Sample records for rpv shell segment

  1. Development of crawler type device using new measuring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, T.; Sasaki, T.; Yagi, T.

    1995-08-01

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-upsmore » and applied examination of RPVs to verify field applicability.« less

  2. MACHINING TEST SPECIMENS FROM HARVESTED ZION RPV SEGMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K; Rosseel, Thomas M; Sokolov, Mikhail A

    2015-01-01

    The decommissioning of the Zion Nuclear Generating Station (NGS) in Zion, Illinois, presents a special and timely opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing nuclear power plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, an international nuclear services company, the selective procurement of materials,more » structures, components, and other items of interest from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), cutting these segments into blocks from the beltline and upper vertical welds and plate material and machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for microstructural (TEM, SEM, APT, SANS and nano indention) characterization. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models [1].« less

  3. Machining Test Specimens from Harvested Zion RPV Segments for Through Wall Attenuation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, Thomas M; Sokolov, Mikhail A; Nanstad, Randy K

    2015-01-01

    The decommissioning of the Zion Units 1 and 2 Nuclear Generating Station (NGS) in Zion, Illinois presents a special opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing Nuclear Power Plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, the selective procurement of materials, structures, and componentsmore » from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), the cutting of these segments into sections and blocks from the beltline and upper vertical welds and plate material, the current status of machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for chemical and microstructural (TEM, APT, SANS, and nano indention) characterization, as well as the current test plans and possible collaborative projects. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models (Rosseel et al. (2012) and Rosseel et al. (2015)).« less

  4. Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  5. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  6. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  7. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  8. Single-centre experience with Renal PatientView, a web-based system that provides patients with access to their laboratory results.

    PubMed

    Woywodt, Alexander; Vythelingum, Kervina; Rayner, Scott; Anderton, John; Ahmed, Aimun

    2014-10-01

    Renal PatientView (RPV) is a novel, web-based system in the UK that provides patients with access to their laboratory results, in conjunction with patient information. To study how renal patients within our centre access and use RPV. We sent out questionnaires in December 2011 to all 651 RPV users under our care. We collected information on aspects such as the frequency and timing of RPV usage, the parameters viewed by users, and the impact of RPV on their care. A total of 295 (45 %) questionnaires were returned. The predominant users of RPV were transplant patients (42 %) followed by pre-dialysis chronic kidney disease patients (37 %). Forty-two percent of RPV users accessed their results after their clinic appointments, 38 % prior to visiting the clinic. The majority of patients (76 %) had used the system to discuss treatment with their renal physician, while 20 % of patients gave permission to other members of their family to use RPV to monitor results on their behalf. Most users (78 %) reported accessing RPV on average 1-5 times/month. Most patients used RPV to monitor their kidney function, 81 % to check creatinine levels, 57 % to check potassium results. Ninety-two percent of patients found RPV easy to use and 93 % felt that overall the system helps them in taking care of their condition; 53 % of patients reported high satisfaction with RPV. Our results provide interesting insight into use of a system that gives patients web-based access to laboratory results. The fact that 20 % of patients delegate access to relatives also warrants further study. We propose that online access to laboratory results should be offered to all renal patients, although clinicians need to be mindful of the 'digital divide', i.e. part of the population that is not amenable to IT-based strategies for patient empowerment.

  9. Phase and structural transformations in VVER-440 RPV base metal after long-term operation and recovery annealing

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.

    2018-04-01

    This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.

  10. Role of Rilpivirine and Etravirine in Efavirenz and Nevirapine-Based Regimens Failure in a Resource-Limited Country: A Cross- Sectional Study.

    PubMed

    Teeranaipong, Phairote; Sirivichayakul, Sunee; Mekprasan, Suwanna; Ohata, Pirapon June; Avihingsanon, Anchalee; Ruxrungtham, Kiat; Putcharoen, Opass

    2016-01-01

    Etravirine(ETR) can be used for patients who have failed NNRTI-based regimen. In Thailand, ETR is approximately 45 times more expensive than rilpivirine(RPV). However, there are no data of RPV use in NNRTI failure. Therefore, we assessed the susceptibility and mutation patterns of first line NNRTI failure and the possibility of using RPV compared to ETV in patients who have failed efavirenz(EFV)- and nevirapine(NVP)-based regimens. Clinical samples with confirmed virological failure from EFV- or NVP-based regimens were retrospectively analyzed. Resistance-associated mutations (RAMs) were interpreted by IAS-USA Drug Resistance Mutations. Susceptibility of ETR and RPV were interpreted by DUET, Monogram scoring system, and Stanford University HIV Drug Resistance Database. 1,279 and 528 patients failed EFV- and NVP-based regimens, respectively. Y181C was the most common NVP-associated RAM (54.3% vs. 14.7%, p<0.01). K103N was the most common EFV-associated RAM (56.5% vs. 19.1%, P<0.01). The results from all three scoring systems were concordant. 165(11.1%) and 161(10.9%) patients who failed NVP-based regimen were susceptible to ETR and RPV, respectively (p = 0.85). 195 (32.2%) and 191 (31.6%) patients who failed EFV-based regimen, were susceptible to ETR and RPV, respectively (p = 0.79). The susceptibility of ETV and RPV in EFV failure was significantly higher than NVP failure (p<0.01). The mutation patterns for ETR and RPV were similar but 32% and 11% of patients who failed EFV and NVP -based regimen, respectivly were susceptible to RPV. This finding suggests that RPV can be used as the alternative antiretroviral agent in patients who have failed EFV-based regimen.

  11. Radiation intensification of the reactor pressure vessels recovery by low temperature heat treatment (wet annealing)

    NASA Astrophysics Data System (ADS)

    Krasikov, E.

    2015-04-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called «dry» high temperature (∼475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible.

  12. Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth

    1994-01-01

    This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.

  13. Development of 2 types of competitive enzyme-linked immunosorbent assay for detecting antibodies to the rinderpest virus using a monoclonal antibody for a specific region of the hemagglutinin protein.

    PubMed

    Khamehchian, S; Madani, R; Rasaee, M J; Golchinfar, F; Kargar, R

    2007-06-01

    A competitive enzyme-linked immunosorbent assay (C-ELISA) has been developed and standardized for the detection of antibodies to the rinderpest virus (RPV) in sera from cattle, sheep, and goats. The test is specific for rinderpest because it does not detect antibodies to peste-des-petits-ruminants virus (PPRV). The test depends on the ability of the monoclonal antibody (MAb) directed against the hemagglutinin (H) protein of RPV to compete with the binding of RPV antibodies in the positive serum to the H protein of this virus. This MAb recognized a region from amino acids 575 to 583 on the H protein of RPV that is unique to the RPV H protein and is not present on the hemagglutinin-neuraminidase protein of PPRV. Another C-ELISA (peptide C-ELISA) was set up using this specific region as an antigen. A threshold value of 64.4% inhibition was established for the RPV C-ELISA, with 90 known RPV-negative and 30 RPV-positive serum samples. Using common serum samples, a cutoff value of 43.0% inhibition for the peptide C-ELISA was established. Based on statistical analysis, the overall sensitivity and specificity of the RPV C-ELISA, relative to those of a commercial kit, were found to be 90.00% and 103.33%, respectively. However, the sensitivity and specificity of the peptide C-ELISA were found to be 180.00% and 73.33%, respectively. Although a common MAb in 2 new C-ELISA systems was used, variation in their percent inhibition, due to the use of different antigens, was observed. Taking into consideration the difference in percent inhibition of the 2 described assays and the commercial kit (50%), it was found that the RPV C-ELISA and the peptide C-ELISA are more specific and sensitive tools than the commercial kit for assessing herd immune status and for epidemiologic surveillance.

  14. Remotely Piloted Vehicle (RPV): Proposed command, control, communications (C3) structure

    NASA Technical Reports Server (NTRS)

    Hughes, R. L.; Evans, W. K.; Howard, W. G.; Wallace, A. S.

    1982-01-01

    The currently proposed command, control, and communications (C3) structure associated with the RPV system, potential problem areas in the transfer of information to and from the RPV system, and options for improving information transfer and estimate the degree of improvement to be expected were identified.

  15. Stable Caloric Intake and Continued Virologic Suppression for HIV-Positive Antiretroviral Treatment-Experienced Women After Switching to a Single-Tablet Regimen of Emtricitabine, Rilpivirine, and Tenofovir Disoproxil Fumarate.

    PubMed

    Menezes, Prema; Mollan, Katie; Hoffman, Erin; Xie, Zimeng; Wills, Jennifer; Marcus, Cheryl; Rublein, John; Hudgens, Michael; Eron, Joseph J

    2018-05-02

    Benefits of switching to a single-tablet regimen (STR) of emtricitabine/rilpivirine/tenofovir (FTC/RPV/TDF) in virologically suppressed antiretroviral treatment (ART) experienced HIV-positive women include pregnancy category B rating and lack of clinically significant drug interactions between RPV and oral contraceptives. Unfortunately, studies involving switching to FTC/RPV/TDF enrolled fewer than 25% women. We undertook this 48-week study to assess the ability of virologically suppressed HIV-positive women switching to RPV STR to remain virologically suppressed and comply with the caloric intake requirement. HIV-positive women on ART with viral load <50 c/mL for 6 months before study entry and no known resistance to FTC, TDF, or RPV were enrolled and switched to STR RPV/FTC/TDF. Caloric intake (≥400 kcal) compliance and concurrency with oral STR RPV/FTC/TDF were evaluated with a 3-day food diary, which was validated by obtaining participant's caloric consumption through phone calls on randomly chosen dates. For each 3-day food diary, the daily median caloric intake and median value for each macronutrient consumed concurrent with FTC/RPV/TDF were computed. Medication adherence was measured using a visual analog scale. We enrolled 33 women, 73% of whom were African American. At week 48, virologic suppression (HIV RNA <40 c/mL) was maintained in 96% of women, including those (n = 4) who reported imperfect ART adherence. The daily median caloric intake concurrent with FTC/RPV/TDF was 820 kcal by food diary and 677 kcal by random phone call. Median kcal intake (food diary) did not change significantly from baseline (684 kcal) to week 48 (820 kcal); median change 102 kcal, p = .15. Women who reported noncompliance with a ≥400 kcal meal did not experience virologic failure. Significant concordance between caloric adherence and virologic suppression was not detected. Our study demonstrated that HIV-positive women who switched to STR FTC/RPV/TDF continued to experience virologic suppression and were readily able to comply with the recommended caloric intake requirement.

  16. Remotely piloted vehicle: Application of the GRASP analysis method

    NASA Technical Reports Server (NTRS)

    Andre, W. L.; Morris, J. B.

    1981-01-01

    The application of General Reliability Analysis Simulation Program (GRASP) to the remotely piloted vehicle (RPV) system is discussed. The model simulates the field operation of the RPV system. By using individual component reliabilities, the overall reliability of the RPV system is determined. The results of the simulations are given in operational days. The model represented is only a basis from which more detailed work could progress. The RPV system in this model is based on preliminary specifications and estimated values. The use of GRASP from basic system definition, to model input, and to model verification is demonstrated.

  17. Rilpivirine versus etravirine validity in NNRTI-based treatment failure in Thailand.

    PubMed

    Teeranaipong, Phairote; Sirivichayakul, Sunee; Mekprasan, Suwanna; Ruxrungtham, Kiat; Putcharoen, Opass

    2014-01-01

    Etravirine (ETR) and rilpivirine (RPV) are the second-generation non-nucleoside reverse transcriptase inhibitors (NNRTI) for treatment of HIV-1 infection. Etravirine is recommended for patients with virologic failure from first generation NNRTI-based regimen [1]. RPV has profile with similar properties to ETR but this agent is approved for treatment-naïve patients [2]. In Thailand, ETR is approximately 45 times more expensive than RPV. We aimed to study the patterns of genotypic resistance and possibility of using RPV in patients with virologic failure from two common NNRTI-based regimens: efavirenz (EFV)- or nevirapine (NVP)-based regimen. Data of clinical samples with confirmed virologic failure during 2003-2010 were reviewed. We selected the samples from patients who failed EFV- or NVP-based regimen. Resistance-associated mutations (RAMs) were determined by IAS-USA Drug Resistance Mutations. DUET, Monogram scoring system and Stanford Genotypic Resistance Interpretation were applied to determine the susceptibility of ETR and RPV. A total of 2086 samples were analyzed. Samples from 1482 patients with virologic failure from NVP-based regimen treatment failure (NVP group) and 604 patients with virologic failure from EFV-based regimen treatment failure (EFV group) were included. 95% of samples were HIV-1 CRF01_AE subtype. Approximately 80% of samples in each group had one to three NNRTI-RAMs and 20% had four to seven NNRTI-RAMs. 181C mutation was the most common NVP-associated RAM (54.3% vs 14.7%, p<0.01). 103N mutation was the most common EFV-associated RAM (56.5% vs 19.1%, p<0.01). The calculated scores from all three scoring systems were concordant. In NVP group, 165 (11.1%) and 161 (10.9%) patients were susceptible to ETR and RPV, respectively (p=0.81). In EFV group, 195 (32.2%) and 191 (31.6%) patients were susceptible to ETR and RPV, respectively (p=0.81). The proportions of viruses that remained susceptible to ETR and RPV in EFV group were significantly higher than NPV group (ETR susceptibility 32.2% vs 11.1%, p<0.01, RPV susceptibility 31.6% vs 10.9%, p<0.01), respectively. RPV might be a cost saving and reasonable second line NNRTI for patients who failed EFV- or NVP-containing regimens, especially in resource-limited setting because these two agents have comparable susceptibility identified by genotyping. From our study, approximately 30% of patients who failed EFV-based regimens had viruses that remained susceptible to RPV.

  18. Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Lavrukhina, Z. V.; Saltykov, M. A.; Fedotova, S. V.; Khodan, A. N.

    2016-08-01

    In reactor pressure vessel (RPV) bcc-lattice steels temper embrittlement is developed under the influence of both operating temperature of ∼300 °C and neutron irradiation. Segregation processes in the grain boundaries (GB) begin to play a special role in the assessment of the safe operation of the RPV in case of its lifetime extension up to 60 years or more. The most reliable information on the RPV material condition can be obtained by investigating the surveillance specimens (SS) that are exposed to operational factors simultaneously with the RPV itself. In this paper the GB composition in the specimens with different thermal exposure time at the RPV operating temperature as well as irradiated by fast neutrons (E ≥ 0.5 MeV) to different fluences (20-71)·1022 m-2 was studied by means of Auger electron spectroscopy (AES) including both impurity and main alloying elements content. The data obtained allowed to trace the trend of the operating temperature and radiation-stimulated diffusion influence on the overall segregants level in GB. The revealed differences in the concentration levels of GB segregants in different steels, are due to the different chemical composition of the steels and also due to different grain boundary segregation levels in initial (unexposed) state. The data were used to estimate the RPV steels working capacity for 60 years. The estimation was carried out using both the well-known Langmuir-McLean model and the one specially developed for RPV steels, which takes into account the structure and phase composition of VVER-1000 RPV steels, as well as the long-term influence of operational factors.

  19. Civil Uses of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Aderhold, J. R.; Gordon, G.; Scott, G. W.

    1976-01-01

    The technology effort is identified and assessed that is required to bring the civil uses of RPVs to fruition and to determine whether or not the potential market is real and economically practical, the technologies are within reach, the operational problems are manageable, and the benefits are worth the cost. To do so, the economic, technical, and environmental implications are examined. The time frame is 1980-85. Representative uses are selected; detailed functional and performance requirements are derived for RPV systems; and conceptual system designs are devised. Total system cost comparisons are made with non-RPV alternatives. The potential market demand for RPV systems is estimated. Environmental and safety requirements are examined, and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RPV systems is estimated. Typical cost savings of 25-35% compared to non-RPV alternatives are determined. There appear to be no environmental problems, and the safety issue appears manageable.

  20. Application of the Hardman methodology to the Army Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The application of the HARDMAN Methodology to the Remotely Piloted Vehicle (RPV) is described. The methodology was used to analyze the manpower, personnel, and training (MPT) requirements of the proposed RPV system design for a number of operating scenarios. The RPV system is defined as consisting of the equipment, personnel, and operational procedures needed to perform five basic artillery missions: reconnaissance, target acquisition, artillery adjustment, target designation and damage assessment. The RPV design evaluated includes an air vehicle (AV), a modular integrated communications and navigation system (MICNS), a ground control station (GCS), a launch subsystem (LS), a recovery subsystem (RS), and a number of ground support requirements. The HARDMAN Methodology is an integrated set of data base management techniques and analytic tools, designed to provide timely and fully documented assessments of the human resource requirements associated with an emerging system's design.

  1. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating. Electronic supplementary information (ESI) available: Information on the current profile during pulsed-electroplating, the histogram for the Ni and nanopores, and STEM images of obtained nanowires. See DOI: 10.1039/c4nr02625j

  2. Civil Uses of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Aderhold, J. R.; Gordon, G.; Scott, G. W.

    1976-01-01

    The economic, technical, and environmental implications of remotely piloted vehicles (RVP) are examined. The time frame is 1980-85. Representative uses are selected; detailed functional and performance requirements are derived for RPV systems; and conceptual system designs are devised. Total system cost comparisons are made with non-RPV alternatives. The potential market demand for RPV systems is estimated. Environmental and safety requirements are examined, and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RVP systems is estimated. Typical cost savings of 25 to 35% compared to non-RPV alternatives are determined. There appear to be no environmental problems, and the safety issue appears manageable.

  3. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  4. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  5. Reactor vessel lower head integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) inmore » this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.« less

  6. DOE`s annealing prototype demonstration projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable throughmore » a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.« less

  7. Lipid levels and changes in body fat distribution in treatment-naive, HIV-1-Infected adults treated with rilpivirine or Efavirenz for 96 weeks in the ECHO and THRIVE trials.

    PubMed

    Tebas, Pablo; Sension, Michael; Arribas, José; Duiculescu, Dan; Florence, Eric; Hung, Chien-Ching; Wilkin, Timothy; Vanveggel, Simon; Stevens, Marita; Deckx, Henri

    2014-08-01

    Pooled ECHO/THRIVE lipid and body fat data are presented from the ECHO (Efficacy Comparison in Treatment-Naïve, HIV-Infected Subjects of TMC278 and Efavirenz) and THRIVE (TMC278 Against HIV, in a Once-Daily Regimen Versus Efavirenz) trials. We assessed the 96-week effects on lipids, adverse events (AEs), and body fat distribution (dual-energy x-ray absorptiometry) of rilpivirine (RPV) and EFV plus 2 nucleoside/nucleotide reverse transcriptase inhibitors (N[t]RTIs) in treatment-naive adults infected with human immunodeficiency virus type 1 (HIV-1). Rilpivirine produced minimal changes in total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Compared with RPV, EFV significantly (P < .001) increased lipid levels. Decreases in the TC/HDL-C ratio were similar with RPV and EFV. Background N[t]RTI affected RPV-induced lipid changes; all levels increased with zidovudine/lamivudine (3TC) and abacavir/3TC (except triglycerides, which were unchanged). With emtricitabine/tenofovir, levels of HDL-C were increased, TC and LDL-C were unchanged, and triglycerides were decreased. With EFV, lipid levels increased in each N[t]RTI subgroup (except triglycerides were unchanged with abacavir/3TC). Fewer (P < .001) RPV-treated patients than EFV-treated patients had TC, LDL-C, and triglyceride levels above National Cholesterol Education Program cutoffs. More RPV- than EFV-treated patients had HDL-C values below these cutoffs (P = .02). Dyslipidemia AEs were less common with RPV than with EFV. Similar proportions of patients had a ≥10% decrease in limb fat (16% with RPV and 17% with EFV). Limb fat was significantly (P < .001) increased to a similar extent (by 12% with RPV and 11% with EFV). At week 96, patients receiving zidovudine/3TC had lost limb fat, and those receiving emtricitabine/tenofovir had gained it. Over the course of 96 weeks, RPV-based therapy was associated with lower increases in lipid parameters and fewer dyslipidemia AEs than EFV-based treatment. Body fat distribution changes were similar between treatments. The N[t]RTI regimen affected lipid and body fat distribution changes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Process for manufacture of inertial confinement fusion targets and resulting product

    DOEpatents

    Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.

    1982-01-01

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  9. Operational effectiveness of a Multiple Aquila Control System (MACS)

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Flynn, J. D.; Frey, M. R.

    1983-01-01

    The operational effectiveness of a multiple aquila control system (MACS) was examined under a variety of remotely piloted vehicle (RPV) mission configurations. The set of assumptions and inputs used to form the rules under which a computerized simulation of MACS was run is given. The characteristics that are to govern MACS operations include: the battlefield environment that generates the requests for RPV missions, operating time-lines of the RPV-peculiar equipment, maintenance requirements, and vulnerability to enemy fire. The number of RPV missions and the number of operation days are discussed. Command, control, and communication data rates are estimated by determining how many messages are passed and what information is necessary in them to support ground coordination between MACS sections.

  10. Comparison of performance of shell-and-tube heat exchangers with conventional segmental baffles and continuous helical baffle

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon

    2017-06-01

    In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.

  11. US Army remotely piloted vehicle supporting technology program

    NASA Technical Reports Server (NTRS)

    Gossett, T. D.

    1981-01-01

    Essential technology programs that lead to the full scale engineering development of the Aquila Remotely Piloted Vehicle system for U.S. Army are described. The Aquila system uses a small recoverable and reusable RPV to provide target acquisition, designation, and aerial reconnaissance mission support for artillery and smart munitions. Developments that will provide growth capabilities to the Aquila RPV system, as well as future RPV mission concepts being considered by the U.S. Army are presented.

  12. A novel approach to generating morbillivirus vaccines: negatively marking the rinderpest vaccine.

    PubMed

    Buczkowski, Hubert; Parida, Satya; Bailey, Dalan; Barrett, Thomas; Banyard, Ashley C

    2012-03-02

    The eradication of rinderpest virus (RPV) from the globe was possible through the availability of a safe and effective live attenuated vaccine and a suitable companion diagnostic test. However, the inability to serologically 'Differentiate between naturally Infected and Vaccinated Animals' (DIVA) meant that both the time taken to complete the eradication programme and the economic burden on countries involved was significantly greater than if a vaccine and companion diagnostic test that fulfilled the DIVA concept had been available. During the RPV eradication campaign serosurveillance for RPV was primarily based on a competitive ELISA using a RPV specific (C1) monoclonal antibody (mAb) directed against the viral haemagglutinin (H) protein but this test was not able to meet DIVA requirements. To provide proof of concept for the generation of novel morbillivirus DIVA vaccines we have identified, by phage display, and mutated residues critical for C1 mAb binding and assessed the functionality of mutants in an in vitro fusion assay. Finally we have incorporated mutated epitopes into a full length clone and rescued recombinant RPV using reverse genetics techniques. Here we describe a novel mechanism of marking morbillivirus vaccines, using RPV as a proof of concept, and discuss the applicability of this method to the development of marked vaccines for peste des petits ruminants virus (PPRV). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Study on Material Selection of Reactor Pressure Vessel of SCWR

    NASA Astrophysics Data System (ADS)

    Ma, Shuli; Luo, Ying; Yin, Qinwei; Li, Changxiang; Xie, Guofu

    This paper first analyzes the feasibility of SA-508 Grade 3 Class 1 Steel as an alternative material for Supercritical Water-Cooled Reactor (SCWR) Reactor Pressure Vessel (RPV). This kind of steel is limited to be applied in SCWR RPV due to its quenching property, though large forging could be accomplished by domestic manufacturers in forging aspect. Therefore, steels with higher strength and better quenching property are needed for SWCR RPV. The chemical component of SA-508 Gr.3 Cl.2 steel is similar to that of SA-508 Gr.3 Cl.1 steel, and more appropriate matching of strength and toughness could be achieved by the adjusting the elements contents, as well as proper control of tempering temperature and time. In light of the fact that Cl.2 steel has been successfully applied to steam generator, it could be an alternative material for SWCR RPV. SA-508 Gr.4N steel with high strength and good toughness is another alternative material for SCWR RPV. But large amount of research work before application is still needed for the lack of data on welding and irradiation etc.

  14. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  15. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  16. Heavy-Section Steel Irradiation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, T.M.

    2000-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  17. Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus

    PubMed Central

    Tamborindeguy, Cecilia; Bereman, Michael S.; DeBlasio, Stacy; Igwe, David; Smith, Dawn M.; White, Frank; MacCoss, Michael J.; Gray, Stewart M.; Cilia, Michelle

    2013-01-01

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S . graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel. PMID:23951206

  18. Low-temperature overpressurization protection system setpoint analysis using RETRAN-02/MOD5 for Salem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, R.J.; Feltus, M.A.

    The low-temperature overpressurization protection system (LTOPS) is designed to protect the reactor pressure vessel (RPV) from brittle failure during startup and cooldown maneuvers in Westinghouse pressurized water reactors. For the Salem power plants, the power-operated relief valves (PORVs) mitigate pressure increases above a setpoint where an operational startup transient may put the RPV in the embrittlement fracture zone. The Title 10, Part 50, Code of Federal Regulations Appendix G limit, given by plant technical specifications, conservatively bounds the maximum pressure allowed during those transients where the RPV can suffer brittle fracture (usually below 350{degrees}F). The Appendix G limit is amore » pressure versus temperature curve that is more restrictive at lower RPV temperatures and allows for higher pressures as the temperature approaches the upper bounding fracture temperature.« less

  19. Results from the decontamination of and the shielding arrangements in the reactor pressure vessel in Oskarshamn 1-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowendahl, B.

    1995-03-01

    In September 1992 Oskarshamn 1 was shut down in order to carry out measures to correct discovered deficiencies in the emergency cooling systems. Due to the results of a comprehensive non destructive test programme it was decided to perform a major replacement of pipes in the primary systems including a full system decontamination using the Siemens CORD process. The paper briefly presents the satisfying result of the decontamination performed in May-June 1993. When in late June 1993 cracks also were detected in the feed-water pipes situated inside the reactor pressure vessel (RPV) the plans were reconsidered and a large projectmore » was formed with the aim, in a first phase, to verify the integrity of the RPV. In order to make it possible to perform work manually inside the RPV special radiation protection measures had to be carried out. In January 1994 the lower region of the RPV was decontaminated, again using the CORD-process, followed by the installation of a special shielding construction in the RPV. The surprisingly good results of these efforts are also briefly described in the paper.« less

  20. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 logmore » (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.« less

  1. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K.; Odette, George R.; Almirall, Nathan

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughnessmore » loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.« less

  2. Design study to simulate the development of a commercial freight transportation system

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.; Costello, Kevin; Pinkelman, Jim

    1992-01-01

    The Notre Dame Aerospace Engineering senior class was divided into six design teams. A request for proposals (RFP) asking for the design of a remotely piloted vehicle (RPV) was given to the class, and each design team was responsible for designing, developing, producing, and presenting an RPV concept. The RFP called for the design of commercial freight transport RPV. The RFP provided a description of a fictitious world called 'Aeroworld'. Aeroworld's characteristics were scaled to provide the same types of challenges for RPV design that the real world market provides for the design of commercial aircraft. Fuel efficiency, range and payload capabilities, production and maintenance costs, and profitability are a few of the challenges that were addressed in this course. Each design team completed their project over the course of a semester by designing and flight testing a prototype, freight-carrying remotely piloted vehicle.

  3. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [San Francisco, CA; Manna, Liberato [Palo Del Collie, IT

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  4. Heavy-section steel irradiation program. Semiannual progress report, October 1995--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corwin, W.R.

    1997-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPVs fracture resistance which occurs during service, since without thatmore » radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties.« less

  5. Determination of toughness and embrittlement for reactor pressure vessel steels using ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Hiser, Allen Lee, Jr.

    Neutron irradiation embrittlement of nuclear reactor pressure vessel (RPV) steels results in a loss of fracture toughness (e.g., reduction in load carrying capacity of the steel). For the setting of operational limits and assuring the continued safe operation of the plant, current procedures estimate the effects of neutron embrittlement using empirical relations or the results of small samples irradiated in the plant. These procedures account for uncertainties in the estimates through the use of margin terms to ensure the conservatism of the resultant estimate vis-a-vis the "real" material toughness. Therefore, the ability to develop non destructive measurements that can estimate the actual RPV steel fracture toughness in situ would provide more accurate evaluations of operating limits for plants. This study was undertaken to evaluate the suitability of ultrasonic attenuation measurements for estimating the fracture toughness of RPV steels. Ultrasonic measurements were made on samples in three distinct phases: (1) a heat treated RPV steel to induce changes in its fracture toughness; (2) several irradiated RPV steels to assess actual neutron embrittlement changes in fracture toughness; and (3) a matrix of unirradiated RPV steels with a range of as fabricated toughness levels. The results indicate that ultrasonic attenuation is generally able to identify differences in responses for samples with different toughness levels, although in some cases the differences in ultrasonic responses are small. The results from the three phases are not consistent, as in some cases reduced toughness results in higher attenuation and in other cases lower attenuation. This trend is not surprising given the different types of microstructural changes that result in the toughness changes for each phase of this work. In addition, different trends were identified for plate and weld materials.

  6. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1997-02-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices ofmore » Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.« less

  7. Rilpivirine versus efavirenz with emtricitabine/tenofovir disoproxil fumarate in treatment-naïve HIV-1-infected patients with HIV-1 RNA ≤100,000 copies/mL: week 96 pooled ECHO/THRIVE subanalysis.

    PubMed

    Behrens, Georg; Rijnders, Bart; Nelson, Mark; Orkin, Chloe; Cohen, Calvin; Mills, Anthony; Elion, Richard A; Vanveggel, Simon; Stevens, Marita; Rimsky, Laurence; Thorpe, David; Bosse, Matthew; White, Kirsten; Zhong, Lijie; DeMorin, Jennifer; Chuck, Susan K

    2014-04-01

    The once daily, single-tablet regimen (STR) combining rilpivirine (RPV), emtricitabine (FTC), and tenofovir disoproxil fumarate (TDF) provides a simplified treatment option for antiretroviral therapy (ART)-naïve patients with baseline HIV-1 RNA (BLVL) of ≤100,000 copies/mL. The aim of this analysis is to compare long-term efficacy, safety, and tolerability of RPV+FTC/TDF vs. efavirenz (EFV)+FTC/TDF as individual components in subjects with BLVL ≤100,000 copies/mL. Week 96 efficacy and safety data from subjects with BLVL ≤100,000 copies/mL, who received daily RPV 25 mg or EFV 600 mg with FTC/TDF in the phase 3, randomized, double-blind, double-dummy, active-controlled, registrational trials ECHO and THRIVE, were analyzed. Virologic response was evaluated by intent-to-treat, time to loss of virological response (ITT-TLOVR), and Snapshot algorithms. Through Week 96, RPV+FTC/TDF demonstrated non-inferior efficacy to EFV+FTC/TDF (84% vs. 81%, respectively; ITT-TLOVR) in 543 subjects with BLVL ≤100,000 copies/mL, and overall rates of virologic failure (VF) were 5.9% vs. 2.4%, respectively. Resistance development was lower in Year 2 than Year 1. Subjects in both arms with suboptimal adherence (≤95%) had lower virologic responses (63% vs. 62%, respectively). Treatment with RPV+FTC/TDF was associated with significantly fewer treatment-related adverse events (AEs), grade 2-4 AEs, neurological and psychiatric AEs (including dizziness and abnormal dreams/nightmares), and rash. Additionally, grade 2-4 treatment-emergent laboratory abnormalities and grade 1-3 lipid abnormalities were significantly less common with RPV+FTC/TDF than EFV+FTC/TDF. RPV+FTC/TDF demonstrated non-inferior efficacy to EFV+FTC/TDF in ART-naïve subjects with BLVL ≤100,000 copies/mL and was associated with a higher rate of VF but a more favorable safety and tolerability profile through Week 96.

  8. Operation and maintenance requirements of the Army Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Remotely Piloted Vehicle (RPV) system is being developed to provide the Army with a target acquistion, target location, and laser designation capability that will significantly enhance the effectiveness of the artillery. Iterative analyses of the manpower, personnel, and training (MPT) requirements for an RPV system configured to accommodate both a daylight television and a forward looking infrared (FLIR) mission payload subsystem (FMPS) and related support subsystems are examined. Additionally, this analysis incorporates a 24 hour-a-day operational scenario. Therefore, the information presented was developed with a view towards delineating the differences (or deltas) imposed by the new requirements resulting from FMPS/24 hour operating day functions.

  9. Design study to simulate the development of a commercial transportation system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.

  10. Development and applications of a flat triangular element for thin laminated shells

    NASA Astrophysics Data System (ADS)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)

  11. Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the P0 protein.

    PubMed

    Almasi, Reza; Miller, W Allen; Ziegler-Graff, Véronique

    2015-10-02

    Viral pathogenicity has often been correlated to the expression of the viral encoded-RNA silencing suppressor protein (SSP). The silencing suppressor activity of the P0 protein encoded by cereal yellow dwarf virus-RPV (CYDV-RPV) and -RPS (CYDV-RPS), two poleroviruses differing in their symptomatology was investigated. CYDV-RPV displays milder symptoms in oat and wheat whereas CYDV-RPS is responsible for more severe disease. We showed that both P0 proteins (P0(CY-RPV) and P0(CY-RPS)) were able to suppress local RNA silencing induced by either sense or inverted repeat transgenes in an Agrobacterium tumefaciens-mediated expression assay in Nicotiana benthamiana. P0(CY-RPS) displayed slightly higher activity. Systemic spread of the silencing signal was not impaired. Analysis of short-interfering RNA (siRNA) abundance revealed that accumulation of primary siRNA was not affected, but secondary siRNA levels were reduced by both CYDV P0 proteins, suggesting that they act downstream of siRNA production. Correlated with this finding we showed that both P0 proteins partially destabilized ARGONAUTE1. Finally both P0(CY-RPV) and P0(CY-RPS) interacted in yeast cells with ASK2, a component of an E3-ubiquitin ligase, with distinct affinities. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. RQ-2 Pioneer: The Flawed System that Redefined US Unmanned Aviation

    DTIC Science & Technology

    2012-02-01

    Periscope.com, “RQ-2 Pioneer,” http://www.militaryperiscope.com/weapons/aircraft/rpv- dron /w0004685.html 28 Ibid. 29 Jane’s Unmanned Aerial...Military Periscope.com, “RQ-2 Pioneer.” http://www.militaryperiscope.com/weapons/aircraft/rpv- dron /w0004685.html Polmar, Norman, The Naval

  13. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.

    1999-01-01

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  14. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.

    1999-07-27

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.

  15. Evidence for lysine acetylation in the coat protein of a Polerovirus

    USDA-ARS?s Scientific Manuscript database

    Virions of the RPV strain of Cereal yellow dwarf virus (CYDV-RPV) were purified from infected oat tissue and analyzed by mass spectrometry. Two conserved residues, K147 and K181, residing in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional ...

  16. RPV application of a globally adaptive rate controlled compressor

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1978-01-01

    A globally adaptive image compression structure is introduced for use in a tactical RPV environment. The structure described would provide an operator with the flexibility to dynamically maximize the usefulness of a limited and changing data rate. The concepts would potentially simplify system design while at the same time improving overall system performance.

  17. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    USDA-ARS?s Scientific Manuscript database

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  18. Synthesis of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1974-01-01

    Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.

  19. Role of the K101E Substitution in HIV-1 Reverse Transcriptase in Resistance to Rilpivirine and Other Nonnucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Xu, Hong-Tao; Colby-Germinario, Susan P.; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J.

    2013-01-01

    Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV. PMID:24002090

  20. Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors.

    PubMed

    Xu, Hong-Tao; Colby-Germinario, Susan P; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J; Wainberg, Mark A

    2013-11-01

    Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.

  1. SU-E-J-131: Augmenting Atlas-Based Segmentation by Incorporating Image Features Proximal to the Atlas Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.

    2015-06-15

    Purpose: For facilitating the current automatic segmentation, in this work we propose a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. Methods: In setting up an atlas-based library, we include not only the coordinates of contour points, but also the image features adjacent to the contour. 139 planning CT scans with normal appearing livers obtained during their radiotherapy treatment planning were used to construct the library. The CT images within the library were registered each other using affine registration. A nonlinear narrow shell with the regionalmore » thickness determined by the distance between two vertices alongside the contour. The narrow shell was automatically constructed both inside and outside of the liver contours. The common image features within narrow shell between a new case and a library case were first selected by a Speed-up Robust Features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the images of the new patient by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy function within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by a physician. Results: Application of the technique to 30 liver cases suggested that the technique was capable of reliably segment organs such as the liver with little human intervention. Compared with the manual segmentation results by a physician, the average and discrepancies of the volumetric overlap percentage (VOP) was found to be 92.43%+2.14%. Conclusion: Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. This work is supported by NIH/NIBIB (1R01-EB016777), National Natural Science Foundation of China (No.61471226 and No.61201441), Research funding from Shandong Province (No.BS2012DX038 and No.J12LN23), and Research funding from Jinan City (No.201401221 and No.20120109)« less

  2. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  3. Stent-Assisted Coil Embolization of a Traumatic Wide-Necked Renal Segmental Artery Pseudoaneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlunz-Hendann, Martin; Wetter, Axel, E-mail: axel.wetter@klinikum-duisburg.de; Landwehr, Peter

    We present the case of an Afghan woman with a renal segmental artery false aneurysm of the right kidney due to a shell splinter injury. Stent-assisted coil embolization of the aneurysm is described in detail.

  4. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  5. Specific detection of rinderpest virus by real-time reverse transcription-PCR in preclincal and clinical samples of experimentally infected cattle

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...

  6. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  7. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV materialmore » behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.« less

  8. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  9. Relative pelvic version: an individualized pelvic incidence-based proportional parameter that quantifies pelvic version more precisely than pelvic tilt.

    PubMed

    Yilgor, Caglar; Yavuz, Yasemin; Sogunmez, Nuray; Haddad, Sleiman; Mannion, Anne F; Abul, Kadir; Boissiere, Louis; Obeid, Ibrahim; Kleinstück, Frank; Pérez-Grueso, Francisco Javier Sánchez; Acaroglu, Emre; Pellise, Ferran; Alanay, Ahmet

    2018-03-08

    Pelvic tilt (PT) is used as an indicator of pelvic version with increased values indicating retroversion and disability. The concept of using PT solely as an absolute numerical value can be misleading, especially for the patients with pelvic incidence (PI) values near the upper and lower normal limits. Relative pelvic version (RPV) is a PI-based individualized measure of the pelvic version. Relative pelvic version indicates the individualized spatial orientation of the pelvis relative to the ideal sacral slope as defined by the magnitude of PI. The aim of this study was to compare RPV and PT for their ability to predict mechanical complications and their correlations with health-related quality of Life (HRQoL) scores. A retrospective analysis of a prospectively collected data of adult spinal deformity patients was carried out. Mechanical complications (proximal junctional kyphosis or proximal junctional failure, distal junctional kyphosis or distal junctional failure, rod breakage, and implant-related complications) and HRQoL scores (Oswestry Disability Index [ODI], Core Outcome Measures Index [COMI], Short Form-36 Physical Component Summary [SF-36 PCS], and Scoliosis Research Society 22 Spinal Deformity Questionnaire [SRS-22]) were used as outcome measures. Inclusion criteria were ≥4 levels fusion, and ≥2-year follow-up. Correlations between PT, RPV, PI, and HRQoL were analyzed using Pearson correlation coefficient. Pelvic incidence values and mechanical complication rates in RPV subgroups for each PT category were compared using one-way analysis of variance, Student t test, and chi-squared tests. Predictive models for mechanical complications with RPV and PT were analyzed using binomial logistic regressions. A total of 222 patients (168 women, 54 men) met the inclusion criteria. Mean age was 52.2±19.3 (18-84) years. Mean follow-up was 28.8±8.2 (24-62) months. There was a significant correlation between PT and PI (r=0.613, p<.001), threatening the use of PT to quantify pelvic version for different PI values. Relative pelvic version was not correlated with PI (r=-0.108, p>.05), being able to quantify pelvic version for all PI values. Compared with PT, RPV had stronger partial correlations with ODI, COMI, SF-36 PCS, and SRS-22 scores (p<.05). Discrimination performance assessed by area under the curve, percentage accuracy in classification, true positive rate, true negative rate, and positive and negative predictive values was better for the model with RPV than for PT. For average PI sizes, the agreement between RPV and PT were moderate (0.609, p<.001), whereas the agreement in small and large PI sizes were poor (0.189, p>.05; -0.098, p>.496, respectively). When analyzed by RPV, each PT "0," "+," and "++" category was further divided into two or three distinct subgroups of patients having different PI values (p=.000, p=.000, and p=.029, respectively). Relative pelvic version subgroups within the same PT category displayed different mechanical complication rates (p=.000, p=.020, and p=.019, respectively). Pelvic tilt may be insufficient or misleading in quantifying normoversion for the whole spectrum of PI values when used as an absolute numeric value in conjunction with previously reported population-based average thresholds of 20 and 30 degrees. Relative pelvic version offers an individualized quantification of ante-, normo-, and retroversion for all PI sizes. Schwab PT groups were found to constitute inhomogeneous subgroup of patients with different mean PI values and mechanical complication rates. Compared with PT, RPV showed a greater association with both mechanical complications and HRQoL. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Closing the design loop on HiMAT (highly maneuverable aircraft technology)

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Robinson, M. R.

    1984-01-01

    The design methodology used in the HiMAT program and the wind tunnel development activities are discussed. Selected results from the flight test program are presented and the strengths and weaknesses of testing advanced technology vehicles using the RPV concept is examined. The role of simulation on the development of digital flight control systems and in RPV's in particular is emphasized.

  11. Application of Remotely Piloted Vehicle (RPV) in monitoring and detecting watershed land use change and problem areas

    Treesearch

    Long-Ming Huang

    2000-01-01

    Improper cultivation of steep mountainous areas in Taiwan contributes to serious erosion and landslides. Regular patrol, detection, and administration of these problem areas has been an extremely difficult due to the steep and dangerous terrain of many of the forested watersheds in Taiwan. A remotely piloted vehicle (RPV) has been developed for various civil and...

  12. Timoshenko-Type Theory in the Stability Analysis of Corrugated Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Semenyuk, N. P.; Neskhodovskaya, N. A.

    2002-06-01

    A technique is proposed for stability analysis of longitudinally corrugated shells under axial compression. The technique employs the equations of the Timoshenko-type nonlinear theory of shells. The geometrical parameters of shells are specified on discrete set of points and are approximated by segments of Fourier series. Infinite systems of homogeneous algebraic equations are derived from a variational equation written in displacements to determine the critical loads and buckling modes. Specific types of corrugated isotropic metal and fiberglass shells are considered. The calculated results are compared with those obtained within the framework of the classical theory of shells. It is shown that the Timoshenko-type theory extends significantly the possibility of exact allowance for the geometrical parameters and material properties of corrugated shells compared with Kirchhoff-Love theory.

  13. A scaling and experimental approach for investigating in-vessel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R.E.

    1997-02-01

    The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks inmore » the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.« less

  14. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.

    2015-11-01

    Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.

  15. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  16. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  17. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  18. Tank tread assemblies with track-linking mechanism

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1986-01-01

    The proposed tank tread assembly has adjacent tank tread segments joined by a link bearing tapered pins retained by clips inserted through the tread shells perpendicular to the axes of the pin. It also has highway pads attached by a release rod bearing tapered, grooved cams which interlockingly engage tabs inserted into the tread shells.

  19. Local-area simulations of rotating compressible convection and associated mean flows

    NASA Technical Reports Server (NTRS)

    Hurlburt, Neal E.; Brummell, N. H.; Toomre, Juri

    1995-01-01

    The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.

  20. Non-contrast-enhanced MR portography with balanced steady-state free-precession sequence and time-spatial labeling inversion pulses: comparison of imaging with flow-in and flow-out methods.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Yamashita, Rikiya; Ohno, Tsuyoshi; Kawahara, Seiya; Shimizu, Hironori; Fujimoto, Koji; Kido, Aki; Kusahara, Hiroshi; Togashi, Kaori

    2014-09-01

    To compare and evaluate images of non-contrast-enhanced MR portography acquired with two different methods, the flow-in and flow-out methods. Twenty-five healthy volunteers were examined using respiratory-triggered three-dimensional balanced steady-state free-precession (SSFP) with two selective inversion recovery pulses (flow-in method) and one tagging pulse and one nonselective inversion recovery pulse (flow-out method). For quantitative analysis, vessel-to-liver contrast (Cv-l) ratios of the main portal vein (MPV), right portal vein (RPV), and left portal vein (LPV) were measured. The quality of portal vein visualization was scored using a four-point scale. The Cv-ls of the MPV, RPV, and LPV were all significantly higher with the flow-out than flow-in method (MPV = 0.834 ± 0.06 versus 0.711 ± 0.10; RPV = 0.861 ± 0.04 versus 0.729 ± 0.11; LPV = 0.786 ± 0.08 versus 0.545 ± 0.22; P < 0.0001). In all analyses of vessel visibility, non-contrast-enhanced MR portography with the flow-out method showed higher scores than with the flow-in method. With the flow-out method, visual scores of the MPV, RPV, portal vein branches of segments 4 (P4), and 8 (P8) were significantly better than with the flow-in method (MPV = 3.4 ± 0.7 versus 2.6 ± 0.9; RPV = 4.0 ± 0.0 versus 3.5 ± 0.9; P4 = 2.8 ± 1.3 versus 1.6 ± 1.0; P8 = 4.0 ± 0.0 versus 2.9 ± 1.1; P < 0.05). Non-contrast-enhanced MR portography with the flow-out method improves the visualization of the intrahepatic portal vein in comparison with the flow-in method. J. Magn. Reson. Imaging 2014;40:583-587. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  1. ESTIMATION OF CRACK-ARREST TOUGHNESS TRANSITION AND NDT TEMPERATURES FROM CHARPY FORCE-DISPLACEMENT IMPACT TRACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Mikhail A

    2010-01-01

    A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Famore » values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.« less

  2. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  3. Zone heated diesel particulate filter electrical connection

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  4. In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template.

    PubMed

    Abbah, Sunny-Akogwu; Liu, Jing; Lam, Raymond W M; Goh, James C H; Wong, Hee-Kit

    2012-09-10

    Electrostatic interactions between polycations and polyanions are being explored to fabricate polyelectrolyte complexes (PEC) that could entrap and regulate the release of a wide range of biomolecules. Here, we report the in vivo application of PEC shells fabricated from three different polycations: poly-l-ornithine (PLO), poly-l-arginine (PLA) and DEAE-dextran (DEAE-D) to condense heparin on the surface of alginate microbeads and further control the delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion application. We observed large differences in the behavior of PEC shells fabricated from the cationic polyamino acids (PLO and PLA) when compared to the cationic polysaccharide, DEAE-D. Whereas DEAE-D-based PEC shells eroded and released rhBMP-2 over 2 days in vitro, PLO- and PLA-based shells retained at least 60% of loaded rhBMP-2 after 3 weeks of incubation in phosphate-buffered saline. In vivo implantation in a rat model of posterolateral spinal fusion revealed robust bone formation in the PLO- and PLA-based PEC shell groups. This resulted in a significantly enhanced mechanical stability of the fused segments. However, bone induction and biomechanical stability of spine segments implanted with DEAE-D-based carriers were significantly inferior to both PLO- and PLA-based PEC shell groups (p<0.01). From these results, we conclude that PEC shells incorporating native heparin could be used for growth factor delivery in functional bone tissue engineering application and that PLA- and PLO-based complexes could represent superior options to DEAE-D for loading and in vivo delivery of bioactive BMP-2 in this approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, F.; Ishikawa, J.; Kurata, M.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior inmore » the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)« less

  6. Long-term efficacy and safety of rilpivirine plus abacavir and lamivudine in HIV-1 infected patients with undetectable viral load.

    PubMed

    Galizzi, Nadia; Galli, Laura; Poli, Andrea; Gianotti, Nicola; Carini, Elisabetta; Bigoloni, Alba; Tambussi, Giuseppe; Nozza, Silvia; Lazzarin, Adriano; Castagna, Antonella; Mancusi, Daniela; Termini, Roberta

    2018-01-01

    A regimen with rilpivirine (RPV), abacavir (ABC) and lamivudine (3TC) is simple and may allow the sparing of tenofovir and protease inhibitors. However, data on use of this combination as a strategy of switch are limited. Aims of the study were to assess the long-term efficacy and safety of this regimen. Retrospective study on HIV-1 infected patients followed at the Infectious Disease Department of the San Raffaele Scientific Institute, HBsAg-negative, HLA B5701-negative, with no documented resistance to RPV, ABC and 3TC, with HIV-RNA<50 copies/mL who started RPV plus ABC/3TC from March 2013 to September 2015. The primary outcome was durability [no treatment failure (TF)]. Secondary objectives were to evaluate changes in immunological, metabolic and other safety parameters. TF was defined as the occurrence of virological failure (VF, 2 consecutive values >50 copies/mL) or discontinuation of any drug in the regimen for any reason. Patients' follow-up accrued from the date of RPV plus ABC/3TC initiation to the date of TF (VF or discontinuation of any drug in the regimen) or to the date of last available visit. Time to TF was evaluated by use of the Kaplan-Meier curves. Mixed linear models were applied to evaluate changes in immunological, metabolic and other safety parameters. In this analysis, 100 patients starting RPV plus ABC/3TC were included. By 12, 24 and 36 months after switching to RPV plus ABC/3TC, the proportions of individuals without TF were 88% [95% confidence interval (CI): 79%-93%], 82% (95% CI:73%-89%) and 78% (95% CI:68%-86%), respectively. Time to TF was not significantly influenced by CD4+ nadir (≤200 vs >200 cells/μl; log-rank test: p = 0.311) or pre-ART viral load (<100000 vs ≥100000 copies/mL; log-rank test: p = 0.574) or the type of previous antiretroviral regimen (PI+2NRTIs vs NNRTI+2NRTIs vs Other; log-rank test: p = 0.942). Over a median follow-up of 2.9 years (IQR: 1.9-3.5), 26 subjects discontinued the treatment [10 due to toxicity, 7 for interactions with other drugs, 3 due to cardiovascular risk concern, 2 due to single viral blip, 1 due to VF, 1 for asthma, 1 patient's decision, 1 due to enrolment in a study protocol]. In this retrospective study, long-term use of RPV plus ABC/3TC regimen is effective and safe. Efficacy of this regimen was not found to be affected by low CD4+ nadir or high pre-ART viral load.

  7. Development and testing of the VITAMIN-B7/BUGLE-B7 coupled neutron-gamma multigroup cross-section libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risner, J.M.; Wiarda, D.; Miller, T.M.

    2011-07-01

    The U.S. Nuclear Regulatory Commission's Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the evaluated nuclear data file (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI.3 data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII.0. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96 libraries.more » Verification and validation of the new libraries were accomplished using diagnostic checks in AMPX, 'unit tests' for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in RPV fluence calculations and meet the calculational uncertainty criterion in Regulatory Guide 1.190. (authors)« less

  8. Diversity in times of adversity: probabilistic strategies in microbial survival games.

    PubMed

    Wolf, Denise M; Vazirani, Vijay V; Arkin, Adam P

    2005-05-21

    Population diversification strategies are ubiquitous among microbes, encompassing random phase-variation (RPV) of pathogenic bacteria, viral latency as observed in some bacteriophage and HIV, and the non-genetic diversity of bacterial stress responses. Precise conditions under which these diversification strategies confer an advantage have not been well defined. We develop a model of population growth conditioned on dynamical environmental and cellular states. Transitions among cellular states, in turn, may be biased by possibly noisy readings of the environment from cellular sensors. For various types of environmental dynamics and cellular sensor capability, we apply game-theoretic analysis to derive the evolutionarily stable strategy (ESS) for an organism and determine when that strategy is diversification. We find that: (1) RPV, effecting a sort of Parrondo paradox wherein random alternations between losing strategies produce a winning strategy, is selected when transitions between different selective environments cannot be sensed, (2) optimal RPV cell switching rates are a function of environmental lifecycle asymmetries and environmental autocorrelation, (3) probabilistic diversification upon entering a new environment is selected when sensors can detect environmental transitions but have poor precision in identifying new environments, and (4) in the presence of excess additive noise, low-pass filtering is required for evolutionary stability. We show that even when RPV is not the ESS, it may minimize growth rate variance and the risk of extinction due to 'unlucky' environmental dynamics.

  9. Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, T.M.

    1998-02-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiationmore » on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory.« less

  10. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  11. Effect of gender and race on the week 48 findings in treatment-naïve, HIV-1-infected patients enrolled in the randomized, phase III trials ECHO and THRIVE.

    PubMed

    Hodder, S; Arasteh, K; De Wet, J; Gathe, J; Gold, J; Kumar, P; Mohapi, L; Short, W; Crauwels, H; Vanveggel, S; Boven, K

    2012-08-01

    A week 48 efficacy and safety analysis with respect to gender and race was conducted using pooled data from the phase III, double-blind, double-dummy efficacy comparison in treatment-naïve, HIV-infected subjects of TMC278 and efavirenz (ECHO) and TMC278 against HIV, in a once-daily regimen versus efavirenz (THRIVE) trials. Treatment-naïve, HIV-1-infected adults were randomized to receive rilpivirine (RPV; TMC278) 25 mg once a day (qd), or efavirenz (EFV) 600 mg qd, plus tenofovir/emtricitabine (ECHO) or tenofovir/emtricitabine, zidovudine/lamivudine or abacavir/lamivudine (THRIVE). A total of 1368 participants (76% male and 61% White, of those with available race data) were randomized and treated. No gender-related differences in response rate (percentage of patients with HIV-1 viral load < 50 HIV-1 RNA copies/mL, using an intent-to-treat, time-to-loss-of-virological-response algorithm) were observed (RPV: men, 85%; women, 83%; EFV: men, 82%; women, 83%). Response rates were lower in Black compared with Asian and White participants (RPV: 75% vs. 95% and 85%, respectively; EFV: 74% vs. 93% and 83%, respectively); this finding was mostly a result of higher discontinuation and virological failure rates in Black patients. Safety findings were generally similar across race and gender subgroups. However, nausea occurred more commonly in women than in men in both treatment groups. In men, diarrhoea was more frequent in the EFV group, and abnormal dreams/nightmares were more frequent in men in both the EFV and RPV groups. Overall response rates were high for both RPV and EFV. No gender differences were observed. However, response rates were lower among Black patients, regardless of treatment group. Gender appeared to influence the incidence of gastrointestinal adverse events and abnormal dreams/nightmares for both treatments. © 2012 British HIV Association.

  12. Clinical Outcomes of Virologically-Suppressed Patients with Pre-existing HIV-1 Drug Resistance Mutations Switching to Rilpivirine/Emtricitabine/Tenofovir Disoproxil Fumarate in the SPIRIT Study.

    PubMed

    Porter, Danielle P; Toma, Jonathan; Tan, Yuping; Solberg, Owen; Cai, Suqin; Kulkarni, Rima; Andreatta, Kristen; Lie, Yolanda; Chuck, Susan K; Palella, Frank; Miller, Michael D; White, Kirsten L

    2016-02-01

    Antiretroviral regimen switching may be considered for HIV-1-infected, virologically-suppressed patients to enable treatment simplification or improve tolerability, but should be guided by knowledge of pre-existing drug resistance. The current study examined the impact of pre-existing drug resistance mutations on virologic outcomes among virologically-suppressed patients switching to Rilpivirine (RPV)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). SPIRIT was a phase 3b study evaluating the safety and efficacy of switching to RPV/FTC/TDF in virologically-suppressed HIV-1-infected patients. Pre-existing drug resistance at baseline was determined by proviral DNA genotyping for 51 RPV/FTC/TDF-treated patients with known mutations by historical RNA genotype and matched controls and compared with clinical outcome at Week 48. Drug resistance mutations in protease or reverse transcriptase were detected in 62.7% of patients by historical RNA genotype and in 68.6% by proviral DNA genotyping at baseline. Proviral DNA sequencing detected 89% of occurrences of NRTI and NNRTI resistance-associated mutations reported by historical genotype. Mutations potentially affecting RPV activity, including E138A/G/K/Q, Y181C, and H221Y, were detected in isolates from 11 patients by one or both assays. None of the patients with single mutants had virologic failure through Week 48. One patient with pre-existing Y181Y/C and M184I by proviral DNA genotyping experienced virologic failure. Nineteen patients with K103N present by historical genotype were confirmed by proviral DNA sequencing and 18/19 remained virologically-suppressed. Virologic success rates were high among virologically-suppressed patients with pre-existing NRTI and NNRTI resistance-associated mutations who switched to RPV/FTC/TDF in the SPIRIT study. While plasma RNA genotyping remains preferred, proviral DNA genotyping may provide additional value in virologically-suppressed patients for whom historical resistance data are unavailable.

  13. A Proposal for the Maximum KIC for Use in ASME Code Flaw and Fracture Toughness Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Mark; Stevens, Gary; Erickson, Marjorie A

    2011-01-01

    Nonmandatory Appendices A [1] and G [2] of Section XI of the ASME Code use the KIc curve (indexed to the material reference transition temperature, RTNDT) in reactor pressure vessel (RPV) flaw evaluations, and for the purpose of establishing RPV pressure-temperature (P-T) limits. Neither of these appendices places an upper-limit on the KIc value that may be used in these assessments. Over the years, it has often been suggested by some of the members of the ASME Section XI Code committees that are responsible for maintaining Appendices A and G that there is a practical upper limit of 200 ksimore » in (220 MPa m) [4]. This upper limit is not well recognized by all users of the ASME Code, is not explicitly documented within the Code itself, and the one source known to the authors where it is defended [4] relies on data that is either in error, or is less than 220 MPa m. However, as part of the NRC/industry pressurized thermal shock (PTS) re-evaluation effort, empirical models were developed that propose common temperature dependencies for all ferritic steels operating on the upper shelf. These models relate the fracture toughness properties in the transition regime to those on the upper shelf and, combined with data for a wide variety of RPV steels and welds on which they are based, suggest that the practical upper limit of 220 MPa m exceeds the upper shelf fracture toughness of most RPV steels by a considerable amount, especially for irradiated steels. In this paper, available models and data are used to propose upper bound limits of applicability on the KIc curve for use in ASME Code, Section XI, Nonmandatory Appendices A and G evaluations that are consistent with available data for RPV steels.« less

  14. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance.

    PubMed

    Di Gaspero, Gabriele; Copetti, Dario; Coleman, Courtney; Castellarin, Simone Diego; Eibach, Rudolf; Kozma, Pál; Lacombe, Thierry; Gambetta, Gregory; Zvyagin, Andrey; Cindrić, Petar; Kovács, László; Morgante, Michele; Testolin, Raffaele

    2012-02-01

    The Rpv3 locus is a major determinant of downy mildew resistance in grapevine (Vitis spp.). A selective sweep at this locus was revealed by the DNA genotyping of 580 grapevines, which include a highly diverse set of 265 European varieties that predated the spread of North American mildews, 82 accessions of wild species, and 233 registered breeding lines with North American ancestry produced in the past 150 years. Artificial hybridisation and subsequent phenotypic selection favoured a few Rpv3 haplotypes that were introgressed from wild vines and retained in released varieties. Seven conserved haplotypes in five descent groups of resistant varieties were traced back to their founders: (1) 'Munson', a cross between two of Hermann Jaeger's selections of V. rupestris and V. lincecumii made in the early 1880s in Missouri, (2) V. rupestris 'Ganzin', first utilised for breeding in 1879 by Victor Ganzin in France, (3) 'Noah', selected in 1869 from intermingled accessions of V. riparia and V. labrusca by Otto Wasserzieher in Illinois, (4) 'Bayard', a V. rupestris × V. labrusca offspring generated in 1882 by George Couderc in France, and (5) a wild form closely related to V. rupestris accessions in the Midwestern United States and introgressed into 'Seibel 4614' in the 1880s by Albert Seibel in France. Persistence of these Rpv3 haplotypes across many of the varieties generated by human intervention indicates that a handful of vines with prominent resistance have laid the foundation for modern grape breeding. A rampant hot spot of NB-LRR genes at the Rpv3 locus has provided a distinctive advantage for the adaptation of native North American grapevines to withstand downy mildew. The coexistence of multiple resistance alleles or paralogues in the same chromosomal region but in different haplotypes counteracts efforts to pyramidise them in a diploid individual via conventional breeding.

  15. Possible Concepts for Waterproofing of Norwegian TBM Railway Tunnels

    NASA Astrophysics Data System (ADS)

    Dammyr, Øyvind; Nilsen, Bjørn; Thuro, Kurosch; Grøndal, Jørn

    2014-05-01

    The aim of this paper is to evaluate and compare the durability, life expectancy and maintenance needs of traditional Norwegian waterproofing concepts to the generally more rigid waterproofing concepts seen in other European countries. The focus will be on solutions for future Norwegian tunnel boring machine railway tunnels. Experiences from operation of newer and older tunnels with different waterproofing concepts have been gathered and analyzed. In the light of functional requirements for Norwegian rail tunnels, some preliminary conclusions about suitable concepts are drawn. Norwegian concepts such as polyethylene panels and lightweight concrete segments with membrane are ruled out. European concepts involving double shell draining systems (inner shell of cast concrete with membrane) and single shell undrained systems (waterproof concrete segments) are generally evaluated as favorable. Sprayable membranes and waterproof/insulating shotcrete are welcomed innovations, but more research is needed to verify their reliability and cost effectiveness compared to the typical European concepts. Increasing traffic and reliance on public transport systems in Norway result in high demand for durable and cost effective solutions.

  16. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  17. Ares I-X Upper Stage Simulator Structural Analyses Supporting the NESC Critical Initial Flaw Size Assessment

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.

  18. Aquila Remotely Piloted Vehicle System Technology Demonstration (RPV-STD) Program. Volume 3. Field Test Program

    DTIC Science & Technology

    1979-04-01

    RC pilot In the stablied RC mode. To facilitate theme attempts, an automobile , with Its headlights on high beam, was positioned on each side of the...the vans. At approxi- mately 2 to 3 km, the actual automobile headlights would become visible. Then, the operator would attempt to reposition the RPV...to line up between the head- lights. Even though the front wheels of the automobiles were elevated, the automobile headlights were diverted slightly

  19. Design of a remotely piloted vehicle for a low Reynolds number station keeping mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.

  20. Remotely Piloted Vehicle (RPV) Two versus Three Level Maintenance Support Concept Study.

    DTIC Science & Technology

    1988-01-15

    Abri:.ms ML-C, Technic:al Arid lysi!;&2jp7 f D~onnie Joyce Al ler Ad:va-.ncecd Sys.tems Coric epts oft ic.e, -,Je etaty Robo r t Bac-et RPV Pti...en ter, Al TN Conccept,-* & [h ct norii ’’ t Fort Lee, VA 2D501 ,c ient f ii: Advisor , ATIN: ATCI. SP(A, At my C eq 1 t mPFr [ pp Ft VA :27: C.1. Do

  1. Damage Tolerance of Large Shell Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  2. Colder freeze-in axinos decaying into photons

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Kamada, Ayuki; Liew, Seng Pei; Yanagi, Keisuke

    2018-03-01

    We point out that 7 keV axino dark matter (DM) in the R-parity violating (RPV) supersymmetric (SUSY) Dine-Fischler-Srednicki-Zhitnitsky axion model can simultaneously reproduce the 3.5 keV x-ray line excess and evade stringent constraints from the Ly -α forest data. Peccei-Quinn symmetry breaking naturally generates both the TeV-scale μ term and the MeV-scale RPV term. The RPV term introduces a tiny axino-neutrino mixing and provides axino DM as a variant of the sterile neutrino DM explaining the 3.5 keV x-ray line excess. Axinos are produced by freeze-in processes via the μ term. The resultant phase space distribution tends to be colder than the Fermi-Dirac distribution. The inherent entropy production from late-time saxion decay makes axinos even colder than those without saxion decay. The resultant axino DM takes the correct relic density and is compatible even with the latest and strongest constraint from the Ly-α forest data.

  3. Novel fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2016105532A1, WO2016105534A1 and WO2016105564A1.

    PubMed

    Kang, Dongwei; Huo, Zhipeng; Wu, Gaochan; Xu, Jiabao; Zhan, Peng; Liu, Xinyong

    2017-04-01

    In the three patent applications, the impact of changing the pyrimidine core of the rilpivirine (RPV) to a variety of alternative fused cores was explored, culminating in the identification of a series of conformationally restricted compounds with comparable potencies against WT and mutant HIV-1 strains with those of efavirenz (EFV) and RPV, and higher security in the Human Ether-a-go-go-Related Gene (hERG) assay. Areas covered: The present review provides a fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs, and highlights the conformational restriction strategies in the development of NNRTIs. Expert opinion: The molecular docking analysis of the newly synthesized compounds maintain the classical horseshoe conformation and shares similar binding mode with RPV. The conformational restriction strategies have greatly accelerated the optimization of the DAPY NNRTIs and contribute to finding new chemical entities (NCEs) with favorable druggability.

  4. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-09-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2-5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen.

  5. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code ismore » chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.« less

  6. Temporal differentiation of pH-dependent capacitive current from dopamine.

    PubMed

    Yoshimi, Kenji; Weitemier, Adam

    2014-09-02

    Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used, because of its high sensitivity to dopamine. However, since an electric double layer on a carbon fiber surface in a physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals must be extracted from this large background current. It is known that ionic shifts, including H(+), influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (<5 ms). In contrast, the peak of faradic current from dopamine oxidation occurs after a delay of more than a few milliseconds. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and serotonin (5-HT), as we have shown previously. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH, and 5-HT.

  7. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana.

    PubMed

    Poque, S; Pagny, G; Ouibrahim, L; Chague, A; Eyquard, J-P; Caballero, M; Candresse, T; Caranta, C; Mariette, S; Decroocq, V

    2015-06-25

    Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.

  8. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    PubMed Central

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  9. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    PubMed

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  10. Rabbitpox virus and vaccinia virus infection of rabbits as a model for human smallpox.

    PubMed

    Adams, Mathew M; Rice, Amanda D; Moyer, R W

    2007-10-01

    The threat of smallpox release and use as a bioweapon has encouraged the search for new vaccines and antiviral drugs, as well as development of new small-animal models in which their efficacy can be determined. Here, we reinvestigate a rabbit model in which the intradermal infection of rabbits with very low doses of either rabbitpox virus (RPV) or vaccinia virus Western Reserve (VV-WR) recapitulates many of the clinical features of human smallpox. Following intradermal inoculation with RPV, rabbits develop systemic disease characterized by extensive viremia, numerous secondary lesions on the skin and mucocutaneous tissues, severe respiratory disease, death by 9 days postinfection, and, importantly, natural aerosol transmission between animals. Contrary to previous reports, intradermal infection with VV-WR also resulted in a very similar lethal systemic disease in rabbits, again with natural aerosol transmission between animals. When sentinel and index animals were cohoused, transmission rates approached 100% with either virus, with sentinel animals exhibiting a similar, severe disease. Lower rates of transmission were observed when index and sentinel animals were housed in separate cages. Sentinel animals infected with RPV with one exception succumbed to the disease. However, the majority of VV-WR-infected sentinel animals, while becoming seriously ill, survived. Finally, we tested the efficacy of the drug 1-O-hexadecyloxypropyl-cidofovir in the RPV/rabbit model and found that an oral dose of 5 mg/kg twice a day for 5 days beginning 1 day before infection was able to completely protect rabbits from lethal disease.

  11. Paradoxical impact of the remnant pancreatic volume and infectious complications on the development of nonalcoholic fatty liver disease after pancreaticoduodenectomy.

    PubMed

    Sato, Rie; Kishiwada, Masashi; Kuriyama, Naohisa; Azumi, Yoshinori; Mizuno, Shugo; Usui, Masanobu; Sakurai, Hiroyuki; Tabata, Masami; Yamada, Tomomi; Isaji, Shuji

    2014-08-01

    The aim of the present study was to evaluate perioperative risk factors for development of nonalcoholic fatty liver disease (NAFLD) after pancreaticoduodenectomy (PD), paying special attention to remnant pancreatic volume (RPV) and postoperative infection. We reviewed the charts of 110 patients who had been followed more than 6 months after PD. These patients were classified into the two groups according to RPV measured by CT volumetry at one month: large-volume group (LVG) (10 ml or more, n = 75) and small-volume group (SVG) (less than 10 ml, n = 35). Nonalcoholic fatty liver disease developed in 44 (40.0%), being significantly higher in SVG than in LVG: 54.2% vs. 33.3% (P = 0.037). SVG was characterized as significantly higher incidence of pancreatic adenocarcinoma, while LVG was characterized as significantly higher incidences of soft pancreas, postoperative infection and pancreatic fistula. In LVG, the incidence of NAFLD was significantly higher in patients with suspicion of infection than in those without it: 45.2% vs. 18.1% (P = 0.014), while not different in SVG. By multivariate analysis, independent risk factor was determined as RPV and suspicion of infection in the whole patients, and in LVG it was suspicion of infection, while in SVG it was not identified. After PD, RPV and status of postoperative infection paradoxically influenced the development of NAFLD. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-01

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  13. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.

    PubMed

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-25

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  14. Heavy-section steel technology and irradiation programs-retrospective and prospective views

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K; Bass, Bennett Richard; Rosseel, Thomas M

    In 1965, the Atomic Energy Commission (AEC), at the advice of the Advisory Committee on Reactor Safeguards (ACRS), initiated the process that resulted in the establishment of the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL). Dr. Spencer H. Bush of Battelle Northwest Laboratory, the man being honored by this symposium, representing the ACRS, was one of the Staff Advisors for the program and helped to guide its technical direction. In 1989, the Heavy-Section Steel Irradiation (HSSI) Program, formerly the HSST task on irradiation effects, was formed as a separate program, and this year the HSST/HSSImore » Programs, sponsored by the U.S. Nuclear Regulatory Commission (USNRC), celebrate 40 years of continuous research oriented toward the safety of light-water nuclear reactor pressure vessels. This paper presents a summary of results from those programs with a view to future activities. The HSST Program was established in 1967 and initially included extensive investigations of heavy-section low-alloy steel plates, forgings, and welds, including metallurgical studies, mechanical properties, fracture toughness (quasi-static and dynamic), fatigue crack-growth, and crack arrest toughness. Also included were irradiation effects studies, thermal shock analyses, testing of thick-section tensile and fracture specimens, and non-destructive testing. In the subsequent decades, the HSST Program conducted extensive large-scale experiments with intermediate-size vessels (with varying size flaws) pressurized to failure, similar experiments under conditions of thermal shock and even pressurized thermal shock (PTS), wide-plate crack arrest tests, and biaxial tests with cruciform-shaped specimens. Extensive analytical and numerical studies accompanied these experiments, including the development of computer codes such as the recent Fracture Analysis of Vessels Oak Ridge (FAVOR) code currently being used for PTS evaluations. In the absence of radiation damage to the RPV, fracture of the vessel is improbable. However, exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The HSSI Program has conducted a series of experiments to assess the effects of neutron irradiation on RPV material behavior, especially fracture toughness. These studies have included RPV plates and welds, varying chemical compositions, and fracture toughness specimens up to 4 in. thickness. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. Results from the HSST and HSSI Program are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety.« less

  15. Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment

    NASA Astrophysics Data System (ADS)

    Belliard, S.; Pimenta, R. A.

    2016-04-01

    We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.

  16. Search for sneutrino production in eμ final states in 5.3 fb-1 of pp collisions at square root s =1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Calvet, S; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2010-11-05

    We report the results of a search for R parity violating (RPV) interactions leading to the production of supersymmetric sneutrinos decaying into eμ final states using 5.3 fb-1 of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. Having observed no evidence for production of eμ resonances, we set direct bounds on the RPV couplings λ311' and λ312 as a function of sneutrino mass.

  17. Ambient occlusion - A powerful algorithm to segment shell and skeletal intrapores in computed tomography data

    NASA Astrophysics Data System (ADS)

    Titschack, J.; Baum, D.; Matsuyama, K.; Boos, K.; Färber, C.; Kahl, W.-A.; Ehrig, K.; Meinel, D.; Soriano, C.; Stock, S. R.

    2018-06-01

    During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources.

  18. Re-entry vehicle shape for enhanced performance

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)

    2008-01-01

    A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.

  19. Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate

    PubMed Central

    Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.

    2017-01-01

    Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities. PMID:29163408

  20. Reactor Pressure Vessel Integrity Assessments with the Grizzly Aging Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Hoffman, William

    Grizzly is a simulation tool being developed at Idaho National Laboratory (INL) as part of the US Department of Energy’s Light Water Reactor Sustainability program to provide improved safety assessments of systems, components, and structures in nuclear power plants subjected to age-related degradation. Its goal is to provide an improved scientific basis for decisions surrounding license renewal, which would permit operation of commercial nuclear power plants beyond 60 years. Grizzly is based on INL’s MOOSE framework, which enables multiphysics simulations in a parallel computing environment. It will address a wide variety of aging issues in nuclear power plant systems, components,more » and structures, modelling both the aging processes and the ability of age-degraded components to perform safely. The reactor pressure vessel (RPV) was chosen as the initial application for Grizzly. Grizzly solves tightly coupled equations of heat conduction and solid mechanics to simulate the global response of the RPV to accident conditions, and uses submodels to represent regions with pre-existing flaws. Domain integrals are used to calculate stress intensity factors on those flaws. A physically based empirical model is used to evaluate material embrittlement, and is used to evaluate whether crack growth would occur. Grizzly can represent the RPV in 2D or 3D, allowing it to evaluate effects that require higher dimensionality models to capture. Work is underway to use lower length scale models of material evolution to inform engineering models of embrittlement. This paper demonstrates an application of Grizzly to RPV failure assessment, and summarizes on-going work.« less

  1. Non-Intrusive Velocity Measurements with MTV During DCC Event in the HTTF

    NASA Technical Reports Server (NTRS)

    Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.

    2017-01-01

    Velocity profiles are measured using molecular tagging velocimetry (MTV) in the high temperature test facility (HTTF) at Oregon State University during a depressurized conduction cooldown (DCC) event. The HTTF is a quarter scale electrically heated nuclear reactor simulator designed to replicate various accident scenarios. During a DCC, a double ended guillotine break results in the reactor pressure vessel (RPV) depressurizing into the reactor cavity and ultimately leading to air ingress in the reactor core (lock-exchange and gas diffusion). It is critical to understand the resulting buoyancy-driven flow to characterize the reactor self-cooling capacity through natural circulation. During tests conducted at ambient pressure and temperature, the RPV containing helium is opened (via the hot and cold legs) to a large vessel filled with nitrogen to simulate the atmosphere. The velocity profile on the hot leg pipe centerline is recorded at 10 Hz with MTV based on NO tracers. The precision of the velocimetry was measured to be 0.02 m/s in quiescent flow prior to the tests. A helium flow from the RPV is initially observed in the top quarter of the pipe. During the first 20 seconds of the event, helium flows out of the RPV with a maximum velocity below 2 m/s. The velocity profile transitions from parabolic to linear in character and decays slowly over the rest of the recording; peak velocities of 0.2 m/s are observed after 30 min. A counter-flow of nitrogen is also observed intermittently, which occurs at lower velocities (>0.1 m/s).

  2. On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld.

    PubMed

    Lindgren, Kristina; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2017-04-01

    Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice of MSM cluster parameters, primarily on the cluster number density, has been undertaken.

  3. Nanoindentation of ion-irradiated reactor pressure vessel steels - model-based interpretation and comparison with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.

    2018-04-01

    Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.

  4. Overview of feasibility study on conducting overflight measurements of shaped sonic boom signatures using RPV's

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.; Bobbitt, Percy J.

    1992-01-01

    Before beginning this presentation, it is appropriate to acknowledge the sincere interest and financial support provided by the NASA LaRC under contract NAS9-17900. An outline of the material to be used in the present paper is given. It begins with a indication of the origin and objectives of the feasibility study. This is followed by a discussion of various simulation methods of establishing the persistence of shaped sonic boom signatures to large distances including the use of recoverable RPV/drones. The desirable features to be sought out in an RPV along with a rationale for the selection of a 'shaped' sonic boom signature will be addressed. Three candidate vehicles are examined as to their suitability with respect to a number of factors, in particular, modifiability. Area distributions and associated sonic boom signatures of the basic and modified Firebee vehicle will also be shown. An indication of the scope of the proposed wind tunnel and flight test programs will be presented including measurement technologies and predicted waveforms. Finally, some remarks will be made summarizing the study and highlighting the key findings.

  5. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less

  6. Investigation of Performance, Noise, and Detectability Characteristics of Remotely Piloted Vehicle (RPV) Propellers

    DTIC Science & Technology

    1980-06-01

    characteristics of small-scale propellers in forward flight, the results of these studies were used as guidelines to arrive at the quiet RPV propeller designs...8217 FREQUENY, HZ (b) FREQUENCY, HZ WITHOUT THE DUCT 8= 900 WITH THE DUCT 8-W= 10Hz BPF =195 Hz Figure 24. Spectral Comparisons of a Two-Bladed Propeller (BD3...bS 1P95 REAR BLADES 114 114 " 84-J 4 64 44 44 0 512 1024 1536 2048 2560 0 512 1024 1536 2046 2560 FREQUENCY, HZ FREQUENCY, Hz "| 95H BPF :195 Hz (C

  7. A Numerical Scheme for Predicting Transient Shock, Boundary Layer, and Magnetohydrodynamic Phenomenia

    DTIC Science & Technology

    1978-12-01

    E2,E3,E4,ISYH,KL1,KL2,KL3,KL4,PL 2784 10, IHHIN(20),IHHRX(20),JHHIN(20),JHHRX(20),HCODE(20), I HIST, ICHECK ,H 2785 20VIE,IDET, IVEL,RPV,ILINE,HZODE(20...IKO=IKO+1 IF (IKO.EO.1) Tl=T KL1=0 KL2=0 KL3=0 KL4=0 ICHECK =O C...I HIST, ICHECK ,M 20VIE, IDET, IVEL,RPV,ILINE,MZODE(20)./DN(3).ISPRT.IZMIN(20),/ZMRX(20 3), JZMIN(20). JZMRX(20),DUNVRR(40), WW. IVX, IVZ, INUNM

  8. Magnetic and pH-sensitive nanoparticles for antitumor drug delivery.

    PubMed

    Yu, Shufang; Wu, Guolin; Gu, Xin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2013-03-01

    A dually responsive nanocarrier with multilayer core-shell architecture was prepared based on Fe(3)O(4)@SiO(2) nanoparticles coated with mPEG-poly(l-Asparagine). Imidazole groups (pK(a)∼6.0) were tethered to the side chains of poly(l-Asparagine) segments by aminolysis. These nanoparticles were expected to be sensitive to both magnetic field and pH environment. The obtained materials were characterized with FTIR, dynamic light scattering, ζ-potential, TEM, TGA and hysteresis loop analysis. It was found that this Fe(3)O(4)@SiO(2)-polymer complex can form nano-scale core-shell-corona trilayer particles (∼250 nm) in aqueous solution. The Fe(3)O(4)@SiO(2), poly(L-Asparagine) and mPEG segments serve as a super-paramagnetic core, a pH-sensitive shell, and a hydrophilic corona, respectively. An antitumor agent, doxorubicin (DOX), was successfully loaded into the nanocarrier via combined actions of hydrophobic interaction and hydrogen bonding. The drug release profiles displayed a pH-dependent behavior. DOX release rate increased significantly as the ambient pH dropped from the physiological pH (7.4) to acidic (5.5). This is most likely due to protonation and a change in hydrophilicity of the imidazole groups in the poly(l-Asparagine) segments. This new approach may serve as a promising platform to formulate magnetic targeted drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Report detailing comparative analysis of results from high flux isotope reactor and national institute of standards technology small-angle neutron scattering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Mikhail A.; Littrell, Ken; Wells, Peter

    The major issues regarding irradiation effects are discussed in [1-3] and have also been discussed in previous progress and milestone reports. As noted previously, of the many significant issues discussed, the issue considered to have the most impact on the current regulatory process is that associated with effects of neutron irradiation on RPV steels at high fluence, for long irradiation times, and as affected by neutron flux. It is clear that embrittlement of RPV steels is a critical issue that may limit LWR plant life extension. The primary objective of the LWRSP RPV task is to develop robust predictions ofmore » transition temperature shifts (TTS) at high fluence ( t) to at least 1020 n/cm 2 (>1 MeV) pertinent to plant operation of some pressurized water reactors (PWR) for 80 full power years. Correlations between the high flux test reactor results and low flux surveillance specimens must be established for proper RPV embrittlement predictions of the current nuclear power fleet. Additionally, a complete understanding of defect evolution for high nickel RPV steels is needed to characterize the embrittlement potential of Mn-Ni-enriched precipitates (MNPs), particularly for the high fluence regime. While understanding of copper-enriched precipitates (CRPs) have been fully developed, the recent discovery and experimental verification [4] of late blooming MNPs with little to no copper for nucleation has stimulated research efforts to understand the evolution of these phases. New and existing databases will be combined to support developing physically based models of TTS for high fluence-low flux ( < 10 11n/cm 2-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1 1020 n/cm2 (>1 MeV). Moreover, large number of various RPV materials have been irradiated in ATR-2 experiment and will be jointly studied by University of California Santa Barbara (UCSB) and ORNL to address majority of microstructural characteristics discussed above, see Ref. [5] and [6] for details. UCSB has performed a large number of SANS experiments in the past at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). These data are taken from RPV steels irradiated in a wide range of flux-fluence space and will be very useful in comparing to the upcoming UCSB ATR-2 irradiation characterization since most of the SANS experiments with ATR-2 materials will be performed at ORNL High Flux Isotope Reactor (HFIR). However in the previous report [7], some discrepancies were observed between HFIR and NCNR generated data. One of the hypotheses was that there was some kind of extra scattering occurring off the sample holders that results in the HFIR curves falling above the NCNR curves. To test this hypothesis, UCSB provided thermally aged samples that have been previously run at NCNR to ORNL for testing at HFIR while ORNL performed some improvements to experimental set up at HFIR. This report provides the status for the Level 3 Milestone (M3LW-15OR0402013), Complete report detailing comparative analysis of results from High Flux Isotope Reactor and National Institute of Standards and Technology small-angle neutron scattering experiments. This milestone is associated with small-angle neutron scattering characterization at the High Flux Isotope Reactor of various model alloys that had been previously characterized at NCNR by UCSB.« less

  10. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.

    2017-07-01

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.

  11. New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs

    DOE PAGES

    Takamatsu, Kuniyoshi; Hu, Rui

    2014-11-27

    A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less

  12. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    NASA Astrophysics Data System (ADS)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  13. Modernization of existing VVER-1000 surveillance programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Erak, D.; Makhotin, D.

    2011-07-01

    According to generally accepted world practice, evaluation of the reactor pressure vessel (RPV) material behavior during operation is carried out using tests of surveillance specimens. The main objective of the surveillance program consists in insurance of safe RPV operation during the design lifetime and lifetime-extension period. At present, the approaches of pressure vessels residual life validation based on the test results of their surveillance specimens have been developed and introduced in Russia and are under consideration in other countries where vodo-vodyanoi energetichesky reactors- (VVER-) 1000 are in operation. In this case, it is necessary to ensure leading irradiation of surveillancemore » specimens (as compared to the pressure vessel wall) and to provide uniformly irradiated specimen groups for mechanical testing. Standard surveillance program of VVER-1000 has several significant shortcomings and does not meet these requirements. Taking into account program of lifetime extension of VVER-1000 operating in Russia, it is necessary to carry out upgrading of the VVER-1000 surveillance program. This paper studies the conditions of a surveillance specimen's irradiation and upgrading of existing sets to provide monitoring and prognosis of RPV material properties for extension of the reactor's lifetime up to 60 years or more. (authors)« less

  14. Numerical Strength Analysis of a Complex, Steel Shell Structure/ Numeryczna Analiza Wytrzymałosciowa Pewnej Złożonej, Stalowej Konstrukcji Powłokowej

    NASA Astrophysics Data System (ADS)

    Burczynski, Grzegorz; Marcinowski, Jakub

    2014-09-01

    The paper deals with the numerical modelling of a complex, steel shell structure. The part under analysis is the upper segment of a steel pylon, which consists of several cylindrical shells and one conical segment. Particular parts of the structure are welded together. Geometrical and loading data calculations were performed for the particular material for both an ideally elastic case and an elasto-plastic case. The conclusion that the structural member analysed required strengthening were drawn on the basis of these results. The structural modification was proposed and additional calculations for this modified structure were also performed. Introduced additional shell elements locked the mechanism of plastic flow. The proposed modification can be treated as a possible strengthening concept. The whole analysis was performed by means of the ABAQUS system but some stages of calculations were also verified by the COSMOS/M system. Przedmiotem pracy jest numeryczne modelowanie pewnej bardzo złożonej, stalowej konstrukcji powłokowej. Analizowana szczegółowo czesc jest górnym fragmentem stalowego pylonu, na który składa sie kilka odcinków powłok cylindrycznych oraz jeden segment stożkowy. Te poszczególne fragmenty konstrukcji były ze soba połaczone spawaniem. Dla znanych parametrów materiałowych, geometrycznych i obciażeniowych wykonano obliczenia w zakresie idealnie spreżystym oraz w zakresie spreżystoplastycznym. Na podstawie tych obliczen wyciagnieto wniosek o koniecznosci wzmocnienia tej czesci pylonu. Zaproponowano istotna modyfikacje istniejacej konstrukcji i wykonano dla niej ponownie obliczenia. Wprowadzone dodatkowe elementy powłokowe zablokowały mechanizm plastycznego płyniecia. Zaproponowana modyfikacje można potraktowac jako jedna z możliwych koncepcji wzmocnienia konstrukcji. Wszystkie analizy numeryczne zostały wykonane za pomoca systemu ABAQUS. Pewne wybrane fragmenty obliczen były weryfikowane także z pomoca systemu COSMOS/M.

  15. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  16. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  17. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  18. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  19. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    NASA Astrophysics Data System (ADS)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The system of nonlinear integro-differential equations (NIDE) with variable coefficients concerning a deflection w=w(x,y) and displacements u=u(x,y), v=v(x,y) was used for construction mathematical model of the problem. The Kichhoff-Love hypothesis was used as basis for description physical and geometrical relations and construction of a discrete model of nonlinear problems dynamic theory of viscoelasticity. The most effective variational Bubnov-Galerkin method was used for obtaining Volterra type system of NIDE. The integration of the obtained equations system was carried out with the help of the numerical method based on quadrature formula. The computer codes on algorithmic language Delphi were created for investigation amplitude-time, deflected mode and torque-time characteristic of vibrations of the viscoelastic shells. For real composite materials at wide ranges of change of physical-mechanical and geometrical parameters the behavior of shells were investigated. Calculations were carried out at different laws of change of thickness. Results will be presented as graphs and tables.

  20. The evaluation of Computed Tomography hard- and software tools for micropaleontologic studies on foraminifera

    NASA Astrophysics Data System (ADS)

    van Loo, D.; Speijer, R.; Masschaele, B.; Dierick, M.; Cnudde, V.; Boone, M.; de Witte, Y.; Dewanckele, J.; van Hoorebeke, L.; Jacobs, P.

    2009-04-01

    Foraminifera (Forams) are single-celled amoeba-like organisms in the sea, which build a tiny calcareous multi-chambered shell for protection. Their enormous abundance, great variation of shape through time and their presence in all marine deposits made these tiny microfossils the oil companies' best friend by facilitating the detection of new oil wells. Besides the success of forams in the oil and gas industry, they are also a most powerful tool for reconstructing climate change in the past. The shell of a foraminifer is a tiny gold mine of information both geometrical as chemical. However, until recently the best information on this architecture was only obtained through imaging the outside of a shell with Scanning Electron Microscopy (SEM), giving no clues towards internal structures other than single snapshots through breaking a specimen apart. With X-ray computed tomography (CT) it is possible to overcome this problem and uncover a huge amount of geometrical information without destructing the samples. Using the last generation of micro-CT's, called nano-CT, because of the sub-micron resolution, it is now possible to perform adequate imaging even on these tiny samples without needing huge facilities. In this research, a comparison is made between different X-ray sources and X-ray detectors and the resulting image resolution. Both sharpness, noise and contrast are very important parameters that will have important effects on the accuracy of the results and on the speed of data-processing. Combining this tomography technique with specific image processing software, called segmentation, it is possible to obtain a 3D virtual representation of the entire forams shell. This 3D virtual object can then be used for many purposes, from which automatic measurement of the chambers size is one of the most important ones. The segmentation process is a combination of several algorithms that are often used in CT evaluation, in this work an evaluation of those algorithms is presented. Difficulties arising when the forams shell is filled with material but it still remains possible to perform adequate segmentation. The void inside the shell corresponds to the chambers of the foram and the inter-chamber connections. Using automatic separation algorithms it is possible to obtain the shape of individual chambers. The results from the segmentation process can then be used to perform a multitude of analysis on each foram. Out of the shells geometry one can derive variations in shell thickness, shell density and shell porosity. Since the geometry of each individual chamber can be derived, it is possible to track chamber size variation for one foram or between two different forams, the difference in orientation and distance between the chambers. In this work the algorithms and procedures have been applied on two forams: Pseudouvigerina sp., a benthic foram that lived within the sediments at the seafloor. It dates from the earliest Paleocene, 65 Ma and was collected near Brazos River, Texas. Globigerinoides, a modern planktic foram, living in the upper part of the water comlumn in the open ocean. The test settled on the seafloor after death and was recently collected from the seafloor at 2900 m water depth at Nazca Ridge in the eastern Pacific Ocean. It was found that foram A consists of 15 chambers with a total volume of 1.8 x 106 m3 and shows progressive growth of consecutive chambers (average of 1,5 magnification). After the large globular initial chamber, which indicates asexual reproduction, each chamber is slightly larger than the previous one. In the later stages the chambers develop lateral edges with a thickened margin, leading to a distinct triangular shape in cross section. Foram B on the other hand has a distinct trochospiral coil (like a snail), consisting of 16 chambers with a total volume of 91 x 106 m3. The entire shell thickens with every successive chamber, so that the initial part of the test is embraced in a thick calcite crust. The chambers grow rapidly in size (average magnification of 2,24 ), which is typical for most planktic foraminifera. The globular shape aids in the buoyancy of the specimen for its planktic way of life.

  1. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    PubMed

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  2. Improving X-ray Optics Through Differential Deposition

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Gaskin, Jessica A.; O'Dell, Steve; Weisskopf, Martin; Zhang, William; Romaine, Suzanne

    2012-01-01

    The differential deposition technique can in theory correct shell figures to approximate arcsecond value. We have received APRA funding and are building two custom system to demonstrate the technique on full shell and segmented optics. We hope to be able to demonstrate < 5 arcsec performance in < 2 years. To go beyond this, (arcsecond level) is very difficult to judge as we have not yet discovered the problems. May necessitate in-situ metrology, stress reduction investigations, correcting for gravity effects, correcting for temperature effects. Some of this will become obvious in early parts of the investigation.

  3. Recent Progress in Adjustable X-ray Optics for Astronomy

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Allured, Ryan; Cotroneo, Vincenzo; McMuldroch, Stuart; Marquez, Vanessa; Schwartz, Daniel A.; Vikhlinin, Alexey; ODell, Stephen L.; Ramsey, Brian; Trolier-McKinstry, Susan; hide

    2014-01-01

    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.

  4. Left Atrial Anatomy in Patients Undergoing Ablation for Atrial Fibrillation.

    PubMed

    Krum, David; Hare, John; Gilbert, Carol; Choudhuri, Indrajit; Mori, Naoyo; Sra, Jasbir

    2013-01-01

    Background: Left atrial anatomy is highly variable, asymmetric, irregular and three-dimensionally unique. This variability can affect the outcome of atrial ablation. A catalog of anatomic varieties may aid patient selection and ablation approach and provide better tools for left atrial ablation. Methods: We analyzed computed tomography scans from 514 patients undergoing left atrial ablation. Images were processed on Advantage Windows with CardEP™ software (GE Healthcare, Waukesha, WI). Measurements of pulmonary vein (PV) ostial size along the long and short axes were made using double oblique cuts, and area of the ostia was calculated. Results: Patients with 2 left (LPV) and 2 right PVs (RPV) (62.6%), 2 LPVs and 3 RPVs (17.3%) and 1 LPV and 2 RPVs (14.2%) made up the three most common variants. In the 2-LPV/2-RPV anatomy, the ostial size and area of the RPVs were larger than their corresponding LPVs (p<0.001), and the ostial size and area of the superior PVs were larger than their corresponding inferior PVs (p<0.001). In the 2-LPV/3-RPV anatomy, the total area of the RPVs was larger than the total area of the LPVs (p<0.001). In the 1-LPV/2-RPV anatomy, the ostial size of the left common PV was larger than either right PV (p<0.007). However, the total area of the RPVs was larger than the area of the left common PV (p<0.002). The left common PV was also larger than any of the left veins in any of the other anatomies. The total PV area between the three most common anatomies was not significantly different. Conclusions: More than 37% of patients have a left atrial anatomy other than 2 left and 2 right PVs. This data may help in designing approaches for left atrial ablation, tailoring the procedure to individual patients and improving ablation tools.

  5. Coordinated traffic incident management using the I-Net embedded sensor architecture

    NASA Astrophysics Data System (ADS)

    Dudziak, Martin J.

    1999-01-01

    The I-Net intelligent embedded sensor architecture enables the reconfigurable construction of wide-area remote sensing and data collection networks employing diverse processing and data acquisition modules communicating over thin- server/thin-client protocols. Adaptive initially for operation using mobile remotely-piloted vehicle platforms such as small helicopter robots such as the Hornet and Ascend-I, the I-Net architecture lends itself to a critical problem in the management of both spontaneous and planned traffic congestion and rerouting over major interstate thoroughfares such as the I-95 Corridor. Pre-programmed flight plans and ad hoc operator-assisted navigation of the lightweight helicopter, using an auto-pilot and gyroscopic stabilization augmentation units, allows daytime or nighttime over-the-horizon flights of the unit to collect and transmit real-time video imagery that may be stored or transmitted to other locations. With on-board GPS and ground-based pattern recognition capabilities to augment the standard video collection process, this approach enables traffic management and emergency response teams to plan and assist real-time in the adjustment of traffic flows in high- density or congested areas or during dangerous road conditions such as during ice, snow, and hurricane storms. The I-Net architecture allows for integration of land-based and roadside sensors within a comprehensive automated traffic management system with communications to and form an airborne or other platform to devices in the network other than human-operated desktop computers, thereby allowing more rapid assimilation and response for critical data. Experiments have been conducted using several modified platforms and standard video and still photographic equipment. Current research and development is focused upon modification of the modular instrumentation units in order to accommodate faster loading and reloading of equipment onto the RPV, extension of the I-Net architecture to enable RPV-to-RPV signaling and control, and refinement of safety and emergency mechanisms to handle RPV mechanical failure during flight.

  6. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    NASA Astrophysics Data System (ADS)

    Kolluri, M.; Kryukov, A.; Magielsen, A. J.; Hähner, P.; Petrosyan, V.; Sevikyan, G.; Szaraz, Z.

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T41 value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high thermal stability.

  7. Thin fused silica shells for high-resolution and large collecting area x-ray telescopes (like Lynx/XRS)

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Citterio, O.; Ghigo, M.; Pareschi, G.; Parodi, G.; Incorvaia, S.

    2017-09-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arc second Half Energy Width, HEW), but with a much larger throughput (2.5 m2 effective area @1 keV), represents a compelling request by the scientific community. To this end the Lynx/XRS mission is being studied in USA, with the participation of international partners. In order to figure out the challenging technological task of the mirror fabrication, different approaches are considered, based on monolithic and segmented shells. Starting from the experience done on the glass prototypal shell realized in the past years, the direct polishing of thin (2 mm thick) fused silica monolithic shells is being investigated as a possible solution. A temporary stiffening structure is designed to support the shell during the figuring and polishing operations and to manage the handling up to its integration in the telescope structure. After the grinding and the polishing phases, in order to achieve the required surface accuracy, a final ion beam figuring correction is foreseen. In this paper, we present the technological process and the results achieved so far on a prototypal shell under development.

  8. The Impact of Manual Segmentation of CT Images on Monte Carlo Based Skeletal Dosimetry

    NASA Astrophysics Data System (ADS)

    Frederick, Steve; Jokisch, Derek; Bolch, Wesley; Shah, Amish; Brindle, Jim; Patton, Phillip; Wyler, J. S.

    2004-11-01

    Radiation doses to the skeleton from internal emitters are of importance in both protection of radiation workers and patients undergoing radionuclide therapies. Improved dose estimates involve obtaining two sets of medical images. The first image provides the macroscopic boundaries (spongiosa volume and cortical shell) of the individual skeletal sites. A second, higher resolution image of the spongiosa microstructure is also obtained. These image sets then provide the geometry for a Monte Carlo radiation transport code. Manual segmentation of the first image is required in order to provide the macrostructural data. For this study, multiple segmentations of the same CT image were performed by multiple individuals. The segmentations were then used in the transport code and the results compared in order to determine the impact of differing segmentations on the skeletal doses. This work has provided guidance on the extent of training required of the manual segmenters. (This work was supported by a grant from the National Institute of Health.)

  9. Division of Chinese soft-shelled turtle intestine with molecular markers is slightly different from the morphological and histological observation.

    PubMed

    Zhang, Zuobing; Song, Ruxin; Xing, Xiao; Wang, Lan; Niu, Cuijuan

    2018-01-01

    The Chinese soft-shelled turtle (Pelodiscus sinensis) is a commercially important species in Asian countries. Knowledge of its nutritional requirements and physiology is essential for determining the appropriate content of the feed for this animal. However, the lack of functional characterization of the intestine of this turtle limits the understanding of its absorption and utilization of nutritional materials. To solve this problem, this work utilized anatomical and histological methods to characterize 9 segments sampled along the anterior-posterior axis of the intestine. Furthermore, 9 genes, which have been well documented in the intestine division of mammals and fish, were employed to functionally characterize the 9 sampled segments. Our results suggest that regions covering from the starting site to S3 (position at 29.9% of the total length from the starting of the intestine) are the equivalent of mammalian dedumonen, and those covering S4 (40.2%) and S5 (65.4%), posterior to S8 (92.7%), are the equivalent of the mammalian ileum and the large intestine, respectively. As to the region spaning S6 (81.3%) and S7 (87.3%), its functional equivalent (small intestine or large intestine) may be variable and depends on the functional genes. This molecular characterization in relation to the division of the intestine of Chinese soft-shelled turtle may contribute to the understanding of the nutritional physiology of the turtle, and promote Chinese soft-shelled turtle production. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  10. X-Ray Optics for the 2020's

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    X-ray optics is an essential and enabling technology for x-ray astronomy. This slide presentation presents the authors views on the requirements for x-ray optics as progress is made toward building IXO and preparing for the 2020's. The presentation reviews the status of several technologies that are being developed and outlines the steps that we as a community needs to take to move toward x-ray optics meeting the five key requirements: (1) high angular resolution, (2) large effective area, (3) low mass, (4) fast production, and (5) low cost. There is discussion of segmentation vs full shell, size of the mirror segment, mirror segment frabrication, post-slumping figure improvement, and characterization of coating quality.

  11. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  12. Evidence for lysine acetylation in the coat protein of a polerovirus.

    PubMed

    Cilia, Michelle; Johnson, Richard; Sweeney, Michelle; DeBlasio, Stacy L; Bruce, James E; MacCoss, Michael J; Gray, Stewart M

    2014-10-01

    Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.

  13. Fracture and Stress Evolution on Europa: New Insights Into Fracture Interpretation and Ice Thickness Estimates Using Fracture Mechanics Analyses

    NASA Technical Reports Server (NTRS)

    Kattenhorn, Simon

    2004-01-01

    The work completed during the funding period has provided many important insights into fracturing behavior in Europa's ice shell. It has been determined that fracturing through time is likely to have been controlled by the effects of nonsynchronous rotation stresses and that as much as 720 deg of said rotation may have occurred during the visible geologic history. It has been determined that there are at least two distinct styles of strike-slip faulting and that their mutual evolutionary styles are likely to have been different, with one involving a significant dilational component during shear motion. It has been determined that secondary fracturing in perturbed stress fields adjacent to older structures such as faults is a prevalent process on Europa. It has been determined that cycloidal ridges are likely to experience shear stresses along the existing segment portions as they propagate, which affects propagation direction and ultimately induces tailcracking at the segment tip than then initiates a new cycle of cycloid segment growth. Finally, it has been established that mechanical methods (e.g., flexure analysis) can be used to determine the elastic thickness of the ice shell, which, although probably only several km thick, is likely to be spatially variable, being thinner under bands but thicker under ridged plains terrain.

  14. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.

    2017-08-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  15. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantialmore » flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.« less

  16. Nonclassical models of the theory of plates and shells

    NASA Astrophysics Data System (ADS)

    Annin, Boris D.; Volchkov, Yuri M.

    2017-11-01

    Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each of the unknown functions (stresses and displacements) by segments of the Legendre polynomials are also reviewed.

  17. Monkey CV1 cell line expressing the sheep-goat SLAM protein: a highly sensitive cell line for the isolation of peste des petits ruminants virus from pathological specimens.

    PubMed

    Adombi, Caroline Mélanie; Lelenta, Mamadou; Lamien, Charles Euloge; Shamaki, David; Koffi, Yao Mathurin; Traoré, Abdallah; Silber, Roland; Couacy-Hymann, Emmanuel; Bodjo, Sanne Charles; Djaman, Joseph A; Luckins, Antony George; Diallo, Adama

    2011-05-01

    Peste des petits ruminants (PPR) is an important economically transboundary disease of sheep and goats caused by a virus which belongs to the genus Morbillivirus. This genus, in the family Paramyxoviridae, also includes the measles virus (MV), canine distemper virus (CDV), rinderpest virus (RPV), and marine mammal viruses. One of the main features of these viruses is the severe transient lymphopaenia and immunosuppression they induce in their respective hosts, thereby favouring secondary bacterial and parasitic infections. This lymphopaenia is probably accounted for by the fact that lymphoid cells are the main targets of the morbilliviruses. In early 2000, it was demonstrated that a transmembrane glycoprotein of the immunoglobulin superfamily which is present on the surface of lymphoid cells, the signalling lymphocyte activation molecule (SLAM), is used as cellular receptor by MV, CDV and RPV. Wild-type strains of these viruses can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. The present study has demonstrated that monkey CV1 cells expressing goat SLAM are also highly efficient for isolating PPRV from pathological samples. This finding suggests that SLAM, as is in the case for MV, CDV and RPV, is also a receptor for PPRV. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Creep failure of a reactor pressure vessel lower head under severe accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilch, M.M.; Ludwigsen, J.S.; Chu, T.Y.

    A severe accident in a nuclear power plant could result in the relocation of large quantities of molten core material onto the lower head of he reactor pressure vessel (RPV). In the absence of inherent cooling mechanisms, failure of the RPV ultimately becomes possible under the combined effects of system pressure and the thermal heat-up of the lower head. Sandia National Laboratories has performed seven experiments at 1:5th scale simulating creep failure of a RPV lower head. This paper describes a modeling program that complements the experimental program. Analyses have been performed using the general-purpose finite-element code ABAQUS-5.6. In ordermore » to make ABAQUS solve the specific problem at hand, a material constitutive model that utilizes temperature dependent properties has been developed and attached to ABAQUS-executable through its UMAT utility. Analyses of the LHF-1 experiment predict instability-type failure. Predicted strains are delayed relative to the observed strain histories. Parametric variations on either the yield stress, creep rate, or both (within the range of material property data) can bring predictions into agreement with experiment. The analysis indicates that it is necessary to conduct material property tests on the actual material used in the experimental program. The constitutive model employed in the present analyses is the subject of a separate publication.« less

  19. Detection and discrimination of members of the family Luteoviridae by real-time PCR and SYBR® GreenER™ melting curve analysis.

    PubMed

    Chomic, Anastasija; Winder, Louise; Armstrong, Karen F; Pearson, Michael N; Hampton, John G

    2011-01-01

    This study investigated the suitability of a two step real-time RT-PCR melting curve analysis as a tool for the detection and discrimination of nine species in the plant virus family Luteoviridae, being Soybean dwarf virus [SbDV], Bean leafroll virus [BLRV], Beet chlorosis virus [BChV], Beet mild yellowing virus [BMYV], Beet western yellows virus [BWYV], Cereal yellow dwarf virus-RPV [CYDV-RPV], Cucurbit aphid-borne yellows virus [CABYV], Potato leafroll virus [PLRV] and Turnip yellows virus [TuYV]. Melting temperature and shape of the melting peak were analysed for 68 bp and 148 bp coat protein gene amplicons using SYBR® GreenER™ fluorescent dye. Specific melting peaks with unique melting temperature were observed for the various species of the family Luteoviridae using the 68 bp amplicon, but not with the 148 bp amplicon. Due to the high variability of sequences for some members of this family, different melting temperatures were also observed between different isolates of the species CYDV-RPV and TuYV. Nevertheless, discrimination between species was achieved for SbDV, BLRV, BChV, BMYV, CABYV and either PLRV or BWYV. Melting curve analysis, in this study, is a faster and more discriminatory alternative to gel electrophoresis of end-point PCR products for the detection of Luteoviridae infection. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Development and Testing of the VITAMIN-B7/BUGLE-B7 Coupled Neutron-Gamma Multigroup Cross-Section Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risner, Joel M; Wiarda, Dorothea; Miller, Thomas Martin

    2011-01-01

    The U.S. Nuclear Regulatory Commission s Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the Evaluated Nuclear Data File (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96more » libraries. Verification and validation of the new libraries was accomplished using diagnostic checks in AMPX, unit tests for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in LWR shielding applications, and meet the calculational uncertainty criterion in Regulatory Guide 1.190.« less

  1. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    PubMed

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  2. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE PAGES

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei; ...

    2017-05-22

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  3. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  4. NRC assessment of the Department of Energy annealing demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.A.; Malik, S.N.

    1997-02-01

    Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner`s Group, Consumers Power, Electricite` de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when themore » project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project.« less

  5. Creep of A508/533 Pressure Vessel Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with themore » very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.« less

  6. Optical design of the STAR-X telescope

    NASA Astrophysics Data System (ADS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-08-01

    Top-level science objectives of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these objectives, the STAR-X telescope requires a field of view of about 1 square-degree, an angular resolution of 5 arc-seconds or better across large part of the field of view. The on-axis effective area at 1 keV should be about 2,000 cm2 . Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center. The telescope mirror shells are divided into segments. Individual shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 keV range. We consider Wolter-Schwarzschild, and Modified-WolterSchwarzschild telescopes. These designs offer an excellent PSF over a large field of view. Nested shells are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the mirror assembly. Large numbers of internal and external baffles are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  7. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  8. Determining the amount of rumen-protected methionine supplement that corresponds to the optimal levels of methionine in metabolizable protein for maximizing milk protein production and profit on dairy farms.

    PubMed

    Cho, J; Overton, T R; Schwab, C G; Tauer, L W

    2007-10-01

    The profitability of feeding rumen-protected Met (RPMet) sources to produce milk protein was estimated using a 2-step procedure: First, the effect of Met in metabolizable protein (MP) on milk protein production was estimated by using a quadratic Box-Cox functional form. Then, using these estimation results, the amounts of RPMet supplement that corresponded to the optimal levels of Met in MP for maximizing milk protein production and profit on dairy farms were determined. The data used in this study were modified from data used to determine the optimal level of Met in MP for lactating cows in the Nutrient Requirements of Dairy Cattle (NRC, 2001). The data used in this study differ from that in the NRC (2001) data in 2 ways. First, because dairy feed generally contains 1.80 to 1.90% Met in MP, this study adjusts the reference production value (RPV) from 2.06 to 1.80 or 1.90%. Consequently, the milk protein production response is also modified to an RPV of 1.80 or 1.90% Met in MP. Second, because this study is especially interested in how much additional Met, beyond the 1.80 or 1.90% already contained in the basal diet, is required to maximize farm profits, the data used are limited to concentrations of Met in MP above 1.80 or 1.90%. This allowed us to calculate any additional cost to farmers based solely on the price of an RPMet supplement and eliminated the need to estimate the dollar value of each gram of Met already contained in the basal diet. Results indicated that the optimal level of Met in MP for maximizing milk protein production was 2.40 and 2.42%, where the RPV was 1.80 and 1.90%, respectively. These optimal levels were almost identical to the recommended level of Met in MP of 2.40% in the NRC (2001). The amounts of RPMet required to increase the percentage of Met in MP from each RPV to 2.40 and 2.42% were 21.6 and 18.5 g/d, respectively. On the other hand, the optimal levels of Met in MP for maximizing profit were 2.32 and 2.34%, respectively. The amounts of RPMet required to increase the percentage of Met in MP from each RPV to 2.32 and 2.34% were 18.7 and 15.6 g/d, respectively. In each case, the additional daily profit per cow was estimated to be $0.38 and $0.29. These additional profit estimates were $0.02 higher than the additional profit estimates for maximizing milk protein production.

  9. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperaturemore » (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.« less

  10. Investigating Bidirectional Reflectance in the Los Angeles Megacity Using CLARS Multiangle and Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    Zeng, Z. C.; Natraj, V.; Pongetti, T.; Shia, R. L.; Sander, S. P.; Yung, Y. L.

    2017-12-01

    The surface reflectance is a key ingredient in the remote sensing of surface and atmospheric properties from space. The determination of atmospheric composition, including greenhouse gas (GHG) and aerosol concentrations, from reflected sunlight requires accurate knowledge of the contribution from the underlying surface. Over megacity areas, such as the Los Angeles (LA) basin, which are major sources of GHGs and anthropogenic aerosols, the quantification of surface reflectance is challenging due to the associated complex land use types. In this study, we investigate the bidirectional reflectance in the Los Angeles megacity area using multiangle and hyperspectral radiance measurements from the California Laboratory for Atmospheric Remote Sensing (CLARS). The CLARS facility is located near the top of Mt. Wilson, at an altitude of 1670 m a.s.l., overlooking the LA megacity area with an FTS operating since 2011 to continuously monitor the GHGs and near-surface aerosols in the basin. The CLARS-FTS offers continuous high-resolution spectral measurements in the visible, near infrared and shortwave infrared spectral regions. The CLARS measurements mimic the off-nadir viewing of a low-Earth orbiting instrument, such as GOSAT and OCO-2, but with daily viewing capability. Eight surface targets with different land use types, including urban parks, industrial and residential areas, are selected in this study. The surface reflectance for specific solar incident and viewing angles is calculated by dividing, for non-absorbing spectral channels on clear days (such that gas and aerosol extinction can be ignored), the observed radiance reflected from surface targets by the observed irradiance. The non-linear Rahman-Pinty-Verstraete (RPV) model is used to model the Bidirectional Reflectance Distribution Function (BRDF) by fitting the multiangle and hyperspectral measurements. By evaluating the retrieved RPV parameters, we find that the RPV model provides a good representation of the BRDF in the LA megacity area. The fitted RPV parameters and their dependence on wavelength provides quantification of BRDF and potentially contributes towards reducing uncertainties in retrievals of GHGs and aerosols in megacity from space.

  11. 3D tumor measurement in cone-beam CT breast imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola

    2004-05-01

    Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).

  12. Computational studies on self-assembled paclitaxel structures: templates for hierarchical block copolymer assemblies and sustained drug release.

    PubMed

    Guo, Xin D; Tan, Jeremy P K; Kim, Sung H; Zhang, Li J; Zhang, Ying; Hedrick, James L; Yang, Yi Y; Qian, Yu

    2009-11-01

    Paclitaxel-loaded poly(ethylene oxide)-b-poly(lactide) (PEO-b-PLA) systems have been observed to assemble into fiber structures with remarkably different properties using different chirality and molecular weight of PLA segments. In this study, dissipative particle dynamics (DPD) simulations were carried out to elaborate the microstructures and properties of pure paclitaxel and paclitaxel-loaded PEO-b-PLA systems. Paclitaxel molecules formed ribbon or fiber like structures in water. With the addition of PEO-b-PDLA, PEO-b-PLLA and their stereocomplex, paclitaxel acted as a template and polymer molecules assembled around the paclitaxel structure to form core/shell structured fibers having a PEO shell. For PEO19-b-PDLA27 and PEO19-b-PLLA27 systems, PLA segments and paclitaxel molecules were distributed homogeneously in the core of fibers based on the hydrophobic interactions. In the stereocomplex formulation, paclitaxel molecules were more concentrated in the inner PLA stereocomplex core, which led to slower release of paclitaxel. By increasing the length of PLA segments (e.g. 8,16,22 and 27), the crystalline structure of paclitaxel was gradually weakened and destroyed, which was further proved by X-ray diffraction studies. All the simulation results agreed well with experimental data, suggesting that the DPD simulations may provide a powerful tool for designing drug delivery systems.

  13. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  14. Variable Bone Density of Scaphoid: Importance of Subchondral Screw Placement.

    PubMed

    Swanstrom, Morgan M; Morse, Kyle W; Lipman, Joseph D; Hearns, Krystle A; Carlson, Michelle G

    2018-02-01

    Background  Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose  The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods  Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results  Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion  The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance  In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.

  15. Development of a Prototype Nickel Optic for the Constellation-X Hard-X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Basso, S.; Bruni, R. J.; Citerio, O.; Engelhaupt, D.; Ghigo, M.; Gorenstien, P.; Mazzoleni, F.; ODell, S. L.; Pareschi, G.; Ramsey, B. D.

    2003-01-01

    The Constellation-X mission, planned for launch in 2011, will feature an array of hard-x ray telescopes with a total collecting area goal of 1500 square centimeters at 40 keV. Various technologies are currently being investigated for the optics of these telescopes including multilayer-coated Eletroformed-Nickel-Replicated (ENR) shells. The attraction of the ENR process is that the resulting full-shell optics are inherently stable and offer the promise of good angular resolution and enhanced instrument sensitivity. The challenge for this process is to meet a relatively tight weight budget with a relatively dense material (rho nickel = 9 grams per cubic centimeters.) To demonstrate the viability of the ENR process we are fabricating a prototype HXT mirror module to be tested against a competing segmented-glass-shell optic. The ENR prototype will consist of 5 shells of diameters from 150 mm to 280 mm and of 426 mm total length. To meet the stringent weight budget for Con-X, the shells will be only 150 micron thick. The innermost of these will be coated with Iridium, while the remainder will be coated with graded-density multilayers. Mandrels for these shells are currently under fabrication (Jan 03), with the first shells scheduled for production in February 03. A tentative date of late Summer has been set for prototype testing. Issues currently being addressed are the control of stresses in the multiplayer coating and ways of mitigating their effects on the figure of the necessarily thin shells. Also, the fabrication, handling and mounting of these shells without inducing permanent figure distortions. A full status report on the prototype optic will be presented along with test results as available.

  16. Canadair CL-227 Remotely Piloted Vehicle

    NASA Astrophysics Data System (ADS)

    Clark, Andrew S.

    1983-08-01

    The Canadair CL-227 is a rotary winged Remotely Piloted Vehicle (RPV) intended initially as the air-vehicle for a medium range battlefield surveillance and target acquisition system. The concept on which this vehicle is based brings together in-house expertise as a designer and manufacturer of surveillance drones (AN-USD-50l -MIDGE-) with experience in rigid rotor technology from the CL-84 tilt wing VTOL program. The vehicle is essentially modular in design with a power module containing the engine, fuel and related systems, a rotor module containing the two counter-rotating rotors and control actuators, and a control module containing the autopilot, data link and sensor system. The vehicle is a true RPV (as opposed to a drone) as it is flown in real time by an operator on the ground and requires relatively little skill to pilot.

  17. R parity violation from discrete R symmetries

    DOE PAGES

    Chen, Mu-Chun; Ratz, Michael; Takhistov, Volodymyr

    2014-12-15

    We consider supersymmetric extensions of the standard model in which the usual R or matter parity gets replaced by another R or non–R discrete symmetry that explains the observed longevity of the nucleon and solves the µ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of deriving the maximal Z (R) N symmetry that satisfies a given set of constraints. We identify R parity violating (RPV) and conserving models that are consistent with precision gauge unification and also comment on their compatibility with a unified gauge symmetry such as the Pati–Salam group. Finally, wemore » provide a counter– example to the statement found in the recent literature that the lepton number violating RPV scenarios must have µ term and the bilinear κ L Hu operator of comparable magnitude.« less

  18. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  19. Acoustic scattering from a finite cylindrical shell with evenly spaced stiffeners: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Liétard, R.; Décultot, D.; Maze, G.; Tran-van-Nhieu, M.

    2005-10-01

    The influence of evenly spaced ribs (internal rings) on the acoustic scattering from a finite cylindrical shell is examined over the dimensionless frequency range 1

  20. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study

    PubMed Central

    Porter, Danielle P.; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D.; White, Kirsten L.

    2015-01-01

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study. PMID:26690199

  1. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study.

    PubMed

    Porter, Danielle P; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D; White, Kirsten L

    2015-12-07

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.

  2. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  3. Suzaku Observations of the Non-thermal Supernova Remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Pühlhofer, Gerd; Acero, Fabio; Klochkov, Dmitry; Tian, Wenwu; Yamazaki, Ryo; Li, Zhiyuan; Horns, Dieter; Kosack, Karl; Komin, Nukri

    2012-09-01

    A detailed analysis of the non-thermal X-ray emission from the northwestern and southern parts of the supernova remnant (SNR) HESS J1731-347 with Suzaku is presented. The shell portions covered by the observations emit hard and lineless X-rays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index Γ of 1.8-2.7 and an absorption column density N H of (1.0-2.1) × 1022 cm-2. These quantities change significantly from region to region; the northwestern part of the SNR has the hardest and most absorbed spectrum. The western part of the X-ray shell has a smaller curvature than the northwestern and southern shell segments. A comparison of the X-ray morphology to the very high energy gamma-ray and radio images was performed. The efficiency of the electron acceleration and the emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.

  4. Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Chance, M. S.; Okabayashi, M.

    2000-10-01

    The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.

  5. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    ERIC Educational Resources Information Center

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  6. Joint High Speed Sealift (JHSS) Segmented Model Test Data Analysis and Validation of Numerical Simulations

    DTIC Science & Technology

    2012-12-01

    epoxy bonded to the shell and then the back spline is bolted to the bulkheads via flexible tabs on the bulkheads and brackets attached to the back...D. G., & Broutman, D. (2010). "Parameterization of the internal wave field generated by a submarine and its turbulent wake in a uniformly

  7. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    PubMed Central

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  8. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  9. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  10. Combined monitoring, decision and control model for the human operator in a command and control desk

    NASA Technical Reports Server (NTRS)

    Muralidharan, R.; Baron, S.

    1978-01-01

    A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.

  11. The MANTA: An RPV design to investigate forces and moments on a lifting surface

    NASA Technical Reports Server (NTRS)

    Bryan, Kevin; Soutar, John; Witty, Peter; Mediate, Bruno; Quast, Thomas; Combs, Dan; Schubert, Martin; Condron, David; Taylor, Scott; Garino, ED

    1989-01-01

    The overall goal was to investigate and exploit the advantages of using remotely powered vehicles (RPV's) for in-flight data collection at low Reynold's numbers. The data to be collected is on actual flight loads for any type of rectangular or tapered airfoil section, including vertical and horizontal stabilizers. The data will be on a test specimen using a force-balance system which is located forward of the aircraft to insure an undisturbed air flow over the test section. The collected data of the lift, drag and moment of the test specimen is to be radioed to a grand receiver, thus providing real-time data acquisition. The design of the mission profile and the selection of the instrumentation to satisfy aerodynamic requirements are studied and tested. A half-size demonstrator was constructed and flown to test the flight worthiness of the system.

  12. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odette, G.R.; Lucas, G.E.; Wirth, B.

    1997-02-01

    Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper,more » nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.« less

  13. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less

  14. Fully automated reconstruction of three-dimensional vascular tree structures from two orthogonal views using computational algorithms and productionrules

    NASA Astrophysics Data System (ADS)

    Liu, Iching; Sun, Ying

    1992-10-01

    A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.

  15. Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural analyses

    NASA Astrophysics Data System (ADS)

    Katsuyama, Jinya; Uno, Shumpei; Watanabe, Tadashi; Li, Yinsheng

    2018-03-01

    The thermal hydraulic (TH) behavior of coolant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

  16. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  17. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE PAGES

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...

    2017-07-12

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  18. Modeling of Kerena Emergency Condenser

    NASA Astrophysics Data System (ADS)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  19. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replacedmore » in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.« less

  20. Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods.

    PubMed

    Raj, G Dhinakar; Rajanathan, T M C; Kumar, C Senthil; Ramathilagam, G; Hiremath, Geetha; Shaila, M S

    2008-06-22

    Peste des petits ruminants (PPR) is one of the most economically important diseases affecting sheep and goats in India. An immunofiltration-based test has been developed using either mono-specific serum/monoclonal antibodies (mAb) prepared against a recombinant truncated nucleocapsid protein of rinderpest virus (RPV) cross-reactive with PPR virus. This method consists of coating ocular swab eluate from suspected animals onto a nitrocellulose membrane housed in a plastic module, which is allowed to react with suitable dilutions of a mAb or a mono-specific polyclonal antibody. The antigen-antibody complex formed on the membrane is then detected by protein A-colloidal gold conjugate, which forms a pink colour. In the immunofiltration test, concordant results were obtained using either PPRV mAb or mono-specific serum. Another test, an antigen-competition ELISA which relies on the competition between plate-coated recombinant truncated 'N' protein of RPV and the PPRV 'N' protein present in ocular swab eluates (sample) for binding to the mono-specific antibody against N protein of RPV (in liquid phase) was developed. The cut-off value for this test was established using reverse transcription polymerase chain reaction (RT-PCR) positive and negative oculo-nasal swab samples. Linear correlation between percent inhibition (PI) values in antigen-competition ELISA and virus infectivity titres was 0.992. Comparison of the immunofiltration test with the antigen-competition ELISA yielded a sensitivity of 80% and specificity of 100%. These two tests can serve as a screening (immunofiltration) and confirmatory (antigen-competition ELISA) test, respectively, in the diagnosis of PPR in sheep or goats.

  1. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hep, J.; Konecna, A.; Krysl, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less

  2. Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma.

    PubMed

    Park, Shin-Young; Park, Keun-Myoung; Shin, Woo Young; Choe, Yun-Mee; Hur, Yoon-Seok; Lee, Keon-Young; Ahn, Seung-Ik

    2017-07-01

    Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma is investigated.The medical records of 45 patients who had undergone radical resection for pancreatic adenocarcinoma from March 2010 to September 2013 were reviewed retrospectively. There were 34 patients in the pancreaticoduodenectomy (PD) group and 10 patients in the distal pancreatectomy (DP) group. One patient received total pancreatectomy. The endocrine function was measured using the glucose tolerance index (GTI), which was derived by dividing daily maximum serum glucose fluctuation by daily minimum glucose. Remnant pancreas volume (RPV) was estimated by considering pancreas body and tail as a column, and head as an ellipsoid, respectively. The pancreatic atrophic index (PAI) was defined as the ratio of pancreatic duct width to total pancreas width. Representative indices of each patient were compared before and after resection up to 2 years postoperatively.The area under receiver operating characteristic curve of GTI for diagnosing DM was 0.823 (95% confidence interval, 0.699-0.948, P < .001). Overall, GTI increased on postoperative day 1 (POD#1, mean ± standard deviation, 1.79 ± 1.40 vs preoperative, 1.02 ± 1.41; P = .001), and then decreased by day 7 (0.89 ± 1.16 vs POD#1, P < .001). In the PD group, the GTI on POD#14 became lower than preoperative (0.51 ± 0.38 vs 0.96 ± 1.37; P = .03). PAI in the PD group was significantly lower at 1 month postoperatively (0.22 ± 0.12 vs preoperative, 0.38 ± 0.18; P < .001). In the PD group, RPV was significantly lower at 1 month postoperatively (25.3 ± 18.3 cm vs preoperative, 32.4 ± 20.1 cm; P = .02), due to the resolution of pancreatic duct dilatation. RPV of the DP group showed no significant change. GTI was negatively related to RPV preoperatively (r = -0.317, P = .04), but this correlation disappeared postoperatively (r = -0.044, P = .62).Pancreatic endocrine functional deterioration in pancreatic adenocarcinoma patients may in part be due to pancreatic duct obstruction and dilatation caused by the tumor. After resection, this proportion of endocrine insufficiency is corrected.

  3. How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan

    Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.

  4. Vertebral degenerative disc disease severity evaluation using random forest classification

    NASA Astrophysics Data System (ADS)

    Munoz, Hector E.; Yao, Jianhua; Burns, Joseph E.; Pham, Yasuyuki; Stieger, James; Summers, Ronald M.

    2014-03-01

    Degenerative disc disease (DDD) develops in the spine as vertebral discs degenerate and osseous excrescences or outgrowths naturally form to restabilize unstable segments of the spine. These osseous excrescences, or osteophytes, may progress or stabilize in size as the spine reaches a new equilibrium point. We have previously created a CAD system that detects DDD. This paper presents a new system to determine the severity of DDD of individual vertebral levels. This will be useful to monitor the progress of developing DDD, as rapid growth may indicate that there is a greater stabilization problem that should be addressed. The existing DDD CAD system extracts the spine from CT images and segments the cortical shell of individual levels with a dual-surface model. The cortical shell is unwrapped, and is analyzed to detect the hyperdense regions of DDD. Three radiologists scored the severity of DDD of each disc space of 46 CT scans. Radiologists' scores and features generated from CAD detections were used to train a random forest classifier. The classifier then assessed the severity of DDD at each vertebral disc level. The agreement between the computer severity score and the average radiologist's score had a quadratic weighted Cohen's kappa of 0.64.

  5. Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.

    2017-09-01

    In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.

  6. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  7. Scale model test results of several STOVL ventral nozzle concepts

    NASA Technical Reports Server (NTRS)

    Meyer, B. E.; Re, R. J.; Yetter, J. A.

    1991-01-01

    Short take-off and vertical landing (STOVL) ventral nozzle concepts are investigated by means of a static cold flow scale model at a NASA facility. The internal aerodynamic performance characteristics of the cruise, transition, and vertical lift modes are considered for four ventral nozzle types. The nozzle configurations examined include those with: butterfly-type inner doors and vectoring exit vanes; circumferential inner doors and thrust vectoring vanes; a three-port segmented version with circumferential inner doors; and a two-port segmented version with cylindrical nozzle exit shells. During the testing, internal and external pressure is measured, and the thrust and flow coefficients and resultant vector angles are obtained. The inner door used for ventral nozzle flow control is found to affect performance negatively during the initial phase of transition. The best thrust performance is demonstrated by the two-port segmented ventral nozzle due to the elimination of the inner door.

  8. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  9. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  10. Thermal properties of biopolyol from oil palm fruit fibre (OPFF) using solvolysis liquefaction technique

    NASA Astrophysics Data System (ADS)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-09-01

    Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.

  11. SURROGATE MODEL DEVELOPMENT AND VALIDATION FOR RELIABILITY ANALYSIS OF REACTOR PRESSURE VESSELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, William M.; Riley, Matthew E.; Spencer, Benjamin W.

    In nuclear light water reactors (LWRs), the reactor coolant, core and shroud are contained within a massive, thick walled steel vessel known as a reactor pressure vessel (RPV). Given the tremendous size of these structures, RPVs typically contain a large population of pre-existing flaws introduced in the manufacturing process. After many years of operation, irradiation-induced embrittlement makes these vessels increasingly susceptible to fracture initiation at the locations of the pre-existing flaws. Because of the uncertainty in the loading conditions, flaw characteristics and material properties, probabilistic methods are widely accepted and used in assessing RPV integrity. The Fracture Analysis of Vesselsmore » – Oak Ridge (FAVOR) computer program developed by researchers at Oak Ridge National Laboratory is widely used for this purpose. This program can be used in order to perform deterministic and probabilistic risk-informed analyses of the structural integrity of an RPV subjected to a range of thermal-hydraulic events. FAVOR uses a one-dimensional representation of the global response of the RPV, which is appropriate for the beltline region, which experiences the most embrittlement, and employs an influence coefficient technique to rapidly compute stress intensity factors for axis-aligned surface-breaking flaws. The Grizzly code is currently under development at Idaho National Laboratory (INL) to be used as a general multiphysics simulation tool to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled RPVs. Grizzly can be used to model the thermo-mechanical response of an RPV under transient conditions observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local 3D models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. To use Grizzly for probabilistic analysis, it is necessary to have a way to rapidly evaluate stress intensity factors. To accomplish this goal, a reduced order model (ROM) has been developed to efficiently represent the behavior of a detailed 3D Grizzly model used to calculate fracture parameters. This approach uses the stress intensity factor influence coefficient method that has been used with great success in FAVOR. Instead of interpolating between tabulated solutions, as FAVOR does, the ROM approach uses a response surface methodology to compute fracture solutions based on a sampled set of results used to train the ROM. The main advantages of this approach are that the process of generating the training data can be fully automated, and the procedure can be readily used to consider more general flaw configurations. This paper demonstrates the procedure used to generate a ROM to rapidly compute stress intensity factors for axis-aligned flaws. The results from this procedure are in good agreement with those produced using the traditional influence coefficient interpolation procedure, which gives confidence in this method. This paves the way for applying this procedure for more general flaw configurations.« less

  12. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed andmore » replaced as needed.« less

  13. Kinematics of walking in the hermit crab, Pagurus pollicarus.

    PubMed

    Chapple, William

    2012-03-01

    Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking. Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal. An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes.

    PubMed

    Logan, Nicola; Dundon, William G; Diallo, Adama; Baron, Michael D; James Nyarobi, M; Cleaveland, Sarah; Keyyu, Julius; Fyumagwa, Robert; Hosie, Margaret J; Willett, Brian J

    2016-11-11

    The measurement of virus-specific neutralising antibodies represents the "gold-standard" for diagnostic serology. For animal morbilliviruses, such as peste des petits ruminants (PPRV) or rinderpest virus (RPV), live virus-based neutralisation tests require high-level biocontainment to prevent the accidental escape of the infectious agents. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of neutralising antibodies against animal morbilliviruses. By expressing the haemagglutinin (H) and fusion (F) proteins of PPRV on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Serological responses against the four distinct lineages of PPRV could be measured simultaneously and cross-neutralising responses against other morbilliviruses compared. Using this approach, we observed that titres of neutralising antibodies induced by vaccination with live attenuated PPRV were lower than those induced by wild type virus infection and the level of cross-lineage neutralisation varied between vaccinates. By comparing neutralising responses from animals infected with either PPRV or RPV, we found that responses were highest against the homologous virus, indicating that retrospective analyses of serum samples could be used to confirm the nature of the original pathogen to which an animal had been exposed. Accordingly, when screening sera from domestic livestock and wild ruminants in Tanzania, we detected evidence of cross-species infection with PPRV, canine distemper virus (CDV) and a RPV-related bovine morbillivirus, suggesting that exposure to animal morbilliviruses may be more widespread than indicated previously using existing diagnostic techniques. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Williams, Paul

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less

  16. Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Muftuoglu, A.K.

    1993-01-01

    Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less

  17. Heavy-section steel irradiation program. Progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corwin, W.R.

    1997-09-01

    The Heavy-Section Steel Irradiation Program was established to quantitatively assess the effects of neutron irradiation on the material behavior of typical reactor pressure vessel (RPV) steels. During this period, fracture mechanics testing of specimens of the irradiated low upper shelf (LUS) weld were completed and analyses performed. Heat treatment of five RPV plate materials was initiated to examine phosphorus segregation effects on the fracture toughness of the heat affected zone of welds. Initial results show that all five materials exhibited very large prior austenite grain sizes as a consequence of the initial heat treatment. Irradiated and annealed specimens of LUSmore » weld material were tested and analyzed. Four sets of Charpy V-notch (CVN) specimens were aged at various temperatures and tested to examine the reason for overrecovery of upper shelf energy that has been observed. Molecular dynamics cascade simulations were extended to 40 keV and have provided information representative of most of the fast neutron spectrum. Investigations of the correlation between microstructural changes and hardness changes in irradiated model alloys was also completed. Preliminary planning for test specimen machining for the Japan Power Development Reactor was completed. A database of Charpy impact and fracture toughness data for RPV materials that have been tested in the unirradiated and irradiated conditions is being assembled and analyzed. Weld metal appears to have similar CVN and fracture toughness transition temperature shifts, whereas the fracture toughness shifts are greater than CVN shifts for base metals. Draft subcontractor reports on precracked cylindrical tensile specimens were completed, reviewed, and are being revised. Testing on precracked CVN specimens, both quasi-static and dynamic, was evaluated. Additionally, testing of compact specimens was initiated as an experimental comparison of constraint limitations. 16 figs., 2 tabs.« less

  18. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less

  19. Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT).

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo

    2015-10-01

    The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.

  20. Advanced MR Imaging of the Human Nucleus Accumbens--Additional Guiding Tool for Deep Brain Stimulation.

    PubMed

    Lucas-Neto, Lia; Reimão, Sofia; Oliveira, Edson; Rainha-Campos, Alexandre; Sousa, João; Nunes, Rita G; Gonçalves-Ferreira, António; Campos, Jorge G

    2015-07-01

    The human nucleus accumbens (Acc) has become a target for deep brain stimulation (DBS) in some neuropsychiatric disorders. Nonetheless, even with the most recent advances in neuroimaging it remains difficult to accurately delineate the Acc and closely related subcortical structures, by conventional MRI sequences. It is our purpose to perform a MRI study of the human Acc and to determine whether there are reliable anatomical landmarks that enable the precise location and identification of the nucleus and its core/shell division. For the Acc identification and delineation, based on anatomical landmarks, T1WI, T1IR and STIR 3T-MR images were acquired in 10 healthy volunteers. Additionally, 32-direction DTI was obtained for Acc segmentation. Seed masks for the Acc were generated with FreeSurfer and probabilistic tractography was performed using FSL. The probability of connectivity between the seed voxels and distinct brain areas was determined and subjected to k-means clustering analysis, defining 2 different regions. With conventional T1WI, the Acc borders are better defined through its surrounding anatomical structures. The DTI color-coded vector maps and IR sequences add further detail in the Acc identification and delineation. Additionally, using probabilistic tractography it is possible to segment the Acc into a core and shell division and establish its structural connectivity with different brain areas. Advanced MRI techniques allow in vivo delineation and segmentation of the human Acc and represent an additional guiding tool in the precise and safe target definition for DBS. © 2015 International Neuromodulation Society.

  1. Gamma Group-The Pale Horse: A proposal in response to a commercial air transportation study ort study

    NASA Technical Reports Server (NTRS)

    Ehler, T.; Hawkins, J.; Newell, J.; Ohara, M.; Schudt, Karl; Soha, G.; Vandenberg, S.

    1991-01-01

    A conventional remotely piloted vehicle (RPV) was designed to operate in a fictional 'Aeroworld' as a 30 passenger aircraft. The topics addressed include: economic/cost analysis, aerodynamics, weight and structures, propulsion, stability and control, and performance.

  2. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered targeting property.

    PubMed

    Quan, Chang-Yun; Chen, Jing-Xiao; Wang, Hui-Yuan; Li, Cao; Chang, Cong; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2010-07-27

    In this paper, the alpha-beta cyclodextrin dimer is designed via "click" chemistry to connect the hydrophilic and hydrophobic segments to form self-assembled noncovalently connected micelles (NCCMs) through host-guest interactions. A peptide containing the Arg-Gly-Asp (RGD) sequence was introduced to NCCMs as a target ligand to improve the cell uptake efficacy, while PEGylated technology was employed via benzoic-imine bonds to protect the ligands in normal tissues and body fluid. In addition, two fluorescent dyes were conjugated to different segments to track the formation of the micelles as well as the assemblies. It was found that the targeting property of NCCMs was switched off before reaching the tumor sites and switched on after removing the poly(ethylene glycol) (PEG) segment in the tumor sites, which was called "tumor-triggered targeting". With deshielding of the PEG segment, the drugs loaded in NCCMs could be released rapidly due to the thermoinduced phase transition. The new concept of "tumor-triggered targeting" proposed here has great potential for cancer treatment.

  3. Preliminary performance estimates of an oblique, all-wing, remotely piloted vehicle for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Bailey, R. O.

    1974-01-01

    A computerized aircraft synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of an oblique, all-wing, remotely piloted vehicle (RPV) for the highly maneuverable, air-to-air combat role. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. The results are presented in terms of both the required vehicle weight to accomplish this mission and the combat effectiveness as measured by turning and acceleration capability. This report describes the synthesis program, the mission, the vehicle, and results from sensitivity studies. An optimization process has been used to establish the nominal RPV configuration of the oblique, all-wing concept for the specified mission. In comparison to a previously studied conventional wing-body canard design for the same mission, this oblique, all-wing nominal vehicle is lighter in weight and has higher performance.

  4. Sagittal alignment after single cervical disc arthroplasty.

    PubMed

    Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc

    2012-02-01

    Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to postoperative C2C7 alignment. No significant correlation was observed between ROM and sagittal parameters. Few correlations were found between sagittal alignment and clinical results. CDR with this prosthesis provided favorable clinical outcomes and maintains ROM of the FSU, overall and segmental cervical alignment. Long-term follow-up will be needed to assess the effectiveness and advantages of this procedure.

  5. Slumped glass option for making the XEUS mirrors: preliminary design and ongoing developments

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Canestrari, R.; Proserpio, L.; Dell'Orto, E.; Basso, S.; Citterio, O.; Pareschi, G.; Parodi, Giancarlo

    2008-07-01

    The XEUS mission (X-ray Evolving-Universe Spectroscopy Mission) of ESA, in the present configuration has a mirror collecting area in the order of 5-6 m2 @ 1 keV, 2 m2 @ 7 keV and 1 m2 @ 10 keV. These large collecting areas could be obtained with a mirror assembly composed of a large number of high quality segments each being able to deliver the angular resolution requested by the mission or better. The XEUS telescope will fit in the fairing of an Ariane 5 ECA launcher and hence its diameter is presently of about 4.5 m. The request in terms of angular resolution of the telescope has been set to 5 arcsec with a goal of 2 arcsec. Due to the large size of the optics it is impossible to create closed shells like those used for XMM or Chandra and hence it will be necessary to assemble a large number of segments (for example of ~0.6 m x ~0.3 m size) to recreate the mirror shells. These segments will form a module, an optical sub-unit of the telescope. The modules will be assembled to form the whole mirror system. As for all the space missions, the limits imposed on the payload mass budget by the launcher is the main driver that force the use of very lightweight optics and this request is of course very challenging. For example, the current design for XEUS foresees a geometric-area/mass ratio better than about 30 cm2/kg. In this article is illustrated a possible approach for the realization of large size and lightweight X-ray mirrors that derive from an experience gained from a previous work made in INAF-OAB on the thermal slumping of thin glass optics. The process foresees the use of a mould having a good optical figure but opposite shape respect to the segment to be slumped. On the mould is placed an initially flat glass sheet. With a suitable thermal cycle the glass sheet is conformed to the mould shape. Once tested for acceptance the glass sheet it is then integrated into a module by means of a robotic arm having a feedback system to confirm the correct alignment. A study on different optical geometries using the classical Wolter I and Kirkpatrick-Baez configurations has been also performed to investigate the theoretical performances obtainable with optics made using very thin glass shells.

  6. Design of the STAR-X Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  7. Optical Design of the STAR-X Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  8. Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma

    PubMed Central

    Park, Shin-Young; Park, Keun-Myoung; Shin, Woo Young; Choe, Yun-Mee; Hur, Yoon-Seok; Lee, Keon-Young; Ahn, Seung-Ik

    2017-01-01

    Abstract Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma is investigated. The medical records of 45 patients who had undergone radical resection for pancreatic adenocarcinoma from March 2010 to September 2013 were reviewed retrospectively. There were 34 patients in the pancreaticoduodenectomy (PD) group and 10 patients in the distal pancreatectomy (DP) group. One patient received total pancreatectomy. The endocrine function was measured using the glucose tolerance index (GTI), which was derived by dividing daily maximum serum glucose fluctuation by daily minimum glucose. Remnant pancreas volume (RPV) was estimated by considering pancreas body and tail as a column, and head as an ellipsoid, respectively. The pancreatic atrophic index (PAI) was defined as the ratio of pancreatic duct width to total pancreas width. Representative indices of each patient were compared before and after resection up to 2 years postoperatively. The area under receiver operating characteristic curve of GTI for diagnosing DM was 0.823 (95% confidence interval, 0.699–0.948, P < .001). Overall, GTI increased on postoperative day 1 (POD#1, mean ± standard deviation, 1.79 ± 1.40 vs preoperative, 1.02 ± 1.41; P = .001), and then decreased by day 7 (0.89 ± 1.16 vs POD#1, P < .001). In the PD group, the GTI on POD#14 became lower than preoperative (0.51 ± 0.38 vs 0.96 ± 1.37; P = .03). PAI in the PD group was significantly lower at 1 month postoperatively (0.22 ± 0.12 vs preoperative, 0.38 ± 0.18; P < .001). In the PD group, RPV was significantly lower at 1 month postoperatively (25.3 ± 18.3 cm3 vs preoperative, 32.4 ± 20.1 cm3; P = .02), due to the resolution of pancreatic duct dilatation. RPV of the DP group showed no significant change. GTI was negatively related to RPV preoperatively (r = –0.317, P = .04), but this correlation disappeared postoperatively (r = –0.044, P = .62). Pancreatic endocrine functional deterioration in pancreatic adenocarcinoma patients may in part be due to pancreatic duct obstruction and dilatation caused by the tumor. After resection, this proportion of endocrine insufficiency is corrected. PMID:28700497

  9. Abacavir/Lamivudine plus Rilpivirine Is an Effective and Safe Strategy for HIV-1 Suppressed Patients: 48 Week Results of the SIMRIKI Retrospective Study

    PubMed Central

    Troya, Jesús; Ryan, Pablo; Ribera, Esteban; Podzamczer, Daniel; Hontañón, Victor; Terrón, Jose Alberto; Boix, Vicente; Moreno, Santiago; Barrufet, Pilar; Castaño, Manuel; Carrero, Ana; Galindo, María José; Suárez-Lozano, Ignacio; Knobel, Hernando; Raffo, Miguel; Solís, Javier; Yllescas, María; Esteban, Herminia

    2016-01-01

    Objectives Based on data from clinical practice, we evaluated the effectiveness and safety of switching to abacavir/lamivudine plus rilpivirine (ABC/3TC+RPV) treatment in virologically suppressed HIV-1-infected patients. Methods We performed a multicenter, non-controlled, retrospective study of HIV-1-infected patients who switched treatment to ABC/3TC+RPV. Patients had an HIV-RNA <50 copies/mL for at least 24 weeks prior to changing treatments. The primary objective was HIV-1 RNA <50 copies/mL at week 48. Effectiveness was analyzed by intention-to-treat (ITT), missing = failure and on-treatment (OT) analyses. The secondary objectives analyzed were adverse effects changes in renal, hepatic or lipid profiles, changes in CD4+ cell count and treatment discontinuations. Results Of the 205 patients included, 75.6% were men and the median age was 49. At baseline, before switching to ABC/3TC+RPV, median time since HIV diagnosis was 13.1 years, median time with undetectable HIV-1 RNA was 6.2 years and median time of previous antiretroviral regimen was 3.1 years (48.3% patients were taking efavirenz and ABC/3TC was the most frequent backbone coformulation in 69.7% of patients). The main reasons for switching were drug toxicity/poor tolerability (60.5%) and simplification (20%). At week 48, the primary objective was achieved by 187 out of 205 (91.2%) patients by ITT analysis, and 187 out of 192 (97.4%) patients by OT analysis. The CD4+ lymphocyte count and CD4+ percentage increased significantly from baseline to week 48 by a median of 48 cells/μL (−50 to 189) and 1.2% (−1.3% to 4.1%), respectively, P<0.001. Thirty-eight adverse events (AE) were detected in 32 patients. Of these, 25 had no clear association with treatment. Three patients interrupted therapy due to AE. We observed a decrease in all lipid parameters, P<0.001, and a slight improvement in the glomerular filtration rate, P<0.01. Therapy was considered to have failed in 18 patients owing to virological failure (5 [2.4%]), toxicity/poor tolerability (4 [2%]), clinical decision (3 [1.5%]), loss to follow-up (3 [1.5%]), death (1 [0.5%]), and no clinical data (2 [1%]). Conclusions The results of this study confirms that ABC/3TC+RPV is an effective, safe, and cost-effective option for the treatment of patients with virologically stable HIV-1 infection. PMID:27727331

  10. Structural and Trajectory Control of Variable Geometry Planetary Entry Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio

    2009-01-01

    The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.

  11. Development and Validation of a Controlled Virtual Environment for Guidance, Navigation and Control of Quadrotor UAV

    DTIC Science & Technology

    2013-09-01

    Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming

  12. Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.

    2010-11-01

    Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.

  13. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ates, O; Li, X

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

  14. Gamma-ray Transition Matrix Elements in ^21Na: First TIGRESS Radioactive Beam Experiment

    NASA Astrophysics Data System (ADS)

    Hackman, Greg

    2007-04-01

    Modern shell model calculations should be expected to reliably reproduce the properties of the deformed five-particle nucleus ^21Na. However the lowest-lying B(E2) value deduced from lifetime and mixing ratio measurements disagrees with models by an unacceptably large factor of two. To measure the B(E2) values directly, a beam of ^21Na at 1.7 MeV/u from the TRIUMF ISAC facility was directed upon a 0.5 mg/cm^2 ^natTi target. Gamma-ray yield in coincidence with inelastically scattered heavy ions was measured with two TIGRESS high energy- and position-resolution germanium detector units and the BAMBINO highly segmented silicon detector system. The result resolves the discrepancy between the shell model and prior measurements. This represents the first radioactive in-beam experiment with TIGRESS.

  15. MINI-RPV Engine Demonstrator Program.

    DTIC Science & Technology

    1980-03-01

    longer main bearings that were more widely spaced for better crankshaft support, and re- duced the moment arm of the overhung propeller and rotor mass...Exploded View of Tillotson Carburetor ........... ... 13 3 MK II First Generation Crankshaft ... ........... ... 15 4 Crankshaft Balance Diagram...Plate ...... .............. .. 29 14 Alternator with Integrated PCU .... ........... . 36 15 Rotor Construction and Flux Path ........... 37 16

  16. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence.

    PubMed

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Zou, Yanli; Liu, Shan; Wang, Zhiliang

    2016-08-01

    The genus Morbillivirus is classified into the family Paramyxoviridae, and is composed of 6 members, namely measles virus (MV), rinderpest virus (RPV), peste-des-petits-ruminants virus (PPRV), canine distemper virus (CDV), phocine distemper virus (PDV) and cetacean morbillivirus (CeMV). The MV, RPV, PPRV and CDV have been successfully attenuated through their serial passages in vitro for the production of live vaccines. It has been demonstrated that the morbilliviral virulence in animals was progressively attenuated with their consecutive passages in vitro. However, only a few reports were involved in explanation of an attenuation-related mechanism on them until many years after the establishment of a quasispecies theory. RNA virus quasispecies arise from rapid evolution of viruses with high mutation rate during genomic replication, and play an important role in gradual loss of viral virulence by serial passages. Here, we overviewed the development of live-attenuated vaccine strains against morbilliviruses by consecutive passages in vitro, and further discussed a related mechanism concerning the relationship between virulence attenuation and viral evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Statistical analysis of atom probe data: detecting the early stages of solute clustering and/or co-segregation.

    PubMed

    Hyde, J M; Cerezo, A; Williams, T J

    2009-04-01

    Statistical analysis of atom probe data has improved dramatically in the last decade and it is now possible to determine the size, the number density and the composition of individual clusters or precipitates such as those formed in reactor pressure vessel (RPV) steels during irradiation. However, the characterisation of the onset of clustering or co-segregation is more difficult and has traditionally focused on the use of composition frequency distributions (for detecting clustering) and contingency tables (for detecting co-segregation). In this work, the authors investigate the possibility of directly examining the neighbourhood of each individual solute atom as a means of identifying the onset of solute clustering and/or co-segregation. The methodology involves comparing the mean observed composition around a particular type of solute with that expected from the overall composition of the material. The methodology has been applied to atom probe data obtained from several irradiated RPV steels. The results show that the new approach is more sensitive to fine scale clustering and co-segregation than that achievable using composition frequency distribution and contingency table analyses.

  18. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. L.; Jo, H.; Tirawat, R.

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughenedmore » via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.« less

  19. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems ismore » realizable since the liner can be readily removed and replaced as needed.« less

  20. Tailor-made polyfluoroacrylate and its block copolymer by RAFT polymerization in miniemulsion; improved hydrophobicity in the core-shell block copolymer.

    PubMed

    Chakrabarty, Arindam; Singha, Nikhil K

    2013-10-15

    Controlled/living radical polymerization (CRP) of a fluoroacrylate was successfully carried out in miniemulsion by Reversible Addition Fragmentation chain Transfer (RAFT) process. In this case, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) was polymerized using 2-cyanopropyl dodecyl trithiocarbonate (CPDTC) as RAFT agent, Triton X-405 and sodium dodecyl sulfonate (SDS) as surfactant, and potassium persulphate (KPS) or 2,2'-azobis isobutyronitrile (AIBN) as initiator. Being compatible with hydrophobic fluoroacrylate, this RAFT agent offered very high conversion and good control over the molecular weight of the polymer. The miniemulsion was stable without any costabilizer. The long chain dodecyl group (-C12H25) (Z-group in the RAFT agent) had beneficial effect in stabilizing the miniemulsion. When 2-cyano 2-propyl benzodithioate (CPBD) (Z=-C6H5) was used as RAFT agent, the conversion was less and particle size distribution was very broad. Block copolymerization with butyl acrylate (BA) using PHFBA as macro-RAFT agent showed core-shell morphology with the aggregation of PHFBA segment in the shell. GPC as well as DSC analysis confirmed the formation of block copolymer. The core-shell morphology was confirmed by TEM analysis. The block copolymers (PHFBA-b-PBA) showed significantly higher water contact angle (WCA) showing much better hydrophobicity compared to PHFBA alone. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Hoffman, William; Sen, Sonat

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less

  2. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    PubMed

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  3. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    PubMed

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  4. FY 1992-1993 RDT&E Descriptive Summaries: DARPA

    DTIC Science & Technology

    1991-02-01

    combining natural language and user workflow model information. * Determine effectiveness of auditory models as preprocessors for robust speech...for indexing and retrieving design knowledge. * Evaluate ability of message understanding systems to extract crisis -situation data from news wires...energy effects , underwater vehicles, neutrino detection, speech, tailored nuclear weapons, hypervelocity, nanosecond timing, and MAD/RPV. FY 1991 Planned

  5. Unmanned Air Vehicle/Remotely Piloted Vehicle Analysis for Lethal UAV/ RPV

    DTIC Science & Technology

    1993-09-01

    taking the output power at a relatively low speed from the camshaft which is gear-driven at half the crankshaft RPM [Ref. 6]. there engine is a four...from the top of a tree , from over a steep cliff, or other perilous terrain. In addition, parachute landings invariably take their toll in vehicle damage

  6. Virus incidence in orchardgrass (Dactylis glomerata L.) seed production fields in the Willamette Valley

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted over the course of three years (2014-2016) for the presence of Barley yellow dwarf virus (BYDV-MAV and BYDV-PAV), Cereal yellow dwarf virus (CYDV-RPV), and Cocksfoot mottle virus (CfMV) in orchardgrass (Dactylis glomerata) fields in the Willamette Valley, Oregon. There was an ...

  7. A Study to Identify Data Voids in the Application of Hi-Glide Canopies to Remotely Piloted Vehicles (RPV)

    DTIC Science & Technology

    1976-01-01

    Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst) N66-29712*# NASA-TM-X-57693 33. Clemmons , Dewey L. Some Analysis of Parawing Behavior... Maurice P. Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System 79. Glauert, H. Heavy Flexible Cable for Towing a Heavy Body below an

  8. On the power output of some idealized source configurations with one or more characteristic dimensions

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    The calculation of power output from a (finite) linear array of equidistant point sources is investigated with allowance for a relative phase shift and particular focus on the circumstances of small/large individual source separation. A key role is played by the estimates found for a twin parameter definite integral that involves the Fejer kernel functions, where N denotes a (positive) integer; these results also permit a quantitative accounting of energy partition between the principal and secondary lobes of the array pattern. Continuously distributed sources along a finite line segment or an open ended circular cylindrical shell are considered, and estimates for the relatively lower output in the latter configuration are made explicit when the shell radius is small compared to the wave length. A systematic reduction of diverse integrals which characterize the energy output from specific line and strip sources is investigated.

  9. Molluscan engrailed expression, serial organization, and shell evolution

    NASA Technical Reports Server (NTRS)

    Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.

    2000-01-01

    Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.

  10. A method of inversion of satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.

    1977-01-01

    A method of finding a first approximation to a crustal magnetization distribution from inversion of satellite magnetic anomaly data is described. Magnetization is expressed as a Fourier Series in a segment of spherical shell. Input to this procedure is an equivalent source representation of the observed anomaly field. Instability of the inversion occurs when high frequency noise is present in the input data, or when the series is carried to an excessively high wave number. Preliminary results are given for the United States and adjacent areas.

  11. Structural Evolution and Kinetics in Cu-Zr Metallic Liquids from Molecular Dynamics Simulations (Postprint)

    DTIC Science & Technology

    2013-10-23

    compensate for overcounting due to numerical issues inherent in the tessellation.16 The shape of the coordination polyhedron was determined by the shape...work by Yang et al.21 The total volume can be determined by finding the volume of the convex polyhedron whose vertices are given by the centers of...atoms in the nearest-neighbor shell. In order to determine the volume of the atoms inside the clusters, the convex hull polyhedron is first segmented

  12. Method for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Watson, Clyde D.

    1977-01-01

    A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

  13. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  14. Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Crane, Cameron

    This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.

  15. Dynamic-thresholding level set: a novel computer-aided volumetry method for liver tumors in hepatic CT images

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Yoshida, Hiroyuki; Harris, Gordon J.

    2007-03-01

    Measurement of the volume of focal liver tumors, called liver tumor volumetry, is indispensable for assessing the growth of tumors and for monitoring the response of tumors to oncology treatments. Traditional edge models, such as the maximum gradient and zero-crossing methods, often fail to detect the accurate boundary of a fuzzy object such as a liver tumor. As a result, the computerized volumetry based on these edge models tends to differ from manual segmentation results performed by physicians. In this study, we developed a novel computerized volumetry method for fuzzy objects, called dynamic-thresholding level set (DT level set). An optimal threshold value computed from a histogram tends to shift, relative to the theoretical threshold value obtained from a normal distribution model, toward a smaller region in the histogram. We thus designed a mobile shell structure, called a propagating shell, which is a thick region encompassing the level set front. The optimal threshold calculated from the histogram of the shell drives the level set front toward the boundary of a liver tumor. When the volume ratio between the object and the background in the shell approaches one, the optimal threshold value best fits the theoretical threshold value and the shell stops propagating. Application of the DT level set to 26 hepatic CT cases with 63 biopsy-confirmed hepatocellular carcinomas (HCCs) and metastases showed that the computer measured volumes were highly correlated with those of tumors measured manually by physicians. Our preliminary results showed that DT level set was effective and accurate in estimating the volumes of liver tumors detected in hepatic CT images.

  16. Synthesis of potent agonists of substance P by replacement of Met11 with Glu(OBzl) and N-terminal glutamine with Glp of the C-terminal hexapeptide and heptapeptide of substance P.

    PubMed

    Stavropoulos, G; Karagiannis, K; Anagnostides, S; Ministrouski, I; Selinger, Z; Chorev, M

    1995-06-01

    The analogues [Glp6,Glu(OBzl)11]SP(6-11) and [Glp5,Glu(OBzl)11]SP(5-11) of the C-terminal hexapeptide and heptapeptide of Substance P have been synthesized by conventional solution methods. In each analogue the N-terminal glutamine has been replaced by pyroglutamic acid, while the COOCH2C6H5 ester group has replaced the SCH3 group of the Met11 side chain. The in vitro activity of both analogues has been determined on three biological preparations: guinea pig ileum (GPI), rat vas deferens (RVD) and rat portal vein (RPV). The results showed that both analogues are highly potent and selective agonists on GPI through the NK-1 receptor. They are more potent than SP itself, with 1.54 and 1.25 respective values of relative potency on GPI. Their selectivity has been studied by utilizing atropine-treated guinea pig ileum (GPI+At). The analogues showed low activity on RVD and RPV tissues, which represent NK-2 and NK-3 monoreceptor assay, respectively.

  17. Assessment of safety-relevant aspects of Kraftwerk Union's 200-MW(thermal) nuclear district heating plant concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlenwein, P.; Frisch, W.; Kafka, P.

    Nuclear reactors of 200- to 400-MW(thermal) power for district heating are the subject of increasing interest, and several specific designs are under discussion today. In the Federal Republic of Germany (FRG), the Kraftwerk Union AG has presented a 200-MW(thermal) heating reactor concept. The main safety issues of this design are assessed. In this design, the primary system is fully integrated into the reactor pressure vessel (RPV), which is tightly enclosed by the containment. The low process parameters like pressure, temperature, and power density and the high ratio of coolant volume to thermal power allow the design of simple safety features.more » This is supported by the preference of passive over active components. A special feature is a newly designed hydraulic control and rod drive mechanism, which is also integrated into the RPV. Within the safety assessment an overview of the relevant FRG safety rules and guidelines, developed mainly for large, electricity-generating power plants, is given. Included is a discussion of the extent to which these licensing rules can be applied to the concept of heating reactors.« less

  18. Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2005-01-01

    Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.

  19. Omega-3 chicken egg detection system using a mobile-based image processing segmentation method

    NASA Astrophysics Data System (ADS)

    Nurhayati, Oky Dwi; Kurniawan Teguh, M.; Cintya Amalia, P.

    2017-02-01

    An Omega-3 chicken egg is a chicken egg produced through food engineering technology. It is produced by hen fed with high omega-3 fatty acids. So, it has fifteen times nutrient content of omega-3 higher than Leghorn's. Visually, its shell has the same shape and colour as Leghorn's. Each egg can be distinguished by breaking the egg's shell and testing the egg yolk's nutrient content in a laboratory. But, those methods were proven not effective and efficient. Observing this problem, the purpose of this research is to make an application to detect the type of omega-3 chicken egg by using a mobile-based computer vision. This application was built in OpenCV computer vision library to support Android Operating System. This experiment required some chicken egg images taken using an egg candling box. We used 60 omega-3 chicken and Leghorn eggs as samples. Then, using an Android smartphone, image acquisition of the egg was obtained. After that, we applied several steps using image processing methods such as Grab Cut, convert RGB image to eight bit grayscale, median filter, P-Tile segmentation, and morphology technique in this research. The next steps were feature extraction which was used to extract feature values via mean, variance, skewness, and kurtosis from each image. Finally, using digital image measurement, some chicken egg images were classified. The result showed that omega-3 chicken egg and Leghorn egg had different values. This system is able to provide accurate reading around of 91%.

  20. LDR segmented mirror technology assessment study

    NASA Technical Reports Server (NTRS)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  1. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    PubMed Central

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  2. Statistical Analyses for Probabilistic Assessments of the Reactor Pressure Vessel Structural Integrity: Building a Master Curve on an Extract of the 'Euro' Fracture Toughness Dataset, Controlling Statistical Uncertainty for Both Mono-Temperature and multi-temperature tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick

    2006-07-01

    Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less

  3. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  4. Switch to Rilpivirine/Emtricitabine/Tenofovir Single-Tablet Regimen of Human Immunodeficiency Virus-1 RNA-Suppressed Patients, Agence Nationale de Recherches sur le SIDA et les Hépatites Virales CO3 Aquitaine Cohort, 2012-2014.

    PubMed

    Cazanave, Charles; Reigadas, Sandrine; Mazubert, Cyril; Bellecave, Pantxika; Hessamfar, Mojgan; Le Marec, Fabien; Lazaro, Estibaliz; Peytavin, Gilles; Bruyand, Mathias; Fleury, Hervé; Dabis, François; Neau, Didier

    2015-01-01

    Background.  The purpose of this study was to assess the efficacy and tolerability of combined antiretroviral therapy (cART) in human immunodeficiency virus (HIV)-1 virologically suppressed patients who switched to rilpivirine (RPV)/tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) as a single-tablet regimen (STR). Methods.  A retrospective multicenter cohort study was performed between September 2012 and February 2014 in Bordeaux University Hospital-affiliated clinics. Patients with a plasma HIV viral load (VL) lower than 50 copies/mL and switching to STR were evaluated at baseline, 3, 6, 9, and 12 months from switch time (M3, M6, M9, M12) for VL and other biological parameters. Change from baseline in CD4 cell counts was evaluated at M6 and M12. Virological failure (VF) was defined as 2 consecutive VL >50 copies/mL. Results.  Three hundred four patients were included in the analysis. Single-tablet regimen switch was proposed to 116 patients with adverse events, mostly efavirenz (EFV)-based (n = 59), and to 224 patients for cART simplification. Thirty of 196 patients with available genotype resistance test results displayed virus with ≥1 drug resistance mutation on reverse-transcriptase gene. After 12 months of follow-up, 93.4% (95.5% confidence interval, 89.9-96.2) of patients remained virologically suppressed. There was no significant change in CD4 cell count. During the study period, 5 patients experienced VF, one of them harboring RPV resistance mutation. Clinical cART tolerability improved in 79 patients overall (29.9%) at M6, especially neurological symptoms related to EFV. Fasting serum lipid profiles improved, but a significant estimated glomerular function rate decrease (-11 mL/min/1.73 m(2); P < 10(-4)) was observed. Conclusions.  Overall, virologic suppression was maintained in patients after switching to RPV/TDF/ FTC. This STR strategy was associated with improved tolerability.

  5. PERFORM 60 - Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modelling - 60 years foreseen plant lifetime

    NASA Astrophysics Data System (ADS)

    Leclercq, Sylvain; Lidbury, David; Van Dyck, Steven; Moinereau, Dominique; Alamo, Ana; Mazouzi, Abdou Al

    2010-11-01

    In nuclear power plants, materials may undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities that operate these reactors need to quantify the ageing and the potential degradations of some essential structures of the power plant to ensure safe and reliable plant operation. So far, the material databases needed to take account of these degradations in the design and safe operation of installations mainly rely on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. A first step towards this goal has been successfully reached through the development of the RPV-2 and Toughness Module numerical tools by the scientific community created around the FP6 PERFECT project. These tools allow to simulate irradiation effects on the constitutive behaviour of the reactor pressure vessel low alloy steel, and also on its failure properties. Relying on the existing PERFECT Roadmap, the 4 years Collaborative Project PERFORM 60 has mainly for objective to develop multi-scale tools aimed at predicting the combined effects of irradiation and corrosion on internals (austenitic stainless steels) and also to improve existing ones on RPV (bainitic steels). PERFORM 60 is based on two technical sub-projects: (i) RPV and (ii) internals. In addition to these technical sub-projects, the Users' Group and Training sub-project shall allow representatives of constructors, utilities, research organizations… from Europe, USA and Japan to receive the information and training to get their own appraisal on limits and potentialities of the developed tools. An important effort will also be made to teach young researchers in the field of materials' degradation. PERFORM 60 has officially started on March 1st, 2009 with 20 European organizations and Universities involved in the nuclear field.

  6. The conditional moment closure method for modeling lean premixed turbulent combustion

    NASA Astrophysics Data System (ADS)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from the turbulence models, which are inadequate for the variable density and recirculating flows modeled here. The limitations of the turbulence models affected the calculation of the flow statistics, which are used to calculate the variance of the RPV, the scalar dissipation and the PDF.

  7. Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease.

    PubMed

    Kanazawa, H; Okamoto, T; Hirata, K; Yoshikawa, J

    2000-10-01

    Angiotensin converting enzyme (ACE) plays an important role in the pathogenesis of pulmonary hypertension. In this study we determined whether the deletion (D)/insertion (I) polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease (COPD). ACE genotypes were determined in 19 patients with COPD. All patients underwent right heart catheterization followed by a constant-load exercise test while breathing room air or oxygen. Subgroups were created of seven patients with the II genotype, six with the ID genotype, and six with the DD genotype who were well-matched with respect to age, blood gas data at rest or after exercise, baseline lung function, results of incremental exercise testing, and hemodynamic data at rest. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (Rpv) at rest in the three subgrpoups did not differ significantly during breathing of either room air or oxygen. However, the Ppa after exercise challenge in patients with the DD genotype (55.7 +/- 4.9 mm Hg [mean +/- SD]) was significantly higher than in patients with the II genotype (42.6 +/- 7.1 mm Hg, p = 0.008). The Rpv after exercise in patients with the DD genotype was also significantly higher than in patients with the ID and II genotypes. During breathing of oxygen to diminish acute hypoxic pulmonary vasoconstriction, the Ppa in patients with the DD genotype (52.3 +/- 3.1 mm Hg) was higher than in patients with the ID genotype (40.5 +/- 5.9 mm Hg, p = 0.0049) or the II genotype (37.7 +/- 5.9 mm Hg, p = 0.0027). In addition, the Rpv in patients with the DD genotype was higher than in patients with the ID and II genotypes. These results suggest that D-I polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with COPD. However, the number of patients in this study was very small for a genetic association study, and our results should be examined in larger studies.

  8. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    PubMed

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission.

  9. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    PubMed Central

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission. PMID:21159868

  10. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  11. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  12. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  13. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    NASA Technical Reports Server (NTRS)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  14. Mechanics of tunable helices and geometric frustration in biomimetic seashells

    NASA Astrophysics Data System (ADS)

    Guo, Qiaohang; Chen, Zi; Li, Wei; Dai, Pinqiang; Ren, Kun; Lin, Junjie; Taber, Larry A.; Chen, Wenzhe

    2014-03-01

    Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, add to the variety of this family of aesthetic beauty. Here we develop a comprehensive theoretical framework for tunable helical morphologies, and report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves equilibrium. In this work, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessarily be locally optimized. This novel approach can be applied to develop materials and devices of tunable geometries with a range of applications in nano/biotechnology.

  15. Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2012-10-01

    The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.

  16. Stabilized micelles of amphoteric polyurethane formed by thermoresponsive micellization in HCl aqueous solution.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2008-04-01

    The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.

  17. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  18. Observations of the boiling process from a downward-facing torispherical surface: Confirmatory testing of the heavy water new production reactor flooded cavity design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Simpson, R.B.

    1995-06-01

    Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.

  19. Mini-RPV Launch System Conceptual Study

    DTIC Science & Technology

    1978-12-01

    are discussed later. Although shock cord has not found extensive use in aerospace in recent years, the technology of elastomers and braids has advanced...considerably beyond the off-the-shelf material (MIL-C-5651B) on which this study is based. Special elastomers , such as silicone rubber, and braid ...STUDIES .... .......... 36 7.1 Elastic, Concept 1-1 ... ............ 36 7.1.1 Introduction ...... ....... ... 36 7.1.2 Elastomeric (Shock Cord), Concept I

  20. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport design, the AIAA Long Duration Aircraft design and RPV design proposal as project objectives. The central goal of these efforts is to provide a user-friendly, computer-software-based environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN) and stand-alone PC's are being used for this development. This year's accomplishments center primarily on aerodynamics software obtained from NASA/Langley and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of ten HSCT designs were generated, ranging from twin-fuselage aircraft, forward swept wing aircraft to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance.

  1. Simultaneous Detection of Rift Valley Fever, Bluetongue, Rinderpest, and Peste des Petits Ruminants Viruses by a Single-Tube Multiplex Reverse Transcriptase-PCR Assay Using a Dual-Priming Oligonucleotide System▿

    PubMed Central

    Yeh, Jung-Yong; Lee, Ji-Hye; Seo, Hyun-Ji; Park, Jee-Yong; Moon, Jin-San; Cho, In-Soo; Choi, In-Soo; Park, Seung-Yong; Song, Chang-Seon; Lee, Joong-Bok

    2011-01-01

    The aim of this study was to develop a highly sensitive and specific one-step multiplex reverse transcriptase PCR assay for the simultaneous and differential detection of Rift Valley Fever virus (RVFV), bluetongue virus (BTV), rinderpest virus (RPV), and Peste des petits ruminants virus (PPRV). These viruses cause mucosal lesions in cattle, sheep, and goats, and they are difficult to differentiate from one another based solely on their clinical presentation in suspected disease cases. In this study, we developed a multiplex reverse transcriptase PCR to detect these viruses using a novel dual-priming oligonucleotide (DPO). The DPO contains two separate priming regions joined by a polydeoxyinosine linker, which blocks extension of nonspecifically primed templates and consistently allows high PCR specificity even under less-than-optimal PCR conditions. A total of 19 DPO primers were designed to detect and discriminate between RVFV, BTV, RPV, and PPRV by the generation of 205-, 440-, 115-, and 243-bp cDNA products, respectively. The multiplex reverse transcriptase PCR described here enables the early diagnosis of these four viruses and may also be useful as part of a testing regime for cattle, sheep, or goats exhibiting similar clinical signs, including mucosal lesions. PMID:21307219

  2. Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Hiroki; Masuda, Munemitsu; Miura, Ryuichi

    2006-08-15

    Morbilliviruses, which belong to the Mononegavirales, replicate its RNA genome in the cytoplasm of the host cell. However, they also form characteristic intranuclear inclusion bodies, consisting of nucleoprotein (N), in infected cells. To analyze the mechanisms of nucleocytoplasmic transport of N protein, we characterized the nuclear localization (NLS) and nuclear export (NES) signals of canine distemper virus (CDV) N protein by deletion mutation and alanine substitution of the protein. The NLS has a novel leucine/isoleucine-rich motif (TGILISIL) at positions 70-77, whereas the NES is composed of a leucine-rich motif (LLRSLTLF) at positions 4-11. The NLS and NES of the Nmore » proteins of other morbilliviruses, that is, measles virus (MV) and rinderpest virus (RPV), were also analyzed. The NLS of CDV-N protein is conserved at the same position in MV-N protein, whereas the NES of MV-N protein is located in the C-terminal region. The NES of RPV-N protein is also located at the same position as CDV-N protein, whereas the NLS motif is present not only at the same locus as CDV-N protein but also at other sites. Interestingly, the nuclear export of all these N proteins appears to proceed via a CRM1-independent pathway.« less

  3. Comparative study of irradiated and hydrogen implantation damaged German RPV steels from PAS point of view

    NASA Astrophysics Data System (ADS)

    Pecko, Stanislav; Sojak, Stanislav; Slugeň, Vladimír

    2014-09-01

    Commercial German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was also in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40%) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed at a level of 2-3 vacancies in the irradiated specimens. The size and intensity of defects reached a similar level as in the specimens irradiated in nuclear reactor due to hydrogen ions implantation with energy of 100 keV (up to the depth <500 nm). This could confirm the ability to simulate neutron damage by ion implantation.

  4. Alternative designs for space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Pína, L.; Maršíková, Veronika; Černá, Daniela; Inneman, A.; Tichý, V.

    2017-11-01

    The X-ray optics is a key element of space X-ray telescopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All related space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non-Wolter X-ray optics designs for the future. The alternative designs require novel reflective substrates which are also discussed in the paper.

  5. Design Considerations for Lightweight Space Radiators Based on Fabrication and Test Experience with a Carbon-Carbon Composite Prototype Heat Pipe

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1998-01-01

    This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and Proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The proto-type heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/m2 can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micro-meteoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.

  6. Design Considerations for Lightweight Space Radiators Based on Fabrication and Test Experience With a Carbon-Carbon Composite Prototype Heat Pipe. Revised

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2002-01-01

    This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The prototype heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/sq m can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micrometeoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.

  7. New trends in space x-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface microroughness of a few 0.1 nm, and low weight (the volume density is 2.5 g cm-3 for glass and 2.3 g cm-3 for Si). Technologies are needed to be exploited; how to shape these substrates to achieve the required precise Xray optics geometries without degradations of the fine surface microroughness. Although glass and recently silicon wafers are considered to represent most promising materials for future advanced large aperture space Xray telescopes, there also exist other alternative materials worth further study such as amorphous metals and glassy carbon [1]. In order to achieve sub-arsec angular resolutions, principles of active optics have to be adopted.

  8. Monocrystalline Silicon and the Meta-Shell Approach to Building X-Ray Astronomical Optics

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; hide

    2017-01-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the meta-shell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, Wolter-Schwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  9. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty

    2013-09-01

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INL’s MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. Themore » reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.« less

  10. Implications for Arms Control in Technology Transfer to Less Developed Countries (LDC’s) Volume IV. Essays on the Role of Coproduction and Dual-Use Technology in the Development of LDC Arms Industries

    DTIC Science & Technology

    1980-09-01

    engaged in a coproduction venture with Contraves of Switzerland in which Bharat Electronics produces the fire control radars for the LP-70 AA system...produced and marketed by Contraves . Finally, it is expected that land warfare cap- abilities of LDCs will profit from the advantages of the RPV in

  11. Handbook for Conducting Analysis of the Manpower, Personnel, and Training Elements for a MANPRINT Assessment

    DTIC Science & Technology

    1991-04-01

    Traditional LCSMM and the Streamlined LCSMM. The Traditional LCSMM is divided into four phases: Concept Exploration, Demonstration and Validation, Full-Scale...to go faster. Whether that person is a typist, pianist or rifleman, his accuracy is nearly always decreased.) Figure 11 provides a graphic...each). Organizations are divided into two levels: primary and secondary. 44 Table 4 EXAMPLES OF MPT QUESTIONS USED FOR ANALYSIS OF RPV MANPOWER

  12. RPV Assessment of Remote Missile Site Intrusion Alarms.

    DTIC Science & Technology

    1982-08-01

    meter j fuselage, servos, battery, alternator. 14. Pitot tube and plumbing - Centrol model no. C-5255. 15. Engine CD ignition unit - KBG model 10308...1.29 Alternator with Coupling 6.22 Magnetometer and Mount .30 +26V Lead Acid Battery Pack 5.81 Pitot Tube .15 Subrudder .43 Regulator .28 94.15 Empty...Conent, Major Henry , USAF. Training Division, 1550 Aircrew Training Test Wing, Military Airlift Command, Kirtland AFB NM. Telephone interview. 29 June

  13. Solid State Mini-RPV Color Imaging System

    DTIC Science & Technology

    1975-09-12

    completed in the design and construction phase . Con- siderations are now in progress for conducting field tests of the equipment against "real world...Simplified Parallel Injection Configuration 2-21 CID Parallel Injection Configuration 2-23 Element Rate Timing 2-25 Horizontal Input and Phase Line...Timing 2-26 Line Reset /Injection Timing 2-27 Line Rate Timing (Start of Readout) 2-28 Driver A4 Block Diagram 2-31 Element Scan Time Base

  14. Long-lived particle searches in R-parity violating MSSM

    NASA Astrophysics Data System (ADS)

    Zwane, Nosiphiwo

    2017-10-01

    In this paper we study the constraints on MSSM R-Parity violating decays when the lightest superpartner (LSP) is moderately long lived. In this scenario the LSP vertex displacement may be observed at the LHC. We compute limits on the RPV Yukawa couplings for which the vertex displacement signature maybe used. We then use ATLAS and CMS displaced vertex, meta-stable and prompt decay searches to rule out a region of sparticle masses.

  15. Buckling Analysis of Anisotropic Curved Panels and Shells with Variable Curvature

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1998-01-01

    A buckling formulation for anisotropic curved panels with variable curvature is presented in this paper. The variable curvature panel is assumed to consists of two or more panels of constant but different curvatures. Bezier functions are used as Ritz functions Displacement (C(sup 0)), and slope (C(sup 1)) continuities between segments are imposed by manipulation of the Bezier control points. A first-order shear-deformation theory is used in the buckling formulation. Results obtained from the present formulation are compared with those from finite element simulations and are found to be in good agreement.

  16. Buckling Design and Analysis of a Payload Fairing One-Sixth Cylindrical Arc-Segment Panel

    NASA Technical Reports Server (NTRS)

    Kosareo, Daniel N.; Oliver, Stanley T.; Bednarcyk, Brett A.

    2013-01-01

    Design and analysis results are reported for a panel that is a 16th arc-segment of a full 33-ft diameter cylindrical barrel section of a payload fairing structure. Six such panels could be used to construct the fairing barrel, and, as such, compression buckling testing of a 16th arc-segment panel would serve as a validation test of the buckling analyses used to design the fairing panels. In this report, linear and nonlinear buckling analyses have been performed using finite element software for 16th arc-segment panels composed of aluminum honeycomb core with graphiteepoxy composite facesheets and an alternative fiber reinforced foam (FRF) composite sandwich design. The cross sections of both concepts were sized to represent realistic Space Launch Systems (SLS) Payload Fairing panels. Based on shell-based linear buckling analyses, smaller, more manageable buckling test panel dimensions were determined such that the panel would still be expected to buckle with a circumferential (as opposed to column-like) mode with significant separation between the first and second buckling modes. More detailed nonlinear buckling analyses were then conducted for honeycomb panels of various sizes using both Abaqus and ANSYS finite element codes, and for the smaller size panel, a solid-based finite element analysis was conducted. Finally, for the smaller size FRF panel, nonlinear buckling analysis was performed wherein geometric imperfections measured from an actual manufactured FRF were included. It was found that the measured imperfection did not significantly affect the panel's predicted buckling response

  17. Detection and segmentation of multiple touching product inspection items

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Talukder, Ashit; Cox, Westley; Chang, Hsuan-Ting; Weber, David

    1996-12-01

    X-ray images of pistachio nuts on conveyor trays for product inspection are considered. The first step in such a processor is to locate each individual item and place it in a separate file for input to a classifier to determine the quality of each nut. This paper considers new techniques to: detect each item (each nut can be in any orientation, we employ new rotation-invariant filters to locate each item independent of its orientation), produce separate image files for each item [a new blob coloring algorithm provides this for isolated (non-touching) input items], segmentation to provide separate image files for touching or overlapping input items (we use a morphological watershed transform to achieve this), and morphological processing to remove the shell and produce an image of only the nutmeat. Each of these operations and algorithms are detailed and quantitative data for each are presented for the x-ray image nut inspection problem noted. These techniques are of general use in many different product inspection problems in agriculture and other areas.

  18. Design And Development The Ixo Mirrors By Innovative Slumping Glass Technologies

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Ghigo, M.; Basso, S.; Citterio, O.; Canestrari, R.; Dell'Orto, E.; Conconi, P.; Parodi, G.; Proserpio, L.

    2009-01-01

    At INAF Brera Astronomical Observatory development activities are ongoing aiming at the design and development of the IXO mirrors based on slumping glass technique. Our approach is based on the use of thermal slumping of thin glass optics and it presents a number of innovative solution for the implementation. In particular our approach foresees the use of a ceramic mould made of SiC for thermal shaping of the glass segments, which occurs exerting a proper pressure during the moulding process. A thin layer (a few hundred Angstroms) of Pt or Ir is previously deposited on the glass segment, to prevent the adhesion on the SiC mould surface. Therefore this coating not only acts as a release agent of the process but, at the same time, it has also the role of reflecting layer of the X-ray mirror (in a sense like it was the role of gold in the Ni electroforming replication method used for the XMM shells). SiC is chosen for its very good T/M characteristics and, in particular, a very high thermal conductivity and very low CTE. SiC mould will be produced via injection moulding process, followed by a the application of a cladding layer (a few tens microns) application of CVD SiC for allowing a superpolishing of the surface until a roughness of a few Angstrom rms is achieved. Once the mirror segments are produced, they are integrated in petals by means of air-bearings supports, that allows us to maintain the proper shape of the segments without deformations. The segments are stacked into the petals by the use of connecting ribs, glued to the front surface of each mirror and to the rear of the next one.

  19. Real-World Assessment of Renal and Bone Safety among Patients with HIV Infection Exposed to Tenofovir Disoproxil Fumarate-Containing Single-Tablet Regimens.

    PubMed

    Nkhoma, Ella T; Rosenblatt, Lisa; Myers, Joel; Villasis-Keever, Angelina; Coumbis, John

    2016-01-01

    Tenofovir disoproxil fumarate (TDF)-containing antiretroviral regimens have been associated with an increased incidence of renal and bone adverse outcomes. Here, we estimated the real-world incidence of renal and bone adverse outcomes among patients with HIV infection receiving different TDF-containing single-tablet regimens (STRs). This cohort study used US health insurance data spanning the years 2008-2014. We identified HIV-infected patients aged ≥18 years (all HIV patients) and those with ≥6 months of continuous enrollment prior to initiating efavirenz/emtricitabine/TDF (EFV/FTC/TDF), rilpivirine/FTC/TDF (RPV/FTC/TDF) or elvitegravir/cobicistat/FTC/TDF (EVG/COBI/FTC/TDF). Renal adverse outcomes were identified using renal International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes. Bone adverse outcomes were identified using ICD-9-CM diagnosis codes for fracture. Incidence rates (IRs) and associated 95% confidence intervals (CIs) were estimated assuming a Poisson distribution, and outcomes between STRs were compared using IR ratios (IRRs) and IR differences (IRDs). We identified 9876 and 10,383 eligible patients for the renal and fracture analyses, respectively. Observed IRs for renal adverse outcomes were 9.7, 10.5, 13.6, and 18.0 per 1000 person-years among those receiving EFV/FTC/TDF, RPV/FTC/TDF, or EVG/COBI/FTC/TDF, or all HIV patients, respectively. Corresponding values for IRs of fracture were 3.4, 3.6, 7.2, and 4.4 per 1000 person-years, respectively. Renal adverse outcomes with EFV/FTC/TDF were significantly less frequent than with EVG/COBI/FTC/TDF (IRD -3.96; 95% CI: -7.31, -1.06). No IRR differences were identified for the renal analysis. Fractures with EFV/FTC/TDF were significantly less frequent than with EVG/COBI/FTC/TDF (IRR 0.47; 95% CI: 0.27, 0.81 and IRD -3.85; 95% CI: -5.02, -2.78). In this large real-world database, observed IRs for renal adverse outcomes with TDF-containing STRs were lower or similar to those for all HIV patients, with the lowest IRs observed among patients receiving EFV/FTC/TDF. Compared with all HIV patients, the observed IR for fracture was higher with EVG/COBI/FTC/TDF, comparable with RPV/FTC/TDF, and lower with EFV/FTC/TDF.

  20. Etravirine and rilpivirine resistance in HIV-1 subtype CRF01_AE-infected adults failing non-nucleoside reverse transcriptase inhibitor-based regimens.

    PubMed

    Bunupuradah, Torsak; Ananworanich, Jintanat; Chetchotisakd, Ploenchan; Kantipong, Pacharee; Jirajariyavej, Supunnee; Sirivichayakul, Sunee; Munsakul, Warangkana; Prasithsirikul, Wisit; Sungkanuparph, Somnuek; Bowonwattanuwong, Chureeratana; Klinbuayaem, Virat; Petoumenos, Kathy; Hirschel, Bernard; Bhakeecheep, Sorakij; Ruxrungtham, Kiat

    2011-01-01

    We studied prevalence of etravirine (ETR) and rilpivirine (RPV) resistance in HIV-1 subtype CRF01_AE infection with first-line non-nucleoside reverse transcriptase inhibitor (NNRTI) failure. A total of 225 adults failing two nucleoside reverse transcriptase inhibitors (NRTIs) plus 1 NNRTI in Thailand with HIV RNA>1,000 copies/ml were included. Genotypic resistance results and HIV-1 subtype were interpreted by Stanford DR database. ETR resistance was calculated by the new Monogram weighted score (Monogram WS; ≥ 4 indicating high-level ETR resistance) and by DUET weighted score (DUET WS; 2.5-3.5 and ≥ 4 resulted in intermediate and reduce ETR response, respectively). RPV resistance interpretation was based on previous reports. Median (IQR) age was 38 (34-42) years, 41% were female and CDC A:B:C were 22%:21%:57%. HIV subtypes were 96% CRF01_AE and 4% B. Antiretrovirals at failure were lamivudine (100%), stavudine (93%), nevirapine (90%) and efavirenz (10%) with a median (IQR) duration of 3.4 (1.8-4.5) years. Median (IQR) CD4(+) T-cell count and HIV RNA were 194 (121-280) cells/mm³ and 4.1 (3.6-4.6) log₁₀ copies/ml, respectively. The common NNRTI mutations were Y181C (41%), G190A (22%) and K103N (19%). The proportion of patients with Monogram WS score ≥ 4 was 61.3%. By DUET WS, 49.8% and 7.5% of patients were scored 2.5-3.5 and ≥4, respectively. Only HIV RNA ≥ 4 log₁₀ copies/ml at failure was associated with both Monogram WS ≥ 4 (OR 2.3, 95% CI 1.3-3.9; P=0.003) and DUET WS ≥ 2.5 (OR 1.9, 95% CI 1.1-3.3; P=0.02). The RVP resistance-associated mutations (RAMs) detected were K101P (1.8%), Y181I (2.7%) and Y181V (3.6%). All patients with RPV mutation had ETR resistance. No E138R/E138K mutations were detected. Approximately 60% of patients had high-level ETR resistance. The role of ETR in second-line therapy is limited in late NNRTI failure settings. RVP RAMs were uncommon, but cross-resistance between ETR and RVP was high.

  1. Mission Planning for Tactical Aircraft (Preflight and In-Flight) (Systemes de Planification des Missions Pour Avions Tactiques) (Avant Vol et en Vol).

    DTIC Science & Technology

    1992-12-01

    Ground-Based Mission Planning Systems 9 2.3 Networking Mission Planning Systems 11 2.4 Fully Automated Mission Planning I I 2.5 Unmanned Air Vehicles 13...Missile Engagement Zone RPV Remotely Piloted Vehicle MIDS Multifunction Information Distribution System RRDB Rapidly Reconfigurable Databus MIL-STD...Comrmantd OPORD Operations Order TV Television OPS Operational OR Operational Relationship UAV Unmanned Air Vehicle UAV Unnmanned Air Vehicle PA

  2. 5m RPV for Exploring Joined Wing Gust Response

    DTIC Science & Technology

    2009-12-01

    an outer layer of light glass scrim used as the first layer. Varying layers of carbon cloth are used and then the core material is added. In this...for various angles of attack and sideslip angles. A parametric model is developed using Phoenix Integration’s Model Center Software (MC). This model...by the ground control software and finally a piece of real-time footage taken from the on-board, gimbaled camera. 2009 Progress Report 27

  3. Design and Fabrication of an Ultra-Low-Cost Turboprop for RPV/UAV applications

    DTIC Science & Technology

    1993-11-22

    Modifications were made to the engine at M-DOT to remove the existing bifurcated duct and incorporate a circular duct with V- band flange. All hardware...Due to the nature of modifications , engine cost would not be increased. If a gas-generator section based on the Sundstrand low-flow TJ-90 were to be...dangerous blade resonant frequencies existed in the design, the completed wheel was acoustically excited at various frequencies. (See Figure 7

  4. AQUILA Remotely Piloted Vehicle System Technology Demonstrator (RPV-STD) Program. Volume I. System Description and Capabilities

    DTIC Science & Technology

    1979-04-01

    tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed

  5. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2012-07-01

    unlimited The views, opinions and/or findings contained in this report are those of the author (s) and should not be...SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: 5f. WORK...PCR - LDV PCR - TMEV/GDVII PCR - Hantavirus Seoul PCR - SEND PCR - RCMV PCR - RTV PCR - RPV PCR - IDIR PCR - RCV/SDAV PCR - Mycoplasma Genus PCR - M

  6. Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.

    2012-01-01

    Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.

  7. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction. One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  9. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. MT1-MMP Responsive Doxorubicin Conjugated Poly(lactic-co-glycolic Acid)/Poly(styrene-alt-maleic Anhydride) Core/Shell Microparticles for Intrahepatic Arterial Chemotherapy of Hepatic Cancer.

    PubMed

    Davaa, Enkhzaya; Lee, Junghan; Jenjob, Ratchapol; Yang, Su-Geun

    2017-01-11

    In this study, we demonstrated that the MT1-MMP-responsive peptide (sequence: GPLPLRSWGLK) and doxorubicin-conjugated poly(lactic-co-glycolic acid/poly(styrene-alt-maleic anhydride) core/shell microparticles (PLGA/pSMA MPs) can be applied for intrahepatic arterial injection for hepatocellular carcinoma (HCC). PLGA/pSMA MPs were prepared with a capillary-focused microfluidic device. The particle size, observed by scanning electron microscopy (SEM), was around 22 ± 3 μm. MT1-MMP-responsive peptide and doxorubicin (DOX) were chemically conjugated with pSMA segments on the shell of MPs to form a PLGA/pSMA-peptide-DOX complex, resulting in high encapsulation efficiency (91.1%) and loading content (2.9%). DOX was released from PLGA/pSMA-peptide-DOX MPs in a pH-dependent manner (∼25% at pH 5.4 and ∼8% at pH 7.4) and accumulated significantly in an MT1-MMP-overexpressing Hep3B cell line. An in vivo intrahepatic injection study showed localization of MPs on the hepatic vessels and hepatic lobes up to 24 h after the injection without any shunting to the lung. Moreover, MPs efficiently inhibited tumor growth of Hep3B hepatic tumor xenografted mouse models. We expect that PLGA/pSMA-peptide-DOX MPs can be utilized as an effective intrahepatic drug delivery system for the treatment of HCC.

  11. An Examination of the United States Navy’s Ability to Conduct Operational Fires

    DTIC Science & Technology

    1992-05-12

    34 18 Thus, the Allied command determined that this attempt was AFFORDABLE or that they had the ability "to manage or bear [the] cost without serious...enhance the situation, but the enormous cost of this project and the time required to generate this data still places a solution years in the future...approach the accuracy enjoyed by more sophisticated overhead imagery systems at a fraction of the cost . The Navy started RPV operations after losing

  12. Tailless Vectored Fighters Theory. Laboratory and Flight Tests, Including Vectorable Inlets/Nozzles and Tailless Flying Models vs. Pilot’s Tolerances Affecting Maximum Post-Stall Vectoring Agility.

    DTIC Science & Technology

    1991-07-01

    nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical

  13. AQUILA Remotely Piloted Vehicle System Technology Demonstrator (RPV-STD) Program. Volume 2. System Evolution and Engineering Testing

    DTIC Science & Technology

    1979-04-01

    crosshead of the piston assembly. Shock transients at this location cause demagnetization of the magnet . This is being alleviated by in- stallation of magnets ...substantial structure, such as bulk - heads with edge cape. Soond, the wire-out foam *or* for the wing could not be sufficiently precise to preven the used for...characterize the power potential, fuel consumption, weight, bulk , and adaptability to closed loop control of candidate carburetion systems to be employed with

  14. Research and Simulation in Support of Near Real Time/Real Time Reconnaissance RPV Systems

    DTIC Science & Technology

    1977-06-01

    Image 4,5.2 Raster Lines Across Image 4.5.3 Angle Projected by Displayed Image 4.6 Optical Defocusing SIMULATION CONSIDERATIONS PAGE 162 162 162...television and infrared, there are a finite number of resolution elements across the format. As a consequence, selection of a shorter optical focal...light that is scanned across and down the CRT to form a raster similar to that seen in a standard television tube. The light is optically projected

  15. Nickelzinc Batteries for RPV Applications.

    DTIC Science & Technology

    1981-06-01

    batteries used in the BQM-34A target drones are: 1) The secondary nickel-zinc system is able to provide superior Amp-Hr capacity with respect to volume as...7) MAR-5013 Flight Test batteries, have been constructed and shipped to Tyndall AFB for testing in the BQM- 34A remotely piloted target drone . The...ditioning.The seventh battery was lost on a flight mission when the target drone was shot down. Refer to Table 16 for a summary of battery history prior

  16. Development of Γ-ray tracking detectors

    DOE PAGES

    Lieder, R. M.; Gast, W.; Jäger, H. M.; ...

    2001-12-01

    The next generation of 4π arrays for high-precision γ-ray spectroscopy AGATA will consist of γ-ray tracking detectors. They represent high-fold segmented Ge detectors and a front-end electronics, based on digital signal processing techniques, which allows to extract energy, timing and spatial information on the interactions of a γ-ray in the Ge detector by pulse shape analysis of its signals. Utilizing the information on the positions of the interaction points and the energies released at each point the tracks of the γ-rays in a Ge shell can be reconstructed in three dimensions on the basis of the Compton-scattering formula.

  17. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  18. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  19. Radiation Embrittlement Archive Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format,more » for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.« less

  20. A micromechanical interpretation of the temperature dependence of Beremin model parameters for french RPV steel

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier

    2010-11-01

    Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.

  1. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odette, G. Robert

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences thanmore » have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.« less

  2. Ares I-X Upper Stage Simulator Residual Stress Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  3. Isomap transform for segmenting human body shapes.

    PubMed

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  4. New automatic mode of visualizing the colon via Cine CT

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Eisenberg, Harvey C.

    2001-05-01

    Methods of visualizing the inner colonic wall by using CT images has actively been pursued in recent years in an attempt to eventually replace conventional colonoscopic examination. In spite of impressive progress in this direction, there are still several problems, which need satisfactory solutions. Among these, we address three problems in this paper: segmentation, coverage, and speed of rendering. Instead of thresholding, we utilize the fuzzy connectedness framework to segment the colonic wall. Instead of the endoscopic viewing mode and various mapping techniques, we utilize the central line through the colon to generate automatically viewing directions that are enface with respect to the colon wall, thereby avoiding blind spots in viewing. We utilize some modifications of the ultra fast shell rendering framework to ensure fast rendering speed. The combined effect of these developments is that a colon study requires an initial 5 minutes of operator time plus an additional 5 minutes of computational time and subsequently enface renditions are created in real time (15 frames/sec) on a 1 GHz Pentium PC under the Linux operating system.

  5. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  6. ESBWR response to an extended station blackout/loss of all AC power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by internationalmore » regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)« less

  7. Computed reconstruction of spatial ammonoid-shell orientation captured from digitized grinding and landmark data

    NASA Astrophysics Data System (ADS)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.

    2014-03-01

    The internal orientation of fossil mass occurrences can be exploited as useful source of information about their primary depositional conditions. A series of studies, using different kinds of fossils, especially those with elongated shape (e.g., elongated gastropods), deal with their orientation and the subsequent reconstruction of the depositional conditions (e.g., paleocurrents and transport mechanisms). However, disk-shaped fossils like planispiral cephalopods or gastropods were used, up to now, with caution for interpreting paleocurrents. Moreover, most studies just deal with the topmost surface of such mass occurrences, due to the easier accessibility. Within this study, a new method for three-dimensional reconstruction of the internal structure of a fossil mass occurrence and the subsequent calculation of its spatial shell orientation is established. A 234 million-years-old (Carnian, Triassic) monospecific mass occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey, embedded in limestone, is used for this pilot study. Therefore, a 150×45×140 mm3 block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2 mm between each slice. By using a semi-automatic region growing algorithm of the 3D-visualization software Amira, ammonoids of a part of this mass occurrence were segmented and a 3D-model reconstructed. Landmarks, trigonometric and vector-based calculations were used to compute the diameters and the spatial orientation of each ammonoid. The spatial shell orientation was characterized by dip and dip-direction and aperture direction of the longitudinal axis, as well as by dip and azimuth of an imaginary sagittal-plane through each ammonoid. The exact spatial shell orientation was determined for a sample of 675 ammonoids, and their statistical orientation analyzed (i.e., NW/SE). The study combines classical orientation analysis with modern 3D-visualization techniques, and establishes a novel spatial orientation analyzing method, which can be adapted to any kind of abundant solid matter.

  8. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  9. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  10. Preliminary Analysis of Double Shell Tomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, V

    2009-01-16

    In this project we have collaborated with LLNL scientists Dr. Peer-Timo Bremer while performing our research work on algorithmic solutions for geometric processing, image segmentation and data streaming. The main deliverable has been a 3D viewer for high-resolution imaging data with particular focus on the presentation of orthogonal slices of the double shell tomography dataset. Basic probing capabilities allow querying single voxels in the data to study in detail the information presented to the user and compensate for the intrinsic filtering and imprecision due to visualization based on colormaps. On the algorithmic front we have studied the possibility of usingmore » of non-local means filtering algorithm to achieve noise removal from tomography data. In particular we have developed a prototype that implements an accelerated version of the algorithm that may be able to take advantage of the multi-resolution sub-sampling of the ViSUS format. We have achieved promising results. Future plans include the full integration of the non-local means algorithm in the ViSUS frameworks and testing if the accelerated method will scale properly from 2D images to 3D tomography data.« less

  11. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  12. Evaluation of the rabbit liver by direct portography and contrast-enhanced computed tomography: anatomical variations of the portal system and hepatic volume quantification.

    PubMed

    Páramo, María; García-Barquin, Paula; Santa María, Eva; Madrid, José Miguel; Caballeros, Meylin; Benito, Alberto; Sangro, Bruno; Iñarrairaegui, Mercedes; Bilbao, José Ignacio

    2017-01-01

    The study was aimed at: (1) describing the incidence of anatomic variations of the portal system in the rabbit using direct portography; and (2) estimating the liver volume and caudate lobe volume by using contrast-enhanced computed tomography (CECT) in the same animal model. Forty-six New Zealand white rabbits were included. All of them underwent direct portography and unenhanced CECT. Conventional liver rabbit portal system anatomy (type 1) consisted of the bifurcation of the main portal vein (MPV) into the right portal vein (RPV) and left portal vein (LPV), which subsequently divided into medial left portal vein and lateral left portal vein. Trifurcation of the LPV was considered type 2. The LPV that divides into four smaller branches was classified as type 3. Other configurations of the portal system, including particular cases of MPV branching, were grouped as type 4. Liver lobes were manually segmented. The incidence of each type of portal system anatomy was: type 1, 67.4%; type 2, 15.2%; type 3, 13.0%); and type 4, 4.3%. The mean volume of the caudate lobe was 19.1 ml ± 5.7 ml and of the cranial lobes it was 66.7 ml ± 13.7 ml, and the total liver volume was 85.7 ml ± 16.7 ml. In New Zealand white rabbits, type 1 is the prevalent type of portal system, liver volume is about 86 ml, and the caudate and cranial lobes are separated. This information could be important when planning experimental rabbit liver procedures.

  13. Measurement of the Spectroscopic Quadrupole Moment for the 2+1 State in 10Be:. Testing AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.

    2013-03-01

    The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal < 2+1|M({E}2)|2+1> matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.

  14. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

    2017-01-01

    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

  15. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  16. Constant lift rotor for a heavier than air craft

    NASA Technical Reports Server (NTRS)

    Stroub, R. H. (Inventor)

    1979-01-01

    A rotor blade extended radially from a hub, characterized by an elongated spar and a plurality of axially aligned shells pivotally mounted on the spar is presented. Each has an aerodynamic center located in trailing relation with the spar and supported thereby for simultaneous axial and angular displacement as centrifugal forces are applied, a pitch controller plus a plurality of pivotal pitch limiting arms transversely related to the spar. A push-pull link interconnecting the arms is used for imparting simultaneous pivotal motion, whereby the angular relationship of the arms to the spar is varied for varying the motion of the trucks along the arms for thus limiting the pitch of the segments about the spar.

  17. Analysis of a Two-Dimensional Thermal Cloaking Problem on the Basis of Optimization

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.

    2018-04-01

    For a two-dimensional model of thermal scattering, inverse problems arising in the development of tools for cloaking material bodies on the basis of a mixed thermal cloaking strategy are considered. By applying the optimization approach, these problems are reduced to optimization ones in which the role of controls is played by variable parameters of the medium occupying the cloaking shell and by the heat flux through a boundary segment of the basic domain. The solvability of the direct and optimization problems is proved, and an optimality system is derived. Based on its analysis, sufficient conditions on the input data are established that ensure the uniqueness and stability of optimal solutions.

  18. Stimuli-sensitive polymeric micelles as anticancer drug carriers.

    PubMed

    Na, Kun; Sethuraman, Vijay T; Bae, You Han

    2006-11-01

    Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.

  19. Modal characteristics of a simplified brake rotor model using semi-analytical Rayleigh Ritz method

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Cheng, L.; Yam, L. H.; Zhou, L. M.

    2006-10-01

    Emphasis of this paper is given to the modal characteristics of a brake rotor which is utilized in automotive disc brake system. The brake rotor is modeled as a combined structure comprising an annular plate connected to a segment of cylindrical shell by distributed artificial springs. Modal analysis shows the existence of three types of modes for the combined structure, depending on the involvement of each substructure. A decomposition technique is proposed, allowing each mode of the combined structure to be decomposed into a linear combination of the individual substructure modes. It is shown that the decomposition coefficients provide a direct and systematic means to carry out modal classification and quantification.

  20. RF Performance of Membrane Aperture Shells

    NASA Technical Reports Server (NTRS)

    Flint, Eirc M.; Lindler, Jason E.; Thomas, David L.; Romanofsky, Robert

    2007-01-01

    This paper provides an overview of recent results establishing the suitability of Membrane Aperture Shell Technology (MAST) for Radio Frequency (RF) applications. These single surface shells are capable of maintaining their figure with no preload or pressurization and minimal boundary support, yet can be compactly roll stowed and passively self deploy. As such, they are a promising technology for enabling a future generation of RF apertures. In this paper, we review recent experimental and numerical results quantifying suitable RF performance. It is shown that candidate materials possess metallic coatings with sufficiently low surface roughness and that these materials can be efficiently fabricated into RF relevant doubly curved shapes. A numerical justification for using a reflectivity metric, as opposed to the more standard RF designer metric of skin depth, is presented and the resulting ability to use relatively thin coating thickness is experimentally validated with material sample tests. The validity of these independent film sample measurements are then confirmed through experimental results measuring RF performance for reasonable sized doubly curved apertures. Currently available best results are 22 dBi gain at 3 GHz (S-Band) for a 0.5m aperture tested in prime focus mode, 28dBi gain for the same antenna in the C-Band (4 to 6 GHz), and 36.8dBi for a smaller 0.25m antenna tested at 32 GHz in the Ka-Band. RF range test results for a segmented aperture (one possible scaling approach) are shown as well. Measured antenna system actual efficiencies (relative to the unachievable) ideal for these on axis tests are generally quite good, typically ranging from 50 to 90%.

  1. Cervical spine disc prosthesis: radiographic, biomechanical and morphological post mortal findings 12 weeks after implantation. A retrieval example.

    PubMed

    Pitzen, Tobias; Kettler, Annette; Drumm, Joerg; Nabhan, Abdullah; Steudel, Wolf Ingo; Claes, Lutz; Wilke, Hans Joachim

    2007-07-01

    There is a gap between in vitro and clinical studies concerning performance of spinal disc prosthesis. Retrieval studies may help to bridge this gap by providing more detailed information about motion characteristics, wear properties and osseous integration. Here, we report on the radiographic, mechanical, histological properties of a cervical spine segment treated with a cervical spine disc prosthesis (Prodisc C, Synthes Spine, Paoli, USA) for 3 months. A 48-year-old male received the device due to symptomatic degenerative disc disease within C5-C6. The patient recovered completely from his symptoms. Twelve weeks later, he died from a subarachnoid hemorrhage. During routine autopsy, C3-T1 was removed with all attached muscles and ligaments and subjected to plain X-rays and computed tomography, three dimensional flexibility tests, shear test as well as histological and electronic microscopic investigations. We detected radiolucencies mainly at the cranial interface between bone and implant. The flexibility of the segment under pure bending moments of +/-2.5 Nm applied in flexion/extension, axial rotation and lateral bending was preserved, with, however, reduced lateral bending and enlarged neutral zone compared to the adjacent segments C4-C5, and C6-C7. Stepwise increase of loading in flexion/extension up to +/-9.5 Nm did not result in segmental destruction. A postero-anterior force of 146 N was necessary to detach the lower half of the prosthesis from the vertebra. At the polyethylene (PE) core, signs of wear were observed compared to an unused core using electronic microscopy. Metal and PE debris without signs of severe inflammatory reaction was found within the surrounding soft tissue shell of the segment. A thin layer of soft connective tissue covered the major part of the implant endplate. Despite the limits of such a case report, the results show: that such implants are able to preserve at least a certain degree of segmental flexibility, that direct bone implant contact is probably rare, and that debris may be found after 12 weeks.

  2. Securing Wireless Local Area Networks with GoC PKI

    DTIC Science & Technology

    2007-10-01

    de réseau privé virtuel (RPV) sans fil sur un banc d’essai dans le laboratoire des Opérations d’information de réseau (OIR) pour des ...locaux sans fil (WLAN) dans les réseaux d’entreprise du gouvernement. Dans ce rapport, on présente les résultats de travaux complémentaires qui tirent...mutuelle, l’autorisation, la protection et l’intégrité des données, ainsi que la gestion et la diffusion des politiques sur les

  3. Long-lived stop at the LHC with or without R-parity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covi, L.; Dradi, F., E-mail: laura.covi@theorie.physik.uni-goettingen.de, E-mail: federico.dradi@theorie.physik.uni-goettingen.de

    2014-10-01

    We consider scenarios of gravitino LSP and DM with stop NLSP both within R-parity conserving and R-parity violating supersymmetry (RPC and RPV SUSY, respectively). We discuss cosmological bounds from Big Bang Nucleosynthesis (BBN) and the gravitino abundance and then concentrate on the signals of long-lived stops at the LHC as displaced vertices or metastable particles. Finally we discuss how to distinguish R-parity conserving and R-parity breaking stop decays if they happen within the detector and how to suppress SM backgrounds.

  4. Progress on the decommissioning of Zion nuclear generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commencedmore » in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first two years of the Zion programme offer some interesting learning opportunities. The critical importance of leadership and project control systems will be emphasised in the paper. Strong supplier relationships and good community cooperation are essential. A learning and adaptable team, incentivised to meet schedule and budget, drives affordability of the whole programme. Our key lessons so far concern organisation and people as much as engineering and technology. (authors)« less

  5. Coulomb excitation of radioactive Na21 and its stable mirror Ne21

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2008-10-01

    The low-energy structures of the mirror nuclei Ne21 and radioactive Na21 have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ~5×106 ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm2 natTi target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while γ rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3)/(2)+ ground state to the first excited (5)/(2)+ state was observed and B(E2) values were determined by using the 2+→0+ de-excitation in Ti48 as a reference. The ϕ segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)↑ values are 131±9e2 fm4 (25.4±1.7 W.u.) for Ne21 and 205±14e2 fm4 (39.7±2.7 W.u.) for Na21. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)↓ values of δ=(-)0.0767±0.0027 and 0.1274±0.0025μN2 and δ=(+)0.0832±0.0028 and 0.1513±0.0017μN2 for Ne21 and Na21, respectively (with Krane and Steffen sign convention). By using the effective charges ep=1.5e and en=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for Ne21 and Na21, respectively. This analysis resolves a significant discrepancy between a previous experimental result for Na21 and shell-model calculations.

  6. The effect of zinc injection on the increasing of Inconel 600 TT corrosion resistances

    NASA Astrophysics Data System (ADS)

    Febrianto; Sriyono; Widodo, Surip; Sunaryo, Geni Rina

    2018-02-01

    Many failures were found in reactor pressure vessel head penetration (RPV) head material. Those failures caused by boric acid corrosion, and from visual examination were found a big hole and white deposit crystal of boric acid during shutdown maintenance at David Besse reactor. Zinc Oxide addition in BWR reactor known as Zinc Injection that has purposed to reduce radiation exposure cause of Hydrogen addition. Beside reducing the radiation exposure, Zinc injection also has an effect in reducing material corrosion. The purpose of study is to determine the effect of zinc addition, boric acid, temperature also the effects of Cobalt Nitrate and Zinc Oxide addition to Inconel 600 TT as RPV head penetration material. The result in the BWR reactor experience will be implementated at PWR reactor, weather zinc oxide addition also has an effect in reducing the corrosion of Inconel 600. The method that used in this research is to observe the corrosion rates for Inconel 600 material using Potentiostat. Examination were conducted in 30, 40, 60, 70, 80 and 80 °C using 1000, 1500, 2000, 2500 and 3000 ppm boric acid concentration. The results showed that the corrosion rate for the material were very small, but the highest corrosion rate occurred in 3000 ppm boric acid concentration at 90 °C with Cobalt Nitrate addition, around 5.210 x 10-1 mpy. In the same condition at 3000 ppm boric acid concentration for temperature at 90 °C, Inconel 600 TT corrosion rate is smaller with Zinc oxide addition, around 4.631 x 10-1 mpy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, Joy; Farmer, Mitchell; Corradini, Michael

    The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized watermore » reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.« less

  8. Optical design for ATHENA X-ray telescope based on slumped mirror segments

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Winter, Anita

    2014-07-01

    The Hot and Energetic Universe will be the focus of future ESA missions: in late 2013 the theme was selected for the second large-class mission in the Cosmic Vision science program. Fundamental questions on how and why ordinary matter assemble into galaxies and clusters, and how black holes grow and influence their surroundings can be addressed with an advanced X-ray observatory. The currently proposed ATHENA mission presents all the potentiality to answer the outstanding questions. It is based on the heritage of XMM-Newton and on the previous studies for IXO mission. The scientific payload will require state of the art instrumentations. In particular, the baseline for the X-ray optical system, delivering a combination of large area, high angular resolution, and large field of view, is the Silicon Pore Optics technology (SPO) developed by ESA in conjunction with the Cosine Measurement Systems. The slumping technology is also under development for the manufacturing of future X-ray telescopes: for several years the Max Planck Institute for Extraterrestrial physics (MPE) has been involved in the analysis of the indirect slumping approach, which foresees the manufacturing of segmented X-ray shells by shaping thin glass foils at high temperatures over concave moulds so to avoid any contact of the optical surface with other materials during the process, preserving in this way the original X-ray quality of the glass surface. The paper presents an alternative optical design for ATHENA based on the use of thin glass mirror segments obtained through slumping.

  9. Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries

    NASA Astrophysics Data System (ADS)

    Chen, Jiucun; Li, Junzhi; Liu, Jianhua; Weng, Bo; Xu, Liqun

    2016-05-01

    A novel well-defined four-armed star poly(ethylene brassylate)- b-poly(poly(ethylene glycol)methyl ether methacrylate) (s-PEB- b-P(PEGMA)) was synthesized and self-assembled via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization (RAFT) in this work. It proceeded firstly with the synthesis of hydrophobic four-armed star homopolymer of ethylene brassylate (EB) via ROP with organic catalyst, followed by the esterification reaction of s-PEB with chain transfer agent. Afterward, RAFT polymerization of PEGMA monomer was initialed using PEB-based macro-RAFT agent, resulting in the target amphiphilic four-armed star copolymer. The obtained s-PEB- b-P(PEGMA) can assemble into micelles with PEB segments as core and P(PEGMA) segments as shell in aqueous solution. The self-assembly behavior was studied by dynamic light scattering and transmission electron microscope. The micelles of s-PEB- b-P(PEGMA) exhibited higher loading capacity of the anticancer drug doxorubicin (DOX). The investigation of DOX release from the micelles demonstrated that the release rate of the hydrophobic drug could be effectively controlled.

  10. R-process experiments with the Advanced Implantation Detector Array

    NASA Astrophysics Data System (ADS)

    Estrade, Alfredo; Griffin, Chris; Davinson, Tom; Bruno, Carlo; Hall, Oscar; Liu, Zhong; Woods, Phil; Coleman-Smith, Patrick; Labiche, Marc; Lazarus, Ian; Pucknell, Victor; Simpson, John; Harkness-Brennan, Laura; Page, Robert; Kiss, Gabor; Liu, Jiajiang; Matsui, Keishi; Nishimura, Shunji; Phong, Vi; Lorusso, Giuseppe; Montes, Fernando; Nepal, Neerajan; Briken Collaboration; Ribf106 Experiment Team

    2017-09-01

    Decay properties of neutron rich isotopes, such as half-lives and β-delayed neutron emission probabilities, are an important input for astrophysical models of the r-process. A new generation of fragmentation beam facilities has made it possible to access large regions of the nuclear chart that are close to the path of the r-process for some astrophysical models. The Advanced Implantation Detector Array (AIDA) is a segmented active-stopper detector designed for decay experiments with fast ion beams, which was recently commissioned at the Radioactive Ion Beam Factory in RIKEN, Japan. In this presentation we describe the main characteristics of AIDA, and present preliminary results of the first experiments in the region of neutron-rich selenium isotopes and along the N=82 shell closure.

  11. Design of an autonomous teleoperated cargo transporting vehicle for lunar base operations

    NASA Technical Reports Server (NTRS)

    Holt, James; Lao, Tom; Monali, Nkoy

    1989-01-01

    At the turn of the century NASA plans to begin construction of a lunar base. The base will likely consist of developed areas (i.e., habitation, laboratory, landing and launching sites, power plant) separated from each other due to safety considerations. The Self-Repositioning Track Vehicle (SRTV) was designed to transport cargo between these base facilities. The SRTV operates by using two robotic arms to raise and position segments of track upon which the vehicle travels. The SRTV utilizes the semiautonomous mobility (SAM) method of teleoperation; actuator-controlled interlocking track sections; two robotic arms each with five degrees of freedom; and these materials: titanium for structural members and aluminum for shell members, with the possible use of light-weight, high-strength composites.

  12. [Plant-infecting reoviruses].

    PubMed

    Sasaya, Takahide

    2014-01-01

    The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.

  13. Electron cryo-tomographic structure of cystovirus phi 12.

    PubMed

    Hu, Guo-Bin; Wei, Hui; Rice, William J; Stokes, David L; Gottlieb, Paul

    2008-03-01

    Bacteriophage phi 12 is a member of the Cystoviridae virus family and contains a genome consisting of three segments of double-stranded RNA (dsRNA). This virus family contains eight identified members, of which four have been classified in regard to their complete genomic sequence and encoded viral proteins. A phospholipid envelope that contains the integral proteins P6, P9, P10, and P13 surrounds the viral particles. In species phi 6, host infection requires binding of a multimeric P3 complex to type IV pili. In species varphi8, phi 12, and phi 13, the attachment apparatus is a heteromeric protein assembly that utilizes the rough lipopolysaccharide (rlps) as a receptor. In phi 8 the protein components are designated P3a and P3b while in species phi 12 proteins P3a and P3c have been identified in the complex. The phospholipid envelope of the cystoviruses surrounds a nucleocapsid (NC) composed of two shells. The outer shell is composed of protein P8 with a T=13 icosahedral lattice while the primary component of the inner shell is a dodecahedral frame composed of dimeric protein P1. For the current study, the 3D architecture of the intact phi 12 virus was obtained by electron cryo-tomography. The nucleocapsid appears to be centered within the membrane envelope and possibly attached to it by bridging structures. Two types of densities were observed protruding from the membrane envelope. The densities of the first type were elongated, running parallel, and closely associated to the envelope outer surface. In contrast, the second density was positioned about 12 nm above the envelope connected to it by a flexible low-density stem. This second structure formed a torroidal structure termed "the donut" and appears to inhibit BHT-induced viral envelope fusion.

  14. Transcriptomics Provide Insight Into Mussel (Mytilus galloprovincialis) Mantle Function And Its Role In Biomineralization

    NASA Astrophysics Data System (ADS)

    Zaghdoudi-Allan, N.; Yarra, T.; Churcher, A.; Felix, R. C.; Cardoso, J.; Clark, M.; Power, D. M.

    2016-02-01

    With over 90,000 extant species, the Mollusca is one of the most successful and species-rich phyla, comprising 23% of known marine fauna. Common to all molluscs, the mantle is a multi-functional highly muscular tissue that contacts the shell and envelops vital organs. In bivalves, the epithelial cells of the mantle secrete the external shell by a complex network of mechanisms that remain poorly understood. To date, the bulk of the work on Mytilus mantle has focused on two of its features: the mantle edge and the pallial mantle and relatively little is known about the factors regulating its function. We hypothesize that the mantle edge in Mytilus species is heterogeneous in cellular structure and function and use next generation sequencing to mine for receptors involved in biomineralization. The mantle edge of the Mediterranean mussel (Mytilus galloprovincialis) was sectioned into three parts and sequenced using the Illumina platform. The transcriptome sequences generated assembled into 179,879 transcripts with a 34% GC content, congruent with other bivalve asssemblies. The transcriptome was annotated and String analysis (http://www.string-db.org) was used for a preliminary characterisation of biological processes. To test our hypothesis, we compared the transcripts from the 3 mantle segments and the expression levels of putative receptors such as the G -protein coupled receptors (GPCRs) in the sectioned mantle of 6 individuals using qPCR. Candidates were chosen based on their regulatory function and potential involvement in shell formation. Our results show differences in transcript abundance and cellular function amongst the three mantle sections. Combining our transcriptomic study with histological studies of the mantle tissue, we present evidence of both molecular and structural heterogeneity of the mussel mantle and identify several putative regulatory networks.

  15. High-flying Mini-Sniffer RPV - Mars bound

    NASA Technical Reports Server (NTRS)

    Reed, R. D.

    1978-01-01

    The Mini-Sniffer is a small unmanned survey aircraft developed by NASA to conduct turbulence and atmospheric pollution measurements from ground level to an altitude of 90,000 ft. Carrying a 25-lb air sampling apparatus, the Mini-Sniffer typically cruises for one hour at 70,000 ft before being remotely piloted back to earth. A hydrazine monopropellant engine powers the craft, while a PCM telemetering system and a radar transponder provide control functions. Development of a high-performance low-Reynolds-number airfoil could make the research craft suitable for a low-altitude terrain-following mission on Mars.

  16. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    PubMed

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.

    PubMed

    Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-09

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  18. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    USGS Publications Warehouse

    Thompson, W.B.; Griggs, C.B.; Miller, N.G.; Nelson, R.E.; Weddle, T.K.; Kilian, T.M.

    2011-01-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907??31 to 11,650??5014C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520+95/??20calyr BP. Ages of shells juxtaposed with the logs are 12,850??6514C yr BP (Mytilus edulis) and 12,800??5514C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England. ?? 2011 University of Washington.

  19. Comparison of various second-dimension gradient types in comprehensive two-dimensional liquid chromatography.

    PubMed

    Jandera, Pavel; Hájek, Tomás; Cesla, Petr

    2010-06-01

    Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions. In the second dimension, gradients are limited to a short-time period available for separation. Various types of second-dimension gradients in comprehensive LC x LC are compared: (i) "full in fraction", (ii) "segment in fraction" and (iii) "continuously shifting" gradients, applied in orthogonal LC x LC separations of phenolic acids and flavones on a polyethylene glycol column in the first dimension and two types of porous shell fused-core C18 columns in the second dimension (Ascentis Express and Kinetex). The porous shell columns provide narrow bandwidths and fast second-dimension separations at moderate operating pressure that allows important savings of the overall separation time in comprehensive LC x LC separations. The effects of the gradient type on the bandwidths, theoretical peak capacity, separation time and column pressure in the second dimension were investigated. The type of gradient program controls the range of lipophilicity of sample compounds that can be separated in the second-dimension reversed-phase time period. This range can be calibrated using alkylbenzene standards, to design the separation conditions for complete sample separation, avoiding harmful wrap around of non-eluted compounds to the subsequent second-dimension fractions.

  20. Mechanism of ultrasonic energy-assisted formation of V-, Y-shaped nano-structures in conjugated polymers.

    PubMed

    Majumdar, D; Maiti, R P; Basu, S; Saha, S K

    2009-12-01

    Recently, hydrocarbon-nanostructures from organic solvent using ultrasonic energy were reported. However, their formation-dynamics remained unexplored. Here, we describe a new technique to synthesize controlled nanostructures (V-, Y-shape) from nanorods of conducting polyaniline applying ultrasonic energy. To characterize the conducting state (emaraldine) of these polyaniline nanorods, electrical measurements have been carried out from which it is seen that there is a crossover from metallic to semiconductor as temperature increases. The observed crossover has been explained by the core-shell structure of the nanorods with core resistivity much higher than the shell resistivity. The nonlinear current-voltage behavior is attributed to the formation of alternate ordered/disordered chain segments along the length of the nanorods. We also propose a model to explore the mechanism of formation of these V-, Y-shaped nanostructures. It is believed that bubble-formation occurs in liquid due to ultrasonic vibration; and asymmetry in the bubble is created when formed near the solid surface leading to jet formation. Liquid jets of collapsing bubble move with incredible velocity (400 km/h); collide with the nanorod to cause fragmentations followed by V-, Y-shaped structure formation when the imparted kinetic energy of jets is comparable with elastic energy of fragments.

  1. Scope of inextensible frame hypothesis in local action analysis of spherical reservoirs

    NASA Astrophysics Data System (ADS)

    Vinogradov, Yu. I.

    2017-05-01

    Spherical reservoirs, as objects perfect with respect to their weight, are used in spacecrafts, where thin-walled elements are joined by frames into multifunction structures. The junctions are local, which results in origination of stress concentration regions and the corresponding rigidity problems. The thin-walled elements are reinforced by frame to decrease the stresses in them. To simplify the analysis of the mathematical model of common deformation of the shell (which is a mathematical idealization of the reservoir) and the frame, the assumption that the frame axial line is inextensible is used widely (in particular, in the manual literature). The unjustified use of this assumption significantly distorts the concept of the stress-strain state. In this paper, an example of a lens-shaped structure formed as two spherical shell segments connected by a frame of square profile is used to carry out a numerical comparative analysis of the solutions with and without the inextensible frame hypothesis taken into account. The scope of the hypothesis is shown depending on the structure geometric parameters and the load location degree. The obtained results can be used to determine the stress-strain state of the thin-walled structure with an a priori prescribed error, for example, in research and experimental design of aerospace systems.

  2. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.

  3. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to demonstrate the possibilities afforded by COAL. Chapter 5 addresses the use of COAL for the synthesis of solution dispersible metal nanorings and nanotubes with exceptional architectural tailorability of inner diameter, outer diameter, and length leading to precise spectral control over the resulting plasmonic fields ranging from visible to the near-IR. Chapter 6 is an outlook on templated electrochemical synthesis using coaxial lithography and highlights a few promising applications from nanoparticle assembly to light-matter interactions.

  4. Infrared Light Structured Sensor 3D Approach to Estimate Kidney Volume: A Validation Study.

    PubMed

    Garisto, Juan; Bertolo, Riccardo; Dagenais, Julien; Kaouk, Jihad

    2018-06-26

    To validate a new procedure for the three-dimensional (3D) estimation of total renal parenchyma volume (RPV) using a structured-light infrared laser sensor. To evaluate the accuracy of the sensor for assessing renal volume, we performed three experiments. Twenty freshly excised porcine kidneys were obtained. Experiment A, the water displacement method was used to obtain a determination of the RPV after immersing every kidney into 0.9% saline. Thereafter a structured sensor (Occipital, San Francisco, CA, USA) was used to scan the kidney. Kidney sample surface was presented initially as a mesh and then imported into MeshLab (Visual Computing Lab, Pisa, Italy) software to obtain the surface volume. Experiment B, a partial excision of the kidney with measurement of the excised volume and remnant was performed. Experiment C, a renorrhaphy of the remnant kidney was performed then measured. Bias and limits of agreement (LOA) were determined using the Bland-Altman method. Reliability was assessed using the intraclass correlation coefficient (ICC). Experiment A, the sensor bias was -1.95 mL (LOA: -19.5 to 15.59, R2= 0.410) with slightly overestimating the volumes. Experiment B, remnant kidney after partial excision and excised kidney volume were measured showing a sensor bias of -0.5 mL (LOA -5.34 to 4.20, R2= 0.490) and -0.6 mL (LOA: -1.97.08 to 0.77, R2= 0.561), respectively. Experiment C, the sensor bias was -0.89 mL (LOA -12.9 to 11.1, R2= 0.888). ICC was 0.9998. The sensor is a reliable method for assessing total renal volume with high levels of accuracy. Copyright © 2018. Published by Elsevier Inc.

  5. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport (HSCT) design, the AIAA Long Duration Aircraft design and a Remotely Piloted Vehicle (RPV) design proposal as project objectives. The central goal of these efforts was to provide a user-friendly, computer-software-based, environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN), and stand-alone PC's were used for this development. This year's accomplishments centered primarily on aerodynamics software obtained from the NASA Langley Research Center and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of 10 HSCT designs were generated, ranging from twin-fuselage and forward-swept wing aircraft, to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance. Supporting these activities were three video satellite lectures beamed from NASA/Langley to Purdue. These lectures covered diverse areas such as an overview of HSCT design, supersonic-aircraft stability and control, and optimization of aircraft performance. Plans for next year's effort will be reviewed, including dedicated computer workstation utilization, remote satellite lectures, and university/industrial cooperative efforts.

  6. Nanoformulations of Rilpivirine for Topical Pericoital and Systemic Coitus-Independent Administration Efficiently Prevent HIV Transmission

    PubMed Central

    Date, Abhijit A.; Long, Julie M.; Nochii, Tomonori; Belshan, Michael; Shibata, Annemarie; Vincent, Heather; Baker, Caroline E.; Thayer, William O.; Kraus, Guenter; Lachaud-Durand, Sophie; Williams, Peter; Destache, Christopher J.; Garcia, J. Victor

    2015-01-01

    Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection. PMID:26271040

  7. Pharmacokinetics of Tenofovir Alafenamide When Co-administered With Other HIV Antiretrovirals.

    PubMed

    Begley, Rebecca; Das, Moupali; Zhong, Lijie; Ling, John; Kearney, Brian P; Custodio, Joseph M

    2018-04-10

    Tenofovir alafenamide (TAF), a prodrug of the nucleotide analogue tenofovir (TFV), is an antiretroviral (ARV) agent approved either as a complete regimen (elvitegravir/cobicistat/emtricitabine (F)/tenofovir alafenamide (TAF), rilpivirine/F/TAF, bictegravir/F/TAF), or for use with other ARVs (F/TAF), for treatment of HIV. TAF is a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) transporters. Disposition of TAF may be altered by co-medications that can inhibit or induce P-gp or BCRP transporters. The effects of ARVs on the pharmacokinetics (PK) of TAF were evaluated in 3 studies. Healthy participants received TAF administered alone or with rilpivirine (RPV) in study 1; with dolutegravir (DTG), ritonavir boosted atazanavir (ATV+RTV), lopinavir (LPV/RTV), or darunavir (DRV+RTV) in study 2; and with the pharmacokinetic enhancer cobicistat (COBI), or efavirenz (EFV) in study 3. Across the three studies, 98 participants received treatment with TAF and a coadministered agent (n=10-34/cohort). All study treatments were well tolerated. TAF and TFV exposures were unaffected following co-administration with RPV and DTG. Co-administration with Pgp/BCRP inhibitors such as COBI or PI based regimens (ATV+RTV, LPV/r or DRV+RTV) resulted in a range of 6% to 183% increases in TAF and 105% to 316% increases in TFV exposure, while co-administration with a Pgp inducer, EFV, resulted in a 15% to 24% decrease in TAF and TFV exposure. Evaluation of the drug interaction between TAF and other commonly prescribed boosted and unboosted ARVs provides characterization of the susceptibility of TAF and/or TFV PK to inhibitors or inducers of Pgp/BCRP transporters.

  8. Various methods to improve heat transfer in exchangers

    NASA Astrophysics Data System (ADS)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  9. Confinement time exceeding one second for a toroidal electron plasma.

    PubMed

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  10. Thermoresponsive wettability of photonic crystals fabricated by core-shell poly(styrene-acrylamide) nano/microspheres.

    PubMed

    Zhang, Yuqi; Gao, Loujun; Heng, Liping; Wei, Qingbo; Yang, Hua; Wang, Qiao

    2013-03-01

    The photonic crystals (PCs) films with tunable wettability were fabricated from self-assembly of an amphiphilic latex nano/microspheres poly(styrene-acrylamide) at different temperatures. The results demonstrate that the surface wettability of the PCs film can be tuned from high hydrophilic (CA, 17 degrees) to high hydrophobic (CA, 127.8 degrees) by controlling the assembly temperature from 30 degrees C to 90 degrees C, while the position of the photonic stopbands of the PCs films unchanged virtually. The obvious wettability transition is due to the change of the surface chemical component of the latex spheres, which mainly derives from the phase separation of polymer segments driven toward minimum interfacial energy. The facile method could open new application fields of PCs in diverse environments.

  11. Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER

    NASA Astrophysics Data System (ADS)

    Margolin, B. Z.; Yurchenko, E. V.; Morozov, A. M.; Pirogova, N. E.; Brumovsky, M.

    2013-03-01

    The effect of neutron flux on embrittlement of WWER RPV materials is analyzed for cases when different radiation defects prevail. Data bases on the ductile-brittle transition temperature shifts obtained in the surveillance specimens programs and the research programs are used. The material embrittlement mechanisms for which the flux effect is practically absent and for which the flux effect is remarkable are determined. For case when the phosphorus segregation mechanism dominates the theoretical justification of the absence of the flux effect is performed on the basis of the theory of radiation-enhanced diffusion.

  12. Development of a Low Cost Molded Plastic Missile/RPV Control Surface Actuator

    DTIC Science & Technology

    1975-10-01

    Glass Fiber 3 2.1.2.2 Nylon/30% Glaso Fiber 7 2.2 Phase I Testing Of Polyimide/Glass 8 j/ Burst Testsl 11tig 2.2.2atgu TechShatset S.2. Phse Cliner oldng...Dimensional and Hard- 23 a >~ ness Change Results19 2.2.4.2.3 Weight Changes 23 2.2.5 Phase II Environmental Testing 27 II I -ii TALIO ONET TABLE OF...CONTENTS (CONT’D) SECTION PAGE 2.3 Phase I Analysis and Design 27 2.3.1 Sizing and Optimizing AR 27 2.3.2 Valve Sizing 36 2.3.3 Pistons Side Load and Rocker

  13. Hard x-ray optics: from HEFT to NuSTAR

    NASA Astrophysics Data System (ADS)

    Koglin, Jason E.; Chen, C. M. H.; Chonko, Jim C.; Christensen, Finn E.; Craig, William W.; Decker, Todd R.; Hailey, Charles J.; Harrison, Fiona A.; Jensen, Carsten P.; Madsen, Kristin K.; Pivovaroff, Michael J.; Stern, Marcela; Windt, David L.; Ziegler, Eric

    2004-10-01

    Focusing optics are now poised to dramatically improve the sensitivity and angular resolution at energies above 10 keV to levels that were previously unachievable by the past generation of background limited collimated and coded-aperture instruments. Active balloon programs (HEFT), possible Explorer-class satellites (NuSTAR - currently under Phase A study), and major X-ray observatories (Con-X HXT) using focusing optics will play a major role in future observations of a wide range of objects including young supernova remnants, active galactic nuclei, and galaxy clusters. These instruments call for low cost, grazing incidence optics coated with depth-graded multilayer films that can be nested to achieve large collecting areas. Our approach to building such instruments is to mount segmented mirror shells with our novel error-compensating, monolithic assembly and alignment (EMAAL) procedure. This process involves constraining the mirror segments to successive layers of graphite rods that are precisely machined to the required conic-approximation Wolter-I geometry. We present results of our continued development of thermally formed glass substrates that have been used to build three HEFT telescopes and are proposed for NuSTAR. We demonstrate how our experience in manufacturing complete HEFT telescopes, as well as our experience developing higher performance prototype optics, will lead to the successful production of telescopes that meet the NuSTAR design goals.

  14. Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments

    NASA Technical Reports Server (NTRS)

    Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.

  15. Monocrystalline silicon and the meta-shell approach to building x-ray astronomical optics

    NASA Astrophysics Data System (ADS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2017-08-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the metashell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, WolterSchwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  16. Modeling of the Reactor Core Isolation Cooling Response to Beyond Design Basis Operations - Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn

    2015-12-01

    Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement eachmore » other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine decreases the developed turbine torque; the RCIC speed then slows, and thus the pump flow rate to the RPV decreases. Subsequently, RPV water level decreases due to continued boiling and the liquid fraction flowing to the RCIC decreases, thereby accelerating the RCIC and refilling the RPV. The feedback cycle then repeats itself and/or reaches a quasi-steady equilibrium condition. In other words, the water carry-over is limited by cyclic RCIC performance degradation, and hence the system becomes self-regulating. The indications achieved to date with the system model are more qualitative than quantitative. The avenues being pursued to increase the fidelity of the model are expected to add quantitative realism. The end product will be generic in the sense that the RCIC model will be incorporable within the larger reactor coolant system model of any nuclear power plant or experimental configuration.« less

  17. Synthesis of poly(N-isopropylacrylamide)-co-poly(phenylboronate ester) acrylate and study on their glucose-responsive behavior.

    PubMed

    Yao, Yuan; Shen, Heyun; Zhang, Guanghui; Yang, Jing; Jin, Xu

    2014-10-01

    We introduced thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) into the polymer structure of poly(ethylene glycol)-block-poly(phenylboronate ester) acrylate (MPEG-block-PPBDEMA) by block and random polymerization pathways in order to investigate the effect of polymer architecture on the glucose-responsiveness and enhance their insulin release controllability. By following the structure, the continuous PNIPAM shell of the triblock polymer MPEG-block-PNIPAM-block-PPBDEMA collapsing on the glucose-responsive PPBDEMA core formed the polymeric micelles with a core-shell-corona structure, and MPEG-block-(PNIPAM-rand-PPBDEMA) exhibited core-corona micelles in which the hydrophobic core consisted of PNIPAM and PPBDEMA segments when the environmental temperature was increased above low critical solution temperature (LCST) of PNIPAM. The micellar morphologies can be precisely controlled by temperature change between 15 and 37°C. As a result, the introduction of PNIPAM greatly enhanced the overall stability of insulin encapsulated in the polymeric micelles in the absence of glucose over incubation 80 h at 37°C. Comparing to MPEG-block-PNIPAM-block-PPBDEMA, the nanocarriers from MPEG-block-(PNIPAM-rand-PPBDEMA) showed great insulin release behavior which is zero insulin release without glucose, low release at normal blood glucose concentration (1.0 mg/mL). Therefore, these nanocarriers may be served as promising self-regulated insulin delivery system for diabetes treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mechanics and geometry in the seashell-like (Turritella) surface

    NASA Astrophysics Data System (ADS)

    Guo, Qiaohang; Chen, Zi; Li, Wei; Ren, Kun; Lin, Junjie; Taber, Larry A.; Chen, Wenzhe

    2013-03-01

    Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, adds to the variety of this family of aesthetic beauty. Here we report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves an equilibrium. In this study, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessary be locally optimized. This novel approach can be applied to develop materials and systems with desirable geometries by exploiting mechanics of geometric frustration. The authors would like to thank Yushan Huang, Zhen Liu, Si Chen for their assistance in the experimental demonstration. This work has been in part supported by NSFC (Grant No.11102040 and No.11201001044), the Sigma Xi Grants-in-Aid of Research (GIAR) program, American Academy of Mechanics Founder's Award from the Robert M. and Mary Haythornthwaite Foundation, and Society in Science, The Branco Weiss Fellowship, administered by ETH Zurich. Qiaohang Guo and Zi Chen contributed equally to this work.

  19. New method for analysis of facial growth in a pediatric reconstructed mandible.

    PubMed

    Kau, Chung How; Kamel, Sherif Galal; Wilson, Jim; Wong, Mark E

    2011-04-01

    The aim of this article was to present a new method of analysis for the assessment of facial growth and morphology after surgical resection of the mandible in a growing patient. This was a 2-year longitudinal study of facial growth in a child who had undergone segmental resection of the mandible with immediate reconstruction as a treatment for juvenile aggressive fibromatosis. Three-dimensional digital stereo-photogrammteric cameras were used for image acquisition at several follow-up intervals: immediate, 6 months, and 2 years postresection. After processing and superimposition, shell-to-shell deviation maps were used for the analysis of the facial growth pattern and its deviation from normal growth. The changes were seen as mean surface changes and color maps. An average constructed female face from a previous study was used as a reference for a normal growth pattern. The patient showed significant growth during this period. Positive changes took place around the nose, lateral brow area, and lower lip and chin, whereas negative changes were evident at the lower lips and cheeks area. An increase in the vertical dimension of the face at the chin region was also seen prominently. Three-dimensional digital stereo-photogrammetry can be used as an objective, noninvasive method for quantifying and monitoring facial growth and its abnormalities. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  1. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    NASA Astrophysics Data System (ADS)

    Thompson, Woodrow B.; Griggs, Carol B.; Miller, Norton G.; Nelson, Robert E.; Weddle, Thomas K.; Kilian, Taylor M.

    2011-05-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/-20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP ( Mytilus edulis) and 12,800 ± 55 14C yr BP ( Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.

  2. Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao

    2017-11-01

    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.

  3. A phylogenetic framework facilitates Y-STR variant discovery and classification via massively parallel sequencing.

    PubMed

    Huszar, Tunde I; Jobling, Mark A; Wetton, Jon H

    2018-04-12

    Short tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega's prototype PowerSeq™ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.83% concordance with capillary electrophoresis (CE) data on the same sample set. The set contains 267 distinct sequence-based alleles (an increase of 58% compared to the 169 detectable by CE), including 60 novel Y-STR variants phased with their flanking sequences which have not been reported previously to our knowledge. Variation includes 46 distinct alleles containing non-reference variants of SNPs/indels in both repeat and flanking regions, and 145 distinct alleles containing repeat pattern variants (RPV). For DYS385a,b, DYS481 and DYS390 we observed repeat count variation in short flanking segments previously considered invariable, and suggest new MPS-based structural designations based on these. We considered the observed variation in the context of the Y phylogeny: several specific haplogroup associations were observed for SNPs and indels, reflecting the low mutation rates of such variant types; however, RPVs showed less phylogenetic coherence and more recurrence, reflecting their relatively high mutation rates. In conclusion, our study reveals considerable additional diversity at the Y-STRs of the PPY23 set via MPS analysis, demonstrates high concordance with CE data, facilitates nomenclature standardisation, and places Y-STR sequence variants in their phylogenetic context. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Selective constraints, molecular recombination structure and phylogenetic reconstruction of isometric plant RNA viruses of the families Luteoviridae and Tymoviridae.

    PubMed

    Boulila, Moncef

    2011-02-01

    In an effort to enhance the knowledge on molecular evolution of currently the known members of the families Luteoviridae and Tymoviridae, in-depth molecular investigations in the entire genome of 147 accessions retrieved from the international databases, were carried out. Two algorithms (RECCO and RDP version 3.31β) adapted to the mosaic structure of viruses were utilized. The recombination frequency along the sequences was dissected and demonstrated that the three virus genera of the family Luteoviridae comprise numerous members subjected to recombination. It has pointed out that the major viruses swapped a few but long genomic segments. In addition, in Barley yellow dwarf virus, heredity material might be exchanged between two different serotypes. Even more, putative recombination events occurred between two different genera. Based on Fisher's Exact Test of Neutrality, positive selection acting on protein expression was detected only in the poleroviruses Cereal yellow dwarf virus, Potato leafroll virus and Wheat yellow dwarf virus. In contrast, several components of the family Tymoviridae were highly recombinant. Genomic portion exchange arose in many positions consisting of short fragments. Furthermore, no positive selection was detected. The evolutionary history showed, in the Luteoviridae, that all screened isolates split into three clusters corresponding to the three virus genera forming this family. Moreover, in the serotype PAV of Barley yellow dwarf virus, two major clades corresponding to PAV-USA and PAV-China, were delineated. Similarly, in the Tymoviridae, all analyzed isolates fell into four groups corresponding to the three virus genera composing this family along with the unclassified Tymoviridae. Inferred phylogenies reshuffled the existing classification and showed that Wheat yellow dwarf virus-RPV was genetically closely related to Cereal yellow dwarf virus and the unclassified Tymoviridae Grapevine syrah virus-1 constituted an integral part of the genus Marafivirus. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  6. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  7. Initial Ferritic Wall Mode studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  8. Development of a hip joint model for finite volume simulations.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A

    2014-01-01

    This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

  9. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    PubMed

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  10. Analysis of DCE-MRI features in tumor and the surrounding stroma for prediction of Ki-67 proliferation status in breast cancer

    NASA Astrophysics Data System (ADS)

    Li, Hui; Fan, Ming; Zhang, Peng; Li, Yuanzhe; Cheng, Hu; Zhang, Juan; Shao, Guoliang; Li, Lihua

    2018-03-01

    Breast cancer, with its high heterogeneity, is the most common malignancies in women. In addition to the entire tumor itself, tumor microenvironment could also play a fundamental role on the occurrence and development of tumors. The aim of this study is to investigate the role of heterogeneity within a tumor and the surrounding stromal tissue in predicting the Ki-67 proliferation status of oestrogen receptor (ER)-positive breast cancer patients. To this end, we collected 62 patients imaged with preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for analysis. The tumor and the peritumoral stromal tissue were segmented into 8 shells with 5 mm width outside of tumor. The mean enhancement rate in the stromal shells showed a decreasing order if their distances to the tumor increase. Statistical and texture features were extracted from the tumor and the surrounding stromal bands, and multivariate logistic regression classifiers were trained and tested based on these features. An area under the receiver operating characteristic curve (AUC) were calculated to evaluate performance of the classifiers. Furthermore, the statistical model using features extracted from boundary shell next to the tumor produced AUC of 0.796+/-0.076, which is better than that using features from the other subregions. Furthermore, the prediction model using 7 features from the entire tumor produced an AUC value of 0.855+/-0.065. The classifier based on 9 selected features extracted from peritumoral stromal region showed an AUC value of 0.870+/-0.050. Finally, after fusion of the predictive model obtained from entire tumor and the peritumoral stromal regions, the classifier performance was significantly improved with AUC of 0.920. The results indicated that heterogeneity in tumor boundary and peritumoral stromal region could be valuable in predicting the indicator associated with prognosis.

  11. Simulations of mechanical failure in ice: Implications of terrestrial fracture models as applied to they icy satellites of the outer solar system

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Bassis, J. N.

    2011-12-01

    At the South Pole of Enceladus, a small icy moon orbiting Saturn, is a heavily fractured ice plain surrounded by a nearly-circular mountain range. Remarkably, the Cassini orbiter detected jets of water emanating from the icy shell and into space, originating from 4 parallel "tiger stripe" rifts within the center of the ice plain. The tiger stripes imaged on Enceladus are morphologically similar to rifts observed to form under extensional stress regimes in terrestrial ice shelves; the putative subsurface ocean hypothesized beneath the icy shell strengthens the analogy that their formation may have similar mechanical origins. Past studies have also suggested that the tiger stripes are the result of a process similar to that of mid-ocean ridge spreading on the Earth, but it remains to be seen whether or not such motion is consistent with the mountainous features seen at the circular cliff-like boundary of the region. In an attempt to understand the formation of these tiger stripes and their relationship to the observed mountain chains, we apply a conceptual model in which the ice is considered to be less like a continuous fluid body and, instead, behaves like a granular material made up of discrete blocks of ice. The tidal forces on the small moon tug on the shell enough that it has been cracked many times over, motivating the assumption that the ice exists in a continuum between wholly intact ice and highly pre-fractured ice. We employ several experimental setups with the intention of mapping the deformation of the south polar segment of the shell, to determine the processes that may contribute to its observed morphological state. These setups range from large scale topographical models, e.g., simulating the build up of mountains and processes that lead to overall elevation differences in the region, to small-scale, and focus on the more detailed level of fracturing. We explore our ice-shelf rifting analogy by modeling both icy moon fracturing and ice shelf rifting to compare and contrast the failure modes that we observe, results that bolster both our comparative platform and, importantly, our understanding of fracture in ice shelves on the Earth as well. A similar approach could be applied to the chaos regions of Europa, where fractures are prevalent and whose underlying causes are not well understood.

  12. Grizzly Usage and Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. W.; Backman, M.; Chakraborty, P.

    2016-03-01

    Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) structures, systems and components (SSCs) subjected to a variety of age-related aging mechanisms. Grizzly simulates both the progression of aging processes, as well as the capacity of aged components to safely perform. This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical analysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of components and materials. Grizzly is in a state of constant development, and future releases will broaden the capabilities of this code for RPV analysis, as wellmore » as expand it to address degradation in other critical NPP components.« less

  13. In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection

    PubMed Central

    Giacobbi, Nicholas S.

    2017-01-01

    ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. PMID:28507107

  14. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  15. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    NASA Astrophysics Data System (ADS)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  16. [Analysis of costs and cost-effectiveness of preferred GESIDA/National AIDS Plan regimens for initial antiretroviral therapy in human immunodeficiency virus infected adult patients in 2013].

    PubMed

    Blasco, Antonio Javier; Llibre, Josep M; Arribas, José Ramón; Boix, Vicente; Clotet, Bonaventura; Domingo, Pere; González-García, Juan; Knobel, Hernando; López, Juan Carlos; Lozano, Fernando; Miró, José M; Podzamczer, Daniel; Santamaría, Juan Miguel; Tuset, Montserrat; Zamora, Laura; Lázaro, Pablo; Gatell, Josep M

    2013-11-01

    The GESIDA and National AIDS Plan panel of experts have proposed "preferred regimens" of antiretroviral treatment (ART) as initial therapy in HIV infected patients for 2013. The objective of this study is to evaluate the costs and effectiveness of initiating treatment with these "preferred regimens". An economic assessment of costs and effectiveness (cost/effectiveness) was performed using decision tree analysis models. Effectiveness was defined as the probability of having viral load <50copies/mL at week48, in an intention-to-treat analysis. Cost of initiating treatment with an ART regime was defined as the costs of ART and its consequences (adverse effects, changes of ART regime and drug resistance analyses) during the first 48weeks. The perspective of the analysis is that of the National Health System was applied, only taking into account differential direct costs: ART (official prices), management of adverse effects, resistance studies, and determination of HLA B*5701. The setting is Spain and the costs are those of 2013. A sensitivity deterministic analysis was performed, constructing three scenarios for each regimen: baseline, most favourable, and most unfavourable cases. In the baseline case scenario, the cost of initiating treatment ranges from 6,747euros for TDF/FTC+NVP to 12,059euros for TDF/FTC+RAL. The effectiveness ranges between 0.66 for ABC/3TC+LPV/r and ABC/3TC+ATV/r, and 0.87 for TDF/FTC+RAL and ABC/3TC+RAL. Effectiveness, in terms of cost/effectiveness, varies between 8,396euros and 13,930euros per responder at 48weeks, for TDF/FTC/RPV and TDF/FTC+RAL, respectively. Taking ART at official prices, the most effective regimen was TDF/FTC/RPV, followed by the rest of non-nucleoside containing regimens. The sensitivity analysis confirms the robustness of these findings. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  17. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simplemore » prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.« less

  18. Costs and cost-efficacy analysis of the 2017 GESIDA/Spanish National AIDS Plan recommended guidelines for initial antiretroviral therapy in HIV-infected adults.

    PubMed

    Rivero, Antonio; Pérez-Molina, José Antonio; Blasco, Antonio Javier; Arribas, José Ramón; Asensi, Víctor; Crespo, Manuel; Domingo, Pere; Iribarren, José Antonio; Lázaro, Pablo; López-Aldeguer, José; Lozano, Fernando; Martínez, Esteban; Moreno, Santiago; Palacios, Rosario; Pineda, Juan Antonio; Pulido, Federico; Rubio, Rafael; Santos, Jesús; de la Torre, Javier; Tuset, Montserrat; Gatell, Josep M

    2018-05-01

    GESIDA and the Spanish National AIDS Plan panel of experts have recommended preferred (PR), alternative (AR) and other regimens (OR) for antiretroviral therapy (ART) as initial therapy in HIV-infected patients for 2017. The objective of this study was to evaluate the costs and the efficiency of initiating treatment with PR and AR. Economic assessment of costs and efficiency (cost-efficacy) based on decision tree analyses. Efficacy was defined as the probability of reporting a viral load <50copies/mL at week 48, in an intention-to-treat analysis. Cost of initiating treatment with an ART regimen was defined as the costs of ART and its consequences (adverse effects, changes of ART regimen and drug resistance studies) during the first 48 weeks. The payer perspective (National Health System) was applied considering only differential direct costs: ART (official prices), management of adverse effects, resistance studies and HLA B*5701 screening. The setting was Spain and the costs correspond to those of 2017. A deterministic sensitivity analysis was conducted, building three scenarios for each regimen: base case, most favourable and least favourable. In the base case scenario, the cost of initiating treatment ranged from 6882 euro for TFV/FTC/RPV (AR) to 10,904 euros for TFV/FTC+RAL (PR). The efficacy varied from 0.82 for TFV/FTC+DRV/p (AR) to 0.92 for TAF/FTC/EVG/COBI (PR). The efficiency, in terms of cost-efficacy, ranged from 7923 to 12,765 euros per responder at 48 weeks, for ABC/3TC/DTG (PR) and TFV/FTC+RAL (PR), respectively. Considering ART official prices, the most efficient regimen was ABC/3TC/DTG (PR), followed by TFV/FTC/RPV (AR) and TAF/FTC/EVG/COBI (PR). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. Analysis of the costs and cost-effectiveness of the guidelines recommended by the 2018 GESIDA/Spanish National AIDS Plan for initial antiretroviral therapy in HIV-infected adults.

    PubMed

    Pérez-Molina, José Antonio; Martínez, Esteban; Blasco, Antonio Javier; Arribas, José Ramón; Domingo, Pere; Iribarren, José Antonio; Knobel, Hernando; Lázaro, Pablo; López-Aldeguer, José; Lozano, Fernando; Mariño, Ana; Miró, José M; Moreno, Santiago; Negredo, Eugenia; Pulido, Federico; Rubio, Rafael; Santos, Jesús; de la Torre, Javier; Tuset, Montserrat; von Wichmann, Miguel A; Gatell, Josep M

    2018-06-05

    The GESIDA/National AIDS Plan expert panel recommended preferred regimens (PR), alternative regimens (AR) and other regimens (OR) for antiretroviral treatment (ART) as initial therapy in HIV-infected patients for 2018. The objective of this study was to evaluate the costs and the efficiency of initiating treatment with PR and AR. Economic assessment of costs and efficiency (cost-effectiveness) based on decision tree analyses. Effectiveness was defined as the probability of reporting a viral load <50copies/mL at week 48, in an intention-to-treat analysis. Cost of initiating treatment with an ART regimen was defined as the costs of ART and its consequences (adverse effects, changes of ART regimen, and drug-resistance studies) over the first 48 weeks. The payer perspective (National Health System) was applied considering only differential direct costs: ART (official prices), management of adverse effects, studies of resistance, and HLA B*5701 testing. The setting was Spain and the costs correspond to those of 2018. A deterministic sensitivity analysis was conducted, building three scenarios for each regimen: base case, most favourable and least favourable. In the base-case scenario, the cost of initiating treatment ranges from 6788 euros for TAF/FTC/RPV (AR) to 10,649 euros for TAF/FTC+RAL (PR). The effectiveness varies from 0.82 for TAF/FTC+DRV/r (AR) to 0.91 for TAF/FTC+DTG (PR). The efficiency, in terms of cost-effectiveness, ranges from 7814 to 12,412 euros per responder at 48 weeks, for ABC/3TC/DTG (PR) and TAF/FTC+RAL (PR), respectively. Considering ART official prices, the most efficient regimen was ABC/3TC/DTG (PR), followed by TAF/FTC/RPV (AR) and TAF/FTC/EVG/COBI (AR). Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor

    PubMed Central

    Feng, Meizhen; Falgueyret, Jean-Pierre; Tawa, Paul; Witmer, Marc; DiStefano, Daniel; Li, Yuan; Burch, Jason; Sachs, Nancy; Lu, Meiqing; Cauchon, Elizabeth; Campeau, Louis-Charles; Grobler, Jay; Yan, Youwei; Ducharme, Yves; Côté, Bernard; Asante-Appiah, Ernest; Hazuda, Daria J.; Miller, Michael D.

    2014-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent. PMID:24379202

  1. A Novel Multi-Scale Domain Overlapping CFD/STH Coupling Methodology for Multi-Dimensional Flows Relevant to Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Grunloh, Timothy P.

    The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.

  2. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  3. Electroformed Nickel Mirrors for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Redmon, John W.; Engelhaupt, Darrel

    1998-01-01

    This paper summarizes the work to date on a novel mirror fabrication technique being developed at the Marshall Space Flight Center for potential use on the Next Generation Space Telescope (NGST). This technique involves forming an extremely lightweight mirror by electroplating nickel and nickel based alloys onto a highly polished precision mandrel. The resulting mirror shell can then be backed up with or attached to a lightweight structure to produce a mirror element that is on the order of 15 kg/sq m areal density. Since the mirrors are fabricated from a mandrel (or master), subsequent mirrors can be made with very high economy; this technique is particularly suited to segmented mirrors schemes whereby large apertures are achieved through the deployment of smaller segments. Control of the electroplating process is the key element for producing high quality optics; bath chemistry and real time control of the plating current density yields uniform grained electroforms with zero residual stress. To accomplish this, a special electronic sensor was developed whereby the residual stress can be monitored as the nickel is electrolytically deposited. This information is used in a feedback loop to modulate current density which, in turn, directly governs the residual stress. Details pertaining to this and other aspects of the fabrication of a half meter mirror will be published along with test results and metrology data.

  4. Assessment of a smartphone-based camera for fundus imaging in animals.

    PubMed

    Balland, Olivier; Russo, Andrea; Isard, Pierre-François; Mathieson, Iona; Semeraro, Francesco; Dulaurent, Thomas

    2017-01-01

    To assess the use of an optical device (D-EYE; Si14 S.p.A.) attached to a modern smartphone (iPhone 5; Apple Inc.) for imaging the fundus in small animals. Five dogs, five cats, and five rabbits with clear media were imaged using a prototype of the D-EYE. The optical device was composed of lenses, polarizing filters, a beam splitter, a diaphragm, and mirrors, attached to a smartphone via a metal shell. Images were obtained 20 min after pupil dilation with topical 0.5% tropicamide in a darkened room, to ensure maximum pupillary dilation. Focus was set to the infinite when the autofocus was overwhelmed. Light intensity was adapted to each animal via the application (minimum light intensity for imaging the tapetal region, maximum light intensity for imaging the nontapetal region). Both still images and video sequences were recorded for each animal. Posterior segment structures were visible in all animals: optic nerve head, tapetum lucidum (when present), nontapetal region, retinal vessels, and choroidal vessels (when the retinal pigment epithelium and the choroidal pigmentation were discreet). Focal light artifacts were common when photographing the tapetum lucidum. Recording videos allowed the visualization of dynamic phenomena. The D-EYE assessed appears to be an easy means of obtaining images of the posterior segment structures. © 2016 American College of Veterinary Ophthalmologists.

  5. Tapeworm eggs in a 270 million-year-old shark coprolite.

    PubMed

    Dentzien-Dias, Paula C; Poinar, George; de Figueiredo, Ana Emilia Q; Pacheco, Ana Carolina L; Horn, Bruno L D; Schultz, Cesar L

    2013-01-01

    Remains of parasites in vertebrates are rare from the Mesozoic and Paleozoic. Once most parasites that live in - or pass through - the gastrointestinal tract of vertebrates, fossil feces (coprolites) or even intestinal contents (enterolites) can eventually preserve their remains. Here we announce the discovery of a spiral shark coprolite from the Paleozoic bearing a cluster of 93 small oval-elliptical smooth-shelled structures, interpreted as eggs of a tapeworm.The eggs were found in a thin section of an elasmobranch coprolite. Most of the eggs are filled by pyrite and some have a special polar swelling (operculum), suggesting they are non-erupted eggs. One of the eggs contains a probable developing larva. The eggs are approximately 145-155 µm in length and 88-100 µm in width and vary little in size within the cluster. The depositional and morphological features of the eggs closely resemble those of cestodes. Not only do the individual eggs have features of extant tapeworms, but their deposition all together in an elongate segment is typical to modern tapeworm eggs deposited in mature segments (proglottids). This is the earliest fossil record of tapeworm parasitism of vertebrates and establishes a timeline for the evolution of cestodes. This discovery shows that the fossil record of vertebrate intestinal parasites is much older than was hitherto known and that the interaction between tapeworms and vertebrates occurred at least since the Middle-Late Permian.

  6. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    PubMed

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  7. Macrofaunal communites at newly discovered hydrothermal fields in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Takai, K.; Nakamura, K.; Watanabe, H.; Noguchi, T.; Matsuzaki, T.; Watsuji, T.; Nemoto, S.; Kawagucci, S.; Shibuya, T.; Okamura, K.; Mochizuki, M.; Orihashi, Y.; Marie, D.; Koonjul, M.; Singh, M.; Beedessee, G.; Bhikajee, M.; Tamaki, K.

    2010-12-01

    In YK09-13 Leg1 cruise targeted on the segment 15 and 16 in Central Indian Ridge (CIR), we have successfully discovered two hydrothermal fields, DODO field and Solitaire field. We expected that there were unique macrofaunal communities in these hydrothermal fields, because there was in Kairei field on the segment 1 in CIR. Particularly, a gastropod, “scaly-foot”, which has sclerites covered with iron-sulfide has only discovered in Kairei field. Therefore, it was interesting whether this unique scaly-foot only exists in Kairei fields or widely expands in CIR. In DODO fields, there were 10 to 15 active chimneys. However, very few hydrothermal vent-endemic faunas were observed. We observed only crabs and shrimps but we did not found shells. As opposed to in the Dodo field, biomass and composition of macrofaunal communities were highly prosperous in the Solitaire field, being equal to Kairei field. Although we have an only one dive to explore the Solitaire field, many predominant taxa were sampled and observed, for example, Alviniconcha, mussels, vanacles and so on. However, the most outstanding feature was the presence of a new morphotype of ‘scaly-foot’ gastropod. Discovery of this new-morphytpe ‘scary-foot” disproved our knowledge. In this conference, I will present these observations. Especially characterization of two types of scaly-foot (Kairei-type and Solitaire-type) will be focused.

  8. Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section

    DOEpatents

    Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim

    2001-01-01

    A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

  9. Shell use and partitioning of two sympatric species of hermit crabs on a tropical mudflat

    NASA Astrophysics Data System (ADS)

    Teoh, Hong Wooi; Chong, Ving Ching

    2014-02-01

    Shell use and partitioning of two sympatric hermit crab species (Diogenes moosai and Diogenes lopochir), as determined by shell shape, size and availability, were examined from August 2009 to March 2011 in a tropical mudflat (Malaysia). Shells of 14 gastropod species were used but > 85% comprised shells of Cerithidea cingulata, Nassarius cf. olivaceus, Nassarius jacksonianus, and Thais malayensis. Shell partitioning between hermit crab species, sexes, and developmental stages was evident from occupied shells of different species, shapes, and sizes. Extreme bias in shell use pattern by male and female of both species of hermit crabs suggests that shell shape, which depends on shell species, is the major determinant of shell use. The hermit crab must however fit well into the shell so that compatibility between crab size and shell size becomes crucial. Although shell availability possibly influenced shell use and hermit crab distribution, this is not critical in a tropical setting of high gastropod diversity and abundance.

  10. Parametric Studies Of Lightweight Reflectors Supported On Linear Actuator Arrays

    NASA Astrophysics Data System (ADS)

    Seibert, George E.

    1987-10-01

    This paper presents the results of numerous design studies carried out at Perkin-Elmer in support of the design of large diameter controllable mirrors for use in laser beam control, surveillance, and astronomy programs. The results include relationships between actuator location and spacing and the associated degree of correctability attainable for a variety of faceplate configurations subjected to typical disturbance environments. Normalizations and design curves obtained from closed-form equations based on thin shallow shell theory and computer based finite-element analyses are presented for use in preliminary design estimates of actuator count, faceplate structural properties, system performance prediction and weight assessments. The results of the analyses were obtained from a very wide range of mirror configurations, including both continuous and segmented mirror geometries. Typically, the designs consisted of a thin facesheet controlled by point force actuators which in turn were mounted on a structurally efficient base panel, or "reaction structure". The faceplate materials considered were fused silica, ULE fused silica, Zerodur, aluminum and beryllium. Thin solid faceplates as well as rib-reinforced cross-sections were treated, with a wide variation in thickness and/or rib patterns. The magnitude and spatial frequency distribution of the residual or uncorrected errors were related to the input error functions for mirrors of many different diameters and focal ratios. The error functions include simple sphere-to-sphere corrections, "parabolization" of spheres, and higher spatial frequency input error maps ranging from 0.5 to 7.5 cycles per diameter. The parameter which dominates all of the results obtained to date, is a structural descriptor of thin shell behavior called the characteristic length. This parameter is a function of the shell's radius of curvature, thickness, and Poisson's ratio of the material used. The value of this constant, in itself, describes the extent to which the deflection under a point force is localized by the shell's curvature. The deflection shape is typically a near-gaussian "bump" with a zero-crossing at a local radius of approximately 3.5 characteristic lengths. The amplitude is a function of the shells elastic modulus, radius, and thickness, and is linearly proportional to the applied force. This basic shell behavior is well-treated in an excellent set of papers by Eric Reissner entitled "Stresses and Small Displacements of Shallow Spherical Shells".1'2 Building on the insight offered by these papers, we developed our design tools around two derived parameters, the ratio of the mirror's diameter to its characteristic length (D/l), and the ratio of the actuator spacing to the characteristic length (b/l). The D/1 ratio determines the "finiteness" of the shell, or its dependence on edge boundary conditions. For D/1 values greater than 10, the influence of edges is almost totally absent on interior behavior. The b/1 ratio, the basis of all our normalizations is the most universal term in the description of correctability or ratio of residual/input errors. The data presented in the paper, shows that the rms residual error divided by the peak amplitude of the input error function is related to the actuator spacing to characteristic length ratio by the following expression RMS Residual Error b 3.5 k (I) (1) Initial Error Ampl. The value of k ranges from approximately 0.001 for low spatial frequency initial errors up to 0.05 for higher error frequencies (e.g. 5 cycles/diameter). The studies also yielded insight to the forces required to produce typical corrections at both the center and edges of the mirror panels. Additionally, the data lends itself to rapid evaluation of the effects of trading faceplate weight for increased actuator count,

  11. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent tomore » the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less

  12. Fluctuation Pressure Assisted Ejection of DNA From Bacteriophage

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2011-03-01

    The role of thermal pressure fluctuations excited within tightly packaged DNA while it is ejected from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of parallel segments that forms an equilibrium conformation at minimum free energy, which presses tightly against capsid walls. Using a canonical ensemble at temperature T we calculate internal pressure fluctuations against a slowly moving or static capsid mantle for an elastic continuum model of the folded DNA bundle. It is found that fluctuating pressures on the capsid from thermal excitation of longitudinal acoustic vibrations in the bundle whose wavelengths are exceeded by the bend persistence length may have root-mean-square values that are several tens of atmospheres for typically small phage dimensions. Comparisons are given with measured data on three mutants of lambda phage with different base pair lengths and total genome ejection pressures.

  13. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  14. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery.

    PubMed

    Li, Hongchun; Niu, Yongsheng

    2018-08-01

    A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Formation of cycloidal features on Europa.

    PubMed

    Hoppa, G V; Tufts, B R; Greenberg, R; Geissler, P E

    1999-09-17

    Cycloidal patterns are widely distributed on the surface of Jupiter's moon Europa. Tensile cracks may have developed such a pattern in response to diurnal variations in tidal stress in Europa's outer ice shell. When the tensile strength of the ice is reached, a crack may occur. Propagating cracks would move across an ever-changing stress field, following a curving path to a place and time where the tensile stress was insufficient to continue the propagation. A few hours later, when the stress at the end of the crack again exceeded the strength, propagation would continue in a new direction. Thus, one arcuate segment of the cycloidal chain would be produced during each day on Europa. For this model to work, the tensile strength of Europa's ice crust must be less than 40 kilopascals, and there must be a thick fluid layer below the ice to allow sufficient tidal amplitude.

  16. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.

    PubMed

    Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong

    2018-05-01

    In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.

  17. Considerations in computer-aided design for inlay cranioplasty: technical note.

    PubMed

    Nout, Erik; Mommaerts, Maurice Y

    2018-03-01

    Cranioplasty is a frequently performed procedure that uses a variety of reconstruction materials and techniques. In this technical note, we present refinements of computer-aided design-computer-aided manufacturing inlay cranioplasty. In an attempt to decrease complications related to polyether-ether-ketone (PEEK) cranioplasty, we gradually made changes to implant design and cranioplasty techniques. These changes include under-contouring of the implant and the use of segmented plates for large defects, microplate fixation for small temporal defects, temporal shell implants to reconstruct the temporalis muscle, and perforations to facilitate the drainage of blood and cerebrospinal fluid and serve as fixation points. From June 2016 to June 2017, 18 patients underwent cranioplasty, and a total of 31 PEEK and titanium implants were inserted. All implants were successful. These changes to implant design and cranioplasty techniques facilitate the insertion and fixation of patient-specific cranial implants and improve esthetic outcomes.

  18. Assembly of Nanowire Arrays: Exploring Interparticle Interactions, Particle Orientation, and Mixed Particle Arrays

    NASA Astrophysics Data System (ADS)

    Kirby, David J.

    This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles typically formed horizontal arrays on planar surfaces, but careful design of the microwell and nanowire dimensions enabled these particles to take on the vertical orientation. Solid nanowires and PENs with greater segment symmetry aligned parallel to the surface as gravity did not allow a conversion to the vertical orientation. When concentrated, these particles formed smectic row arrangements which were previously shown to originate from a balance of VDW attractions and electrostatic repulsions. Within rows of segmented particles, a preference was observed for like orientation of nearest neighbor particles (Chapter 6). With the aid of Monte Carlo simulations, it was determined that this observation was the result of small differences in VDW attractions between the two nanowire ends. Differences in VDW attraction were also applied to patterned surfaces (Chapter 7). Stripes of high VDW material (Au) were placed on a silica surface (a low VDW material). When relatively low surface concentrations were used, the high VDW regions collected Au nanowires and organized them into rows that were reminiscent of those observed on un-patterned surfaces at high particle concentrations. VDW and the gravitational force were explored as they combined to influence array orientation in binary PEN mixtures. Depending on the geometries of the particles combined, the contributions of gravity and interparticle interactions exhibited different balance in creating the final array. VDW and gravitational forces could also act as a force for reconfigurable nanowire assembly. In chapter 8, fluid flow was used to concentrate PENs and force them into horizontal arrangements. When fluid flow was stopped, van der Waals forces and gravity were responsible for a reorientation of the assembled particles into a standing array. These studies represent early steps into the future of nanowire assembly methods. I conclude this dissertation by discussing the implications of my work and providing perspective on their importance to the scientific community. I also offer suggestions for future work in nanowire assembly. These areas focus on the development of assembled nanowire devices, mixed nanowire assembly techniques, and potential stimuli responsive reconfigurable assemblies.

  19. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  20. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  1. Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.

    PubMed

    Okajima, Ryoko; Chiba, Satoshi

    2013-02-01

    The adaptations that occur for support and protection can be studied with regard to the optimal structure that balances these objectives with any imposed constraints. The shell inclination of terrestrial gastropods is an appropriate model to address this problem. In this study, we examined how gastropods improve shell angles to well-balanced ones from geometrically constrained shapes. Our geometric analysis and physical analysis showed that constantly coiled shells are constrained from adopting a well-balanced angle; the shell angle of such basic shells tends to increase as the spire index (shell height/width) increases, although the optimum angle for stability is 90° for flat shells and 0° for tall shells. Furthermore, we estimated the influences of the geometric rule and the functional demands on actual shells by measuring the shell angles of both resting and active snails. We found that terrestrial gastropods have shell angles that are suited for balance. The growth lines of the shells indicated that this adaptation depends on the deflection of the last whorl: the apertures of flat shells are deflected downward, whereas those of tall shells are deflected upward. Our observations of active snails demonstrated that the animals hold their shells at better balanced angles than inactive snails. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus.

    PubMed

    Zhang, Wenwei; Cheng, Zhuomin; Xu, Lei; Wu, Maosen; Waterhouse, Peter; Zhou, Guanghe; Li, Shifang

    2009-01-01

    The complete nucleotide sequence of the ssRNA genome of a Chinese GPV isolate of barley yellow dwarf virus (BYDV) was determined. It comprised 5673 nucleotides, and the deduced genome organization resembled that of members of the genus Polerovirus. It was most closely related to cereal yellow dwarf virus-RPV (77% nt identity over the entire genome; coat protein amino acid identity 79%). The GPV isolate also differs in vector specificity from other BYDV strains. Biological properties, phylogenetic analyses and detailed sequence comparisons suggest that GPV should be considered a member of a new species within the genus, and the name Wheat yellow dwarf virus-GPV is proposed.

  3. Effectiveness of basic display augmentation in vehicular control by visual field cues

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Merhav, S. J.

    1978-01-01

    The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.

  4. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  5. In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection.

    PubMed

    Giacobbi, Nicholas S; Sluis-Cremer, Nicolas

    2017-07-01

    Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. Copyright © 2017 American Society for Microbiology.

  6. Method of forming cavitated objects of controlled dimension

    DOEpatents

    Anderson, Paul R.; Miller, Wayne J.

    1982-01-01

    A method of controllably varying the dimensions of cavitated objects such as hollow spherical shells wherein a precursor shell is heated to a temperature above the shell softening temperature in an ambient atmosphere wherein the ratio of gases which are permeable through the shell wall at that temperature to gases which are impermeable through the shell wall is substantially greater than the corresponding ratio for gases contained within the precursor shell. As the shell expands, the partial pressures of permeable gases internally and externally of the shell approach and achieve equilibrium, so that the final shell size depends solely upon the difference in impermeable gas partial pressures and shell surface tension.

  7. Do freshwater mussel shells record road-salt pollution?

    NASA Astrophysics Data System (ADS)

    O'Neil, Dane D.; Gillikin, David P.

    2014-11-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  8. Do freshwater mussel shells record road-salt pollution?

    PubMed Central

    O'Neil, Dane D.; Gillikin, David P.

    2014-01-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687

  9. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  10. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  11. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  12. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  13. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    PubMed

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  14. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  15. Shape optimized headers and methods of manufacture thereof

    DOEpatents

    Perrin, Ian James

    2013-11-05

    Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.

  16. Removable inner turbine shell with bucket tip clearance control

    DOEpatents

    Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.

    2000-01-01

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  17. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  18. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  19. Exciton dynamics in GaAs/(Al,Ga)As core-shell nanowires with shell quantum dots

    NASA Astrophysics Data System (ADS)

    Corfdir, Pierre; Küpers, Hanno; Lewis, Ryan B.; Flissikowski, Timur; Grahn, Holger T.; Geelhaar, Lutz; Brandt, Oliver

    2016-10-01

    We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.

  20. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  1. 7 CFR 51.2289 - Shell.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...

  2. 7 CFR 51.2289 - Shell.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...

  3. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  4. Reconstruction of paleoenvironments by analyzing spatial shell orientation

    NASA Astrophysics Data System (ADS)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.; Exner, Ulrike

    2013-04-01

    Fossils, especially their mass-occurrences, can be exploited as useful source of information about the depositional conditions. Particularly abundant fossils with elongated shape such as belemnites are useful indicators to draw conclusions about influencing factors (e.g. paleocurrents) of paleoenvironments. Orthocone cephalopods, gastropods, bivalves, foraminifers, vertebrate bones and others have been used so far in field-based spatial orientation studies (Flügel 2004). Normal coiled (planispiral) cephalopods can also provide such depositional information. A new method for reconstructing spatial shell orientation in 3D is presented here. A roughly 225 million-year-old (Carnian, Triassic) monospecific mass-occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey (project FWF P22109-B17; Lukeneder et al. 2012), embedded in limestone, is used for this pilot study. The most obvious method for digitization of the ammonoids, μ-computed tomography (CT), was not successful in this case due to the lack of density differences between the ammonoids (i.e. secondary calcite shells) and the embedding source rock (carbonate). Therefore we had to come back to the classic method of grinding, which, despite its invasive character, cannot always be disregarded, particularly if digital recording methods are not applicable and samples are large enough to sacrifice parts. A 150x170x140 mm block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2mm between each slice. By using a semi-automatic region growing algorithm of the 3D visualization software Amira, the ammonoids were segmented, and a 3D model of this mass-occurrence reconstructed. We used landmarks as well as trigonometric and vector-based calculations to compute the diameters and the spatial orientation of each ammonoid. For the diameters, the longest distance (longitudinal axis) of each shell (landmark a & b) and the orthogonal distance from this cord to one side of the shell (transverse axis) was measured (landmark s & c). Spatial orientation was characterized by dip and dip direction of the longitudinal axis, as well as by strike and azimuth of a plane defined by both axes. The exact spatial orientation data was determined for a sample of 699 ammonoids within the bed and statistically analyzed. The results provide a hint on the geodynamic processes (paleocurrents), depositional conditions (allochthonous or autochthonous) and other general information about the ancient environment. The method can be adapted for other mass-occurring fossils and thus represents a good template for studies of topographical paleoenvironmental factors. References: Flügel, E. 2004. Microfacies of carbonate rocks. Analysis, Interpretation and Application. Springer, Berlin Heidelberg New York, p.182. Lukeneder S., Lukeneder A., Harzhauser M., Islamoglu Y., Krystyn L., Lein R. 2012. A delayed carbonate factory breakdown during the Tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey). Facies 58: 279-296.

  5. Photonic bandgap of inverse opals prepared from core-shell spheres

    PubMed Central

    2012-01-01

    In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600

  6. Determination of aflatoxin risk components for in-shell Brazil nuts.

    PubMed

    Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B

    2011-09-01

    A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis

  7. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.

    PubMed

    Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook

    2009-03-14

    New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.

  8. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  9. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  10. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  11. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.

    PubMed

    Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas

    2005-01-01

    An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.

  12. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    NASA Astrophysics Data System (ADS)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J.; Bijma, J.

    2014-08-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  13. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    NASA Astrophysics Data System (ADS)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  14. Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers

    NASA Astrophysics Data System (ADS)

    Meuler, Adam J.; Ellison, Christopher J.; Qin, Jian; Evans, Christopher M.; Hillmyer, Marc A.; Bates, Frank S.

    2009-06-01

    Four hydroxyl-terminated poly(isoprene-b-styrene) diblock copolymers with comparable molecular weights and compositions (equivalent volume fractions of polyisoprene and polystyrene) but different polystyrene block polydispersity indices (Mw/Mn=1.06,1.16,1.31,1.44) were synthesized by anionic polymerization using either sec-butyllithium or the functional organolithium 3-triisopropylsilyloxy-1-propyllithium. Poly(ethylene oxide) (PEO) blocks were grown from the end of each of these parent diblocks to yield four series of poly(isoprene-b-styrene-b-ethylene oxide) (ISO) triblock terpolymers that were used to interrogate the effects of varying the polydispersity of the middle bridged polystyrene block. In addition to the neat triblock samples, 13 multicomponent blends were prepared at four different compositions from the ISO materials containing a polystyrene segment with Mw/Mn=1.06; these blends were used to probe the effects of increasing the polydispersity of the terminal PEO block. The melt-phase behavior of all samples was characterized using small-angle X-ray scattering and dynamic mechanical spectroscopy. Numerous polydispersity-driven morphological transitions are reported, including transitions from lamellae to core-shell gyroid, from core-shell gyroid to hexagonally packed cylinders, and from network morphologies [either O70 (the orthorhombic Fddd network) or core-shell gyroid] to lamellae. Domain periodicities and order-disorder transition temperatures also vary with block polydispersities. Self-consistent field theory calculations were performed to supplement the experimental investigations and help elucidate the molecular factors underlying the polydispersity effects. The consequences of varying the polydispersity of the terminal PEO block are comparable to the polydispersity effects previously reported in AB diblock copolymers. Namely, domain periodicities increase with increasing polydispersity and domain interfaces tend to curve toward polydisperse blocks. The changes in phase behavior that are associated with variations in the polydispersity of the middle bridged polystyrene block, however, are not analogous to those reported in AB diblock copolymers, as increases in this middle block polydispersity are not always accompanied by (i) increased domain periodicities and (ii) a tendency for domain interfaces to curve toward the polydisperse domain. These results highlight the utility of polydispersity as a tool to tune the phase behavior of ABC block terpolymers.

  15. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9 cm...

  16. 50 CFR 648.50 - Shell-height standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9 cm...

  17. Holocene coseismic and aseismic uplift of Isla Mocha, south-central Chile

    USGS Publications Warehouse

    Nelson, A.R.; Manley, W.F.

    1992-01-01

    During the past 6000 years Isla Mocha, a 12 km-long island 30 km off the coast of south-central Chile, experienced a 38 m fall of relative sea level caused primarily by rapid tectonic uplift of the island. As many as 18 raised shorelines (strandlines) record this uplift. Historic accounts of uplift during the great earthquakes (M > 8) of 1835 and 1960 suggest some of the more prominent prehistoric strandlines also emerged during great earthquakes on the interface between the Nazca and South America plates. But the close elevational spacing of strandlines, subdued morphology of strandline beaches, scarcity of exposed bedrock wave-cut platforms, and the extremely high rates of aseismic uplift (ca. 70 mm/yr) of the island since the last great earthquake suggest that many strandlines were raised by aseismic rather than coseismic uplift. Strandline heights and 14 new radiocarbon ages on marine shells show that the present-day uplift rate is more than three times the net rate (ca. 20 mm/yr) of the past 1000 years. The recent high rate probably reflects increased aseismic slip on an inferred thrust fault in the overriding South America plate. Isla Mocha overlies an area of high stress concentration between two major segments of the Chilean subduction zone. The inferred high rate of slip on the thrust fault may be a response to stress changes on the plate interface near the boundary between the segments. ?? 1992.

  18. [Phenotypic variability of the shell in Neritinidae (Gastropoda: Neritimorpha) in Puerto Rican rivers].

    PubMed

    Blanco, Juan Felipe; Tamayo, Silvana; Scatena, Frederick N

    2014-04-01

    Gastropods of the Neritinidae family exhibit an amphidromous life cycle and an impressive variability in shell coloration in Puerto Rican streams and rivers. Various nominal species have been described, but Neritina virginea [Linne 1758], N. punctulata [Lamarck 1816] and N. reclivata [Say 1822] are the only broadly reported. However, recent studies have shown that these three species are sympatric at the river scale and that species determination might be difficult due to the presence of intermediate color morphs. Individuals (8 751) were collected from ten rivers across Puerto Rico, and from various segments and habitats in Mameyes River (the most pristine island-wide) during three years (2000-2003), and they were assigned to one of seven phenotypes corresponding to nominal species and morphs (non-nominal species). The "axial lines and dots" morph corresponding to N. reclivata was the most frequent island-wide, while the patelliform N. punctulata was scant, but the only found in headwater reaches. The "yellowish large tongues" phenotype, typical of N. virginea s.s. was the most frequent in the river mouth. The frequency of secondary phenotypes varied broadly among rivers, along the rivers, and among habitats, seemly influenced by salinity and predation gradients. The occurrence of individuals with coloration shifts after predation injuries, suggests phenotypic plasticity in the three nominal species, and urges for the use of molecular markers to unravel the possible occurrence of a species complex, and to understand the genetic basis of polymorphism. The longitudinal distribution of individual sizes, population density and egg capsules suggested the adaptive value of upstream migration, possibly to avoid marine predators.

  19. A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model

    NASA Astrophysics Data System (ADS)

    Li, H; Yang, H; Zhan, M

    2009-04-01

    Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.

  20. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.

    2016-03-01

    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.

  1. Collective nature of low-lying excitations in 70,72,74Zn from lifetime measurements using the AGATA spectrometer demonstrator

    NASA Astrophysics Data System (ADS)

    Louchart, C.; Obertelli, A.; Görgen, A.; Korten, W.; Bazzacco, D.; Birkenbach, B.; Bruyneel, B.; Clément, E.; Coleman-Smith, P. J.; Corradi, L.; Curien, D.; de Angelis, G.; de France, G.; Delaroche, J.-P.; Dewald, A.; Didierjean, F.; Doncel, M.; Duchêne, G.; Eberth, J.; Erduran, M. N.; Farnea, E.; Finck, C.; Fioretto, E.; Fransen, C.; Gadea, A.; Girod, M.; Gottardo, A.; Grebosz, J.; Habermann, T.; Hackstein, M.; Huyuk, T.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Klupp, S.; Krücken, R.; Kusoglu, A.; Lenzi, S. M.; Libert, J.; Ljungvall, J.; Lunardi, S.; Maron, G.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Million, B.; Molini, P.; Möller, O.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Orlandi, R.; Pollarolo, G.; Prieto, A.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Rother, W.; Sahin, E.; Salsac, M.-D.; Scarlassara, F.; Schlarb, M.; Siem, S.; Singh, P. P.; Söderström, P.-A.; Stefanini, A. M.; Stézowski, O.; Sulignano, B.; Szilner, S.; Theisen, Ch.; Ur, C. A.; Valiente-Dobón, J. J.; Zielinska, M.

    2013-05-01

    Background: Neutron-rich nuclei with protons in the fp shell show an onset of collectivity around N=40. Spectroscopic information is required to understand the underlying mechanism and to determine the relevant terms of the nucleon-nucleon interaction that are responsible for the evolution of the shell structure in this mass region.Methods: We report on the lifetime measurement of the first 2+ and 4+ states in 70,72,74Zn and the first 6+ state in 72Zn using the recoil distance Doppler shift method. The experiment was carried out at the INFN Laboratory of Legnaro with the AGATA demonstrator, first phase of the Advanced Gamma Tracking Array of highly segmented, high-purity germanium detectors coupled to the PRISMA magnetic spectrometer. The excited states of the nuclei of interest were populated in the deep inelastic scattering of a 76Ge beam impinging on a 238U target.Results: The maximum of collectivity along the chain of Zn isotopes is observed for 72Zn at N=42. An unexpectedly long lifetime of 20-5.2+1.8 ps was measured for the 4+ state in 74Zn.Conclusions: Our results lead to small values of the B(E2;41+→21+)/B(E2;21+→01+) ratio for 72,74Zn, suggesting a significant noncollective contribution to these excitations. These experimental results are not reproduced by state-of-the-art microscopic models and call for lifetime measurements beyond the first 2+ state in heavy zinc and nickel isotopes.

  2. 76 FR 795 - Notice of Inventory Completion for Native American Human Remains and Associated Funerary Objects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... shell ornaments, 2 shells, 37 shell beads, 1 shell pendant, 1 shell dipper, 4 stone tools, 2 stone... (Dania, Big Cypress, Brighton, Hollywood & Tampa Reservations); Shawnee Tribe, Oklahoma; Thlopthlocco...

  3. Containers and systems for the measurement of radioactive gases and related methods

    DOEpatents

    Mann, Nicholas R; Watrous, Matthew G; Oertel, Christopher P; McGrath, Christopher A

    2017-06-20

    Containers for a fluid sample containing a radionuclide for measurement of radiation from the radionuclide include an outer shell having one or more ports between an interior and an exterior of the outer shell, and an inner shell secured to the outer shell. The inner shell includes a detector receptacle sized for at least partial insertion into the outer shell. The inner shell and outer shell together at least partially define a fluid sample space. The outer shell and inner shell are configured for maintaining an operating pressure within the fluid sample space of at least about 1000 psi. Systems for measuring radioactivity in a fluid include such a container and a radiation detector received at least partially within the detector receptacle. Methods of measuring radioactivity in a fluid sample include maintaining a pressure of a fluid sample within a Marinelli-type container at least at about 1000 psi.

  4. Global Curvature Buckling and Snapping of Spherical Shells.

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas

    A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.

  5. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  6. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    PubMed

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  7. Real-Time Implementation of a Speech Digitization Algorithm Combining Time-Domain Harmonic Scaling and Adaptive Residual Coding. Volume 2.

    DTIC Science & Technology

    1983-06-01

    V4.0 MODULE PAGE 6 LOC OBJ LINE SOURCE STATEMENT 0 0178 30 275 Sim () 0179 F3 276 DI 277 ; 017A C38700 278 JP PXNXT 279 ; 0000 280 END RSTOO I6 j 6 B.3...003E XOR ACCB,IDB 0089 003F LD! ITR,000H 0090 0040 SPOS: LDI eg,-6 0091 0041 OP NOV @K,A 0092 0042 OP SUB ACCA ,IDD 0092 0042 NOV £NONRO 0092 0042...004B NOv NON,RP / 0102 004C OP XCHG ACCA 1$ STEP BITS .1 0102 004C NOV @RPv 0103 004D OP ADD ACCAIDB 0103 004D NOV @NONtRO ; le ADD CORD *1 0104 004E OP

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shum, D.K.M.

    This paper examines various issues that would impact the incorporation of warm prestress (WPS) effects in the fracture-margin assessment of reactor pressure vessels (RPVs). By way of an example problem, possible beneficial effects of including type-I WPS in the assessment of an RPV subjected to a small break loss of coolant accident are described. In addition, the need to consider possible loss of constraint effects when interpreting available small specimen WPS-enhanced fracture toughness data is demonstrated through two- and three-dimensional local crack-lip field analyses of a compact tension specimen. Finally, a hybrid correlative-predictive model of WPS base on J-Q theorymore » and the Ritchie-Knott-Rice model is applied to a small scale yielding boundary layer formulation to investigate near crack-tip fields under varying degrees of loading and unloading.« less

  9. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less

  10. Emergence of PPR and its threat to Europe.

    PubMed

    Parida, Satya; Muniraju, Murali; Altan, Eda; Baazizi, Ratiba; Raj, Gopal Dhinakar; Mahapatra, Mana

    2016-09-01

    PPR is an important infectious viral disease of domestic and wild small ruminants, that threatens the food security and sustainable livelihood of farmers across Africa, the Middle East and Asia. Europe is free of the disease except in Thrace (European part of Turkey) and Israel where outbreaks occur. Following the successful eradication of RPV, PPR has been targeted by the OIE and FAO as the next viral pathogen to be eradicated by 2030. However, the recent outbreaks in Northen Africa and Thrace (European part of Turkey) represent a significant threat to mainland Europe, as a source of disease spread. We have discussed here the emergence of PPR worldwide since its discovery with particular reference to the recent outbreaks in Northen Africa and Thrace, and the potential for spread of the disease into Europe.

  11. Preliminary performance estimates of a highly maneuverable remotely piloted vehicle. [computerized synthesis program to assess effects of vehicle and mission parameters

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Axelson, J. A.

    1974-01-01

    A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission, the vehicle, and the results of sensitivity and trade studies.

  12. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  13. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-07-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al., we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features, and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a nova-like and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakili, Hajar; Rahvar, Sohrab; Kroupa, Pavel, E-mail: vakili@physics.sharif.edu

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in themore » dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.« less

  15. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  16. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    NASA Astrophysics Data System (ADS)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  17. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  18. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  19. Impact Crater Morphology and the Structure of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  20. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal is to investigate if the application of state-of-the-art 3D digitizing, data processing, and visualization technologies support the interpretation of this paleontological site. The obtained 3D data (approx. 1 billion points at the respective area) is analyzed with respect to their 3D structure in order to derive geometrical information. The aim of this contribution is to segment the 3D point cloud of laser scanning data into meaningful regions representing particular objects. Geometric parameters (curvature, tangent plane orientation, local minimum and maximum, etc.) are derived for every 3D point of the point cloud. A set of features is computed in each point using different kernel sizes to define neighborhoods of different size. This provides information on convexity (outer surface), concavity (inner surface) and locally flat areas, which shall be further utilized in fitting model of Crassostrea-shells. In addition, digitizing is performed manually in order to obtain a representative set of reference data for the evaluation of the obtained results. For evaluating these results the reference data (length and orientation of specimen) is then compared to the automatically derived segments of the point cloud. The study is supported by the Austrian Science Fund (FWF P 25883-N29).

  1. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

    PubMed Central

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770

  2. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    PubMed

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  3. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  5. Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Chen, Chen; Liang, Yan; Wang, Jian

    2010-03-01

    Haliotis discus hannai Ino (abalone shell) and Hemifusus tuba conch shell have been studied for the purpose to comparatively investigate the mechanisms by which nature designs composites. It is shown that both shells are composed of aragonite and a small amount of proteins while the conch shell shows finer microstructure but lower strength than abalone shell. It is also shown that the fresh shells exhibits better property than those after heat-treatments. It is therefore supposed that the size of inorganic substance is not a dominant factor to improve strength, while both proteins in shells and the microstructure of inorganic matter also play important roles.

  6. Optical properties of core-shell and multi-shell nanorods

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  7. Freshwater mussel shells as environmental chronicles: Geochemical and taphonomic signatures of mercury-related extirpations in the North Fork Holston River, Virginia

    USGS Publications Warehouse

    Brown, M.E.; Kowalewski, M.; Neves, R.J.; Cherry, D.S.; Schreiber, M.E.

    2005-01-01

    This study utilized freshwater mussel shells to assess mercury (Hg) contamination in the North Fork Holston River that extirpated (caused local extinctions of) a diverse mussel fauna. Shells (n = 366) were collected from five sites situated upstream (two sites), just below (one site), and downstream (two sites) of the town of Saltville, Virginia, where Hg was used to produce chlorine and caustic soda from 1950 to 1972. Shell samples were used to test the (1) utility of geochemical signatures of shells for assessing the spatial variation in Hg levels in the river relative to the contamination source and (2) value of taphonomy (postmortem shell alteration) for distinguishing sites that differ in extirpation histories. Geochemical signatures of 40 shells, analyzed using atomic absorption spectroscopy, indicated a strong longitudinal pattern. All shells from the two upstream sites had low Hg concentrations (<5-31 ??g/kg), shells directly below Saltville had variable, but dramatically higher concentrations (23-4637 ??g/kg), and shells from the two downstream sites displayed intermediate Hg levels (<5-115 ??g/kg) that declined with distance from Saltville. Two pre-industrial shells, collected at Saltville in 1917, yielded very low Hg estimates (5-6 ??g/kg). Hg signatures were consistent among mussel species, suggesting that Hg concentrations were invariant to species type; most likely, highly variable Hg levels, both across sites and through time, overwhelmed any interspecific differences in Hg acquisition. Also, a notable postmortem incorporation of Hg in mussel shells seemed unlikely, as the Hg content was not correlated with shell taphonomy (r = 0.18; p = 0.28). The taphonomic analysis (n = 366) showed that the degree of shell alteration reliably distinguished sites with different extirpation histories. At Saltville, where live mussels have been absent for at least 30 years, shells were most heavily altered and fragmented. Conversely, fresh-looking shells abounded upstream, where reproducing mussel populations are still present. In summary, relic shells offered valuable spatiotemporal data on Hg concentrations in a polluted ecosystem, and shell taphonomic signatures discriminated sites with different extirpation histories. The shell-based strategies exemplified here do not require sampling live specimens and may augment more standard strategies applied to environmental monitoring. The approach should prove especially useful in areas with unknown extirpation and pollution histories. ?? 2005 American Chemical Society.

  8. Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete

    NASA Astrophysics Data System (ADS)

    Leung, Jonathan Y. S.; Cheung, Napo K. M.

    2018-06-01

    Calcification is a vital biomineralization process where calcifying organisms construct their calcareous shells for protection. While this process is expected to deteriorate under hypoxia, which reduces the metabolic energy yielded by aerobic respiration, some calcifying organisms were shown to maintain normal shell growth. The underlying mechanism remains largely unknown, but may be related to changing shell mineralogical properties, whereby shell growth is sustained at the expense of shell quality. Thus, we examined whether such plastic response is exhibited to alleviate the impact of hypoxia on calcification by assessing the shell growth and shell properties of a calcifying polychaete in two contexts (life-threatening and unthreatened conditions). Although hypoxia substantially reduced respiration rate (i.e., less metabolic energy produced), shell growth was only slightly hindered without weakening mechanical strength under unthreatened conditions. Unexpectedly, hypoxia did not undermine defence response (i.e., enhanced shell growth and mechanical strength) under life-threatening conditions, which may be attributed to the changes in mineralogical properties (e.g., increased calcite / aragonite) to reduce the energy demand for calcification. While more soluble shells (e.g., increased Mg / Ca in calcite) were produced under hypoxia as the trade-off, our findings suggest that mineralogical plasticity could be fundamental for calcifying organisms to maintain calcification under metabolic stress conditions.

  9. A Method for Quantifying, Visualising, and Analysing Gastropod Shell Form

    PubMed Central

    Liew, Thor-Seng; Schilthuizen, Menno

    2016-01-01

    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology. PMID:27280463

  10. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  11. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.

    PubMed

    Dana, Jayanta; Maiti, Sourav; Tripathi, Vaidehi S; Ghosh, Hirendra N

    2018-02-16

    Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    NASA Astrophysics Data System (ADS)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  13. How to best smash a snail: the effect of tooth shape on crushing load

    PubMed Central

    Crofts, S. B.; Summers, A. P.

    2014-01-01

    Organisms that are durophagous, hard prey consumers, have a diversity of tooth forms. To determine why we see this variation, we tested whether some tooth forms break shells better than others. We measured the force needed with three series of aluminium tooth models, which varied in concavity and the morphology of a stress concentrating cusp, to break a shell. We created functionally identical copies of two intertidal snail shells: the thicker shelled Nucella ostrina and the more ornamented Nucella lamellosa using a three-dimensional printer. In this way, we reduced variation in material properties between test shells, allowing us to test only the interaction of the experimental teeth with the two shell morphologies. We found that for all tooth shapes, thicker shells are harder to break than the thinner shells and that increased ornamentation has no discernible effect. Our results show that for both shell morphologies, domed and flat teeth break shells better than cupped teeth, and teeth with tall or skinny cusps break shells best. While our results indicate that there is an ideal tooth form for shell breaking, we do not see this shape in nature. This suggests a probable trade-off between tooth function and the structural integrity of the tooth. PMID:24430124

  14. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals,more » as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.« less

  15. Acetabular shell deformation as a function of shell stiffness and bone strength.

    PubMed

    Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David

    2016-04-01

    Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. © IMechE 2016.

  16. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  17. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble aerosol (core)-shell (BC) when compared to their external mixture, while the SSA for maritime aerosols does not vary significantly for different mixing scenarios because of the dominance of sea salt aerosols. Thus, these results confirm that aerosol mixing can modify the physical and optical characteristics of aerosols, which vary as a function of relative humidity. These calculations will be useful in parameterising the effect of core-shell vs. external mixing of aerosols in global climate models, and in the evaluation of aerosol radiative effects.

  18. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed. ...

  19. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed. ...

  20. Ceramic matrix composite turbine engine vane

    NASA Technical Reports Server (NTRS)

    Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)

    2012-01-01

    A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a coefficient of thermal expansion (CTE) varying with depth.

Top