostication tool for OS in ES-NSCLC treated with SABR available to individualize patient decision making. The nomogram retained strong performance across surgical and SABR external validation datasets. RPA performance was poor in surgical patients, suggesting that 2 different distinct patient populations are being treated with these 2 effective modalities.« less
Lada, Artem G; Waisertreiger, Irina S-R; Grabow, Corinn E; Prakash, Aishwarya; Borgstahl, Gloria E O; Rogozin, Igor B; Pavlov, Youri I
2011-01-01
Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast. Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.
Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7–3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno. PMID:29444148
Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G
2015-04-01
Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shen, Feng; Davydova, Elena K; Du, Wenbin; Kreutz, Jason E; Piepenburg, Olaf; Ismagilov, Rustem F
2011-05-01
In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader range of applications.
Shahin, Khalid; Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7-3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno.
Shen, Feng; Davydova, Elena K.; Du, Wenbin; Kreutz, Jason E.; Piepenburg, Olaf; Ismagilov, Rustem F.
2011-01-01
In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter, isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipette loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false positive results from pre-initiation of the RPA amplification reaction before incubation were eliminated. End-point fluorescence readout was used for “yes or no” digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, Methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37–42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader range of applications. PMID:21476587
NASA Technical Reports Server (NTRS)
Troy, B. E., Jr.; Maier, E. J.
1975-01-01
The effects of the grid transparency and finite collector size on the values of thermal ion density and temperature determined by the standard RPA (retarding potential analyzer) analysis method are investigated. The current-voltage curves calculated for varying RPA parameters and a given ion mass, temperature, and density are analyzed by the standard RPA method. It is found that only small errors in temperature and density are introduced for an RPA with typical dimensions, and that even when the density error is substantial for nontypical dimensions, the temperature error remains minimum.
2016-06-10
current RPA pilots, has precipitated a manning crisis. The Army has not faced a manning or retention crisis because the lead time is shorter to recruit...cost of training Air Force RPA pilots. This research investigates how enlisted airmen could improve retention rates, reduce military personnel costs...and the Air Force’s inability to retain current RPA pilots, has precipitated a manning crisis. The Army has not faced a manning or retention crisis
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Kumar, P V; Sharma, S K; Rishi, N; Ghosh, D K; Baranwal, V K
Management of viral diseases relies on definite and sensitive detection methods. Citrus yellow mosaic virus (CYMV), a double stranded DNA virus of the genus Badnavirus, causes yellow mosaic disease in citrus plants. CYMV is transmitted through budwood and requires a robust and simplified indexing protocol for budwood certification programme. The present study reports development and standardization of an isothermal based recombinase polymerase amplification (RPA) assay for a sensitive, rapid, easy, and cost-effective method for detection and diagnosis of CYMV. Two different oligonucleotide primer sets were designed from ORF III (coding for polyprotein) and ORF II (coding for virion associated protein) regions of CYMV to perform amplification assays. Comparative evaluation of RPA, PCR and immuno-capture recombinase polymerase amplification (IC-RPA) based assays were done using purified DNA and plant crude sap. CYMV infection was efficiently detected from the crude sap in RPA and IC-RPA assays. The primer set used in RPA was specific and did not show any cross-amplification with banana streak MY virus (BSMYV), another Badnavirus species. The results from the present study indicated that RPA assay can be used easily in routine indexing of citrus planting material. To the best of our knowledge, this is the first report on development of a rapid and simplified isothermal detection assay for CYMV and can be utilized as an effective technique in quarantine and budwood certification process.
Yang, Yang; Qin, Xiaodong; Zhang, Xiangle; Zhao, Zhixun; Zhang, Wei; Zhu, Xueliang; Cong, Guozheng; Li, Yanmin; Zhang, Zhidong
2017-07-17
Goatpox virus (GTPV) and sheeppox virus (SPPV), which belong to the Capripoxvirus (CaPV), are economically important pathogens of small ruminants. Therefore, a sensitive, specific and rapid diagnostic assay for detection of GTPV and SPPV is necessary to accurately and promptly control these diseases. Recombinase polymerase amplification (RPA) assays combined with a real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the CaPV G-protein-coupled chemokine receptor (GPCR) gene, respectively. The sensitivity of both CaPV real-time RPA assay and CaPV RPA LFD assay were 3 × 10 2 copies per reaction within 20 min at 38 °C. Both assays were highly specific for CaPV, with no cross-reactions with peste des petits ruminants virus, foot-and-mouth disease virus and Orf virus. The evaluation of the performance of these two assays with clinical sample (n = 107) showed that the CaPV real-time RPA assay and CaPV RPA LFD assay were able to specially detect SPPV or GTPV present in samples of ovine in liver, lung, kidney, spleen, skin and blood. This study provided a highly time-efficient and simple alternative for rapid detection of GTPV and SPPV.
Geng, Yunyun; Wang, Jianchang; Liu, Libing; Lu, Yan; Tan, Ke; Chang, Yan-Zhong
2017-11-06
Canine parvovirus 2, a linear single-stranded DNA virus belonging to the genus Parvovirus within the family Parvoviridae, is a highly contagious pathogen of domestic dogs and several wild canidae species. Early detection of canine parvovirus (CPV-2) is crucial to initiating appropriate outbreak control strategies. Recombinase polymerase amplification (RPA), a novel isothermal gene amplification technique, has been developed for the molecular detection of diverse pathogens. In this study, a real-time RPA assay was developed for the detection of CPV-2 using primers and an exo probe targeting the CPV-2 nucleocapsid protein gene. The real-time RPA assay was performed successfully at 38 °C, and the results were obtained within 4-12 min for 10 5 -10 1 molecules of template DNA. The assay only detected CPV-2, and did not show cross-detection of other viral pathogens, demonstrating a high level of specificity. The analytical sensitivity of the real-time RPA was 10 1 copies/reaction of a standard DNA template, which was 10 times more sensitive than the common RPA method. The clinical sensitivity of the real-time RPA assay matched 100% (n = 91) to the real-time PCR results. The real-time RPA assay is a simple, rapid, reliable and affordable method that can potentially be applied for the detection of CPV-2 in the research laboratory and point-of-care diagnosis.
Saldarriaga, Omar A.; Castellanos-Gonzalez, Alejandro; Porrozzi, Renato; Baldeviano, Gerald C.; Lescano, Andrés G.; de Los Santos, Maxy B.; Fernandez, Olga L.; Saravia, Nancy G.; Costa, Erika; Melby, Peter C.; Travi, Bruno L.
2016-01-01
Cutaneous and mucosal leishmaniasis is widely distributed in Central and South America. Leishmania of the Viannia subgenus are the most frequent species infecting humans. L. (V.) braziliensis, L. (V.) panamensis are also responsible for metastatic mucosal leishmaniasis. Conventional or real time PCR is a more sensitive diagnostic test than microscopy, but the cost and requirement for infrastructure and trained personnel makes it impractical in most endemic regions. Primary health systems need a sensitive and specific point of care (POC) diagnostic tool. We developed a novel POC molecular diagnostic test for cutaneous leishmaniasis caused by Leishmania (Viannia) spp. Parasite DNA was amplified using isothermal Recombinase Polymerase Amplification (RPA) with primers and probes that targeted the kinetoplast DNA. The amplification product was detected by naked eye with a lateral flow (LF) immunochromatographic strip. The RPA-LF had an analytical sensitivity equivalent to 0.1 parasites per reaction. The test amplified the principal L. Viannia species from multiple countries: L. (V.) braziliensis (n = 33), L. (V.) guyanensis (n = 17), L. (V.) panamensis (n = 9). The less common L. (V.) lainsoni, L. (V.) shawi, and L. (V.) naiffi were also amplified. No amplification was observed in parasites of the L. (Leishmania) subgenus. In a small number of clinical samples (n = 13) we found 100% agreement between PCR and RPA-LF. The high analytical sensitivity and clinical validation indicate the test could improve the efficiency of diagnosis, especially in chronic lesions with submicroscopic parasite burdens. Field implementation of the RPA-LF test could contribute to management and control of cutaneous and mucosal leishmaniasis. PMID:27115155
Hou, Peili; Zhao, Guimin; Wang, Hongmei; He, Chengqiang; Huan, Yanjun; He, Hongbin
2018-04-01
Bovine ephemeral fever virus (BEFV), identified as the causative pathogen of bovine ephemeral fever (BEF), is responsible for increasing numbers of epidemics/outbreaks and has a significant harmful effect on the livestock industry. Therefore, a rapid detection assay is imperative for BEFV diagnosis. In this study, we described the development of lateral-flow dipstick isothermal recombinase polymerase amplification (LFD-RPA) assays for detection of BEFV. RPA primers and LF probes were designed by targeting the specific G gene, and the amplification product can be visualized on a simple lateral flow dipstick with the naked eyes. The amplification reaction was performed at 38 °C for 20 min and LFD incubation time within 5 min. The detection limit of this assay was 8 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses such as bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine vesicular stomatitis virus. In addition, the assay was performed with total 128 clinical specimens and the diagnostic results were compared with conventional RT-PCR, real-time quantative(q) PCR. The result showed that the coincidence rate of BEFV LFD-RPA and real-time qPCR was 96.09% (123/128), which was higher than conventional RT-PCR. The RPA combined with LFD assay probably provides a rapid and sensitive alternative for diagnosis of BEFV infections outbreak. Copyright © 2018 Elsevier Ltd. All rights reserved.
The 2002 RPA Plot Summary database users manual
Patrick D. Miles; John S. Vissage; W. Brad Smith
2004-01-01
Describes the structure of the RPA 2002 Plot Summary database and provides information on generating estimates of forest statistics from these data. The RPA 2002 Plot Summary database provides a consistent framework for storing forest inventory data across all ownerships across the entire United States. The data represents the best available data as of October 2001....
The Giotto electron plasma experiment
NASA Technical Reports Server (NTRS)
Reme, H.; Cotin, F.; Cros, A.; Medale, J. L.; Sauvaud, J. A.
1987-01-01
The RPA-Copernic experiment aboard Giotto is described. The experiment is designed to measure the three-dimensional distributions of electrons between 10 eV and 30 keV (by the RPA-1 EESA spectrometer) and the composition and distribution, close to the comet, of thermal positive ions in the mass range 10-213 amu (by the RPA-2 PICCA electrostatic mass analyzer). Three microprocessors interface RPA-1 EESA with RPA-2 PICCA and with the spacecraft and perform extensive onboard data processing. The experiment was operated successfully aboard the spacecraft in September 1985 during the encounter of Giotto with the comet Halley. The results provided by the EESA-1 indicate that the solar wind interaction with the comet Halley forms a well-defined bow shock with features quite different from the features of the comet Giacobini-Zinner bow shock; the data also showed a presence of accelerated keV electrons at the cometary bow shock, upstream and in the transition region.
Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.
Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca
2014-06-17
Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.
76 FR 54195 - 2010 Resources Planning Act (RPA) Assessment Draft
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... Resources Planning Act (RPA) Assessment is available for review and comment at http://www.fs.fed.us/research... facsimile to 703-605-5131 or by email using the comment form on the Web site http://www.fs.fed.us/research... . Additional information about the RPA Assessment can be obtained on the Internet at http://www.fs.fed.us...
Payload Technologies for Remotely Piloted Aircraft
NASA Technical Reports Server (NTRS)
Wegener, Steve
2000-01-01
Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.
Payload Technologies For Remotely Piloted Aircraft
NASA Technical Reports Server (NTRS)
Wegener, Steve; Condon, Estelle (Technical Monitor)
2001-01-01
Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.
Ren, Hang; Yang, Mingjuan; Zhang, Guoxia; Liu, Shiwei; Wang, Xinhui; Ke, Yuehua; Du, Xinying; Wang, Zhoujia; Huang, Liuyu; Liu, Chao; Chen, Zeliang
2016-04-01
A rapid and sensitive recombinase polymerase amplification (RPA) assay, Bruce-RPA, was developed for detection of Brucella. The assay could detect as few as 3 copies of Brucella per reaction within 20 min. Bruce-RPA represents a candidate point-of-care diagnosis assay for human brucellosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Recombinase Polymerase Amplification and its Applications in Parasite Detection].
ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui
2015-10-01
Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin
2017-09-19
An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model
NASA Astrophysics Data System (ADS)
Seibold, G.; Becca, F.; Rubin, P.; Lorenzana, J.
2004-04-01
We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). The method can be viewed as an extension of the previously developed GA+RPA approach for the charge sector [G. Seibold and J. Lorenzana, Phys. Rev. Lett. 86, 2605 (2001)] with respect to the inclusion of the magnetic excitations. Unlike the charge case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly, in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our approach by comparing with exact diagonalization results and show its much higher accuracy compared to the conventional Hartree-Fock+RPA theory. In infinite dimensions, where the GA becomes exact for the Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational computations.
Jauset-Rubio, Miriam; Sabaté Del Río, Jonathan; Mairal, Teresa; Svobodová, Markéta; El-Shahawi, Mohammad S; Bashammakh, Abdulaziz S; Alyoubi, Abdulrahman O; O'Sullivan, Ciara K
2017-01-01
Lupin is increasingly being used in a variety of food products due to its nutritional, functional and nutraceutical properties. However, several examples of severe and even fatal food-associated anaphylaxis due to lupin inhalation or ingestion have been reported, resulting in the lupin subunit β-conglutin, being defined as the Lup an 1 allergen by the International Union of Immunological Societies (IUIS) in 2008. Here, we report an innovative method termed aptamer-recombinase polymerase amplification (Apta-RPA) exploiting the affinity and specificity of a DNA aptamer selected against the anaphylactic β-conglutin allergen termed β-conglutin binding aptamer II (β-CBA II), facilitating ultrasensitive detection via isothermal amplification. Combining magnetic beads as the solid phase with Apta-RPA detection, the total assay time was reduced from 210 min to just 25 min, with a limit of detection of 3.5 × 10 -11 M, demonstrating a rapid and ultrasensitive generic methodology that can be used with any aptamer. Future work will focus on further simplification of the assay to a lateral flow format. Graphical Abstract Schematic representation of the rapid and novel bead-based Apta-RPA assay.
Ndumnego, Okechukwu C; Köhler, Susanne M; Crafford, Jannie; van Heerden, Henriette; Beyer, Wolfgang
2016-10-01
The Sterne 34F2 live spore vaccine (SLSV) developed in 1937 is the most widely used veterinary vaccine against anthrax. However, literature on the immunogenicity of this vaccine in a target ruminant host is scarce. In this study, we evaluated the humoral response to the Bacillus anthracis protective antigen (rPA), a recombinant bacillus collagen-like protein of anthracis (rBclA), formaldehyde inactivated spores (FIS) prepared from strain 34F2 and a vegetative antigen formulation prepared from a capsule and toxin deficient strain (CDC 1014) in Boer goats. The toxin neutralizing ability of induced antibodies was evaluated using an in vitro toxin neutralization assay. The protection afforded by the vaccine was also assessed in vaccinates. Anti-rPA, anti-FIS and lethal toxin neutralizing titres were superior after booster vaccinations, compared to single vaccinations. Qualitative analysis of humoral responses to rPA, rBclA and FIS antigens revealed a preponderance of anti-FIS IgG titres following either single or double vaccinations with the SLSV. Antibodies against FIS and rPA both increased by 350 and 300-fold following revaccinations respectively. There was no response to rBclA following vaccinations with the SLSV. Toxin neutralizing titres increased by 80-fold after single vaccination and 700-fold following a double vaccination. Lethal challenge studies in naïve goats indicated a minimum infective dose of 36 B. anthracis spores. Single and double vaccination with the SLSV protected 4/5 and 3/3 of goats challenged with>800 spores respectively. An early booster vaccination following the first immunization is suggested in order to achieve a robust immunity. Results from this study indicate that this crucial second vaccination can be administered as early as 3 months after the initial vaccination. Copyright © 2016 Elsevier B.V. All rights reserved.
Klas, S D; Petrie, C R; Warwood, S J; Williams, M S; Olds, C L; Stenz, J P; Cheff, A M; Hinchcliffe, M; Richardson, C; Wimer, S
2008-10-09
Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150microg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150microg rPA, 150microg rPA+150microg of a conjugated 10-mer peptide representing the Bacillus anthracis capsule (conj), or 150microg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA+conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p=0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA+conj immunized groups (p=0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jia; Yang, Yuting; Wan, Ke
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, ourmore » structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase {alpha} (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.« less
Replication protein A subunit 3 and the iron efficiency response in soybean
USDA-ARS?s Scientific Manuscript database
In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RP...
Miranda H. Mockrin; Richard A. Aiken; Curtis H. Flather
2012-01-01
The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 requires periodic assessments of the condition and trends of the Nation's renewable natural resources. In this report, we document recent and historical trends in hunting and wildlife watching to fulfill RPA requirements. Using data from the U.S. Department of the Interior, Fish and Wildlife...
Curtis H. Flather; Stephen J. Brady; Michael S. Knowles
1999-01-01
This report documents trends in wildlife resources for the nation as required by the Renewable Resources Planning Act (RPA) of 1974. The report focuses on recent historical trends in wildlife as one indicator of ecosystem health across the United States and updates wildlife trends presented in previous RPA Assessments. The report also shows short- and long-term...
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...
2015-10-15
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansen; Chan, Henry; Cash, Darian D.
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Characteristics and Concepts of Dynamic Hub Proteins in DNA Processing Machinery from Studies of RPA
Sugitani, Norie; Chazin, Walter J.
2015-01-01
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA). PMID:25542993
Obesity Predicts Differential Response to Cancer Prevention Interventions among African Americans
ERIC Educational Resources Information Center
Leone, Lucia A.; James, Aimee S.; Allicock, Marlyn; Campbell, Marci K.
2010-01-01
"Wellness for African Americans Through Churches" was a randomized trial that tested the effectiveness of tailored print and video (TPV) and/or lay health advisors (LHA) at increasing recreational physical activity (RPA), fruit and vegetable (F&V) consumption, and colorectal cancer (CRC) screening in African American churches.…
Psychological predictors of children' s recess physical activity motivation and behavior.
Stellino, Megan Babkes; Sinclair, Christina D
2013-06-01
This study explored the relationship between children's basic psychological needs satisfaction at recess, level of recess physical activity motivation (RPAM), and recess physical activity (RPA). Fifth-grade children (N = 203; 50.2% boys; 71.7% healthy-weight) completed measures of age, gender, basic psychological need satisfaction, and level of self-determined motivation for RPA. Children also wore pedometers during six consecutive 30-min mid-school-day recesses. Multiple regression analyses indicated unique significant predictors of RPAM and RPA according to gender and weight status. RPAM was significantly predicted by all three basic psychological needs for boys and only competence need satisfaction for girls and healthy-weight children. RPA was predicted by RPAM for girls, competence need satisfaction for overweight children, and autonomy need satisfaction for boys and healthy-weight children. Findings support self-determination theory and provide important insight into the variations in psychological predictors of motivation for RPA and actual physical activity behavior based on gender and weight status.
NASA Astrophysics Data System (ADS)
Yépez-Martínez, T.; Amor Quiroz, D. A.; Hess, P. O.; Civitarese, O.
2017-07-01
We present the low energy meson spectrum of a Coulomb gauge QCD motivated Hamiltonian for light and strange quarks. We have used the harmonic oscillator as a trial basis and performed a pre-diagonalization of the kinetic energy term in order to get an effective basis where quark and anti-quark degrees of freedom are defined. For the relevant interactions between quarks and anti-quarks, we have implemented a confining interaction between color sources, in order to account in an effective way for the gluonic degrees of freedom. The low energy meson spectrum is obtained from the implementation of the TDA and RPA many-body-methods. The physical states have been described as TDA and RPA collective states with a relatively good agreement. Particularly, the particle-hole correlations of the RPA ground state improve the RPA pion-like state (159.7 MeV) close to its physical value while the TDA one remains at a higher energy (269.2 MeV).
Audry, Julien; Maestroni, Laetitia; Delagoutte, Emmanuelle; Gauthier, Tiphaine; Nakamura, Toru M; Gachet, Yannick; Saintomé, Carole; Géli, Vincent; Coulon, Stéphane
2015-07-14
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination, and repair. In fission yeast, the Rpa1-D223Y mutation provokes telomere shortening. Here, we show that this mutation impairs lagging-strand telomere replication and leads to the accumulation of secondary structures and recruitment of the homologous recombination factor Rad52. The presence of these secondary DNA structures correlates with reduced association of shelterin subunits Pot1 and Ccq1 at telomeres. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G-quadruplex rescues all the telomeric defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G-quadruplex. We propose that RPA prevents the formation of G-quadruplex structures at lagging-strand telomeres to promote shelterin association and facilitate telomerase action at telomeres. © 2015 The Authors.
Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun
2017-03-01
Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.
Glais, Laurent; Jacquot, Emmanuel
2015-01-01
Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.
Human Factors in Accidents Involving Remotely Piloted Aircraft
NASA Technical Reports Server (NTRS)
Merlin, Peter William
2013-01-01
This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).
Grounding the RPA Force: Why Machine Needs Man
2016-06-01
emotional stressors, the perception of inequality amongst peers, and lower school and promotion selection rates have led to highly qualified RPA...operational tempo, a challenge with addressing the mental and emotional stressors placed on the RPA operators, a sense of inequality from within the pilot...pilots and concerns over what that may mean to the pilots’ mental health . Wayne Chappelle, chief of aerospace psychology at the Air Force School of
Robust d -wave pairing symmetry in multiorbital cobalt high-temperature superconductors
NASA Astrophysics Data System (ADS)
Li, Yinxiang; Han, Xinloong; Qin, Shengshan; Le, Congcong; Wang, Qiang-Hua; Hu, Jiangping
2017-07-01
The pairing symmetry of the cobalt high-temperature (high-Tc) superconductors formed by vertex-shared cation-anion tetrahedral complexes is studied by the methods of mean-field, random phase approximation (RPA), and functional renormalization-group (FRG) analyses. The results of all of these methods show that the dx2-y2 pairing symmetry is robustly favored near half filling. The RPA and FRG methods, which are valid in weak-interaction regions, predict that the superconducting state is also strongly orbital selective, namely, the dx2-y2 orbital that has the largest density near half filling among the three t2 g orbitals dominates superconducting pairing. These results suggest that these materials, if synthesized, can provide an indisputable test of the high-Tc pairing mechanism and the validity of different theoretical methods.
Lancrey, Astrid; Safa, Layal; Chatain, Jean; Delagoutte, Emmanuelle; Riou, Jean-François; Alberti, Patrizia; Saintomé, Carole
2018-03-01
Replication protein A (RPA) is a single-stranded DNA binding protein involved in replication and in telomere maintenance. During telomere replication, G-quadruplexes (G4) can accumulate on the lagging strand template and need to be resolved. It has been shown that human RPA is able to unfold a single G4. Nevertheless, the G-strand of human telomeres is prone to fold into higher-order structures formed by contiguous G-quadruplexes. To understand how RPA deals with these structures, we studied its interaction with telomeric G-strands folding into an increasing number of contiguous G4s. The aim of this study was to determine whether the efficiency of binding/unfolding of hRPA to telomeric G-strands depends on the number of G4 units. Our data show that the number n of contiguous G4 units (n ≥ 2) does not affect the efficiency of hRPA to coat transiently exposed single-stranded telomeric G-strands. This feature may be essential in preventing instability due to G4 structures during telomere replication. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Rapid detection of potyviruses from crude plant extracts.
Silva, Gonçalo; Oyekanmi, Joshua; Nkere, Chukwuemeka K; Bömer, Moritz; Kumar, P Lava; Seal, Susan E
2018-04-01
Potyviruses (genus Potyvirus; family Potyviridae) are widely distributed and represent one of the most economically important genera of plant viruses. Therefore, their accurate detection is a key factor in developing efficient control strategies. However, this can sometimes be problematic particularly in plant species containing high amounts of polysaccharides and polyphenols such as yam (Dioscorea spp.). Here, we report the development of a reliable, rapid and cost-effective detection method for the two most important potyviruses infecting yam based on reverse transcription-recombinase polymerase amplification (RT-RPA). The developed method, named 'Direct RT-RPA', detects each target virus directly from plant leaf extracts prepared with a simple and inexpensive extraction method avoiding laborious extraction of high-quality RNA. Direct RT-RPA enables the detection of virus-positive samples in under 30 min at a single low operation temperature (37 °C) without the need for any expensive instrumentation. The Direct RT-RPA tests constitute robust, accurate, sensitive and quick methods for detection of potyviruses from recalcitrant plant species. The minimal sample preparation requirements and the possibility of storing RPA reagents without cold chain storage, allow Direct RT-RPA to be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories and seed certification facilities worldwide. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Vasileva Wand, Nadina I; Bonney, Laura C; Watson, Robert J; Graham, Victoria; Hewson, Roger
2018-06-13
The sudden and explosive expansion of Zika virus (ZIKV) from the African continent through Oceania and culminating in the outbreak in South America has highlighted the importance of new rapid point-of-care diagnostic tools for the control and prevention of transmission. ZIKV infection has devastating consequences, such as neurological congenital malformations in infants born to infected mothers and Guillain-Barré syndrome in adults. Additionally, its potential for transmission through vector bites, as well as from person to person through blood transfusions and sexual contact, are important considerations for prompt diagnosis. Recombinase polymerase amplification (RPA), an isothermal method, was developed as an alternative field-applicable assay to PCR. Here we report the development of a novel ZIKV real-time reverse transcriptase RPA (RT-RPA) assay capable of detecting a range of different ZIKV strains from a variety of geographical locations. The ZIKV RT-RPA was shown to be highly sensitive, being capable of detecting as few as five copies of target nucleic acid per reaction, and suitable for use with a battery-operated portable device. The ZIKV RT-RPA demonstrated 100 % specificity and 83 % sensitivity in clinical samples. Furthermore, we determined that the ZIKV RT-RPA is a versatile assay that can be applied to crude samples, such as saliva and serum, and can be used as a vector surveillance tool on crude mosquito homogenates. Therefore, the developed ZIKV RT-RPA is a useful diagnostic tool that can be transferred to a resource-limited location, eliminating the need for a specialized and sophisticated laboratory environment and highly trained staff.
Simonds, Vanessa W; Omidpanah, Adam; Buchwald, Dedra
2017-10-02
According to the Risk Perception Attitude (RPA) framework, classifying people according to their perceptions of disease risk and their self-efficacy beliefs allows us to predict their likelihood for engaging in preventive behaviors. Health interventions can then be targeted according to RPA group. We applied the framework to type 2 diabetes prevention behaviors among American Indians and expanded it to include culture and numeracy. Using a cross-sectional study design, we surveyed a sample of Northern Plains American Indians in a reservation community setting on self-reported perceptions of diabetes risk, objective diabetes risk, self-efficacy, engagement in healthy behaviors, knowledge of diabetes risk factors, and covariates including demographics, numeracy, and cultural identity. We used the RPA framework to classify participants into four groups based on their perceptions of risk and self-efficacy. Analyses of variance and covariance estimated inter-group differences in behaviors associated with type 2 diabetes prevention. Among 128 participants, our only finding consistent with the RPA framework was that self-efficacy and risk perception predicted knowledge about diabetes risk factors. We found limited evidence for the influence of cultural identity within the RPA framework. Overall, participants had lower numeracy skills which tended to be associated with inaccurate perceptions of higher levels of risk. The theoretical framework may benefit from inclusion of further contextual factors that influence these behaviors. Attention to numeracy skills stands out in our study as an important influence on the RPA framework, highlighting the importance of attending to numeracy when targeting and tailoring risk information to participants segmented by the RPA framework.
Cannioto, Rikki A; Moysich, Kirsten B
2015-06-01
Despite the publication of two dozen observational epidemiological studies investigating the association between recreational physical activity (RPA) and epithelial ovarian cancer (EOC) risk and survival over the past two decades, taken collectively, data from retrospective and prospective studies are mixed and remain inconclusive. Our primary purpose was to conduct a careful review and summary of the epidemiological literature depicting the association between EOC and RPA in the framework of identifying factors which may be impeding our ability to observe consistent associations in the literature. Secondly, in the backdrop of the more broad scientific evidence regarding the benefits of RPA, we provide a summary of guidelines for practitioners to utilize in the context of exercise prescription for cancer patients, including a discussion of special considerations and contraindications to exercise which are unique to EOC patients and survivors. We performed a comprehensive literature search via PubMed to identify epidemiologic investigations focused on the association between RPA and EOC. To be included in the review, studies had to assess RPA independently of occupational or household activities. In total, 26 studies were identified for inclusion. Evidence of a protective effect of RPA relative to EOC risk is more consistent among-case control studies, with the majority of studies demonstrating significant risk reductions between 30 and 60% among the most active women. Among cohort studies, half yielded no significant associations, while the remaining studies provided mixed evidence of an association. Given the limitations identified in the current body of literature, practitioners should not rely on inconclusive evidence to dissuade women from participating in moderate or vigorous RPA. Rather, emphasis should be placed on the greater body of scientific evidence which has demonstrated that RPA results in a plethora of health benefits that can be achieved in all populations, including those with cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Sun, Xiaoxia; Yuan, Wanzhe
2017-01-01
Feline herpesvirus 1 (FHV-1), an enveloped dsDNA virus, is one of the major pathogens of feline upper respiratory tract disease (URTD) and ocular disease. Currently, polymerase chain reaction (PCR) remains the gold standard diagnostic tool for FHV-1 infection but is relatively expensive, requires well-equipped laboratories and is not suitable for field tests. Recombinase polymerase amplification (RPA), an isothermal gene amplification technology, has been explored for the molecular diagnosis of infectious diseases. In this study, an exo-RPA assay for FHV-1 detection was developed and validated. Primers targeting specifically the thymidine kinase (TK) gene of FHV-1 were designed. The RPA reaction was performed successfully at 39°C and the results were obtained within 20 min. Using different copy numbers of recombinant plasmid DNA that contains the TK gene as template, we showed the detection limit of exo-RPA was 102 copies DNA/reaction, the same as that of real time PCR. The exo-RPA assay did not cross-detect feline panleukopenia virus, feline calicivirus, bovine herpesvirus-1, pseudorabies virus or chlamydia psittaci, a panel of pathogens important in feline URTD or other viruses in Alphaherpesvirinae, demonstrating high specificity. The assay was validated by testing 120 nasal and ocular conjunctival swabs of cats, and the results were compared with those obtained with real-time PCR. Both assays provided the same testing results in the clinical samples. Compared with real time PCR, the exo-RPA assay uses less-complex equipment that is portable and the reaction is completed much faster. Additionally, commercial RPA reagents in vacuum-sealed pouches can tolerate temperatures up to room temperature for days without loss of activity, suitable for shipment and storage for field tests. Taken together, the exo-RPA assay is a simple, fast and cost-effective alternative to real time PCR, suitable for use in less advanced laboratories and for field detection of FHV-1 infection.
Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Sun, Xiaoxia; Yuan, Wanzhe
2017-01-01
Feline herpesvirus 1 (FHV-1), an enveloped dsDNA virus, is one of the major pathogens of feline upper respiratory tract disease (URTD) and ocular disease. Currently, polymerase chain reaction (PCR) remains the gold standard diagnostic tool for FHV-1 infection but is relatively expensive, requires well-equipped laboratories and is not suitable for field tests. Recombinase polymerase amplification (RPA), an isothermal gene amplification technology, has been explored for the molecular diagnosis of infectious diseases. In this study, an exo-RPA assay for FHV-1 detection was developed and validated. Primers targeting specifically the thymidine kinase (TK) gene of FHV-1 were designed. The RPA reaction was performed successfully at 39°C and the results were obtained within 20 min. Using different copy numbers of recombinant plasmid DNA that contains the TK gene as template, we showed the detection limit of exo-RPA was 102 copies DNA/reaction, the same as that of real time PCR. The exo-RPA assay did not cross-detect feline panleukopenia virus, feline calicivirus, bovine herpesvirus-1, pseudorabies virus or chlamydia psittaci, a panel of pathogens important in feline URTD or other viruses in Alphaherpesvirinae, demonstrating high specificity. The assay was validated by testing 120 nasal and ocular conjunctival swabs of cats, and the results were compared with those obtained with real-time PCR. Both assays provided the same testing results in the clinical samples. Compared with real time PCR, the exo-RPA assay uses less-complex equipment that is portable and the reaction is completed much faster. Additionally, commercial RPA reagents in vacuum-sealed pouches can tolerate temperatures up to room temperature for days without loss of activity, suitable for shipment and storage for field tests. Taken together, the exo-RPA assay is a simple, fast and cost-effective alternative to real time PCR, suitable for use in less advanced laboratories and for field detection of FHV-1 infection. PMID:28045956
Pasker, Beata; Sosada, Marian; Fraś, Paweł; Boryczka, Monika; Górecki, Michał; Zych, Maria
2015-01-01
Phosphatidic acid (PA) has a crucial role in cell membrane structure and function. For that reason it has a possible application in the treatment of some health disorders in humans, can be used as a natural and non toxic emulsifier and the component of drug carriers in pharmaceuticals and cosmetics as well as a component for synthesis of some new phospholipids. PA is short-lived in the cell and is difficult to extract directly from the biological material. PA may be easily prepared by hydrolysis of phospholipids, especially phosphatidylcholine (PC), using cabbage phospholipase D (PLD). Hydrolytic activity of purified by us PLD extracts from cabbage towards rapeseed phosphatidylcholine (RPC) was investigated. Hydrolysis was carried out in the biphasic system (water/diethyl ether) at pH 6,5 and temp 30°C. Influence of enzymatic extracts from three cabbage varieties, reaction time, Ca2+ concentration and enzyme extracts/PC ratio, on activity towards RPC resulting in rapeseed phosphatidic acid (RPA) formation were examined. Our study shows that the PLD extracts from savoy cabbage (PLDsc), white cabbage (PLDwc) and brussels sprouts (PLDbs) used in experiments exhibit hydrolytic activity towards RPC resulting in rapeseed RPA with different yield. The highest activity towards RPC shows PLD extract from PLDsc with the RPC conversion degree to RPA (90%) was observed at 120 mM Ca2+ concentration, reaction time 60 min and ratio of PLD extract to RPC 6 : 1 (w/w). Our study shows that purified by us PLDsc extracts exhibit hydrolytic activity towards RPC giving new RPA with satisfying conversion degree for use in pharmacy, cosmetics and as a standard in analytical chemistry.
NASA Astrophysics Data System (ADS)
Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin
2018-05-01
The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.
da Silva, Marcelo Santos; Segatto, Marcela; Pavani, Raphael Souza; Gutierrez-Rodrigues, Fernanda; Bispo, Vanderson da Silva; de Medeiros, Marisa Helena Gennari; Calado, Rodrigo Tocantins; Elias, Maria Carolina; Cano, Maria Isabel Nogueira
2017-01-01
Leishmaniasis is a spectrum of diseases caused by parasites of the genus Leishmania that affects millions of people around the world. During infection, the parasites use different strategies to survive the host's defenses, including overcoming exposure to reactive oxidant species (ROS), responsible for causing damage to lipids, proteins and DNA. This damage especially affects telomeres, which frequently results in genome instability, senescence and cell death. Telomeres are the physical ends of the chromosomes composed of repetitive DNA coupled with proteins, whose function is to protect the chromosomes termini and avoid end-fusion and nucleolytic degradation. In this work, we induced acute oxidative stress in promastigote forms of Leishmania amazonensis by treating parasites with 2mM hydrogen peroxide (H 2 O 2 ) for 1h, which was able to increase intracellular ROS levels. In addition, oxidative stress induced DNA damage, as confirmed by 8-oxodGuo quantification and TUNEL assays and the dissociation of LaRPA-1 from the 3' G-overhang, leading to telomere shortening. Moreover, LaRPA-1 was observed to interact with newly formed C-rich single-stranded telomeric DNA, probably as a consequence of the DNA damage response. Nonetheless, acute oxidative stress caused the death of some of the L. amazonensis population and induced cell cycle arrest at the G2/M phase in survivor parasites, which were able to continue proliferating and replicating DNA and became more resistant to oxidative stress. Taken together, these results suggest that adaptation occurs through the selection of the fittest parasites in terms of repairing oxidative DNA damage at telomeres and maintaining genome stability in a stressful environment. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaithiyalingam, Sivaraja; Warren, Eric M.; Eichman, Brandt F.
2010-10-19
DNA replication requires priming of DNA templates by enzymes known as primases. Although DNA primase structures are available from archaea and bacteria, the mechanism of DNA priming in higher eukaryotes remains poorly understood in large part due to the absence of the structure of the unique, highly conserved C-terminal regulatory domain of the large subunit (p58C). Here, we present the structure of this domain determined to 1.7-{angstrom} resolution by X-ray crystallography. The p58C structure reveals a novel arrangement of an evolutionarily conserved 4Fe-4S cluster buried deeply within the protein core and is not similar to any known protein structure. Analysismore » of the binding of DNA to p58C by fluorescence anisotropy measurements revealed a strong preference for ss/dsDNA junction substrates. This approach was combined with site-directed mutagenesis to confirm that the binding of DNA occurs to a distinctively basic surface on p58C. A specific interaction of p58C with the C-terminal domain of the intermediate subunit of replication protein A (RPA32C) was identified and characterized by isothermal titration calorimetry and NMR. Restraints from NMR experiments were used to drive computational docking of the two domains and generate a model of the p58C-RPA32C complex. Together, our results explain functional defects in human DNA primase mutants and provide insights into primosome loading on RPA-coated ssDNA and regulation of primase activity.« less
Postural Control in Children: Implications for Pediatric Practice
ERIC Educational Resources Information Center
Westcott, Sarah L.; Burtner, Patricia
2004-01-01
Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…
Early Detection of Dengue Virus by Use of Reverse Transcription-Recombinase Polymerase Amplification
Teoh, Boon-Teong; Sam, Sing-Sin; Tan, Kim-Kee; Danlami, Mohammed Bashar; Shu, Meng-Hooi; Johari, Jefree; Hooi, Poh-Sim; Brooks, David; Piepenburg, Olaf; Nentwich, Oliver; Wilder-Smith, Annelies; Franco, Leticia; Tenorio, Antonio
2015-01-01
A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue. PMID:25568438
NASA Astrophysics Data System (ADS)
Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.
2002-04-01
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
Zhang, Qian; Chen, Jian; Yu, Xiaoli; Ma, Jinli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Chen, Xingxing; Guo, Xiaomao; Chen, Jiayi
2013-09-01
Whole brain radiotherapy (WBRT) is the most widely used treatment for brain metastasis (BM), especially for patients with multiple intracranial lesions. The purpose of this study was to examine the efficacy of systemic treatments following WBRT in breast cancer patients with BM who had different clinical characteristics, based on the classification of the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) and the breast cancer-specific Graded Prognostic Assessment (Breast-GPA). One hundred and one breast cancer patients with BM treated between 2006 and 2010 were analyzed. The median interval between breast cancer diagnosis and identification of BM in the triple-negative patients was shorter than in the luminal A subtype (26 vs. 36 months, respectively; P = 0.021). Univariate analysis indicated that age at BM diagnosis, Karnofsky performance status/recursive partitioning analysis (KPS/RPA) classes, number of BMs, primary tumor control, extracranial metastases and systemic treatment following WBRT were significant prognostic factors for overall survival (OS) (P < 0.05). Multivariate analysis revealed that KPS/RPA classes and systemic treatments following WBRT remained the significant prognostic factors for OS. For RPA class I, the median survival with and without systemic treatments following WBRT was 25 and 22 months, respectively (P = 0.819), while for RPA class II/III systemic treatments significantly improved OS from 7 and 2 months to 11 and 5 months, respectively (P < 0.05). Our results suggested that triple-negative patients had a shorter interval between initial diagnosis and the development of BM than luminal A patients. Systemic treatments following WBRT improved the survival of RPA class II/III patients.
Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis
Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.
2013-01-01
Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239
Criteria for deciding about forestry research programs
Robert Z. Callaham
1981-01-01
In early 1979, the Forest Service, U.S. Department of Agriculture, was required to decide several significant issues affecting its future research program. These decisions were in response to requirements of the Forest and Rangeland Renewable Resources Planning Act of 1974 (RPA). The decisions required information that was not either available or assembled. Most...
2001-10-25
a lateral tunnel through the right atrium connecting the inferior vena cava with the RPA. The procedure results in a complete bypass of the right...IVC SVC RPA LPA SVC: superior vena cava IVC: inferior vena cava RPA: right pulmonary artery LPA: left pulmonary artery...Abstract – The total cavopulmonary connection (TCPC) is a palliative surgical repair performed on children with a single ventricle (SV
Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
Emfietzoglou, Dimitris; Kyriakou, Ioanna; Garcia-Molina, Rafael; Abril, Isabel; Nikjoo, Hooshang
2013-11-01
Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermin's relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10-50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.
Zhao, Guimin; Wang, Hongmei; Hou, Peili; He, Chengqiang
2018-01-01
Paratuberculosis (Johne's disease) is a chronic debilitating disease of domestic and wild ruminants. However, widespread point-of-care testing is infrequent due to the lack of a robust method. The isothermal recombinase polymerase amplification (RPA) technique has applied for rapid diagnosis. Herein, RPA combined with a lateral flow dipstick (LFD) assay was developed to estimate DNA from Mycobacterium avium subsp. paratuberculosis. First, analytical specificity and sensitivity of the RPA-nfo primer and probe sets were assessed. The assay successfully detected M. paratuberculosis DNA in 30 min at 39℃ with a detection limit of up to eight copies per reaction, which was equivalent to that of the real-time quantitative polymerase chain reaction (qPCR) assay. The assay was specific, as it did not amplify genomes from five other Mycobacterium spp. or five pathogenic enteric bacteria. Six hundred-twelve clinical samples (320 fecal and 292 serum) were assessed by RPA-LFD, qPCR, and enzyme-linked immunosorbent assay, respectively. The RPA-LFD assay yielded 100% sensitivity, 97.63% specificity, and 98.44% concordance rate with the qPCR results. This is the first report utilizing an RPA-LFD assay to visualize and rapidly detect M. paratuberculosis. Our results show this assay should be a useful method for the diagnosis of paratuberculosis in resource-constrained settings. PMID:29284204
Kissenkötter, Jonas; Hansen, Sören; Böhlken-Fascher, Susanne; Ademowo, Olusegun George; Oyinloye, Oladapo Elijah; Bakarey, Adeleye Solomon; Dobler, Gerhard; Tappe, Dennis; Patel, Pranav; Czerny, Claus-Peter; Abd El Wahed, Ahmed
2018-03-01
Rickettsioses are zoonotic vector-transmitted bacterial infections leading to flu-like symptoms and can progress to severe illness in humans. The gold standard for diagnosis of rickettsial infections is the indirect immunofluorescence assay, a serological method which is not suitable for pathogen identification during the acute phase of the disease. Therefore, several real-time PCR assays were developed. These assays are very sensitive, but require high-equipped laboratories and well-trained personnel. Hence, in this study, a rapid point-of-need detection method was developed to detect all Rickettsia species. The 23S and 16S rRNA genes were targeted to develop a recombinase polymerase amplification (RPA) assay. Both 23S and 16S_RPA assays required between seven to ten minutes to amplify and detect one or ten DNA molecules/reaction, respectively. The 16S_RPA assay detected all tested species, whereas the 23S_RPA assay identified only species of the spotted fever and transitional rickettsial groups. All results were compared with real-time PCR assays directed against the same rickettsial genes. The RPA assays are easy to handle and produced quicker results in comparison to real-time PCRs. Both RPA assays were implemented in a mobile suitcase laboratory to ease the use in rural areas. This method can help to provide rapid management of rickettsial infections. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhao, Guimin; Wang, Hongmei; Hou, Peili; He, Chengqiang; He, Hongbin
2018-03-31
Paratuberculosis (Johne's disease) is a chronic debilitating disease of domestic and wild ruminants. However, widespread point-of-care testing is infrequent due to the lack of a robust method. The isothermal recombinase polymerase amplification (RPA) technique has applied for rapid diagnosis. Herein, RPA combined with a lateral flow dipstick (LFD) assay was developed to estimate DNA from Mycobacterium avium subsp. paratuberculosis . First, analytical specificity and sensitivity of the RPA-nfo primer and probe sets were assessed. The assay successfully detected M. paratuberculosis DNA in 30 min at 39°C with a detection limit of up to eight copies per reaction, which was equivalent to that of the real-time quantitative polymerase chain reaction (qPCR) assay. The assay was specific, as it did not amplify genomes from five other Mycobacterium spp. or five pathogenic enteric bacteria. Six hundred-twelve clinical samples (320 fecal and 292 serum) were assessed by RPA-LFD, qPCR, and enzyme-linked immunosorbent assay, respectively. The RPA-LFD assay yielded 100% sensitivity, 97.63% specificity, and 98.44% concordance rate with the qPCR results. This is the first report utilizing an RPA-LFD assay to visualize and rapidly detect M. paratuberculosis . Our results show this assay should be a useful method for the diagnosis of paratuberculosis in resource-constrained settings.
Tian, Enwei; Liu, Qianqian; Ye, Haoting; Li, Fang; Chao, Zhi
2017-12-18
Background: Wuzhimaotao (the dry root of Ficus hirta ) is used as both medicine and food ingredient by the locals in areas around Nanling Mountains of China. Due to its very similar external morphologies with Duanchangcao (the root of Gelsemium elegans , which contains gelsemine that is extremely neurotoxic) and the associated growth of these two plants, incidents of food poisoning and even death frequently occur, resulting from the misuse of Duanchangcao as Wuzhimaotao. The aim of this study is to develop a fast, even, on-spot approach to identification of Wuzhimaotao. Methods: We used DNA barcode-based recombinase polymerase amplification (BAR-RPA) with species-specific primers targeting the internal transcribed spacer (ITS) region of the rDNA of F. hirta. BAR-RPA reaction time and temperature were optimized and the specificity and sensitivity of BAR-RPA species-specific primers were assessed. Results: This technique showed a high specificity and sensitivity to amplify the genomic DNA of F. hirta and allowed for rapid amplification (within 15 min) of the ITS region under a constant and mild temperature range of 37-42 °C without using thermocyclers. Conclusions: The BAR-RPA assay with a fast DNA extraction protocol provides a simple, energy-saving, and rapid method for identification of Wuzhimaotao in both laboratory and field settings.
Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong
2014-01-01
Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.
Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae
2016-05-27
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.
Richards-Kortum, Rebecca
2015-01-01
It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513
Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca
2015-03-30
It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.
Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong
2014-10-10
Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program
NASA Astrophysics Data System (ADS)
Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi
2013-01-01
Random Phase Approximation (RPA) calculations are nowadays an indispensable tool in nuclear physics studies. We present here a complete version implemented with Skyrme-type interactions, with the spherical symmetry assumption, that can be used in cases where the effects of pairing correlations and of deformation can be ignored. The full self-consistency between the Hartree-Fock mean field and the RPA excitations is enforced, and it is numerically controlled by comparison with energy-weighted sum rules. The main limitations are that charge-exchange excitations and transitions involving spin operators are not included in this version. Program summaryProgram title: skyrme_rpa (v 1.00) Catalogue identifier: AENF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5531 No. of bytes in distributed program, including test data, etc.: 39435 Distribution format: tar.gz Programming language: FORTRAN-90/95; easily downgradable to FORTRAN-77. Computer: PC with Intel Celeron, Intel Pentium, AMD Athlon and Intel Core Duo processors. Operating system: Linux, Windows. RAM: From 4 MBytes to 150 MBytes, depending on the size of the nucleus and of the model space for RPA. Word size: The code is written with a prevalent use of double precision or REAL(8) variables; this assures 15 significant digits. Classification: 17.24. Nature of problem: Systematic observations of excitation properties in finite nuclear systems can lead to improved knowledge of the nuclear matter equation of state as well as a better understanding of the effective interaction in the medium. This is the case of the nuclear giant resonances and low-lying collective excitations, which can be described as small amplitude collective motions in the framework of the Random Phase Approximation (RPA). This work provides a tool where one starts from an assumed form of nuclear effective interaction (the Skyrme forces) and builds the self-consistent Hartree-Fock mean field of a given nucleus, and then the RPA multipole excitations of that nucleus. Solution method: The Hartree-Fock (HF) equations are solved in a radial mesh, using a Numerov algorithm. The solutions are iterated until self-consistency is achieved (in practice, when the energy eigenvalues are stable within a desired accuracy). In the obtained mean field, unoccupied states necessary for the RPA calculations are found. For all single-particle states, box boundary conditions are assumed. To solve the RPA problem for a given value of total angular momentum and parity Jπ a coupled basis is constructed and the RPA matrix is diagonalized (protons and neutrons are treated explicitly, and no approximation related to the use of isospin formalism is introduced). The transition amplitudes and transition strengths associated to given external operators are calculated. The HF densities and RPA transition densities are also evaluated. Restrictions: The main restrictions are related to the assumed spherical symmetry and absence of pairing correlations. Running time: The typical running time depends strongly on the nucleus, on the multipolarity, on the choice of the model space and of course on the computer. It can vary from a few minutes to several hours.
2016-01-17
permanently transitioned to the RPA community. (E.g., an F-16 pilot who permanently becomes an RPA pilot). “Borrowed” pilots, officially called “ ALFAs ...initiative as of October 2015. 2) Hold ALFA pilots an additional 3 “Vulnerable to Move List” (VML) cycles. The standard ALFA tour for pilots of manned...Given this policy to hold the ALFAs for an additional three VML cycles, the RPA enterprise will retain approximately 60 ALFA pilots for an additional
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
Rades, Dirk; Bohlen, Guenther; Pluemer, Andre; Veninga, Theo; Hanssens, Patrick; Dunst, Juergen; Schild, Steven E
2007-06-15
The objective of this study was to compare stereotactic radiosurgery (SRS) alone with resection plus whole-brain radiotherapy (WBRT) for the treatment of patients in recursive partitioning analysis (RPA) class 1 and 2 who had 1 or 2 brain metastases. Two hundred six patients in RPA class 1 and 2 who had 1 or 2 brain metastases were analyzed retrospectively. Patients in Group A (n = 94) received from 18 grays (Gy) to 25 Gy SRS, and patients in Group B (n = 112) underwent resection of their metastases and received 10 x 3 Gy/20 x 2 Gy WBRT. Eight other potential prognostic factors were evaluated regarding overall survival (OS), brain control (BC), and local control (LC) of treated metastases: age, sex, performance status, tumor type, number of brain metastases, extracranial metastases, RPA class, and interval from tumor diagnosis to treatment of brain metastases. A comparison of the 2 treatment groups did not reveal significantly different OS (P = .19), BC (P = .52), or LC (P = .25). In RPA subgroup analyses, outcome also did not differ significantly for either RPA class of patients (P values from .21 to .83). On multivariate analysis, improved OS was associated with age < or =60 years (relative risk [RR], 1.75; P = .002), better performance status (RR, 1.67; P = .015), no extracranial metastases (RR, 2.84; P < .001), interval from tumor diagnosis to treatment >12 months (RR, 1.70; P = .003), and RPA class 1 (RR, 1.51; P = .016). Improved BC was associated with a single metastasis (RR, 1.54; P = .034) and an interval from tumor diagnosis to treatment >12 months (RR, 1.58; P = .019), and improved LC was associated with an interval from tumor diagnosis to treatment >12 months (RR, 1.59; P = .047). SRS alone appeared to be as effective as resection plus WBRT in the treatment of 1 or 2 brain metastases for patients in RPA class 1 and 2. Patient outcomes were associated with age, Karnofsky performance status, number of brain metastases, extracranial metastases, RPA class, and interval from tumor diagnosis to treatment. Copyright 2007 American Cancer Society.
Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.
Boyle, David S; McNerney, Ruth; Teng Low, Hwee; Leader, Brandon Troy; Pérez-Osorio, Ailyn C; Meyer, Jessica C; O'Sullivan, Denise M; Brooks, David G; Piepenburg, Olaf; Forrest, Matthew S
2014-01-01
Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays could be of use for integration into a point-of-care test for use in resource constrained settings.
Babu, Binoy; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Sarigul, Tulin; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L
2017-02-01
Rose rosette disease caused by Rose rosette virus (RRV; genus Emaravirus) is the most economically relevant disease of Knock Out ® series roses in the U.S. As there are no effective chemical control options for the disease, the most critical disease management strategies include the use of virus free clean plants for propagation and early detection and destruction of infected plants. The current diagnostic techniques for RRV including end-point reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR (RT-qPCR) are highly sensitive, but limited to diagnostic labs with the equipment and expertise; and is time consuming. To address this limitation, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay based on multiple gene targets for specific detection of RRV was developed. The assay is highly specific and did not cross react with other viruses belonging to the inclusive and exclusive genus. Dilution assays using the in vitro transcripts showed that the primer sets designed (RPA-267, RPA-131, and RPA-321) are highly sensitive, consistently detecting RRV with a detection limit of 1fg/μL. Testing of the infected plants using the primer sets indicated that the virus could be detected from leaves, stems and petals of roses. The primer pair RPA-267 produced 100% positive detection of the virus from infected leaf tissues, while primer set RPA-131 produced 100% detection from stems and petals. The primer set RPA-321 produced 83%, 87.5% and 75% positive detection from leaves, petals and stem tissues, respectively. In addition, the assay has been efficiently used in the detection of RRV infecting Knock Out ® roses, collected from different states in the U.S. The assay can be completed in 20min as compared to the end-point RT-PCR assay (3-4h) and RT-qPCR (1.5h). The RT-RPA assay is reliable, rapid, highly sensitive, and can be easily used in diagnostic laboratories for detection of RRV with no need for any special equipment. Copyright © 2016 Elsevier B.V. All rights reserved.
[Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].
Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L
2018-04-20
Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes, time of gel detection was 20 minutes, and the total time was 138 minutes. In real-time fluorescence quantitative PCR, amplification and detection could be completed simultaneously, which took 90 minutes, and the total time was 110 minutes. In RPA, amplification and detection could also be completed simultaneously, which took 15 minutes, and the total time was 35 minutes. (2) Pseudomonas putida did not show positive amplification signals or gel positive results in any of the three detection methods. The detection limit of Pseudomonas aeruginosa in real-time fluorescence quantitative PCR and PCR was 1×10(1) CFU/mL, and that of Pseudomonas aeruginosa in RPA was 1×10(2) CFU/mL. In RPA and real-time fluorescence quantitative PCR, the higher the concentration of Pseudomonas aeruginosa, the shorter threshold time and smaller the number of cycles, namely shorter time for detecting the positive amplified signal. In real-time fluorescence quantitative PCR, all positive amplification signal could be detected when the concentration of Pseudomonas aeruginosa was 1×10(1)-1×10(7) CFU/mL. In RPA, the detection rate of positive amplification signal was 0 when the concentration of Pseudomonas aeruginosa was 1×10(1) CFU/mL, while the detection rate of positive amplification signal was 67% when the concentration of Pseudomonas aeruginosa was 1×10(2) CFU/mL, and the detection rate of positive amplification signal was 100% when the concentration of Pseudomonas aeruginosa was 1×10(3)-1×10(7) CFU/mL. (3) In RPA, PCR, and real-time fluorescence quantitative PCR, Pseudomonas aeruginosa showed positive amplification signals and gel positive results, but there were no positive amplification signals or gel positive results in four negative control strains of Acinetobacter baumannii, Staphylococcus aureus, Candida albicans, and Pseudomonas putida . (4) In RPA, 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin and 1 clinical strain of Pseudomonas aeruginosa taken by cotton swab showed positive amplification signals, while Pseudomonas putida did not show positive amplification signal. The detection rate of positive amplification signal of 29 clinical strains of Pseudomonas aeruginosa in RPA was 100%. Conclusions: The established optimized RPA technology for fast detection of Pseudomonas aeruginosa requires shorter time, with high sensitivity and specificity. It was of great value in fast detection of Pseudomonas aeruginosa infection in clinic.
Seeber, Andrew; Hegnauer, Anna Maria; Hustedt, Nicole; Deshpande, Ishan; Poli, Jérôme; Eglinger, Jan; Pasero, Philippe; Gut, Heinz; Shinohara, Miki; Hopfner, Karl-Peter; Shimada, Kenji; Gasser, Susan M
2016-12-01
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks. Copyright © 2016 Elsevier Inc. All rights reserved.
An Evaluation of a New Method of IRT Scaling
ERIC Educational Resources Information Center
Ragland, Shelley
2010-01-01
In order to be able to fairly compare scores derived from different forms of the same test within the Item Response Theory framework, all individual item parameters must be on the same scale. A new approach, the RPA method, which is based on transformations of predicted score distributions was evaluated here and was shown to produce results…
Spin response of magnetic dipole transitions in 156Gd and 164Dy
NASA Astrophysics Data System (ADS)
Frekers, D.; Bohle, D.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Watson, J.; Yen, S.
1989-03-01
Intermediate energy proton scattering has been used to probe the spin part of the recently discovered low-lying isovector magnetic dipole transitions in the rotational rare earth nuclei 156Gd and 164Dy. A large spin response is found in 164Dy, whereas in 156Gd the results are consistent with the picture of a predominantly convective excitation. The results are discussed in the context of the IBA-2 model and recent RPA calculations.
Visual display angles of conventional and a remotely piloted aircraft.
Kamine, Tovy Haber; Bendrick, Gregg A
2009-04-01
Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.
Protective activity and immunogenicity of two recombinant anthrax vaccines for veterinary use.
Fasanella, A; Tonello, F; Garofolo, G; Muraro, L; Carattoli, A; Adone, R; Montecucco, C
2008-10-23
In this study, the efficacy of two experimental vaccines against Bacillus anthracis toxinaemia was evaluated in the rabbit model. A recombinant Protective Antigen (rPA) mutant and a trivalent vaccine (TV) composed by the rPA, a inactive mutant of Lethal Factor (mLF-Y728A; E735A) and a inactive mutant of Edema Factor (mEF-K346R), both emulsified with mineral oils, were evaluated for their immunogenicity and protective activity in New Zealand white rabbits. Rabbits vaccinated subcutaneously with rPA and TV rapidly produced high level of anti-PA, anti-LF and anti-EF antibodies, which were still present 6 months later. In the efficacy test, these vaccines protected 100% of rabbits challenged with B. anthracis virulent strain 0843 one week after the vaccination. Moreover, all animals vaccinated twice with rPA and TV, resisted B. anthracis infection 6 months later. Our data indicate that rPA and TV could be good vaccine candidates for inducing protection against B. anthracis infection in target animal host. They could successfully be used in an emergency with simultaneous long-acting antibiotics to halt incubating infections or during an anthrax epidemic.
Roles of antinucleon degrees of freedom in the relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Kurasawa, Haruki; Suzuki, Toshio
2015-11-01
The roles of antinucleon degrees of freedom in the relativistic random phase approximation (RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated in the usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations take into account only some of the nucleon-antinucleon states, in order to avoid divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation that describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, the excitation energies of the spurious state and giant monopole states in the no-sea approximation are dominated by these unphysical changes. The baryon current conservation can be described without touching the divergence problems. A schematic model with separable interactions is presented, which makes the structure of the relativistic RPA transparent.
Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin
2016-08-03
A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.
Yang, H; Taché, Y
1997-05-01
Neurons that contain substance P (SP) and thyrotropin-releasing hormone (TRH) in medullary midline raphe nuclei project to the dorsal vagal complex (DVC). The modulatory role of SP on basal gastric acid secretion (GAS) and TRH on DVC-induced stimulation of GAS was studied in urethan-anesthetized rats. The stable SP agonist, DiMe-C7 ([pGlu5, MePhe8, MeGly9]SP5-11, 50 and 100 pmol), injected unilaterally into the DVC reduced the GAS response (47 +/- 12 mumol/60 min) to coinjected TRH analog, RX 77368 (25 pmol), by 53% and 85%, respectively, whereas DiMe-C7 (100 pmol) alone had no effect on basal and pentagastrin-stimulated GAS. DiMe-C7 (100 pmol/site) inhibited the GAS response to kainic acid injected into the raphe pallidus (Rpa) when it was injected bilaterally into the DVC but not the hypoglossal nuclei. The SP nourokinin-1-receptor antagonist, CP-96,345, injected bilaterally into the DVC (1 nmol/ site) increased basal GAS (33 +/- 8 mumol/90 min) and potentiated the GAS response to kainic acid injected into the Rpa by 40%. These results suggest that SP acts on neurokinin-1 receptors in the DVC to reduce medullary TRH-induced stimulation of GAS in rats.
Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg
2016-01-01
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846
Eichmiller, Robin; Medina-Rivera, Melisa; DeSanto, Rachel; Minca, Eugen; Kim, Christopher; Holland, Cory; Seol, Ja-Hwan; Schmit, Megan; Oramus, Diane; Smith, Jessica; Gallardo, Ignacio F; Finkelstein, Ilya J; Lee, Sang Eun; Surtees, Jennifer A
2018-06-01
Double strand DNA break repair (DSBR) comprises multiple pathways. A subset of DSBR pathways, including single strand annealing, involve intermediates with 3' non-homologous tails that must be removed to complete repair. In Saccharomyces cerevisiae, Rad1-Rad10 is the structure-specific endonuclease that cleaves the tails in 3' non-homologous tail removal (3' NHTR). Rad1-Rad10 is also an essential component of the nucleotide excision repair (NER) pathway. In both cases, Rad1-Rad10 requires protein partners for recruitment to the relevant DNA intermediate. Msh2-Msh3 and Saw1 recruit Rad1-Rad10 in 3' NHTR; Rad14 recruits Rad1-Rad10 in NER. We created two rad1 separation-of-function alleles, rad1R203A,K205A and rad1R218A; both are defective in 3' NHTR but functional in NER. In vitro, rad1R203A,K205A was impaired at multiple steps in 3' NHTR. The rad1R218A in vivo phenotype resembles that of msh2- or msh3-deleted cells; recruitment of rad1R218A-Rad10 to recombination intermediates is defective. Interactions among rad1R218A-Rad10 and Msh2-Msh3 and Saw1 are altered and rad1R218A-Rad10 interactions with RPA are compromised. We propose a model in which Rad1-Rad10 is recruited and positioned at the recombination intermediate through interactions, between Saw1 and DNA, Rad1-Rad10 and Msh2-Msh3, Saw1 and Msh2-Msh3 and Rad1-Rad10 and RPA. When any of these interactions is altered, 3' NHTR is impaired.
α2 Adrenergic receptor-mediated inhibition of thermogenesis.
Madden, Christopher J; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F
2013-01-30
α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 μg/kg, i.v.) and clonidine (100 μg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 μg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 μg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.
NASA Astrophysics Data System (ADS)
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-21
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Ma, Biao; Fang, Jiehong; Wang, Ye; He, Haizhen; Dai, Mingyan; Lin, Wei; Su, Wei; Zhang, Mingzhou
2017-01-01
Cervical cancer is a common gynecologic malignant tumor and has a great impact on women's health. Human papillomavirus (HPV) is implicated in cervical cancer and precancerous lesions and the two are possibly two stages of disease progression. With the technological development of molecular biology and epidemiology, detection and treatment of HPV has become an important means to prevent cervical cancer. Here we present a novel, rapid, sensitive and specific isothermal method of recombinase polymerase amplification (RPA), which is established to detect the two most common high-risk human papillomavirus type 16 and type 18 DNA. In this study, we evaluate the efficacy of the RPA assay, incubating clinical specimens of HPV16 and HPV18 using plasmids standard. It operates at constant low temperature without the thermal instrumentation for incubation. The products can be detected via agarose gel electrophoresis assay, reverse dot blot assay, and quantitative real-time assay with SYBR Green I. We assess the diagnostic performance of the RPA assay for detecting of HPV16 and HPV18 in 335 clinical samples from patients suspected of cervical cancer. The results revealed no cross-reaction with other HPV genotypes and the RPA assay achieve a sensitivity of 100 copies. Compared with TaqMan qPCR, the RPA technique achieves exponential amplification with no need for pretreatment of sample DNA at 37°C for 20 minutes, which reveals more satisfactory performance. The agreement between the RPA and qPCR assays was 97.6% (κ = 0.89) for HPV16 positivity and 98.5% (κ = 0.81) for HPV18 positivity, indicating very good correlation between both tests. Importantly, the RPA assay was demonstrated to be a useful and powerful method for detection of HPV virus, which therefore may serve as a valuable tool for rapid diagnosis of HPV infection in both commercial and clinical applications.
Du, Xin-Jun; Zang, Yu-Xuan; Liu, Hai-Bin; Li, Ping; Wang, Shuo
2018-04-01
Listeria monocytogenes is an important food-borne pathogenic bacterium that causes human disease, resulting in economic losses worldwide. The current detection methods for L. monocytogenes are not well suited for direct field testing because they involve complicated, time-consuming operations. A simple, efficient method is vital for L. monocytogenes detection. In this study, we combined isothermal recombinase polymerase amplification (RPA) with a lateral flow (LF) strip to rapidly and reliably detect L. monocytogenes. In the presence of biotin- and digoxin-modified primers, RPA produced numerous digoxin- and biotin-attached duplex DNA products. These products were detected on an LF strip via dual immunoreactions (digoxin on the duplex DNA reacted with the anti-digoxin antibody on the gold nanoparticle (Au-NP) and the biotin on the duplex DNA captured by the streptavidin on the LF test zone). The accumulation of Au-NPs produced characteristic bands, enabling the visual detection of L. monocytogenes without instrumentation. This assay could be used to detect L. monocytogenes within 15 min, including DNA amplification with RPA for 10 min at 39 °C and visualization of the amplicons by LF strips for 5 min. Experiments confirmed a detection limit as low as 300 fg of DNA and 1.5 × 10 1 CFU in pure cultures. Furthermore, RPA-LF exhibited no cross-reactions with pathogens. Evaluation of the method with food samples indicated that the detection limit was substantially improved to 1.5 × 10° CFU for the original bacterial content in 25 g/mL samples after enrichment for 6 hr. RPA-LF can be used as a sensitive and rapid detection technique for L. monocytogenes. Recombinase polymerase amplification (RPA) can amplify target DNA at 37 to 42 °C without a thermal cycler. Lateral flow (LF) strips are portable, cheap and easy to operate. RPA combined with LF strips to detect Listeria monocytogenes can be widely used in remote areas. © 2018 Institute of Food Technologists®.
Sun, Kui; Xing, Weiwei; Yu, Xinling; Fu, Wenliang; Wang, Yuanyuan; Zou, Minji; Luo, Zhihong; Xu, Donggang
2016-08-31
With the continuous decline in prevalence and intensity of Schistosoma japonicum infection in China, more accurate and sensitive methods suitable for field detection become much needed for schistosomiasis control. Here, a novel rapid and visual detection method based on the combination of recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) was developed to detect S. japonicum DNA in fecal samples. The LFD-RPA assay targeting SjR2 could detect 5 fg S. japonicum DNA, which was identical to qPCR and real-time RPA assay, and showed no cross-reaction with other parasites. The detection could be finished within 15-20 min at a wide temperature range (25-45 °C), and the results could be visualized by naked eye. The diagnostic validity of LFD-RPA assay was further assessed with 14 fecal samples of infected patients diagnosed by Kato-Katz method and 31 fecal samples of healthy persons, and compared with that of Enzyme-linked immunosorbent assay (ELSIA) and Indirect Hemagglutination Assay (IHA). The LFD-RPA assay showed 92.68 % sensitivity, 100 % specificity and excellent diagnostic agreement with the gold standard Kato-Katz test (k = 0.947, Z = 6.36, P < 0.001), whereas ELISA showed 85.71 % sensitivity, 93.55 % specificity, and substantial diagnostic agreement (k = 0.793, Z = 5.31, P < 0.001), and IHA showed 78.57 % sensitivity, 83.87 % specificity, and moderate diagnostic agreement (k = 0.600, Z = 4.05, P < 0.001), indicating that the LFD-RPA was much better than the traditional methods. The LFD-RPA assay established by us is a sensitive, specific, rapid and convenient method for the diagnosis of schistosomiasis, and shows a great potency in field application.
Tu, Po-An; Shiu, Jia-Shian; Lee, Shu-Hwae; Pang, Victor Fei; Wang, De-Chi; Wang, Pei-Hwa
2017-05-01
Caprine arthritis-encephalitis (CAE) in goats is a complex disease syndrome caused by a lentivirus. This persistent viral infection results in arthritis in adult goats and encephalitis in lambs. The prognosis for the encephalitic form is normally poor, and this form of the disease has caused substantial economic losses for goat farmers. Hence, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed in the present study for detecting the proviral DNA of caprine arthritis-encephalitis virus (CAEV). Under the optimal incubation conditions, specifically, 30min at 37°C for RPA followed by 5min at room temperature for LFD, the assay was found to be sensitive to a lower limit of 80pg of total DNA and 10 copies of plasmid DNA. Furthermore, there was no cross-reaction with other tested viruses, including goat pox virus and bovine leukemia virus. Given its simplicity and portability, this RPA-LFD protocol can serve as an alternative tool to ELISA for the primary screening of CAEV, one that is suitable for both laboratory and field application. When the RPA-LFD was applied in parallel with serological ELISA for the detection of CAEV in field samples, the RPA-LFD assay exhibited a higher sensitivity than the traditional method, and 82% of the 200 samples collected in Taiwan were found to be positive. To our knowledge, this is the first report providing evidence to support the use of an RPA-LFD assay as a specific and sensitive platform for detecting CAEV proviral DNA in goats in a faster manner, one that is also applicable for on-site utilization at farms and that should be useful in both eradication programs and epidemiological studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Insight into organic reactions from the direct random phase approximation and its corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias
2015-10-14
The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11)more » represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.« less
Analysis of suprathermal electron properties at the magnetic pile-up boundary of Comet P/Halley
NASA Technical Reports Server (NTRS)
Mazelle, C.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Carlson, C. W.
1989-01-01
Among the plasma discontinuities detected by the Giotto spacecraft around Comet P/Halley, the magnetic pile-up boundary, located at about 135,000 km from the nucleus, has a sharpness which was not foreseen by theoretical models. At this boundary, which marks the beginning of the region where the field lines draped around the nucleus have been piled up, the magnetic field jumps sharply. Electron measurements provided by the RPA experiment show that a clear plasma discontinuity coincides with this magnetic feature. Significant changes occur here in the suprathermal electron distribution function. A magneto-plasma sheet is clearly defined after the boundary. Inside this sheet, close correlations exist between the parameters describing the magnetic field and the electron population. The polytropic equation of state governing the suprathermal electrons in the sheet has been deduced from RPA measurements. Some implications of this law are discussed.
Participation in recreational physical activity: why do socioeconomic groups differ?
Burton, Nicola W; Turrell, Gavin; Oldenburg, Brian
2003-04-01
This qualitative study explored how influences on recreational physical activity (RPA) were patterned by socioeconomic position. Face-to-face interviews were conducted with 10 males and 10 females in three socioeconomic groups (N = 60). Influences salient across all groups included previous opportunities, physical health. social assistance. safety. environmental aesthetics and urban design, physical and health benefits, and barriers of self-consciousness, low skill, and weather/time of year. Influences more salient to the high socioeconomic group included social benefits, achieving a balanced lifestyle, and the barrier of an unpredictable lifestyle. Influences more salient to the high and mid socioeconomic groups included efficacy, perceived need, activity demands, affiliation, emotional benefits, and the barrier of competing demands. Influences more salient to the low socioeconomic group included poor health and barriers of inconvenient access and low personal functioning. Data suggest that efforts to increase RPA in the population should include both general and socioeconomically targeted strategies.
Recombinase polymerase amplification applied to plant virus detection and potential implications.
Babu, Binoy; Ochoa-Corona, Francisco M; Paret, Mathews L
2018-04-01
Several isothermal techniques for the detection of plant pathogens have been developed with the advent of molecular techniques. Among them, Recombinase Polymerase Amplification (RPA) is becoming an important technique for the rapid, sensitive and cost-effective detection of plant viruses. The RPA technology has the advantage to be implemented in field-based scenarios because the method requires a minimal sample preparation, and is performed at constant low temperature (37-42 °C). The RPA technique is rapidly becoming a promising tool for use in rapid detection and further diagnostics in plant clinics and monitoring quarantine services. This paper presents a review of studies conducted using RPA for detection/diagnosis of plant viruses with either DNA genomes (Banana bunchy top virus, Bean golden yellow mosaic virus, Tomato mottle virus, Tomato yellow leaf curl virus) or RNA genomes (Little Cherry virus 2, Plum pox virus and Rose rosette virus). Copyright © 2018 Elsevier Inc. All rights reserved.
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
NASA Astrophysics Data System (ADS)
Sabeeh, Kashif
This thesis presents theoretical studies of dielectric response properties of parabolically-confined nanostructures in a magnetic field. We have determined the retarded Schrodinger Green's function for an electron in such a parabolically confined system in the presence of a time dependent electric field and an ambient magnetic field. Following an operator equation of motion approach developed by Schwinger, we calculate the result in closed form in terms of elementary functions in direct-time representation. From the retarded Schrodinger Green's function we construct the closed-form thermodynamic Green's function for a parabolically confined quantum-dot in a magnetic field to determine its plasmon spectrum. Due to confinement and Landau quantization this system is fully quantized, with an infinite number of collective modes. The RPA integral equation for the inverse dielectric function is solved using Fredholm theory in the nondegenerate and quantum limit to determine the frequencies with which the plasmons participate in response to excitation by an external potential. We exhibit results for the variation of plasmon frequency as a function of magnetic field strength and of confinement frequency. A calculation of the van der Waals interaction energy between two harmonically confined quantum dots is discussed in terms of the dipole-dipole correlation function. The results are presented as a function of confinement strength and distance between the dots. We also rederive a result of Fertig & Halperin [32] for the tunneling-scattering of an electron through a saddle potential which is also known as a quantum point contact (QPC), in the presence of a magnetic field. Using the retarded Green's function we confirm the result for the transmission coefficient and analyze it.
Rapid molecular assays for the detection of yellow fever virus in low-resource settings.
Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav
2014-03-01
Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.
Fishman, Gerald A; Roberts, Mary Flynn; Derlacki, Deborah J; Grimsby, Jonna L; Yamamoto, Hiroyuki; Sharon, Dror; Nishiguchi, Koji M; Dryja, Thaddeus P
2004-01-01
To evaluate the molecular genetic defects associated with retinitis punctata albescens (RPA) in 5 patients from 3 families with this disease. We examined 3 probands and 2 clinically affected relatives with RPA. Clinical examinations included best-corrected visual acuity, visual field testing, electroretinography, dilated fundus examination, and fundus photography. Leukocyte DNA was analyzed for mutations in the exons of the genes encoding cellular retinaldehyde-binding protein 1 (RLBP1), 11-cis-retinol dehydrogenase (RDH5), interphotoreceptor retinoid-binding protein (RBP3), and photoreceptor all-trans-retinol dehydrogenase (RDH8). Not all patients were evaluated for mutations in each gene. The exons were individually amplified and screened for mutations by single-stranded conformational polymorphism analysis or direct genomic sequencing. The 3 probands had similar clinical findings, including a history of poor night vision, the presence of punctate white deposits in the retina, and substantially reduced or absent rod responses on electroretinogram testing. One of the probands (patient 2:III:2) had 2 novel mutations in the RLBP1 gene (Arg151Trp and Gly31[2-base pair deletion], [GGA-->G-]). Segregation analysis showed that the 2 mutations were allelic and that the patient was a compound heterozygote. Both parents of the proband manifested round white deposits in the retina. The other 2 probands had no detected pathogenic mutations in RLBP1 or in the other 3 genes evaluated. The identification of novel RLBP1 mutations in 1 of our 3 probands, all with RPA, is further evidence of genetic (nonallelic) heterogeneity in this disease. The presence of round white deposits in the retina may be observed in those heterozygous for RLBP1. Clinical Relevance Patients with a clinical presentation of RPA can have genetically different mutations. Drusen-like lesions may be observed in heterozygotes in families with this disease and a mutation in RLBP1.
Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings
Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav
2014-01-01
Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings. PMID:24603874
Differential Impact of Whole-Brain Radiotherapy Added to Radiosurgery for Brain Metastases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Doo-Sik; Lee, Jung-Il, E-mail: jilee@skku.ed; Im, Yong-Seok
2010-10-01
Purpose: The authors investigated whether the addition of whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) provided any therapeutic benefit according to recursive partitioning analysis (RPA) class. Methods and Materials: Two hundred forty-five patients with 1 to 10 metastases who underwent SRS between January 2002 and December 2007 were included in the study. Of those, 168 patients were treated with SRS alone and 77 patients received SRS followed by WBRT. Actuarial curves were estimated using the Kaplan-Meier method regarding overall survival (OS), distant brain control (DC), and local brain control (LC) stratified by RPA class. Analyses for known prognostic variables weremore » performed using the Cox proportional hazards model. Results: Univariate and multivariate analysis revealed that control of the primary tumor, small number of brain metastases, Karnofsky performance scale (KPS) > 70, and initial treatment modalities were significant predictors for survival. For RPA class 1, SRS plus WBRT was associated with a longer survival time compared with SRS alone (854 days vs. 426 days, p = 0.042). The SRS plus WBRT group also showed better LC rate than did the SRS-alone group (p = 0.021), although they did not show a better DC rate (p = 0.079). By contrast, for RPA class 2 or 3, no significant difference in OS, LC, or DC was found between the two groups. Conclusions: These results suggest that RPA classification should determine whether or not WBRT is added to SRS. WBRT may be recommended to be added to SRS for patients in whom long-term survival is expected on the basis of RPA classification.« less
Effects of depletion of dihydropyrimidine dehydrogenase on focus formation and RPA phosphorylation.
Someya, Masanori; Sakata, Koh-ichi; Matsumoto, Yoshihisa; Tauchi, Hiroshi; Kai, Masahiro; Hareyama, Masato; Fukushima, Masakazu
2012-01-01
Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase (DPYD), partially inhibits homologous recombination (HR) repair and has a radiosensitizing effect as well as enhanced sensitivity to Camptothecin (CPT). DPYD is the target protein for radiosensitization by Gimeracil. We investigated the mechanisms of sensitization of radiation and CPT by DPYD inhibition using DLD-1 cells treated with siRNA for DPYD. We investigated the focus formation of various kinds of proteins involved in HR and examined the phosphorylation of RPA by irradiation using Western blot analysis. DPYD depletion by siRNA significantly restrained the formation of radiation-induced foci of Rad51 and RPA, whereas it increased the number of foci of NBS1. The numbers of colocalization of NBS1 and RPA foci in DPYD-depleted cells after radiation were significantly smaller than in the control cells. These results suggest that DPYD depletion is attributable to decreased single-stranded DNA generated by the Mre11/Rad50/NBS1 complex-dependent resection of DNA double-strand break ends. The phosphorylation of RPA by irradiation was partially suppressed in DPYD-depleted cells, suggesting that DPYD depletion may partially inhibit DNA repair with HR by suppressing phosphorylation of RPA. DPYD depletion showed a radiosensitizing effect as well as enhanced sensitivity to CPT. The radiosensitizing effect of DPYD depletion plus CPT was the additive effect of DPYD depletion and CPT. DPYD depletion did not have a cell-killing effect, suggesting that DPYD depletion may not be so toxic. Considering these results, the combination of CPT and drugs that inhibit DPYD may prove useful for radiotherapy as a method of radiosensitization.
Factors influencing Recombinase Polymerase Amplification (RPA) assay outcomes at point of care
Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Matthew; Piepenburg, Olaf; Lehman, Dara A.; Boyle, David S.
2016-01-01
Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 minutes without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer’s protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3–6 minutes of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at −20°C, and 25°C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45°C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45°C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. PMID:26854117
Wang, Jian-Chang; Yuan, Wan-Zhe; Han, Qing-An; Wang, Jin-Feng; Liu, Li-Bing
2017-05-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pigs, and has tremendous negative economic impact on the swine industry worldwide. PRRSV is classified into the two distinct genotypes: type 1 and type 2, and most of the described PRRSV isolates in China are type 2. Rapid and sensitive detection of PRRSV is of great importance for the disease control and regional eradication programs. Recombinase polymerase amplification (RPA) has emerged as a novel isothermal amplification technology for the molecular diagnosis of infectious diseases. In this study, a fluorescence reverse transcription RPA (RT-RPA) assay was developed to detect the type 2 PRRSV using primers and exo probe specific for the viral nucleocapsid gene. The reaction was performed at 40°C within 20min. The RT-RPA assay could detect both the classical (C-PRRSV) and highly pathogenic PRRSV (HP-PRRSV), but there was no cross-reaction to other pathogens. Using the in vitro transcribed PRRSV RNA as template, the analytical sensitivity of RT-RPA was 690 copies. The assay performance was evaluated by testing 60 field samples and compared to real-time RT-PCR. The detection rate of RT-RPA was 86.6% (52/60), while the detection rate of real-time RT-PCR was 83.3% (50/60). This simple, rapid and reliable method could be potentially applied for rapid detection of PRRSV in point-of-care and rural areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.
Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S
2016-04-01
Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
John Hof; Curtis Flather; Tony Baltic; Stephen Davies
1999-01-01
The 1999 forest and rangeland condition indicator model is a set of independent econometric production functions for environmental outputs (measured with condition indicators) at the national scale. This report documents the development of the database and the statistical estimation required by this particular production structure with emphasis on two special...
H. Ken Cordell; Vahé Heboyan; Florence Santos; John C. Bergstrom
2011-01-01
Research has suggested that significant relationships exist between rural population change and natural amenities. Thus, understanding and predicting domestic migration trends as a function of changes in natural amenities is important for effective regional growth and development policies and strategies. In this study, we first estimated an econometric model which...
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
Bi, Yun-Feng; Zheng, Zhong; Pi, Zi-Feng; Liu, Zhi-Qiang; Song, Feng-Rui
2014-12-01
Using a UPLC-MS/MS (MRM) and cocktail probe substrates method, the metabolic fingerprint of the compatibility of Radix Aconite (RA) and Radix Paeoniae Alba (RPA) and its effect on CYP450 enzymes were investigated. These main CYP isoforms include CYP 1A2, CYP 2C, CYP 2E1, CYP 2D and CYP 3A. Compared with the inhibition effect of RA decoctions on CYP450 isoforms, their co-decoctions of RA and RPA with different proportions can decrease RA' inhibition on CYP3A, CYP2D, CYP2C and CYP1A2, but can not reduce RA' effect on CYP2E1. The metabolic fingerprints of RA decoction and co-decoctions with different proportions of RPA in CYP450 of rat liver were analyzed by UPLC-MS. Compared with the metabolic fingerprints of RA decoction, the intensity of diester-diterpenoid aconitum alkaloids decreased significantly, while the intensity of monoester-diterpenoid alkaloids significantly increased in the metabolic fingerprints of co-decoctions of RA and RPA. The results suggest that RA coadministration with RPA increased the degradation of toxic alkaloid and show the effect of toxicity reducing and efficacy enhancing.
Rosser, A; Rollinson, D; Forrest, M; Webster, B L
2015-09-04
Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources. Here a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30-45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5% of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms. The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.
Rapid and sensitive detection of mink circovirus by recombinase polymerase amplification.
Ge, Junwei; Shi, Yunjia; Cui, Xingyang; Gu, Shanshan; Zhao, Lili; Chen, Hongyan
2018-06-01
To date, the pathogenic role of mink circovirus (MiCV) remains unclear, and its prevalence and economic importance are unknown. Therefore, a rapid and sensitive molecular diagnosis is necessary for disease management and epidemiological surveillance. However, only PCR methods can identify MiCV infection at present. In this study, we developed a nested PCR and established a novel recombinase polymerase amplification (RPA) assay for MiCV detection. Sensitivity analysis showed that the detection limit of nested PCR and RPA assay was 10 1 copies/reaction, and these methods were more sensitive than conventional PCR, which has a detection limit of 10 5 copies/reaction. The RPA assay had no cross-reactivity with other related viral pathogens, and amplification was completed in less than 20 min with a simple device. Further assessment of clinical samples showed that the two assays were accurate in identifying positive and negative conventional PCR samples. The detection rate of MiCV by the RPA assay in clinical samples was 38.09%, which was 97% consistent with that by the nested PCR. The developed nested PCR is a highly sensitive tool for practical use, and the RPA assay is a simple, sensitive, and potential alternative method for rapid and accurate MiCV diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Yang; Qin, Xiaodong; Song, Yiming; Zhang, Wei; Hu, Gaowei; Dou, Yongxi; Li, Yanmin; Zhang, Zhidong
2017-02-07
Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.
Recombinase polymerase amplification assay for rapid detection of lumpy skin disease virus.
Shalaby, Mohamed A; El-Deeb, Ayman; El-Tholoth, Mohamed; Hoffmann, Donata; Czerny, Claus-Peter; Hufert, Frank T; Weidmann, Manfred; Abd El Wahed, Ahmed
2016-11-02
Lumpy skin disease virus (LSDV) is a Capripoxvirus infecting cattle and Buffalos. Lumpy skin disease (LSD) leads to significant economic losses due to hide damage, reduction of milk production, mastitis, infertility and mortalities (10 %). Early detection of the virus is crucial to start appropriate outbreak control measures. Veterinarians rely on the presence of the characteristic clinical signs of LSD. Laboratory diagnostics including virus isolation, sequencing and real-time polymerase chain reaction (PCR) are performed at well-equipped laboratories. In this study, a portable, simple, and rapid recombinase polymerase amplification (RPA) assay for the detection of LSDV-genome for the use on farms was developed. The LSDV RPA assay was performed at 42 °C and detected down to 179 DNA copies/reaction in a maximum of 15 min. Unspecific amplification was observed with neither LSDV-negative samples (n = 12) nor nucleic acid preparations from orf virus, bovine papular stomatitis virus, cowpoxvirus, Peste des petits ruminants and Blue tongue virus (serotypes 1, 6 and 8). The clinical sensitivity of the LSDV RPA assay matched 100 % (n = 22) to real-time PCR results. In addition, the LSDV RPA assay detected sheep and goat poxviruses. The LSDV RPA assay is a rapid and sensitive test that could be implemented in field or at quarantine stations for the identification of LSDV infected case.
Prescott, Meagan A.; Reed, Aimee N.; Jin, Ling; Pastey, Manoj K.
2018-01-01
Since the emergence of cyprinid herpes virus 3 (CyHV-3), outbreaks have been devastating to koi and common carp leading to high economic losses. Current diagnostics for detecting CyHV-3 are limited in sensitivity and are further complicated by latency. Here we describe the detection of CyHV-3 by recombinase polymerase amplification (RPA). The RPA assay can detect as low as 10 copies of CyHV-3 genome by an isothermal reaction and yields results in approximately 20 minutes. Using the RPA assay, CyHV-3 genome can be detected in total DNA of white blood cells isolated from koi latently infected with CyHV-3, while less than 10% of the latently infected koi can be detected by a real-time PCR assay in total DNA of white blood cells. In addition, RPA products can be detected in a lateral flow device that is cheap, fast, and can be used outside of the diagnostic lab. The RPA assay and lateral flow device provide for the rapid, sensitive, and specific amplification of CyHV-3 that with future modifications for field use and validation could lead to enhanced surveillance and early diagnosis of CyHV-3 in the laboratory and field. PMID:27485254
Eid, Charbel; Santiago, Juan G
2016-12-19
We present a new approach which enables lysis, extraction, and detection of inactivated Listeria monocytogenes cells from blood using isotachophoresis (ITP) and recombinase polymerase amplification (RPA). We use an ITP-compatible alkaline and proteinase K approach for rapid and effective lysis. We then perform ITP purification to separate bacterial DNA from whole blood contaminants using a microfluidic device that processes 25 μL sample volume. Lysis, mixing, dispensing, and on-chip ITP purification are completed in a total of less than 50 min. We transfer extracted DNA directly into RPA master mix for isothermal incubation and detection, an additional 25 min. We first validate our assay in the detection of purified genomic DNA spiked into whole blood, and demonstrate a limit of detection of 16.7 fg μL -1 genomic DNA, the equivalent of 5 × 10 3 cells per mL. We then show detection of chemically-inactivated L. monocytogenes cells spiked into whole blood, and demonstrate a limit of detection of 2 × 10 4 cells per mL. Lastly, we show preliminary experimental data demonstrating the feasibility of the integration of ITP purification with RPA detection on a microfluidic chip. Our results suggest that ITP purification is compatible with RPA detection, and has potential to extend the applicability of RPA to whole blood.
Zhang, Hui; Cheng, Pei; Jin, Ge; Han, Ding; Luo, Yi; Li, Jia
2017-03-01
Few data are available regarding the surgical strategies for an anomalous origin of the left coronary artery (LCA) from the right pulmonary artery (RPA) with an intramural aortic course. We reviewed our experience in a case series of 10 children. From 2007 to 2014, 10 patients (7 boys and 3 girls, aged 3 months to 11 years, median 21 months) underwent surgical repair. Before the operation, echocardiography showed the mean left ventricular ejection fraction 45% ± 10% and mean fractional shortening fraction 21% ± 7%. Moderate to severe mitral regurgitation was found in 4 patients and left ventricular aneurysm in 5 patients. The intramural aortic course of LCA was not diagnosed preoperatively in any of the patients. During the operation, the LCA orifice was seen and 2 types were identified: at the bifurcation of the main pulmonary artery and RPA in 3 patients, and more distal along the RPA from the bifurcation in 7 patients. In the first type, direct coronary button transfer was performed. In the second type, button transfer with unroofing of the intramural course was performed. Annuloplasty of the mitral valve was performed in 4 patients and the aneurysm was repaired with plication technique in 2 patients. Postoperatively, 2 patients died of cardiac failure. Others showed significantly improved left ventricular function at follow-up as compared with preoperative measures (mean ejection fraction 67% ± 6%, mean fractional shortening 32% ± 3%, P = .01 for both). Careful attention should be paid to the extremely rare association of an aortic intramural course before and during an operation when dealing with anomalous LCA from the RPA. Surgical strategies for aortic reimplantation include coronary button transfer and unroofing of the intramural segment. The outcomes are encouraging. Copyright © 2016. Published by Elsevier Inc.
Tran-Nguyen, L. T. T.; Kube, M.; Schneider, B.; Reinhardt, R.; Gibb, K. S.
2008-01-01
The chromosome sequence of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of “Ca. Phytoplasma australiense” with “Ca. Phytoplasma asteris” strains OY-M and AY-WB showed that the gene order was more conserved between the closely related “Ca. Phytoplasma asteris” strains than to “Ca. Phytoplasma australiense.” Differences observed between “Ca. Phytoplasma australiense” and “Ca. Phytoplasma asteris” strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function. PMID:18359806
Wagner, Leslie; Verma, Anita; Meade, Bruce D.; Reiter, Karine; Narum, David L.; Brady, Rebecca A.; Little, Stephen F.
2012-01-01
New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies. PMID:22815152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzin, Alberto; Snider, Silvia; Picozzi, Piero
2009-07-01
Purpose: To assess the utility of the Radiation Therapy Oncology Group Recursive Partitioning Analysis (RPA) and Score Index for Radiosurgery (SIR) stratification systems in predicting survival in patients with brain metastasis treated with Gamma Knife radiosurgery (GKRS). Methods and Materials: A total of 185 patients were included in the study. Patients were stratified according to RPA and SIR classes. The RPA and SIR classes, age, Karnofsky Performance Status (KPS), and systemic disease were correlated with survival. Results: Five patients were lost to follow-up. Median survival in patients in RPA Class 1 (30 patients) was 17 months; in Class 2 (140more » patients), 10 months; and in Class 3 (10 patients), 3 months. Median survival in patients in SIR Class 1 (30 patients) was 3 months; in Class 2 (135 patients), 8 months; and in Class 3 (15 patients), 20 months. In univariate testing, age younger than 65 years (p = 0.0004), KPS higher than 70 (p = 0.0001), RPA class (p = 0.0078), SIR class (p = 0.0002), and control of the primary tumor (p = 0.02) were significantly associated with improved outcome. In multivariate analysis, KPS (p < 0.0001), SIR class (p = 0.0008), and RPA class (p = 0.03) had statistical value. Conclusions: This study supports the use of GKRS as a single-treatment modality in this selected group of patients. Stratification systems are useful in the estimation of patient eligibility for GKRS. A second-line treatment was necessary in 30% of patients to achieve distal or local brain control. This strategy is useful to control brain metastasis in long-surviving patients.« less
Grossman, Rachel; Ram, Zvi
2014-12-01
Sarcoma rarely metastasizes to the brain, and there are no specific treatment guidelines for these tumors. The recursive partitioning analysis (RPA) classification is a well-established prognostic scale used in many malignancies. In this study we assessed the clinical characteristics of metastatic sarcoma to the brain and the validity of the RPA classification system in a subset of 21 patients who underwent surgical resection of metastatic sarcoma to the brain We retrospectively analyzed the medical, radiological, surgical, pathological, and follow-up clinical records of 21 patients who were operated for metastatic sarcoma to the brain between 1996 and 2012. Gliosarcomas, sarcomas of the head and neck with local extension into the brain, and metastatic sarcomas to the spine were excluded from this reported series. The patients' mean age was 49.6 ± 14.2 years (range, 25-75 years) at the time of diagnosis. Sixteen patients had a known history of systemic sarcoma, mostly in the extremities, and had previously received systemic chemotherapy and radiation therapy for their primary tumor. The mean maximal tumor diameter in the brain was 4.9 ± 1.7 cm (range 1.7-7.2 cm). The group's median preoperative Karnofsky Performance Scale was 80, with 14 patients presenting with Karnofsky Performance Scale of 70 or greater. The median overall survival was 7 months (range 0.2-204 months). The median survival time stratified by the Radiation Therapy Oncology Group RPA classes were 31, 7, and 2 months for RPA class I, II, and III, respectively (P = 0.0001). This analysis is the first to support the prognostic utility of the Radiation Therapy Oncology Group RPA classification for sarcoma brain metastases and may be used as a treatment guideline tool in this rare disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005
Molecular basis for PrimPol recruitment to replication forks by RPA.
Guilliam, Thomas A; Brissett, Nigel C; Ehlinger, Aaron; Keen, Benjamin A; Kolesar, Peter; Taylor, Elaine M; Bailey, Laura J; Lindsay, Howard D; Chazin, Walter J; Doherty, Aidan J
2017-05-23
DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.
A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus.
Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe
2017-10-01
A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 10 2 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection.
A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus
Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe
2017-01-01
A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 102 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection. PMID:29081590
Qian, Wenjuan; Lu, Ying; Meng, Youqing; Ye, Zunzhong; Wang, Liu; Wang, Rui; Zheng, Qiqi; Wu, Hui; Wu, Jian
2018-06-06
' Candidatus Liberibacter asiaticus' (Las) is the most prevalent bacterium associated with huanglongbing, which is one of the most destructive diseases of citrus. In this paper, an extremely rapid and simple method for field detection of Las from leaf samples, based on recombinase polymerase amplification (RPA), is described. Three RPA primer pairs were designed and evaluated. RPA amplification was optimized so that it could be accomplished within 10 min. In combination with DNA crude extraction by a 50-fold dilution after 1 min of grinding in 0.5 M sodium hydroxide and visual detection via fluorescent DNA dye (positive samples display obvious green fluorescence while negative samples remain colorless), the whole detection process can be accomplished within 15 min. The sensitivity and specificity of this RPA-based method were evaluated and were proven to be equal to those of real-time PCR. The reliability of this method was also verified by analyzing field samples.
Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C.; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S.
2014-01-01
Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25–43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS. PMID:25264766
Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S
2014-01-01
Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS.
Clancy, Eoin; Higgins, Owen; Forrest, Matthew S; Boo, Teck Wee; Cormican, Martin; Barry, Thomas; Piepenburg, Olaf; Smith, Terry J
2015-10-29
Streptococcus pneumoniae is an important cause of microbial disease in humans. The introduction of multivalent vaccines has coincided with a dramatic decrease in the number of pneumococcal-related deaths. In spite of this, at a global level, pneumococcal infection remains an important cause of death among children under 5 years of age and in adults 65 years of age or older. In order to properly manage patients and control the spread of infection, a rapid and highly sensitive diagnostic method is needed for routine implementation, especially in resource-limited regions where pneumococcal disease is most prevalent. Using the gene encoding leader peptidase A as a molecular diagnostics target, a real-time RPA assay was designed and optimised for the detection of S. pneumoniae in whole blood. The performance of the assay was compared to real-time PCR in terms of its analytical limit of detection and specificity. The inhibitory effect of human genomic DNA on amplification was investigated. The potential clinical utility of the assay was investigated using a small number of clinical samples. The RPA assay has a limit of detection equivalent to PCR (4.0 and 5.1 genome equivalents per reaction, respectively) and was capable of detecting the equivalent of <1 colony forming unit of S. pneumoniae when spiked into human whole blood. The RPA assay was 100 % inclusive (38/38 laboratory reference strains and 19/19 invasive clinical isolates) and 100 % exclusive; differentiating strains of S. pneumoniae species from other viridans group streptococci, including S. pseudopneumoniae. When applied to the analysis of a small number (n = 11) of clinical samples (blood culture positive for S. pneumoniae), the RPA assay was demonstrated to be both rapid and sensitive. The RPA assay developed in this work is shown to be as sensitive and as specific as PCR. In terms of reaction kinetics, the RPA assay is shown to exceed those of the PCR, with the RPA running to completion in 20 minutes and capable generating a positive signal in as little as 6 minutes. This work represents a potentially suitable assay for application in point-of-care settings.
NASA Astrophysics Data System (ADS)
Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing
2017-12-01
We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.
Fainardi, Valentina; Scarabello, Chiara; Cangelosi, Antonia; Fanciullo, Lavinia; Mastrorilli, Carla; Giannini, Cosimo; Mohn, Angelika; Iafusco, Dario; La Loggia, Alfonso; Lombardo, Fortunato; Toni, Sonia; Valerio, Giuliana; Franzese, Adriana; Prisco, Franco; Chiarelli, Francesco; Vanelli, Maurizio
2011-08-01
Regular Physical Activity (RPA) is one of the cornerstones of Type 1 Diabetes (T1D) therapy, but conflicting results are reported in the literature. To compare (RPA) and Sedentary Lifestyle (SL) among children with type 1 diabetes (T1D) and healthy peers. Seven Italian paediatric diabetes centres enrolled 129 children with T1D and 214 healthy peers who were interviewed by a telephone questionnaire on physical activity level, sedentary lifestyle and clinical data. Compared to healthy peers, children with T1D: performed the same amount of RPA, were more frequently engaged in team sports (p = 0.018), described RPA as an enjoyable activity (p = 0.033), not boring (p = 0.035), a chance to spend time with peers (p = 0.033) and to meet new friends (p = 0.016). Children with T1D were finally used to consume less snacks during watching TV (p < 0.001) or after physical activity (p < 0.001 ). HbA1c values were not related with time spent in physical activity, in watching TV or in playing video-games. Most interviewed children with T1D are physically active and perform the same amount of exercise as their healthy peers. They demonstrate to consider RPA a source of enjoyment and sociality and not a therapeutic imposition. (www.actabiomedica.it)
Scimone, Concetta; Donato, Luigi; Esposito, Teresa; Rinaldi, Carmela; D'Angelo, Rosalia; Sidoti, Antonina
2017-08-01
Autosomal recessive forms of retinitis punctata albescens (RPA) have been described. RPA is characterized by progressive retinal degeneration due to alteration in visual cycle and consequent deposit of photopigments in retinal pigment epithelium. Five loci have been linked to RPA onset. Among these, the retinaldehyde-binding protein 1 gene, RLBP1, is the most frequently involved and several founder mutations were reported. We report results of a genetic molecular investigation performed on a large Sicilian family in which appears a young woman with RPA. The proband is in homozygous condition for a novel RLBP1 single-pair deletion, and her healthy parents, both heterozygous, are not consanguineous. Thenovelc.398delC (p.P133Qfs*258) involves the exon 6 and leads to a premature stop codon, resulting in a truncated protein entirely missing of CRAL-TRIO lipid-binding domain. Pedigree analysis showed other non-consanguineous relatives heterozygous for the same mutation in the family. Extension of mutation research in the native town of the proband revealed its presence also in healthy subjects, in a heterozygous condition. A novel RLBP1 truncating mutation was detected in a young girl affected by RPA. Although her parents are not consanguineous, the mutation was observed in a homozygous condition. Being them native of the same small Sicilian town of Fiumedinisi, the hypothesis of a geographical area-related mutation was assessed and confirmed.
RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.
Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia
2015-02-01
Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.
Yin, Fangyuan; Liu, Junlong; Liu, Aihong; Li, Youquan; Luo, Jianxun; Guan, Guiquan; Yin, Hong
2017-04-15
Rapid and accurate diagnosis of Theileria annulata infection contributes to the formulation of strategies to eradicate this parasite. A simple and efficient diagnostic tool, recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip, was used in detection of Theileria and compared to other methods that require expensive instruments and skilled personnel. Herein, we established and optimized an LF-RPA method to detect the cytochrome b gene of T. annulata mitochondrial DNA from experimentally infected and field-collected blood samples. This method has many unparalleled characteristics, including that it is rapid (clear detection in 5min at constant temperature), sensitive (the limitation of detection is at least 2pg genomic DNA), and specific (no cross-reaction with other piroplasms that infect cattle). The LF-RPA assay was evaluated via testing 17 field blood samples and comparing the results of that of a PCR, showing 100% agreement, which demonstrates the ability of the LF-RPA assay to detect T. annulata infections in small number of samples (n=17). Taken together, the results indicate that this method could be used as an ideal diagnostic tool for detecting T. annulata in endemic regions with limited to fewer and local resources and could also be a potential technique for the surveillance and control of blood protozoa. Copyright © 2017 Elsevier B.V. All rights reserved.
Prescott, Meagan A; Reed, Aimee N; Jin, Ling; Pastey, Manoj K
2016-09-01
Since the emergence of cyprinid herpesvirus 3 (CyHV-3), outbreaks have been devastating to Common Carp Cyprinus carpio and koi (a variant of Common Carp), leading to high economic losses. Current diagnostics for detecting CyHV-3 are limited in sensitivity and are further complicated by latency. Here we describe the detection of CyHV-3 by recombinase polymerase amplification (RPA). The RPA assay can detect as low as 10 copies of the CyHV-3 genome by an isothermal reaction and yields results in approximately 20 min. Using the RPA assay, the CyHV-3 genome can be detected in the total DNA of white blood cells isolated from koi latently infected with CyHV-3, while less than 10% of the latently infected koi can be detected by a real-time PCR assay in the total DNA of white blood cells. In addition, RPA products can be detected in a lateral flow device that is cheap and fast and can be used outside of the diagnostic lab. The RPA assay and lateral flow device provide for the rapid, sensitive, and specific amplification of CyHV-3 that with future modifications for field use and validation could lead to enhanced surveillance and early diagnosis of CyHV-3 in the laboratory and field. Received September 14, 2015; accepted April 9, 2016.
Wang, H; Sun, M; Xu, D; Podok, P; Xie, J; Jiang, Ys; Lu, Lq
2018-05-28
Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus 2 (CyHV-2), causes significant losses in crucian carp (Carassius carassius) aquaculture. Rapid and convenient DNA assay detection of CyHV-2 is useful for field diagnosis. Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that can amplify DNA within 30 min at ~37°C by simulating in vivo DNA recombination. Herein, a rapid and convenient detection assay based on RPA with a lateral flow dipstick (LFD) was developed for detecting CyHV-2. The highly conserved ORF72 of CyHV-2 was targeted by specific and sensitive primers and probes. The optimized assay takes only 15 min at 38°C using a water bath, with analysis of products by 2% agarose gel electrophoresis within 30 min. A simple lateral flow strip based on the unique probe in reaction buffer was developed for visualization. The entire RPA-LFD assay takes 50 min less than the routine PCR method, is 100 times more sensitive and displays no cross-reaction with other aquatic viruses. The combined isothermal RPA and lateral flow assay (RPA-LFD) provides a simple, rapid, reliable method that could improve field diagnosis of CyHV-2 when resources are limited. © 2018 John Wiley & Sons Ltd.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
NASA Astrophysics Data System (ADS)
Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.
2017-08-01
The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya Wang
2010-05-31
The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less
Hauguel-Moreau, Marie; Boccara, Franck; Boyd, Anders; Salem, Joe-Elie; Brugier, Delphine; Curjol, Angélique; Hulot, Jean-Sébastien; Kerneis, Mathieu; Galier, Sophie; Cohen, Ariel; Montalescot, Gilles; Collet, Jean-Philippe; Silvain, Johanne
2017-06-01
To explore platelet reactivity on dual antiplatelet therapy (DAPT) of acute coronary syndrome (ACS) patients infected with HIV. Acute coronary syndrome patients infected with HIV (n = 80) were matched to ACS patients without HIV (n = 160) on age, sex, diabetes, and DAPT (aspirin 100%, clopidogrel 68%, prasugrel 31%, ticagrelor 1%). Platelet reactivity was evaluated after ACS (>30 days) by measuring residual platelet aggregation (RPA) to aspirin and to P2Y12 inhibitors with light transmission aggregometry (LTA), VerifyNow aspirin assay (ARU), and P2Y12 assay (PRU) and with the VASP platelet reactivity index (VASP-PRI). Proportion of patients with high residual platelet reactivity (HPR) was evaluated. HIV-infected ACS patients had higher levels of platelet reactivity in response to P2Y12 inhibitors (RPA: 23.8 ± 2.7% vs. 15.3 ± 1.3%; P = 0.001; PRU: 132 ± 10 vs. 107.4 ± 6.6; P = 0.04; and VASP-PRI: 45.2 ± 2.6% vs. 32.0 ± 2.0%; P < 0.001) and to aspirin (RPA: 3.6 ± 1.5% vs. 0.4 ± 0.1%; P = 0.004 and ARU: 442 ± 11 vs. 407 ± 5; P = 0.002) compared with non-HIV. HIV-infection was independently associated with increased platelet reactivity regardless of the test used (RPA: P = 0.005; PRU: P < 0.001 and VASP-PRI: P < 0.001) and a higher proportion of HPR (OR = 7.6; P < 0.001; OR = 2.06; P = 0.06; OR = 2.91; P = 0.004, respectively) in response to P2Y12 inhibitors. Similar results were found with aspirin. Protease inhibitors use was associated with increased platelet reactivity and higher rate of HPR. Acute coronary syndrome patients infected with HIV have increased levels of platelet reactivity and higher prevalence of HPR to P2Y12 inhibitors and aspirin than non-HIV patients. These results could provide potential explanations for the observed increase risk of recurrent ischemic events in the HIV-infected population. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Subtraction method in the Second Random Phase Approximation
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo
2018-02-01
We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.
Addeo, Raffaele; Caraglia, Michele; Faiola, Vincenzo; Capasso, Elena; Vincenzi, Bruno; Montella, Liliana; Guarrasi, Rosario; Caserta, Luigi; Del Prete, Salvatore
2007-01-25
Brain metastases (BM) represent one of the most frequent complications related to cancer, and their treatment continues to evolve. We have evaluated the activity, toxicity and the impact on Quality of Life (QoL) of a concomitant treatment with whole brain radiotherapy (WBRT) and Temozolomide (TMZ) in patients with brain metastases from solid tumors in a prospective Simon two stage study. Fifty-nine patients were enrolled and received 30 Gy WBRT with concomitant TMZ (75 mg/m2/day) for ten days, and subsequently TMZ (150 mg/m2/day) for up to six cycles. The primary end points were clinical symptoms and radiologic response. Five patients had a complete response, 21 patients had a partial response, while 18 patients had stable disease. The overall response rate (45%) exceeded the target activity per study design. The median time to progression was 9 months. Median overall survival was 13 months. The most frequent toxicities included grade 3 neutropenia (15%) and anemia (13%), and only one patient developed a grade 4 thrombocytopenia. Age, Karnofsky performance status, presence of extracranial metastases and the recursive partitioning analysis (RPA) were found to be predictive factors for response in patients. Overall survival (OS) and progression-free survival (PFS) were dependent on age and on the RPA class. We conclude that this treatment is well tolerated, with an encouraging objective response rate, and a significant improvement in quality of life (p < 0.0001) demonstrated by FACT-G analysis. All patients answered the questionnaires and described themselves as 'independent' and able to act on their own initiatives. Our study found a high level of satisfaction for QoL, this provides useful information to share with patients in discussions regarding chemotherapy treatment of these lesions.
Methods for converging correlation energies within the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Production of high energy protons with hole-boring radiation pressure acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, A. P. L.
The possibility of producing energetic protons with energies in the range of 100-200 MeV via hole-boring (HB) radiation pressure acceleration (RPA) at intensities around 10{sup 21} W cm{sup -2} is reexamined. It is found that hole-boring RPA can occur well below the relativistically corrected critical density in numerical simulations, with average proton energies in good agreement with established formulas. This suggests that protons in this energy range can be produced via HB RPA at around 10{sup 21} W cm{sup -2}. It is also shown that the prospects of doing this could be improved by using lasers of the same intensitymore » but longer wavelength.« less
PILOTS NEEDED NCOS WELCOME: HOW ENLISTED RPA PILOTS CAN ENSURE AIR SUPERIORITY IN THE 21ST CENTURY
2016-06-01
Satisfaction ………………………………………………………………………12 Recruiting and Retention………………...…………...………………………………14 Enlisted Pilot... satisfaction ” of the RPA pilots in the Army.31 The Army has kept the drone 8 operator connected to other normal Army operations, which could...explain the higher level of job satisfaction .32 Army and Marine RPA pilots are enlisted service members. This approach could be used as an example for
ERIC Educational Resources Information Center
Cornish, Carlene
2017-01-01
Raising of Participation Age (RPA) legislation mandates English youth to participate in post-16 education, employment or training. However, how does this particular college accommodate youth that were so-called disaffected learners and previously not in education, employment and training (NEET)? The aim was to investigate the educational…
"I Just Want a Job"--What Do We Really Know about Young People in Jobs without Training?
ERIC Educational Resources Information Center
Maguire, Sue
2010-01-01
The policy commitment in England to raise the participation age (RPA) for continuing in learning for all 17-year olds from 2013 and for all 18-year olds from 2015, brings with it the responsibility of ensuring that education and training are available, accessible and relevant to the needs of all types of learners. In recent years, little policy…
Protection against anthrax and plague by a combined vaccine in mice and rabbits.
Ren, Jun; Dong, Dayong; Zhang, Jinlong; Zhang, Jun; Liu, Shuling; Li, Bing; Fu, Ling; Xu, Junjie; Yu, Changming; Hou, Lihua; Li, Jianmin; Chen, Wei
2009-12-09
The protective antigen (PA) of Bacillus anthracis and the Fraction 1 Capsular Antigen (F1 antigen), V antigen of Yersinia pestis have been demonstrated to be potential immunogens and candidate vaccine sub-units against anthrax and plague respectively. In this study, the authors have investigated the antibody responses and the protective efficacy when the antigens were administered separately or in combination intramuscularly formulation adsorbed to an aluminum hydroxide adjuvant. Results show that immunized rF1 + rV and rPA antigen together was as effective as separately for induction of serological antibody response, and these titers were maintained for over 1 year in mice. An isotype analysis of the serum indicates that the co-administration of these antigens did not influence the antigen-specific IgG1/IgG2a ratio which was consistent with a Th2 bias. Furthermore, the combined vaccine comprising the protein antigens rF1 + rV + rPA has been demonstrated to protect mice from subcutaneous challenge with 10(7) colony-forming units (CFU) virulent Y. pestis strain, and to fully protect rabbit against subcutaneous challenge with 1.2x10(5) colony-forming units (CFU) virulent B. anthracis spores. These data show that the protective efficacy was unaffected when the antigens were administered in combination.
Heritage, Image and Identity: The Evolution of USAF Leadership
2011-02-16
up-in-coming “ Generation Z ” (also known as the “Net or Digital Generation”), which is the most connected and high-tech generation ever seen. 40...for future RPA warrior leaders. 43 The USAF has already set the ground work to position “ Generation Z ” RPA pilots for future senior leadership
The 1993 RPA timber assessment update
Richard W. Haynes; Darius M. Adams; John R. Mills
1995-01-01
This update reports changes in the Nation's timber resource since the 1989 RPA timber assessment. The timber resource situation is analyzed to provide projections for future cost and availability of timber products to meet demands. Prospective trends in demands for and supplies of timber, and the factors that affect these trends are examined. These include changes...
Random phase approximation and cluster mean field studies of hard core Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.
2018-04-01
We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.
Watkinson, Allan; Soliakov, Andrei; Ganesan, Ashok; Hirst, Karie; Lebutt, Chris; Fleetwood, Kelly; Fusco, Peter C; Fuerst, Thomas R; Lakey, Jeremy H
2013-11-01
Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.
RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.
Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor; Oh, Julyun; Symington, Lorraine S
2016-12-20
DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.
Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J
2017-07-14
During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Piotrzkowski, Natalia; Schillberg, Stefan; Rasche, Stefan
2012-01-01
Transient Agrobacterium-mediated gene expression assays for Nicotiana tabacum (N. tabacum) are frequently used because they facilitate the comparison of multiple expression constructs regarding their capacity for maximum recombinant protein production. However, for three model proteins, we found that recombinant protein accumulation (rpa) was significantly influenced by leaf age and leaf position effects. The ratio between the highest and lowest amount of protein accumulation (max/min ratio) was found to be as high as 11. Therefore, construct-based impacts on the rpa level that are less than 11-fold will be masked by background noise. To address this problem, we developed a leaf disc-based screening assay and infiltration device that allows the rpa level in a whole tobacco plant to be reliably and reproducibly determined. The prototype of the leaf disc infiltration device allows 14 Agrobacterium-mediated infiltration events to be conducted in parallel. As shown for three model proteins, the average max/min rpa ratio was reduced to 1.4 using this method, which allows for a sensitive comparison of different genetic elements affecting recombinant protein expression. PMID:23029251
Lillis, Lorraine; Lehman, Dara A.; Siverson, Joshua B.; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S.
2016-01-01
A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10 to 30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7 %) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. PMID:26821087
RPA using a multiplexed cartridge for low cost point of care diagnostics in the field.
Ereku, Luck Tosan; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Stead, Thomas; Branavan, Manorharanehru; Balachandran, Wamadeva
2018-04-15
A point of care device utilising Lab-on-a-Chip technologies that is applicable for biological pathogens was designed, fabricated and tested showing sample in to answer out capabilities. The purpose of the design was to develop a cartridge with the capability to perform nucleic acid extraction and purification from a sample using a chitosan membrane at an acidic pH. Waste was stored within the cartridge with the use of sodium polyacrylate to solidify or gelate the sample in a single chamber. Nucleic acid elution was conducted using the RPA amplification reagents (alkaline pH). Passive valves were used to regulate the fluid flow and a multiplexer was designed to distribute the fluid into six microchambers for amplification reactions. Cartridges were produced using soft lithography of silicone from 3D printed moulds, bonded to glass substrates. The isothermal technique, RPA is employed for amplification. This paper shows the results from two separate experiments: the first using the RPA control nucleic acid, the second showing successful amplification from Chlamydia Trachomatis. Endpoint analysis conducted for the RPA analysis was gel electrophoresis that showed 143 base pair DNA was amplified successfully for positive samples whilst negative samples did not show amplification. End point analysis for Chlamydia Trachomatis samples was fluorescence detection that showed successful detection of 1 copy/μL and 10 copies/μL spiked in a MES buffer. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Law, I L G; Loo, J F C; Kwok, H C; Yeung, H Y; Leung, C C H; Hui, M; Wu, S Y; Chan, H S; Kwan, Y W; Ho, H P; Kong, S K
2018-03-01
With the emergence of multi- and extensive-drug (MDR/XDR) resistant Mycobacterium tuberculosis (M. tb), tuberculosis (TB) persists as one of the world's leading causes of death. Recently, isothermal DNA amplification methods received much attention due to their ease of translation onto portable point-of-care (POC) devices for TB diagnosis. In this study, we aimed to devise a simple yet robust detection method for M. tb. Amongst the numerous up-and-coming isothermal techniques, Recombinase Polymerase Amplification (RPA) was chosen for a real-time detection of TB with or without MDR. In our platform, real-time RPA (RT-RPA) was integrated on a lab-on-a-disc (LOAD) with on-board power to maintain temperature for DNA amplification. Sputa collected from healthy volunteers were spiked with respective target M. tb samples for testing. A limit of detection of 10 2 colony-forming unit per millilitre in 15 min was achieved, making early detection and differentiation of M. tb strains highly feasible in extreme POC settings. Our RT-RPA LOAD platform has also been successfully applied in the differentiation of MDR-TB from H37Ra, an attenuated TB strain. In summary, a quantitative RT-RPA on LOAD assay with a high level of sensitivity was developed as a foundation for further developments in medical bedside and POC diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.
Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei
2015-05-01
The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hou, Peili; Wang, Hongmei; Zhao, Guimin; He, Chengqiang; He, Hongbin
2017-12-13
Infectious bovine rhinotracheitis virus (IBRV) is a major pathogen in cattle and has led to significant economic losses to the dairy industry worldwide, and therefore a more optimal method for the rapid diagnosis of IBRV infection is highly needed. In this study, we described the development of a lateral flow dipstrip (LFD) of isothermal recombinase polymerase amplification (RPA) method for rapid detection of IBRV. Distinct regions were selected as a candidate target for designing the LFD-RPA primers and probes. The analytical sensitivity of the RPA assay was determined using ten-fold serially diluted IBRV DNA. The specificity of the assay was assessed with other viral pathogens of cattle with similar clinic and other herpesviruses. The clinical performance was evaluated by testing 106 acute-phase high fever clinical specimens. RPA primers and probe were designed to target the specific conserved UL52 region fragment of IBRV. The detection could be completed at a constant temperature of 38 °C for 25 min, and the amplification products were easily visualized on a simple LFD. The detection limit of this assay was 5 copies per reaction of IBRV DNA and there was no cross-reactivity with other viruses causing bovine gastrointestinal and respiratory infections or other herpesviruses. The assay performance on acute-phase high fever clinical samples collected from cattle with no vaccine against IBRV, which were suspected to be infected with IBRV, was validated by detecting 24 fecal, 36 blood, 38 nasal swab and 8 tissue specimens, and compared with SYBR Green I based real-time PCR. The coincidence between IBRV LFD-RPA and real-time PCR was 100%. IBRV LFD-RPA was fast and much easier to serve as an alternative to the common measures used for IBRV diagnosis, as there is reduction in the use of instruments for identification of the infected animals. In addition, this assay may be the potential candidate to be used as point-of-care diagnostics in the field.
Membrane protein resistance of oligo(ethylene oxide) self-assembled monolayers.
Vaish, Amit; Vanderah, David J; Vierling, Ryan; Crawshaw, Fay; Gallagher, D Travis; Walker, Marlon L
2014-10-01
As part of an effort to develop biointerfaces for structure-function studies of integral membrane proteins (IMPs) a series of oligo(ethylene oxide) self-assembled monolayers (OEO-SAMs) were evaluated for their resistance to protein adsorption (RPA) of IMPs on Au and Pt. Spectroscopic ellipsometry (SE) was used to determine SAM thicknesses and compare the RPA of HS(CH2)3O(CH2CH2O)6CH3 (1), HS(CH2)3O(CH2CH2O)6H (2), [HS(CH2)3]2CHO(CH2CH2O)6CH3 (3) and [HS(CH2)3]2CHO(CH2CH2O)6H (4), assembled from water. For both substrates, SAM thicknesses for 1 to 4 were found to be comparable indicating SAMs with similar surface coverages and OEO chain order and packing densities. Fibrinogen (Fb), a soluble plasma protein, and rhodopsin (Rd), an integral membrane G-protein coupled receptor, adsorbed to the SAMs of 1, as expected from previous reports, but not to the hydroxy-terminated SAMs of 2 and 4. The methoxy-terminated SAMs of 3 were resistant to Fb but, surprisingly, not to Rd. The stark difference between the adsorption of Rd to the SAMs of 3 and 4 clearly indicate that a hydroxy-terminus of the OEO chain is essential for high RPA of IMPs. The similar thicknesses and high RPA of the SAMs of 2 and 4 show the conditions of protein resistance (screening the underlying substrate, packing densities, SAM order, and conformational mobility of the OEO chains) defined from previous studies on Au are applicable to Pt. In addition, the SAMs of 4, exhibiting the highest resistance to Fb and Rd, were placed in contact with undiluted fetal bovine serum for 2h. Low protein adsorption (≈12.4ng/cm(2)), obtained under these more challenging conditions, denote a high potential of the SAMs of 4 for various applications requiring the suppression of non-specific protein adsorption. Published by Elsevier B.V.
Southern Forest Resource Assessment and Linkages to the National RPA
Fredrick Cubbage; Jacek Siry; Steverson Moffat; David N. Wear; Robert Abt
1998-01-01
We developed a Southern Forest Resource Assessment Consortium (SOFAC) in 1994, which is designed to enhance our capabilities to analyze and model the southern forest and timber resources. Southern growth and yield analyses prepared for the RPA via SOFAC indicate that substantial increases in timber productivity can occur given current technology. A survey about NIPF...
Raising the Participation Age in Historical Perspective: Policy Learning from the Past?
ERIC Educational Resources Information Center
Woodin, Tom; McCulloch, Gary; Cowan, Steven
2013-01-01
The raising of the participation age (RPA) to 17 in 2013 and 18 in 2015 marks a historic expansion of compulsory education. Despite the tendency of New Labour governments to eschew historical understanding and explanation, RPA was conceived with the benefit of an analysis of previous attempts to extend compulsion in schooling. This paper assesses…
Tracking the Evolution of "Research & Practice in Assessment" through the Pages of RPA
ERIC Educational Resources Information Center
Anderson, Robin D.; Curtis, Nicolas A.
2017-01-01
Ten years ago, "Research & Practice in Assessment" (RPA) was born, providing an outlet for assessment-related research. Since that first winter issue, assessment research and practice has evolved. Like with many evolutions, the assessment practice evolution is best described as a change of emphasis as opposed to a radical revolution.…
SOFRA and RPA: two views of the future of southern timber supply.
Darius Adams; John Mills; Ralph Alig; Richard Haynes
2005-01-01
Two recent studies provide alternative views of the current state and future prospects of southern forests and timber supply: the Southern Forest Resource Assessment (SOFRA) and the Fifth Resources Planning Act Timber Assessment (RPA). Using apparently comparable data but different models and methods, the studies portray futures that in some aspects are quite similar...
Inhomogeneous fluid of penetrable-spheres: Application of the random phase approximation
NASA Astrophysics Data System (ADS)
Xiang, Yan; Frydel, Derek
2017-05-01
The focus of the present work is the application of the random phase approximation (RPA), derived for inhomogeneous fluids [Frydel and Ma, Phys. Rev. E 93, 062112 (2016)], to penetrable-spheres. As penetrable-spheres transform into hard-spheres with increasing interactions, they provide an interesting case for exploring the RPA, its shortcomings, and limitations, the weak- versus the strong-coupling limit. Two scenarios taken up by the present study are a one-component and a two-component fluid with symmetric interactions. In the latter case, the mean-field contributions cancel out and any contributions from particle interactions are accounted for by correlations. The accuracy of the RPA for this case is the result of a somewhat lucky cancellation of errors.
NASA Astrophysics Data System (ADS)
Huang, Chen; Chi, Yu-Chieh
2017-12-01
The key element in Kohn-Sham (KS) density functional theory is the exchange-correlation (XC) potential. We recently proposed the exchange-correlation potential patching (XCPP) method with the aim of directly constructing high-level XC potential in a large system by patching the locally computed, high-level XC potentials throughout the system. In this work, we investigate the patching of the exact exchange (EXX) and the random phase approximation (RPA) correlation potentials. A major challenge of XCPP is that a cluster's XC potential, obtained by solving the optimized effective potential equation, is only determined up to an unknown constant. Without fully determining the clusters' XC potentials, the patched system's XC potential is "uneven" in the real space and may cause non-physical results. Here, we developed a simple method to determine this unknown constant. The performance of XCPP-RPA is investigated on three one-dimensional systems: H20, H10Li8, and the stretching of the H19-H bond. We investigated two definitions of EXX: (i) the definition based on the adiabatic connection and fluctuation dissipation theorem (ACFDT) and (ii) the Hartree-Fock (HF) definition. With ACFDT-type EXX, effective error cancellations were observed between the patched EXX and the patched RPA correlation potentials. Such error cancellations were absent for the HF-type EXX, which was attributed to the fact that for systems with fractional occupation numbers, the integral of the HF-type EXX hole is not -1. The KS spectra and band gaps from XCPP agree reasonably well with the benchmarks as we make the clusters large.
2015-03-01
assessing the general intelligence and neuropsychological aptitudes of USAF RPA pilot training candidates. Chappelle et al. obtained comprehensive...computer-based intelligence testing (Multidimensional Aptitude Battery-Second Edition [MAB-II]) and neuropsychological screening (MicroCog) on USAF MQ-1... schizophrenia , attention deficit hyperactivity disorder, and autism spectrum disorders) and not on very high functioning populations such as aviators
DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders
2001-05-01
We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA
Plasmon dispersion in strongly correlated superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.; Golden, K.I.; Kalman, G.
The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less
Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula
2014-01-01
Aims Phenformin, resveratrol and AICAR stimulate the energy sensor 5′-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Methods Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. Results AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. Conclusions AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential biomarker for the development of drugs that diminish diabetic renal hypertrophy. PMID:24498249
Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula
2014-01-01
Phenformin, resveratrol and AICAR stimulate the energy sensor 5'-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential biomarker for the development of drugs that diminish diabetic renal hypertrophy.
Provasi, Patricio F; Sauer, Stephan P A
2006-07-01
The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.
A Repeated Power Training Enhances Fatigue Resistance While Reducing Intraset Fluctuations.
Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Moras, Gerard; Arjol-Serrano, José Luis; Mendez-Villanueva, Alberto
2018-04-04
Oliver, GS, Julio, TF, Moras, G, José Luis, AS, and Alberto, MV. A repeated power training enhances fatigue resistance while reducing intraset fluctuations. J Strength Cond Res XX(X): 000-000, 2018-The present study analyzed the effects of adding an upper-body repeated power ability (RPA) training to habitual strength training sessions. Twenty young elite male basketball players were randomly allocated into a control group (CON, n = 10) or repeated power group (RPG, n = 10) and evaluated by 1 repetition maximum (1RM), incremental load, and RPA tests in the bench press exercise before and after a 7-week period and a 4-week cessation period. Repeated power group performed 1-3 blocks of 5 sets of 5 repetitions using the load that maximized power output with 30 seconds and 3 minute of passive recovery between sets and blocks, respectively. Between-group analysis showed substantial greater improvements in RPG compared with CON in: best set (APB), last set (APL), mean power over 5 sets (APM), percentage of decrement, fluctuation decrease during APL and RPA index (APLpost/APBpre) during the RPA test (effect size [ES] = 0.64-1.86), and 1RM (ES = 0.48) and average power at 80% of 1RM (ES = 1.11) in the incremental load test. The improvements of APB and APM were almost perfectly correlated. In conclusion, RPA training represents an effective method to mainly improve fatigue resistance together with the novel finding of a better consistency in performance (measured as reduced intraset power fluctuations) at the end of a dynamic repeated effort.
Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator
NASA Astrophysics Data System (ADS)
Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin
2016-06-01
Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.
Model Uncertainties for Valencia RPA Effect for MINERvA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gran, Richard
2017-05-08
This technical note describes the application of the Valencia RPA multi-nucleon effect and its uncertainty to QE reactions from the GENIE neutrino event generator. The analysis of MINERvA neutrino data in Rodrigues et al. PRL 116 071802 (2016) paper makes clear the need for an RPA suppression, especially at very low momentum and energy transfer. That published analysis does not constrain the magnitude of the effect; it only tests models with and without the effect against the data. Other MINERvA analyses need an expression of the model uncertainty in the RPA effect. A well-described uncertainty can be used for systematics for unfolding, for model errors in the analysis of non-QE samples, and as input for fitting exercises for model testing or constraining backgrounds. This prescription takes uncertainties on the parameters in the Valencia RPA model and adds a (not-as-tight) constraint from muon capture data. For MINERvA we apply it as a 2D (more » $$q_0$$,$$q_3$$) weight to GENIE events, in lieu of generating a full beyond-Fermi-gas quasielastic events. Because it is a weight, it can be applied to the generated and fully Geant4 simulated events used in analysis without a special GENIE sample. For some limited uses, it could be cast as a 1D $Q^2$ weight without much trouble. This procedure is a suitable starting point for NOvA and DUNE where the energy dependence is modest, but probably not adequate for T2K or MicroBooNE.« less
Snow, M.; Cunningham, C.O.; Melvin, W.T.; Kurath, G.
1999-01-01
A ribonuclease (RNase) protection assay (RPA) has been used to detect nucleotide sequence variation within the nucleoprotein gene of 39 viral haemorrhagic septicaemia virus (VHSV) isolates of European marine origin. The classification of VHSV isolates based on RPA cleavage patterns permitted the identification of ten distinct groups of viruses based on differences at the molecular level. The nucleotide sequence of representatives of each of these groupings was determined and subjected to phylogenetic analysis. This revealed grouping of the European marine isolates of VHSV into three genotypes circulating within distinct geographic areas. A fourth genotype was identified comprising isolates originating from North America. Phylogenetic analyses indicated that VHSV isolates recovered from wild caught fish around the British Isles were genetically related to isolates responsible for losses in farmed turbot. Furthermore, a relationship between naturally occurring marine isolates and VHSV isolates causing mortality among rainbow trout in continental Europe was demonstrated. Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res. 63, 35-44. Available from:
Keith M. Reynolds
2006-01-01
This paper describes and illustrates the use of the Ecosystem Management Decision Support (EMDS) system for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability at the scale of Resource Planning Act (RPA) regions. The evaluation component of EMDS uses a logic engine to evaluate landscape condition, and the RPA-scale application...
Stanley J. Zarnoch; H. Ken Cordell; Carter J. Betz
2010-01-01
County-level population projections from 2010 to 2060 are developed under three national population growth scenarios for reporting in the 2010 Renewable Resources Planning Act (RPA) Assessment. These population growth scenarios are tied to global futures scenarios defined by the Intergovernmental Panel on Climate Change (IPCC), a program within the United Nations...
'Keep Them Students Busy': 'Warehoused' or Taught Skills to Achieve?
ERIC Educational Resources Information Center
Cornish, Carlene
2018-01-01
RPA (Raising of Participation Age) legislation re-positioned all youth in England to participate in post-16 education and training, the ultimate aim to develop 'human capital'. However, how does RPA play out in practice with previously NEET (not in education, employment or training) and so-called disengaged youth engaged on a Level 1…
ERIC Educational Resources Information Center
Lucero, Edgar
2011-01-01
This article focuses on the learner's use of Code-switching to learn the TL (Target Language) equivalent of an L1 word. The interactional pattern that this situation creates defines the Request-Provision-Acknowledgement (RPA) sequence. The article explains each of the turns of the sequence under the combination of the Ethnomethodological…
Projecting national forest inventories for the 2000 RPA timber assessment.
John R. Mills; Xiaoping. Zhou
2003-01-01
National forest inventories were projected in a study that was part of the 2000 USDA Forest Service Resource Planning Act (RPA) timber assessment. This paper includes an overview of the status and structure of timber inventory of the National Forest System and presents 50-year projections under several scenarios. To examine a range of possible outcomes, results are...
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Ping; Xu, Changhua; Sun, Suqin; Zhou, Qun; Shi, Zhe; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili
2015-11-01
Paeonia lactiflora, a commonly used herbal medicine (HM) in Traditional Chinese Medicine (TCM), mainly has two species, Radix Paeoniae Alba (RPA) and Radix Paeoniae Rubra (RPR), for different clinical applications in TCM. For expounding the chemical profile of RPA and RPR and ensuring the clinical efficacy and safety, an infrared macro-fingerprint analysis-through-separation method integrated with statistical pattern recognition was developed to analyze and discriminate the two Paeonia lactifloras. In IR spectra, the major difference between the two was in the range of 1200-900 cm-1: the strongest peak of RPA was at 1024 cm-1, while that of RPR was 1049 cm-1. The difference was magnified in second derivative spectra. The findings were further verified by investigating the separation process of total glucosides, stepwisely monitored by both of IR and UPLC-MS/MS. Simultaneously, the aqueous extracts of RPA and RPR had been separated continuously to acquire the comprehensively hierarchical chemical characteristics for undoubtedly identification and subsequently discrimination of the two herbs. Moreover, 60 batches of the two HMs (30 for each) were objectively classified by principal component regression (PCR) model based on IR macro-fingerprints.
G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding
Ray, Sujay; Bandaria, Jigar N.; Qureshi, Mohammad H.; Yildiz, Ahmet; Balci, Hamza
2014-01-01
Human telomeres terminate with a single-stranded 3′ G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) conformations. It remains unclear whether GQ formation affects the ability of POT1/TPP1 to compete against RPA to access ssTEL. Using single-molecule Förster resonance energy transfer, we showed that POT1 stably loads to a minimal DNA sequence adjacent to a folded GQ. At 150 mM K+, POT1 loading unfolds the antiparallel GQ, as the parallel conformation remains folded. POT1/TPP1 loading blocks RPA’s access to both folded and unfolded telomeres by two orders of magnitude. This protection is not observed at 150 mM Na+, in which ssTEL forms only a less-stable antiparallel GQ. These results suggest that GQ formation of telomeric overhangs may contribute to suppression of DNA damage signals. PMID:24516170
Spacecraft potential effects on the Dynamics Explorer 2 satellite
NASA Technical Reports Server (NTRS)
Anderson, P. C.; Hanson, W. B.; Coley, W. R.; Hoegy, W. R.
1994-01-01
The relationship between the plasma environment and spacecraft potential is examined for the Dynamics Explorer 2 (DE 2) spacecraft in an attempt to improve the accuracy of ion drift measurements by the retarding potential analyzer (RPA). Because of the DE 2 orbit characteristics (apogee near 1000 km and perigee near 300 km) and the configuration of conducting surfaces on the spacecraft, thermal electrons and ions constituted the only significant contributions to the charging currents to the spacecraft surface for the majority of geophysical conditions encountered. The geomagnetic field had considerable effect on the spacecraft potential due to magnetic field confinement of the electrons as well as to the V x B electric field resulting from the movement of the spacecraft across magnetic field lines. Using a database of inferred spacecraft potentials from the RPA, measured electron temperatures from the Langmuir probe (LANG), and calculated V x B electric fields, we derive an algorithm for determining the spacecraft potential (at the location of the RPA on the spacecraft) for any point of the DE 2 orbit. Knowledge of the spacecraft potential subsequently allows us to retrieve relatively accurate ion drifts from the RPA data.
Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S
2016-04-01
A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. Copyright © 2016 Elsevier B.V. All rights reserved.
Santiago-Felipe, S; Tortajada-Genaro, L A; Puchades, R; Maquieira, A
2014-02-06
Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR-ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA-ELISA combination is proposed for amplification at a low, constant temperature (40°C) in a short time (40 min), for the hybridisation of labelled products to specific 5'-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA-ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA-ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular diagnosis of protozoan parasites by Recombinase Polymerase Amplification.
Castellanos-Gonzalez, A; White, A C; Melby, P; Travi, B
2018-06-01
Infections caused by protozoan parasites affect millions of people around the world. Traditionally, diagnosis was made by microscopy, which is insensitive and in some cases not specific. Molecular methods are highly sensitive and specific, but equipment costs and personnel training limit its availability only to specialized centers, usually far from populations with the highest risk of infection. Inexpensive methods that can be applied at the point of care (POC), especially in places with limited health infrastructure, would be a major advantage. Isothermal amplification of nucleic acids does not require thermocyclers and is relatively inexpensive and easy to implement. Among isothermal methods, recombinase polymerase amplification (RPA) is sensitive and potentially applicable at POC. We and others have developed RPA diagnostic tests to detect protozoan parasites of medical importance. Overall, our results have shown high specificity with limits of detection similar to PCR. Currently, the optimization of RPA for use at the POC is under development, and in the near future the tests should become available to detect protozoan infections in the field. In this review we discuss the current status, challenges, and future of RPA in the field of molecular diagnosis of protozoan parasites. Copyright © 2018 Elsevier B.V. All rights reserved.
Ahne, W.; Kurath, G.; Winton, J.R.
1998-01-01
Thirteen rhabdovirus isolates from 10 teleost fish species as well as reference strains of spring viraemia of carp virus (SVCV) and pike fry rhabdovirus (PFRV) cross-reacted in an indirect immunofluorescence assay and were thus indistinguishable by this method. A ribonuclease protection assay (RPA) using a super(32)P-labeled RNA probe made from a cloned copy of the full length SVCV glycoprotein (G) gene was able to discriminate clearly between the type strains of SVCV and PFRV and among the 13 rhabdovirus isolates. Results for the RPA were generally in agreement with standard serum neutralisation assays; however, the RPA was also able to detect genomic differences between isolates of SVCV. These results have implications for fish disease control programs for SVCV.
Kato, Atsuko; Drolet, Christian; Yoo, Shi-Joon; Redington, Andrew N; Grosse-Wortmann, Lars
2016-06-07
The left pulmonary artery (LPA) contributes more than the right (RPA) to total pulmonary regurgitation (PR) in patients after tetralogy of Fallot (TOF) repair, but the mechanism of this difference is not well understood. This study aimed to analyze the interplay between heart and lung size, mediastinal geometry, and differential PR. Forty-eight Cardiovascular Magnetic Resonance (CMR) studies in patients after TOF repair were analyzed. In addition to the routine blood flow and ventricular volume quantification cardiac angle between the thoracic anterior-posterior line and the interventricular septum, right and left lung areas as well as right and left hemithorax areas were measured on an axial image. Statistical analysis was performed to compare flow parameters between RPA and LPA and to assess correlation among right ventricular volume, pulmonary blood flow parameters and lung area. There was no difference between LPA and RPA diameters. The LPA showed significantly less total forward flow (2.49 ± 0.87 L/min/m(2) vs 2.86 ± 0.89 L/min/m(2); p = 0.02), smaller net forward flow (1.40 ± 0.51 vs 1.89 ± 0.60 mL/min/m(2); p = <0.001), and greater regurgitant fraction (RF) (34 ± 10 % vs 43 ± 12 %; p = 0.001) than the RPA. There was no difference in regurgitant flow volume between RPA and LPA (p = 0.29). Indexed right ventricular end-diastolic volume (RVEDVi) correlated with LPA RF (R = 0.48, p < 0.001), but not with RPA RF (p = 0.09). Larger RVEDVi correlated with a more leftward cardiac axis (R = 0.46, p < 0.001) and with smaller left lung area (R = -0.58, p < 0.001). LPA RF, but not RPA RF, correlated inversely with left lung area (R = -0.34, p = 0.02). The follow-up CMRs in 20 patients showed a correlation of the rate of RV enlargement with the rates of LPA RF worsening (R = 0.50, p = 0.03), and of increasing left lung compression (R = -0.55, p = 0.012). An enlarged and levorotated heart is associated with left lung compression and impaired flow into the left lung.