Science.gov

Sample records for rrna sequence analyses

  1. Molecular phylogenetics of subclass Peritrichia (Ciliophora: Oligohymenophorea) based on expanded analyses of 18S rRNA sequences.

    PubMed

    Utz, Laura R P; Eizirik, Eduardo

    2007-01-01

    Phylogenetic relationships among peritrich ciliates remain unclear in spite of recent progress. To expand the analyses performed in previous studies, and to statistically test hypotheses of monophyly, we analyzed a broad sample of 18s rRNA sequences (including 15 peritrich genera), applying a conservative alignment strategy and several phylogenetic approaches. The main results are that: (i) the monophyly of Peritrichia cannot be rejected; (ii) the two main clades of Sessilida do not correspond to formally recognized taxa; (iii) the monophyly of genera Vorticella and Epistylis is significantly rejected; and (iv) morphological structures commonly used in peritrich taxonomy may be evolutionarily labile.

  2. The genetic diversity of genus Bacillus and the related genera revealed by 16s rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey

    PubMed Central

    Cihan, Arzu Coleri; Tekin, Nilgun; Ozcan, Birgul; Cokmus, Cumhur

    2012-01-01

    Previously isolated 115 endospore-forming bacilli were basically grouped according to their temperature requirements for growth: the thermophiles (74%), the facultative thermophiles (14%) and the mesophiles (12%). These isolates were taken into 16S rRNA gene sequence analyses, and they were clustered among the 7 genera: Anoxybacillus, Aeribacillus, Bacillus, Brevibacillus, Geobacillus, Paenibacillus, and Thermoactinomycetes. Of these bacilli, only the thirty two isolates belonging to genera Bacillus (16), Brevibacillus (13), Paenibacillus (1) and Thermoactinomycetes (2) were selected and presented in this paper. The comparative sequence analyses revealed that the similarity values were ranged as 91.4–100 %, 91.8- 99.2 %, 92.6- 99.8 % and 90.7 - 99.8 % between the isolates and the related type strains from these four genera, respectively. Twenty nine of them were found to be related with the validly published type strains. The most abundant species was B. thermoruber with 9 isolates followed by B. pumilus (6), B. lichenformis (3), B. subtilis (3), B. agri (3), B. smithii (2), T. vulgaris (2) and finally P. barengoltzii (1). In addition, isolates of A391a, B51a and D295 were proposed as novel species as their 16S rRNA gene sequences displayed similarities ≤ 97% to their closely related type strains. The AluI-, HaeIII- and TaqI-ARDRA results were in congruence with the 16S rRNA gene sequence analyses. The ARDRA results allowed us to differentiate these isolates, and their discriminative restriction fragments were able to be determined. Some of their phenotypic characters and their amylase, chitinase and protease production were also studied and biotechnologically valuable enzyme producing isolates were introduced in order to use in further studies. PMID:24031834

  3. Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae.

    PubMed

    He, Yanxia; Guo, Xianguang; Xiang, Shifei; Li, Jiao; Li, Xiaoqin; Xiang, Hui; He, Jinlei; Chen, Dali; Chen, Jianping

    2016-07-01

    The present work aimed to evaluate 16S rRNA, khe and rpoB gene sequencing for the identification of Klebsiella pneumoniae in comparison with phenotypic methods. Fifteen clinical isolates were examined, which were initially identified as K. pneumoniae subsp. pneumoniae using the automated VITEK 32 system in two hospitals in Enshi City, China. Their identity was further supported by conventional phenotypic methods on the basis of morphological and biochemical characteristics. Using Bayesian phylogenetic analyses and haplotypes network reconstruction, 13 isolates were identified as K. pneumoniae, whereas the other two isolates (K19, K24) were classified as Shigella sp. and Enterobacter sp., respectively. Of the three genes, 16S rRNA and khe gene could discriminate the clinical isolates at the genus level, whereas rpoB could discriminate Klebsiella at the species and even subspecies level. Overall, the gene tree based on rpoB is more compatible with the currently accepted classification of Klebsiella than those based on 16S rRNA and khe genes, showing that rpoB can be a powerful tool for identification of K. pneumoniae isolates. Above all, our study challenges the utility of khe as a species-specific marker for identification of K. pneumoniae.

  4. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses

    NASA Technical Reports Server (NTRS)

    Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.

    1993-01-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  5. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities.

  6. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  7. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    SciTech Connect

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.

  8. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  9. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses.

  10. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications

    PubMed Central

    Herzog, Michel; Maroteaux, Luc

    1986-01-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  11. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications.

    PubMed

    Herzog, M; Maroteaux, L

    1986-11-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage.

  12. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.

    PubMed

    Yarza, Pablo; Yilmaz, Pelin; Pruesse, Elmar; Glöckner, Frank Oliver; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Whitman, William B; Euzéby, Jean; Amann, Rudolf; Rosselló-Móra, Ramon

    2014-09-01

    Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.

  13. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules

    PubMed Central

    McDonald, James E.; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J.; Hall, Neil; McCarthy, Alan J.; Allison, Heather E.

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, ‘universal’ SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by ‘universal’ primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  14. In vivo analyses of the internal control region in the 5S rRNA gene from Saccharomyces cerevisiae.

    PubMed

    Lee, Y; Erkine, A M; Van Ryk, D I; Nazar, R N

    1995-02-25

    The internal control region of the Saccharomyces cerevisiae 5S rRNA gene has been characterized in vivo by genomic DNase I footprinting and by mutational analyses using base substitutions, deletions or insertions. A high copy shuttle vector was used to efficiently express mutant 5S rRNA genes in vivo and isotope labelling kinetics were used to distinguish impeded gene expression from nascent RNA degradation. In contrast to mutational studies in reconstituted systems, the analyses describe promoter elements which closely resemble the three distinct sequence elements that have been observed in Xenopus laevis 5S rRNA. The results indicate a more highly conserved structure than previously reported with reconstituted systems and suggest that the saturated conditions which are used in reconstitution studies mask sequence dependence which may be physiologically significant. Footprint analyses support the extended region of protein interaction which has recently been observed in some reconstituted systems, but mutational analyses indicate that these interactions are not sequence specific. Periodicity in the footprint provides further detail regarding the in vivo topology of the interacting protein.

  15. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-10-28

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels.

  16. Compilation of 5S rRNA and 5S rRNA gene sequences

    PubMed Central

    Specht, Thomas; Wolters, Jörn; Erdmann, Volker A.

    1990-01-01

    The BERLIN RNA DATABANK as of Dezember 31, 1989, contains a total of 667 sequences of 5S rRNAs or their genes, which is an increase of 114 new sequence entries over the last compilation (1). It covers sequences from 44 archaebacteria, 267 eubacteria, 20 plastids, 6 mitochondria, 319 eukaryotes and 11 eukaryotic pseudogenes. The hardcopy shows only the list (Table 1) of those organisms whose sequences have been determined. The BERLIN RNA DATABANK uses the format of the EMBL Nucleotide Sequence Data Library complemented by a Sequence Alignment (SA) field including secondary structure information. PMID:1692116

  17. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences.

    PubMed Central

    Robison-Cox, J F; Bateson, M M; Ward, D M

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed. PMID:7538272

  18. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  19. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences.

    PubMed

    Stefanoviac, S; Jager, M; Deutsch, J; Broutin, J; Masselot, M

    1998-05-01

    The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.

  20. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences.

    PubMed

    Turbeville, J M; Pfeifer, D M; Field, K G; Raff, R A

    1991-09-01

    Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.

  1. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans.

    PubMed Central

    Douglas, S E; Doolittle, W F

    1984-01-01

    The nucleotide sequence of the Anacystis nidulans 23S rRNA gene, including the 5'- and 3'-flanking regions has been determined. The gene is 2876 nucleotides long and shows higher primary sequence homology to the 23S rRNAs of plastids (84.5%) than to that of E. coli (79%). The predicted rRNA transcript also shares many secondary structural features with those of plastids, reinforcing the endosymbiont hypothesis for the origin of these organelles. PMID:6326060

  2. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

    PubMed Central

    Liu, Zongzhi; DeSantis, Todd Z.; Andersen, Gary L.; Knight, Rob

    2008-01-01

    The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517. PMID:18723574

  3. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  4. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  5. Investigation of molluscan phylogeny on the basis of 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1996-12-01

    The 18S rRNA sequences of 12 molluscs, representing the extant classes Gastropoda, Bivalvia, Polyplacophora, Scaphopoda, and Caudofoveata, were determined and compared with selected known 18S rRNA sequences of Metazoa, including other Mollusca. These data do not provide support for a close relationship between Platyhelminthes (Turbellaria) and Mollusca, but rather suggest that the latter group belongs to a clade of eutrochozoan coelomates. The 18S rRNA data fail to recover molluscan, bivalve, or gastropod monophyly. However, the branching pattern of the eutrochozoan phyla and classes is unstable, probably due to the explosive Cambrian radiation during which these groups arose. Similarly, the 18S rRNA data do not provide a reliable signal for the molluscan interclass relationships. Nevertheless, we obtained strong preliminary support for phylogenetic inferences at more restricted taxonomic levels, such as the monophyly of Polyplacophora, Caenogastropoda, Euthyneura, Heterodonta, and Arcoida.

  6. A Census of rRNA Genes and Linked Genomic Sequences within a Soil Metagenomic Library

    PubMed Central

    Liles, Mark R.; Manske, Brian F.; Bintrim, Scott B.; Handelsman, Jo; Goodman, Robert M.

    2003-01-01

    We have analyzed the diversity of microbial genomes represented in a library of metagenomic DNA from soil. A total of 24,400 bacterial artificial chromosome (BAC) clones were screened for 16S rRNA genes. The sequences obtained from BAC clones were compared with a collection generated by direct PCR amplification and cloning of 16S rRNA genes from the same soil. The results indicated that the BAC library had substantially lower representation of bacteria among the Bacillus, α-Proteobacteria, and CFB groups; greater representation among the β- and γ-Proteobacteria, and OP10 divisions; and no rRNA genes from the domains Eukaryota and Archaea. In addition to rRNA genes recovered from the bacterial divisions Proteobacteria, Verrucomicrobia, Firmicutes, Cytophagales, and OP11, we identified many rRNA genes from the BAC library affiliated with the bacterial division Acidobacterium; all of these sequences were affiliated with subdivisions that lack cultured representatives. The complete sequence of one BAC clone derived from a member of the Acidobacterium division revealed a complete rRNA operon and 20 other open reading frames, including predicted gene products involved in cell division, cell cycling, folic acid biosynthesis, substrate metabolism, amino acid uptake, DNA repair, and transcriptional regulation. This study is the first step in using genomics to reveal the physiology of as-yet-uncultured members of the Acidobacterium division. PMID:12732537

  7. Molecular Diagnosis of Actinomadura madurae Infection by 16S rRNA Deep Sequencing

    PubMed Central

    SenGupta, Dhruba J.; Hoogestraat, Daniel R.; Cummings, Lisa A.; Bryant, Bronwyn H.; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W.; Chau, Mimosa; Barbee, Lindley A.; Rosenthal, Christopher; Cookson, Brad T.; Hoffman, Noah G.

    2013-01-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms. PMID:24108607

  8. Molecular diagnosis of Actinomadura madurae infection by 16S rRNA deep sequencing.

    PubMed

    Salipante, Stephen J; Sengupta, Dhruba J; Hoogestraat, Daniel R; Cummings, Lisa A; Bryant, Bronwyn H; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W; Chau, Mimosa; Barbee, Lindley A; Rosenthal, Christopher; Cookson, Brad T; Hoffman, Noah G

    2013-12-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms.

  9. Processing of Escherichia coli 16S rRNA with bacteriophage lambda leader sequences.

    PubMed Central

    Krych, M; Sirdeshmukh, R; Gourse, R; Schlessinger, D

    1987-01-01

    To test whether any specific 5' precursor sequences are required for the processing of pre-16S rRNA, constructs were studied in which large parts of the 5' leader sequence were replaced by the coliphage lambda pL promoter and adjacent sequences. Unexpectedly, few full-length transcripts of the rRNA were detected after the pL promoter was induced, implying that either transcription was poor or most of the rRNA chains with lambda leader sequences were unstable. Nevertheless, sufficient transcription occurred to permit the detection of processing by S1 nuclease analysis. RNA transcripts in which 2/3 of the normal rRNA leader was deleted (from the promoter up to the normal RNase III cleavage site) were processed to form the normal 5' terminus. Thus, most of the double-stranded stem that forms from sequences bracketing wild-type 16S pre-rRNA is apparently not required for proper processing; the expression of such modified transcripts, however, must be increased before the efficiency of processing of the 16S rRNA formed can be assessed. Images PMID:2445728

  10. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  11. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  12. Improved resolution of bacteria by high throughput sequence analysis of the rRNA internal transcribed spacer

    PubMed Central

    Ruegger, Paul M.; Clark, Robin T.; Weger, John R.; Braun, Jonathan; Borneman, James

    2014-01-01

    Current high throughput sequencing (HTS) methods are limited in their ability to resolve bacteria at or below the genus level. While the impact of this limitation may be relatively minor in whole-community analyses, it constrains the use of HTS as a tool for identifying and examining individual bacteria of interest. The limited resolution is a consequence of both short read lengths and insufficient sequence variation within the commonly targeted variable regions of the small-subunit rRNA (SSU) gene. The goal of this work was to improve the resolving power of bacterial HTS. We developed an assay targeting the hypervariable rRNA internal transcribed spacer (ITS) region residing between the SSU and large-subunit (LSU) rRNA genes. Comparisons of the ITS region and two SSU regions using annotated bacterial genomes in GenBank showed much greater resolving power is possible with the ITS region. This report presents a new HTS method for analyzing bacterial composition with improved capabilities. The greater resolving power enabled by the ITS region arises from its high sequence variation across a wide range of bacterial taxa and an associated decrease in taxonomic heterogeneity within its OTUs. Although the method should be adaptable to any HTS platform, this report presents PCR primers, amplification parameters, and protocols for Illumina-based analyses. PMID:25034229

  13. Improved resolution of bacteria by high throughput sequence analysis of the rRNA internal transcribed spacer.

    PubMed

    Ruegger, Paul M; Clark, Robin T; Weger, John R; Braun, Jonathan; Borneman, James

    2014-10-01

    Current high throughput sequencing (HTS) methods are limited in their ability to resolve bacteria at or below the genus level. While the impact of this limitation may be relatively minor in whole-community analyses, it constrains the use of HTS as a tool for identifying and examining individual bacteria of interest. The limited resolution is a consequence of both short read lengths and insufficient sequence variation within the commonly targeted variable regions of the small-subunit rRNA (SSU) gene. The goal of this work was to improve the resolving power of bacterial HTS. We developed an assay targeting the hypervariable rRNA internal transcribed spacer (ITS) region residing between the SSU and large-subunit (LSU) rRNA genes. Comparisons of the ITS region and two SSU regions using annotated bacterial genomes in GenBank showed much greater resolving power is possible with the ITS region. This report presents a new HTS method for analyzing bacterial composition with improved capabilities. The greater resolving power enabled by the ITS region arises from its high sequence variation across a wide range of bacterial taxa and an associated decrease in taxonomic heterogeneity within its OTUs. Although the method should be adaptable to any HTS platform, this report presents PCR primers, amplification parameters, and protocols for Illumina-based analyses.

  14. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  15. Uncultivated microbial eukaryotic diversity: a method to link ssu rRNA gene sequences with morphology.

    PubMed

    Hirst, Marissa B; Kita, Kelley N; Dawson, Scott C

    2011-01-01

    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA "phylotypes" from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages

  16. Molecular characterization of Sarcocystis species from Polish roe deer based on ssu rRNA and cox1 sequence analysis.

    PubMed

    Kolenda, Rafał; Ugorski, Maciej; Bednarski, Michał

    2014-08-01

    Sarcocysts from four Polish roe deer were collected and examined by light microscopy, small subunit ribosomal RNA (ssu rRNA), and the subunit I of cytochrome oxidase (cox1) sequence analysis. This resulted in identification of Sarcocystis gracilis, Sarcocystis oviformis, and Sarcocystis silva. However, we were unable to detect Sarcocystis capreolicanis, the fourth Sarcocystis species found previously in Norwegian roe deer. Polish sarcocysts isolated from various tissues differed in terms of their shape and size and were larger than the respective Norwegian isolates. Analysis of ssu rRNA gene revealed the lack of differences between Sarcocystis isolates belonging to one species and a very low degree of genetic diversity between Polish and Norwegian sarcocysts, ranging from 0.1% for Sarcocystis gracilis and Sarcocystis oviformis to 0.44% for Sarcocystis silva. Contrary to the results of the ssu rRNA analysis, small intraspecies differences in cox1 sequences were found among Polish Sarcocystis gracilis and Sarcocystis silva isolates. The comparison of Polish and Norwegian cox1 sequences representing the same Sarcocystis species revealed similar degree of sequence identity, namely 99.72% for Sarcocystis gracilis, 98.76% for Sarcocystis silva, and 99.85% for Sarcocystis oviformis. Phylogenetic reconstruction and genetic population analyses showed an unexpected high degree of identity between Polish and Norwegian isolates. Moreover, cox1 gene sequences turned out to be more accurate than ssu rRNA when used to reveal phylogenetic relationships among closely related species. The results of our study revealed that the same Sarcocystis species isolated from the same hosts living in different geographic regions show a very high level of genetic similarity.

  17. [16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory].

    PubMed

    Matsumoto, Takehisa; Sugano, Mitsutoshi

    2013-12-01

    The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. For many years, sequencing of the 16S ribosomal RNA (rRNA) gene has served as an important tool for determining phylogenetic relationships between bacteria. The features of this molecular target that make it a useful phylogenetic tool also make it useful for bacterial detection and identification in the clinical laboratory. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, and can lead to the recognition of novel pathogens and noncultured bacteria. In clinical microbiology, molecular identification based on 16S rDNA sequencing is applied fundamentally to bacteria whose identification by means of other types of techniques is impossible or difficult. However, there are some cases in which 16S rRNA gene sequence analysis can not differentiate closely related bacteria such as Shigella spp. and Escherichia coli at the species level. Thus, it is important to understand the advantages and disadvantages of 16S rRNA gene sequence analysis.

  18. Infective Arthritis: Bacterial 23S rRNA Gene Sequencing as a Supplementary Diagnostic Method

    PubMed Central

    Moser, Claus; Andresen, Keld; Kjerulf, Anne; Salamon, Suheil; Kemp, Michael; Christensen, Jens Jørgen

    2008-01-01

    Consecutively collected synovial fluids were examined for presence of bacterial DNA (a 700-bp fragment of the bacterial 23S rRNA gene) followed by DNA sequencing of amplicons, and by conventional bacteriological methods. One or more microorganisms were identified in 22 of the 227 synovial fluids (9,7%) originating from 17 patients. Sixteen of the patients had clinical signs of arthritis. For 11 patients molecular and conventional bacterial examinations were in agreement. Staphylococcus aureus, Streptococcus dysgalactiae subspecies equisimilis and Streptococcus pneumoniae, were detected in synovial fluids from 6, 2 and 2 patients, respectively. In 3 patients only 23S rRNA analysis was positive; 2 synovial fluids contained S. dysgalactiae subspecies equisimilis and 1 S. pneumoniae). The present study indicates a significant contribution by PCR with subsequent DNA sequencing of the 23S rRNA gene analysis in recognizing and identification of microorganisms from synovial fluids. PMID:19088916

  19. Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers.

    PubMed Central

    Yang, Q; Zwick, M G; Paule, M R

    1994-01-01

    The primary sequence of the entire 2330 bp intergenic spacer of the A.castellanii ribosomal RNA gene was determined. Repeated sequence elements averaging 140 bp were identified and found to bind a protein required for optimum initiation at the core promoter. These repeated elements were shown to stimulate rRNA transcription by RNA polymerase I in vitro. The repeats inhibited transcription when placed in trans, and stimulated transcription when in cis, in either orientation, but only when upstream of the core promoter. Thus, these repeated elements have characteristics similar to polymerase I enhancers found in higher eukaryotes. The number of rRNA repeats in Acanthamoeba cells was determined to be 24 per haploid genome, the lowest number so far identified in any eukaryote. However, because Acanthamoeba is polyploid, each cell contains approximately 600 rRNA genes. Images PMID:7984432

  20. Species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences.

    PubMed

    Ong, Swee Hoe; Kukkillaya, Vinutha Uppoor; Wilm, Andreas; Lay, Christophe; Ho, Eliza Xin Pei; Low, Louie; Hibberd, Martin Lloyd; Nagarajan, Niranjan

    2013-01-01

    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to amplify more than 90% of sequences in the Greengenes database and with the ability to distinguish nearly twice as many species-level OTUs compared to existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the constituents of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization.

  1. Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences

    PubMed Central

    Lay, Christophe; Ho, Eliza Xin Pei; Low, Louie; Hibberd, Martin Lloyd; Nagarajan, Niranjan

    2013-01-01

    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to amplify more than 90% of sequences in the Greengenes database and with the ability to distinguish nearly twice as many species-level OTUs compared to existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the constituents of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization. PMID:23579286

  2. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system

    PubMed Central

    Jenior, Matthew L.; Koumpouras, Charles C.; Westcott, Sarah L.; Highlander, Sarah K.

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting. PMID:27069806

  3. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

    PubMed

    Schloss, Patrick D; Jenior, Matthew L; Koumpouras, Charles C; Westcott, Sarah L; Highlander, Sarah K

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

  4. Use of 16S rRNA, 23S rRNA, and gyrB Gene Sequence Analysis To Determine Phylogenetic Relationships of Bacillus cereus Group Microorganisms

    PubMed Central

    Bavykin, Sergei G.; Lysov, Yuri P.; Zakhariev, Vladimir; Kelly, John J.; Jackman, Joany; Stahl, David A.; Cherni, Alexey

    2004-01-01

    In order to determine if variations in rRNA sequence could be used for discrimination of the members of the Bacillus cereus group, we analyzed 183 16S rRNA and 74 23S rRNA sequences for all species in the B. cereus group. We also analyzed 30 gyrB sequences for B. cereus group strains with published 16S rRNA sequences. Our findings indicated that the three most common species of the B. cereus group, B. cereus, Bacillus thuringiensis, and Bacillus mycoides, were each heterogeneous in all three gene sequences, while all analyzed strains of Bacillus anthracis were found to be homogeneous. Based on analysis of 16S and 23S rRNA sequence variations, the microorganisms within the B. cereus group were divided into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, and these seven subgroups were further organized into two distinct clusters. This classification of the B. cereus group conflicts with current taxonomic groupings, which are based on phenotypic traits. The presence of B. cereus strains in six of the seven subgroups and the presence of B. thuringiensis strains in three of the subgroups do not support the proposed unification of B. cereus and B. thuringiensis into one species. Analysis of the available phenotypic data for the strains included in this study revealed phenotypic traits that may be characteristic of several of the subgroups. Finally, our results demonstrated that rRNA and gyrB sequences may be used for discriminating B. anthracis from other microorganisms in the B. cereus group. PMID:15297521

  5. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group.

    SciTech Connect

    Bayvkin, S. G.; Lysov, Y. P.; Zakhariev, V.; Kelly, J. J.; Jackman, J.; Stahl, D. A.; Cherni, A.; Engelhardt Inst. of Molecular Biology; Loyola Univ.; Johns Hopkins Univ.; Univ. of Washington

    2004-08-01

    In order to determine if variations in rRNA sequence could be used for discrimination of the members of the Bacillus cereus group, we analyzed 183 16S rRNA and 74 23S rRNA sequences for all species in the B. cereus group. We also analyzed 30 gyrB sequences for B. cereus group strains with published 16S rRNA sequences. Our findings indicated that the three most common species of the B. cereus group, B. cereus, Bacillus thuringiensis, and Bacillus mycoides, were each heterogeneous in all three gene sequences, while all analyzed strains of Bacillus anthracis were found to be homogeneous. Based on analysis of 16S and 23S rRNA sequence variations, the microorganisms within the B. cereus group were divided into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, and these seven subgroups were further organized into two distinct clusters. This classification of the B. cereus group conflicts with current taxonomic groupings, which are based on phenotypic traits. The presence of B. cereus strains in six of the seven subgroups and the presence of B. thuringiensis strains in three of the subgroups do not support the proposed unification of B. cereus and B. thuringiensis into one species. Analysis of the available phenotypic data for the strains included in this study revealed phenotypic traits that may be characteristic of several of the subgroups. Finally, our results demonstrated that rRNA and gyrB sequences may be used for discriminating B. anthracis from other microorganisms in the B. cereus group.

  6. DNA sequencing analysis of ITS and 28S rRNA of Poria cocos.

    PubMed

    Atsumi, Toshiyuki; Kakiuchi, Nobuko; Mikage, Masayuki

    2007-08-01

    We determined the DNA sequences of the internal transcribed spacer 1 and 2 (ITS 1 and 2), the 5.8S rRNA gene and most of the 28S rRNA gene of Poria cocos for the first time, and conducted analysis of 20 samples including cultured mycelias and crude drug materials obtained from various localities and markets. Direct sequencing of the ITS 1 and 2 regions of the samples, except for four wild samples, showed that they had identical DNA sequences for ITS 1 and 2 with nucleotide lengths of 997 bps and 460 bps, respectively. By cloning, the four wild samples were found to have combined sequences of common ITS sequences with 1 or 2-base-pair insertions. Altogether both ITS 1 and 2 sequences were substantially longer than those of other fungal crude drugs such as Ganoderma lucidum and Polyporus umbellatus. Thus, Poria cocos could be distinguished from these crude drugs and fakes by comparing the nucleotide length of PCR products of ITS 1 and 2. Contrary to the basic homogeneity in ITS 1 and 2, three types (Group 1, 2, 3) of the 28S rRNA gene with distinctive differences in length and sequence were found. Furthermore, Group 1 could be divided into three subgroups depending on differences at nucleotide position 690. Products with different types of 28S rRNA gene were found in crude drugs from Yunnan and Anhui Provinces as well as the Korean Peninsula, suggesting that the locality of the crude drugs does not guarantee genetic uniformity. The result of DNA typing of Poria cocos may help discrimination of the quality of the crude drug by genotype.

  7. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

    PubMed Central

    Orsi, William; Biddle, Jennifer F.; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. PMID:23418556

  8. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    PubMed

    Orsi, William; Biddle, Jennifer F; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  9. Gene arrangement and sequence of the 5S rRNA in Filobasidiella neoformans (Cryptococcus neoformans) as a phylogenetic indicator.

    PubMed

    Kwon-Chung, K J; Chang, Y C

    1994-04-01

    We cloned the 5S rRNA gene and determined its organization in the four genes encoding rRNAs in a ribosomal DNA repeat unit of Filobasidiella neoformans, the teleomorph of Cryptococcus neoformans. The 5S rRNA gene contained 118 nucleotides and was located 1 kb upstream from the 18S rRNA gene within the 8.6-kb fragment of the ribosomal DNA repeat unit. The sequence of the 5S rRNA gene from F. neoformans was more similar to the sequence of the 5S rRNA gene from Tremella mesenterica than to the sequences of the 5S rRNA genes from Filobasidium species. The arrangement of the rRNA genes in F. neoformans closely resembles the arrangement of the rRNA genes in mushrooms such as Schizophyllum commune, Agaricus bisporus, and Coprinus cinereus in that the 5S rRNA-coding region not only is located within the repeat unit that encodes the other rRNAs but also is transcribed in the same direction as the other rRNA genes. This is the first description of the arrangement of rRNA genes in a species belonging to the Heterobasidiomycetes.

  10. Phylogeny of Metschnikowia species estimated from partial rRNA sequences.

    PubMed

    Mendonça-Hagler, L C; Hagler, A N; Kurtzman, C P

    1993-04-01

    Phylogenetic relationships of species assigned to the genus Metschnikowia were estimated from the extents of divergence among partial sequences of rRNA. The data suggest that the aquatic species (Metschnikowia australis, Metschnikowia bicuspidata, Metschnikowia krissii, and Metschnikowia zobellii) and the terrestrial species (Metschnikowia hawaiiensis, Metschnikowia lunata, Metschnikowia pulcherrima, and Metschnikowia reukaufii) form two groups within the genus. M. lunata and M. hawaiiensis are well separated from other members of the genus, and M. hawaiiensis may be sufficiently divergent that it could be placed in a new genus. Species of the genus Metschnikowia are unique compared with other ascomycetous yeasts because they have a deletion in the large-subunit rRNA sequence that includes nucleotides 434 to 483.

  11. Phylogenetic Sequence Variations in Bacterial rRNA Affect Species-Specific Susceptibility to Drugs Targeting Protein Synthesis▿‡

    PubMed Central

    Akshay, Subramanian; Bertea, Mihai; Hobbie, Sven N.; Oettinghaus, Björn; Shcherbakov, Dimitri; Böttger, Erik C.; Akbergenov, Rashid

    2011-01-01

    Antibiotics targeting the bacterial ribosome typically bind to highly conserved rRNA regions with only minor phylogenetic sequence variations. It is unclear whether these sequence variations affect antibiotic susceptibility or resistance development. To address this question, we have investigated the drug binding pockets of aminoglycosides and macrolides/ketolides. The binding site of aminoglycosides is located within helix 44 of the 16S rRNA (A site); macrolides/ketolides bind to domain V of the 23S rRNA (peptidyltransferase center). We have used mutagenesis of rRNA sequences in Mycobacterium smegmatis ribosomes to reconstruct the different bacterial drug binding sites and to study the effects of rRNA sequence variations on drug activity. Our results provide a rationale for differences in species-specific drug susceptibility patterns and species-specific resistance phenotypes associated with mutational alterations in the drug binding pocket. PMID:21730122

  12. Phenotypic characterisation and 16S rRNA sequence analysis of veterinary isolates of Streptococcus pluranimalium.

    PubMed

    Twomey, D F; Carson, T; Foster, G; Koylass, M S; Whatmore, A M

    2012-05-01

    Forty-two isolates of Streptococcus pluranimalium were identified from cattle (n=38), sheep (n=2), an alpaca (n=1) and a pheasant (n=1) in the United Kingdom. The isolates were confirmed as S. pluranimalium by 16S rRNA sequence analysis but could not be differentiated reliably from Streptococcus acidominimus by phenotypic characterisation using commercial kits routinely used in veterinary laboratories. The alanyl-phenylalanyl-proline arylamidase reaction could be used to differentiate S. pluranimalium (positive) from Aerococcus urinae (negative).

  13. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies.

    PubMed

    Rössler, D; Ludwig, W; Schleifer, K H; Lin, C; McGill, T J; Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  14. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  15. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq

    PubMed Central

    Darling, Aaron E.

    2016-01-01

    Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution. PMID:27688981

  16. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis

    PubMed Central

    El Gawhary, Somaia; El-Anany, Mervat; Ali, Doaa; El Gameel, El Qassem

    2016-01-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen. PMID:26494728

  17. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis.

    PubMed

    El Gawhary, Somaia; El-Anany, Mervat; Hassan, Reem; Ali, Doaa; El Gameel, El Qassem

    2016-02-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen.

  18. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform.

    PubMed

    Jeon, Yoon-Seong; Park, Sang-Cheol; Lim, Jeongmin; Chun, Jongsik; Kim, Bong-Soo

    2015-01-01

    The cost of DNA sequencing has decreased due to advancements in Next Generation Sequencing. The number of sequences obtained from the Illumina platform is large, use of this platform can reduce costs more than the 454 pyrosequencer. However, the Illumina platform has other challenges, including bioinformatics analysis of large numbers of sequences and the need to reduce erroneous nucleotides generated at the 3'-ends of the sequences. These erroneous sequences can lead to errors in analysis of microbial communities. Therefore, correction of these erroneous sequences is necessary for accurate taxonomic identification. Several studies that have used the Illumina platform to perform metagenomic analyses proposed curating pipelines to increase accuracy. In this study, we evaluated the likelihood of obtaining an erroneous microbial composition using the MiSeq 250 bp paired sequence platform and improved the pipeline to reduce erroneous identifications. We compared different sequencing conditions by varying the percentage of control phiX added, the concentration of the sequencing library, and the 16S rRNA gene target region using a mock community sample composed of known sequences. Our recommended method corrected erroneous nucleotides and improved identification accuracy. Overall, 99.5% of the total reads shared 95% similarity with the corresponding template sequences and 93.6% of the total reads shared over 97% similarity. This indicated that the MiSeq platform can be used to analyze microbial communities at the genus level with high accuracy. The improved analysis method recommended in this study can be applied to amplicon studies in various environments using high-throughput reads generated on the MiSeq platform.

  19. Plant DNA sequencing for phylogenetic analyses: from plants to sequences.

    PubMed

    Neves, Susana S; Forrest, Laura L

    2011-01-01

    DNA sequences are important sources of data for phylogenetic analysis. Nowadays, DNA sequencing is a routine technique in molecular biology laboratories. However, there are specific questions associated with project design and sequencing of plant samples for phylogenetic analysis, which may not be familiar to researchers starting in the field. This chapter gives an overview of methods and protocols involved in the sequencing of plant samples, including general recommendations on the selection of species/taxa and DNA regions to be sequenced, and field collection of plant samples. Protocols of plant sample preparation, DNA extraction, PCR and cloning, which are critical to the success of molecular phylogenetic projects, are described in detail. Common problems of sequencing (using the Sanger method) are also addressed. Possible applications of second-generation sequencing techniques in plant phylogenetics are briefly discussed. Finally, orientation on the preparation of sequence data for phylogenetic analyses and submission to public databases is also given.

  20. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

    NASA Technical Reports Server (NTRS)

    Fox, G. E.; Wisotzkey, J. D.; Jurtshuk, P. Jr

    1992-01-01

    16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.

  1. Abiotrophia defectiva infection of a total hip arthroplasty diagnosed by 16S rRNA gene sequencing.

    PubMed

    Rozemeijer, Wouter; Jiya, Timothy U; Rijnsburger, Martine; Heddema, Edou; Savelkoul, Paul; Ang, Wim

    2011-05-01

    We describe a case of a total hip arthroplasty infection caused by Abiotrophia defectiva, identified by 16S rRNA gene sequencing. Removal of the prosthesis followed by antibiotic treatment resulted in a good clinical outcome. 16S rRNA gene sequencing can be a useful tool in diagnosing infection with this fastidious microorganism that can easily be misidentified using phenotypic identification methods.

  2. Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt.

    PubMed

    Radax, C; Gruber, C; Stan-Lotter, H

    2001-08-01

    Prokaryotic diversity in Alpine salt sediments was investigated by polymerase chain reaction (PCR) amplification of 16S rRNA genes, sequencing of cloned products, and comparisons with culturable strains. DNA was extracted from the residue following filtration of dissolved Permo-Triassic rock salt. Fifty-four haloarchaeal sequences were obtained, which could be grouped into at least five distinct clusters. Similarity values of three clusters to known 16S rRNA genes were less than 90%-95%, suggesting the presence of uncultured novel taxa; two clusters were 98% and 99% similar to isolates from Permo-Triassic or Miocene salt from England and Poland, and to Halobacterium salinarum, respectively. Some rock salt samples, including drilling cores, yielded no amplifiable DNA and no cells or only a few culturable cells. This result suggested a variable distribution of haloarchaea within different strata, probably consistent with the known geologic heterogeneity of Alpine salt deposits. We recently reported identical culturable Halococcus salifodinae strains in Permo-Triassic salt sediments from England, Germany, and Austria; together with the data presented here, those results suggest one plausible scenario to be an ancient continuous hypersaline ocean (Zechstein sea) populated by haloarchaea, whose descendants are found today in the salt sediments. The novelty of the sequences also suggested avoidance of haloarchaeal contaminants during our isolation of strains, preparation of DNA, and PCR reactions.

  3. Primer and platform effects on 16S rRNA tag sequencing

    DOE PAGES

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; ...

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  4. Primer and platform effects on 16S rRNA tag sequencing

    SciTech Connect

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.

  5. Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.

    PubMed Central

    Jacq, B

    1981-01-01

    The question of the evolutionary origin of eukaryotic 5.8S rRNA was re-examined after the recent publication of the E. coli 23S rRNA sequence (26,40). A region of the 23S RNA located at its 5' end was found to be approximately 50% homologous to four different eukaryotic 5.8S rRNAs. A computer comparison analysis indicates that no other region of the E. coli ribosomal transcription unit (greater than 5 000 nucleotides in length) shares a comparable homology with 5.8S rRNA. Homology between the 5' end of e. coli 23S and four different eukaryotic 5.8S rRNAs falls within the same range as that between E. coli 5S RNA from the same four eukaryotic species. All these data strongly suggest that the 5' end of prokaryotic 23S rRNA and eukaryotic 5.8S RNA have a common evolutionary origin. Secondary structure models are proposed for the 5' region of E. coli 23S RNA. Images PMID:7024907

  6. Evaluation of 16S Rrna amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  7. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  8. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences.

    PubMed

    Wright, Erik S; Yilmaz, L Safak; Noguera, Daniel R

    2012-02-01

    DECIPHER is a new method for finding 16S rRNA chimeric sequences by the use of a search-based approach. The method is based upon detecting short fragments that are uncommon in the phylogenetic group where a query sequence is classified but frequently found in another phylogenetic group. The algorithm was calibrated for full sequences (fs_DECIPHER) and short sequences (ss_DECIPHER) and benchmarked against WigeoN (Pintail), ChimeraSlayer, and Uchime using artificially generated chimeras. Overall, ss_DECIPHER and Uchime provided the highest chimera detection for sequences 100 to 600 nucleotides long (79% and 81%, respectively), but Uchime's performance deteriorated for longer sequences, while ss_DECIPHER maintained a high detection rate (89%). Both methods had low false-positive rates (1.3% and 1.6%). The more conservative fs_DECIPHER, benchmarked only for sequences longer than 600 nucleotides, had an overall detection rate lower than that of ss_DECIPHER (75%) but higher than those of the other programs. In addition, fs_DECIPHER had the lowest false-positive rate among all the benchmarked programs (<0.20%). DECIPHER was outperformed only by ChimeraSlayer and Uchime when chimeras were formed from closely related parents (less than 10% divergence). Given the differences in the programs, it was possible to detect over 89% of all chimeras with just the combination of ss_DECIPHER and Uchime. Using fs_DECIPHER, we detected between 1% and 2% additional chimeras in the RDP, SILVA, and Greengenes databases from which chimeras had already been removed with Pintail or Bellerophon. DECIPHER was implemented in the R programming language and is directly accessible through a webpage or by downloading the program as an R package (http://DECIPHER.cee.wisc.edu).

  9. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species.

    PubMed

    Rossi-Tamisier, Morgane; Benamar, Samia; Raoult, Didier; Fournier, Pierre-Edouard

    2015-06-01

    Modern bacterial taxonomy is based on a polyphasic approach that combines phenotypic and genotypic characteristics, including 16S rRNA sequence similarity. However, the 95 % (for genus) and 98.7 % (for species) sequence similarity thresholds that are currently recommended to classify bacterial isolates were defined by comparison of a limited number of bacterial species, and may not apply to many genera that contain human-associated species. For each of 158 bacterial genera containing human-associated species, we computed pairwise sequence similarities between all species that have names with standing in nomenclature and then analysed the results, considering as abnormal any similarity value lower than 95 % or greater than 98.7 %. Many of the current bacterial species with validly published names do not respect the 95 and 98.7 % thresholds, with 57.1 % of species exhibiting 16S rRNA gene sequence similarity rates ≥98.7 %, and 60.1 % of genera containing species exhibiting a 16S rRNA gene sequence similarity rate <95 %. In only 17 of the 158 genera studied (10.8 %), all species respected the 95 and 98.7 % thresholds. As we need powerful and reliable taxonomical tools, and as potential new tools such as pan-genomics have not yet been fully evaluated for taxonomic purposes, we propose to use as thresholds, genus by genus, the minimum and maximum similarity values observed among species.

  10. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples.

  11. Identification of Scopulariopsis species by partial 28S rRNA gene sequence analysis.

    PubMed

    Jagielski, Tomasz; Kosim, Kinga; Skóra, Magdalena; Macura, Anna Barbara; Bielecki, Jacek

    2013-01-01

    The genus Scopulariopsis contains over 30 species of mitosporic moulds, which although usually saprophytic may also act as opportunistic pathogens in humans. They have mainly been associated with onychomycosis, and only sporadically reported as a cause of deep tissue infections or systemic disease. Identification of Scopulariopsis species still largely relies on phenotype-based methods. There is a need for a molecular diagnostic approach, that would allow to reliably discriminate between different Scopulariopsis species. The aim of this study was to apply sequence analysis of partial 28S rRNA gene for species identification of Scopulariopsis clinical isolates. Although the method employed did reveal some genetic polymorphism among Scopulariopsis isolates tested, it was not enough for species delineation. For this to be achieved, other genetic loci, within and beyond the rDNA operon, need to be investigated.

  12. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies.

    PubMed

    Jaspers, Elke; Overmann, Jörg

    2004-08-01

    A combination of cultivation-based methods with a molecular biological approach was used to investigate whether planktonic bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of 11 strains of Brevundimonas alba were isolated from a bacterial freshwater community by conventional plating or by using a liquid most-probable-number (MPN) dilution series. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction, as well as in the highest positive dilutions of the MPN series. However, internally transcribed spacer and enterobacterial repetitive intergenic consensus PCR fingerprinting analyses, as well as DNA-DNA hybridization analyses, revealed great genetic diversity among the 11 strains. Each strain utilized a specific combination of 59 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. In dialysis cultures incubated in situ, each strain had a different growth rate and cell yield. We thus demonstrated that the B. alba strains represent distinct populations with genetically determined adaptations and probably occupy different ecological niches. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences.

  13. Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences.

    PubMed

    Takeuchi, M; Yokota, A

    1994-11-15

    16S rRNA gene (rDNA) studies of the six species of the genus Microbacterium, M. lacticum, M. laevaniformans, M. dextranolyticum, M. imperiale, M. arborescens and M. aurum, were performed and the primary structures were compared with those of 29 representative actinobacteria and related organisms. Phylogenetic analysis indicated that six species of the genus Microbacterium and representative four species of the genus Aureobacterium appear to be phylogenetically coherent as was suggested by Rainey et al., although the peptidoglycan types of these two genera are different (peptidoglycan type B1 or B2). Thus, the phylogenetical analyses revealed that members of actinobacteria with group B-peptidoglycan do not cluster according to their peptidoglycan types, but form compact cluster different from actinobacteria or actinomycetes with group A-peptidoglycan.

  14. Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform.

    PubMed

    Ram, Jeffrey L; Karim, Aos S; Sendler, Edward D; Kato, Ikuko

    2011-06-01

    Understanding the identity and changes of organisms in the urogenital and other microbiomes of the human body may be key to discovering causes and new treatments of many ailments, such as vaginosis. High-throughput sequencing technologies have recently enabled discovery of the great diversity of the human microbiome. The cost per base of many of these sequencing platforms remains high (thousands of dollars per sample); however, the Illumina Genome Analyzer (IGA) is estimated to have a cost per base less than one-fifth of its nearest competitor. The main disadvantage of the IGA for sequencing PCR-amplified 16S rRNA genes is that the maximum read-length of the IGA is only 100 bases; whereas, at least 300 bases are needed to obtain phylogenetically informative data down to the genus and species level. In this paper we describe and conduct a pilot test of a multiplex sequencing strategy suitable for achieving total reads of > 300 bases per extracted DNA molecule on the IGA. Results show that all proposed primers produce products of the expected size and that correct sequences can be obtained, with all proposed forward primers. Various bioinformatic optimization of the Illumina Bustard analysis pipeline proved necessary to extract the correct sequence from IGA image data, and these modifications of the data files indicate that further optimization of the analysis pipeline may improve the quality rankings of the data and enable more sequence to be correctly analyzed. The successful application of this method could result in an unprecedentedly deep description (800,000 taxonomic identifications per sample) of the urogenital and other microbiomes in a large number of samples at a reasonable cost per sample.

  15. Comparative sequence analyses of sixteen reptilian paramyxoviruses

    USGS Publications Warehouse

    Ahne, W.; Batts, W.N.; Kurath, G.; Winton, J.R.

    1999-01-01

    Viral genomic RNA of Fer-de-Lance virus (FDLV), a paramyxovirus highly pathogenic for reptiles, was reverse transcribed and cloned. Plasmids with significant sequence similarities to the hemagglutinin-neuraminidase (HN) and polymerase (L) genes of mammalian paramyxoviruses were identified by BLAST search. Partial sequences of the FDLV genes were used to design primers for amplification by nested polymerase chain reaction (PCR) and sequencing of 518-bp L gene and 352-bp HN gene fragments from a collection of 15 previously uncharacterized reptilian paramyxoviruses. Phylogenetic analyses of the partial L and HN sequences produced similar trees in which there were two distinct subgroups of isolates that were supported with maximum bootstrap values, and several intermediate isolates. Within each subgroup the nucleotide divergence values were less than 2.5%, while the divergence between the two subgroups was 20-22%. This indicated that the two subgroups represent distinct virus species containing multiple virus strains. The five intermediate isolates had nucleotide divergence values of 11-20% and may represent additional distinct species. In addition to establishing diversity among reptilian paramyxoviruses, the phylogenetic groupings showed some correlation with geographic location, and clearly demonstrated a low level of host species-specificity within these viruses. Copyright (C) 1999 Elsevier Science B.V.

  16. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  17. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing

    PubMed Central

    Shin, Jongoh; Lee, Sooin; Go, Min-Jeong; Lee, Sang Yup; Kim, Sun Chang; Lee, Chul-Ho; Cho, Byung-Kwan

    2016-01-01

    Demands for faster and more accurate methods to analyze microbial communities from natural and clinical samples have been increasing in the medical and healthcare industry. Recent advances in next-generation sequencing technologies have facilitated the elucidation of the microbial community composition with higher accuracy and greater throughput than was previously achievable; however, the short sequencing reads often limit the microbial composition analysis at the species level due to the high similarity of 16S rRNA amplicon sequences. To overcome this limitation, we used the nanopore sequencing platform to sequence full-length 16S rRNA amplicon libraries prepared from the mouse gut microbiota. A comparison of the nanopore and short-read sequencing data showed that there were no significant differences in major taxonomic units (89%) except one phylotype and three taxonomic units. Moreover, both sequencing data were highly similar at all taxonomic resolutions except the species level. At the species level, nanopore sequencing allowed identification of more species than short-read sequencing, facilitating the accurate classification of the bacterial community composition. Therefore, this method of full-length 16S rRNA amplicon sequencing will be useful for rapid, accurate and efficient detection of microbial diversity in various biological and clinical samples. PMID:27411898

  18. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.

    PubMed

    Fracchia, Letizia; Dohrmann, Anja B; Martinotti, Maria Giovanna; Tebbe, Christoph C

    2006-08-01

    Bacterial communities are important catalysts in the production of composts. Here, it was analysed whether the diversity of bacteria in finished composts is stable and specific for the production process. Single-strand conformation polymorphism (SSCP) based on polymerase chain reaction amplified partial 16S rRNA genes was used to profile and analyse bacterial communities found in total DNA extracted from finished composts. Different batches of compost samples stored over a period of 12 years and a 1-year-old vermicompost were compared to each other. According to digital image analysis, clear differences could be detected between the profiles from compost and vermicompost. Differences between three different periods of compost storage and between replicate vermicompost windrows were only minor. A total of 41 different 16S rRNA genes were identified from the SSCP profiles by DNA sequencing, with the vast majority related to yet-uncultivated bacteria. Sequences retrieved from compost mainly belonged to the phyla Actinobacteria and Firmicutes. In contrast, vermicompost was dominated by bacteria related to uncultured Chloroflexi, Acidobacteria, Bacteroidetes and Gemmatimonadetes. The differences were underscored with specific gene probes and Southern blot hybridizations. The results confirmed that different substrates and composting processes selected for specific bacterial communities in the finished products. The specificity and consistency of the bacterial communities inhabiting the compost materials suggest that cultivation-independent bacterial community analysis is a potentially useful indicator to characterize the quality of finished composts in regard to production processes and effects of storage conditions.

  19. 16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife

    PubMed Central

    Razzauti, Maria; Bard, Emilie; Bernard, Maria; Brouat, Carine; Charbonnel, Nathalie; Dehne-Garcia, Alexandre; Loiseau, Anne; Tatard, Caroline; Tamisier, Lucie; Vayssier-Taussat, Muriel; Vignes, Helene

    2016-01-01

    ABSTRACT The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial

  20. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.

    PubMed

    Lavergne, A; Douzery, E; Stichler, T; Catzeflis, F M; Springer, M S

    1996-10-01

    The complete mitochondrial 12S rRNA sequences of 5 placental mammals belonging to the 3 orders Sirenia, Proboscidea, and Hyracoidea are reported together with phylogenetic analyses (distance and parsimony) of a total of 51 mammalian orthologues. This 12S rRNA database now includes the 2 extant proboscideans (the African and Asiatic elephants Loxodonta africana and Elephas maximus), 2 of the 3 extant sirenian genera (the sea cow Dugong dugon and the West Indian manatee Trichechus manatus), and 2 of the 3 extant hyracoid genera (the rock and tree hyraxes Procavia capensis and Dendrohyrax dorsalis). The monophyly of the 3 orders Sirenia, Proboscidea, and Hyracoidea is supported by all kinds of analysis. There are 23 and 3 diagnostic subsitutions shared by the 2 proboscideans and the 2 hyracoids, respectively, but none by the 2 sirenians. The 2 proboscideans exhibit the fastest rates of 12S rRNA evolution among the 11 placental orders studied. Based on various taxonomic sampling methods among eutherian orders and marsupial outgroups, the most strongly supported clade in our comparisons clusters together the 3 orders Sirenia, Proboscidea, and Hyracoidea in the superorder Paenungulata. Within paenungulates, the grouping of sirenians and proboscideans within the mirorder Tethytheria is observed. This branching pattern is supported by all analyses by high bootstrap percentages (BPs) and decay indices. When only one species is selected per order or suborder, the taxonomic sampling leads to a relative variation in bootstrap support of 53% for Tethytheria (BPs ranging from 44 to 93%) and 7% for Paernungulata (92-99%). When each order or suborder is represented by two species, this relative variation decreased to 10% for Tethytheria (78-87%) and 3% for Paenungulata (96-99%). Two nearly exclusive synapomorphies for paenungulates are identified in the form of one transitional compensatory change, but none were detected for tethytherians. Such a robust and reliable resolution of

  1. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa.

    PubMed

    Chaisi, Mamohale E; Sibeko, Kgomotso P; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2011-12-15

    Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the

  2. CLUSTOM: A Novel Method for Clustering 16S rRNA Next Generation Sequences by Overlap Minimization

    PubMed Central

    Kim, Byung Kwon; Yu, Dong Su; Hou, Bo Kyeng; Caetano-Anollés, Gustavo; Hong, Soon Gyu; Kim, Kyung Mo

    2013-01-01

    The recent nucleic acid sequencing revolution driven by shotgun and high-throughput technologies has led to a rapid increase in the number of sequences for microbial communities. The availability of 16S ribosomal RNA (rRNA) gene sequences from a multitude of natural environments now offers a unique opportunity to study microbial diversity and community structure. The large volume of sequencing data however makes it time consuming to assign individual sequences to phylotypes by searching them against public databases. Since ribosomal sequences have diverged across prokaryotic species, they can be grouped into clusters that represent operational taxonomic units. However, available clustering programs suffer from overlap of sequence spaces in adjacent clusters. In natural environments, gene sequences are homogenous within species but divergent between species. This evolutionary constraint results in an uneven distribution of genetic distances of genes in sequence space. To cluster 16S rRNA sequences more accurately, it is therefore essential to select core sequences that are located at the centers of the distributions represented by the genetic distance of sequences in taxonomic units. Based on this idea, we here describe a novel sequence clustering algorithm named CLUSTOM that minimizes the overlaps between adjacent clusters. The performance of this algorithm was evaluated in a comparative exercise with existing programs, using the reference sequences of the SILVA database as well as published pyrosequencing datasets. The test revealed that our algorithm achieves higher accuracy than ESPRIT-Tree and mothur, few of the best clustering algorithms. Results indicate that the concept of an uneven distribution of sequence distances can effectively and successfully cluster 16S rRNA gene sequences. The algorithm of CLUSTOM has been implemented both as a web and as a standalone command line application, which are available at http://clustom.kribb.re.kr. PMID:23650520

  3. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/.

  4. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  5. Molecular Diagnosis of Kingella kingae Pericarditis by Amplification and Sequencing of the 16S rRNA Gene▿

    PubMed Central

    Matta, Matta; Wermert, Delphine; Podglajen, Isabelle; Sanchez, Olivier; Buu-Hoï, Annie; Gutmann, Laurent; Meyer, Guy; Mainardi, Jean-Luc

    2007-01-01

    Kingella kingae is a fastidious gram-negative bacillus that is considered an emerging pathogen in pediatric settings but remains less common in adults. Here we describe a case of pericarditis in an immunocompetent adult host. The microorganism was identified directly from the clinical sample by molecular techniques, i.e., 16S rRNA gene amplification and sequencing. PMID:17634294

  6. Molecular diagnosis of Kingella kingae pericarditis by amplification and sequencing of the 16S rRNA gene.

    PubMed

    Matta, Matta; Wermert, Delphine; Podglajen, Isabelle; Sanchez, Olivier; Buu-Hoï, Annie; Gutmann, Laurent; Meyer, Guy; Mainardi, Jean-Luc

    2007-09-01

    Kingella kingae is a fastidious gram-negative bacillus that is considered an emerging pathogen in pediatric settings but remains less common in adults. Here we describe a case of pericarditis in an immunocompetent adult host. The microorganism was identified directly from the clinical sample by molecular techniques, i.e., 16S rRNA gene amplification and sequencing.

  7. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type.

  8. Campylobacter jejuni, an uncommon cause of splenic abscess diagnosed by 16S rRNA gene sequencing.

    PubMed

    Seng, Piseth; Quenard, Fanny; Menard, Amélie; Heyries, Laurent; Stein, Andreas

    2014-12-01

    Splenic abscess is a rare disease that primarily occurs in patients with splenic trauma, endocarditis, sickle cell anemia, or other diseases that compromise the immune system. This report describes a culture-negative splenic abscess in an immunocompetent patient caused by Campylobacter jejuni, as determined by 16S rRNA gene sequencing.

  9. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  10. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences.

    PubMed Central

    Escalante, A A; Ayala, F J

    1994-01-01

    Malaria is among mankind's worst scourges, affecting many millions of people, particularly in the tropics. Human malaria is caused by several species of Plasmodium, a parasitic protozoan. We analyze the small subunit rRNA gene sequences of 11 Plasmodium species, including three parasitic to humans, to infer their evolutionary relationships. Plasmodium falciparum, the most virulent of the human species, is closely related to Plasmodium reichenowi, which is parasitic to chimpanzee. The estimated time of divergence of these two Plasmodium species is consistent with the time of divergence (6-10 million years ago) between the human and chimpanzee lineages. The falciparum-reichenowi clade is only remotely related to two other human parasites, Plasmodium malariae and Plasmodium vivax, which are also only remotely related to each other. Thus, the parasitic associations of the Plasmodium species with their human hosts are phylogenetically independent. The remote phylogenetic relationship between the two bird parasites, Plasmodium gallinaceum and Plasmodium lophurae, and any of the human parasites provides no support for the hypothesis that infection by Plasmodium falciparum is a recent acquisition of humans, possibly coincident with the onset of agriculture. PMID:7972067

  11. Evolution of green plants as deduced from 5S rRNA sequences.

    PubMed

    Hori, H; Lim, B L; Osawa, S

    1985-02-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other.

  12. Evolution of green plants as deduced from 5S rRNA sequences

    PubMed Central

    Hori, Hiroshi; Lim, Byung-Lak; Osawa, Syozo

    1985-01-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other. PMID:16593540

  13. Analysis of transduction in wastewater bacterial populations by targeting the phage-derived 16S rRNA gene sequences.

    PubMed

    Del Casale, Antonio; Flanagan, Paul V; Larkin, Michael J; Allen, Christopher C R; Kulakov, Leonid A

    2011-04-01

    Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.

  14. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    PubMed Central

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  15. Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa.

    PubMed

    Ohama, T; Kumazaki, T; Hori, H; Osawa, S

    1984-06-25

    The nucleotide sequences of 5S rRNA from a mesozoan Dicyema misakiense and three metazoan species, i.e., an acorn-worm Saccoglossus kowalevskii, a moss-animal Bugula neritina, and an octopus Octopus vulgaris have been determined. A phylogenic tree of multicellular animals has been constructed from 73 5S rRNA sequences available at present including those from the above four sequences. The tree suggests that the mesozoan is the most ancient multicellular animal identified so far, its emergence time being almost the same as that of flagellated or ciliated protozoans. The branching points of planarians and nematodes are a little later than that of the mesozoan but are clearly earlier than other metazoan groups including sponges and jellyfishes. Many metazoan groups seem to have diverged within a relatively short period.

  16. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  17. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    SciTech Connect

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  18. Escherichia coli 16S rRNA 3'-end formation requires a distal transfer RNA sequence at a proper distance.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation. Images PMID:2684637

  19. Use of 16S rRNA Sequencing for Identification of Actinobacillus ureae Isolated from a Cerebrospinal Fluid Sample

    PubMed Central

    Whitelaw, A. C.; Shankland, I. M.; Elisha, B. G.

    2002-01-01

    Actinobacillus ureae, previously Pasteurella ureae, has on rare occasions been described as a cause of human infection. Owing to its rarity, it may not be easily identified in clinical microbiology laboratories by standard tests. This report describes a patient with acute bacterial meningitis due to A. ureae. The identity of the isolate was determined by means of DNA sequence analysis of a portion of the 16S rRNA gene. PMID:11825992

  20. Sequence variation of the 16S to 23S rRNA spacer region in Salmonella enterica.

    PubMed

    Christensen, H; Møller, P L; Vogensen, F K; Olsen, J E

    2000-01-01

    The possibility for identification of Salmonella enterica serotypes by sequence analysis of the 16S to 23S rRNA internal transcribed spacer was investigated by direct sequencing of polymerase chain reaction-amplified DNA from all operons simultaneously in a collection of 25 strains of 18 different serotypes of S. enterica, and by sequencing individual cloned operons from a single strain. It was only possible to determine the first 117 bases upstream from the 23S rRNA gene by direct sequencing because of variation between the rrn operons. Comparison of sequences from this region allowed separation of only 15 out of the 18 serotypes investigated and was not specific even at the subspecies level of S. enterica. To determine the differences between internal transcribed spacers in more detail, the individual rrn operons of strain JEO 197, serotype IV 43:z4,z23:-, were cloned and sequenced. The strain contained four short internal transcribed spacer fragments of 382-384 bases in length, which were 98.4-99.7% similar to each other and three long fragments of 505 bases with 98.0-99.8% similarity. The study demonstrated a higher degree of interbacterial variation than intrabacterial variation between operons for serotypes of S. enterica.

  1. Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing

    PubMed Central

    2013-01-01

    Background Metagenomics seeks to understand microbial communities and assemblages by DNA sequencing. Technological advances in next generation sequencing technologies are fuelling a rapid growth in the number and scope of projects aiming to analyze complex microbial environments such as marine, soil or the gut. Recent improvements in longer read lengths and paired-sequencing allow better resolution in profiling microbial communities. While both 454 sequencing and Illumina sequencing have been used in numerous metagenomic studies, SOLiD sequencing is not commonly used in this area, as it is believed to be more suitable in the context of reference-guided projects. Results To investigate the performance of SOLiD sequencing in a metagenomic context, we compared taxonomic profiles of SOLiD mate-pair sequencing reads with Sanger paired reads and 454 single reads. All sequences were obtained from the bacterial 16S rRNA gene, which was amplified from microbial DNA extracted from a human fecal sample. Additionally, from the same fecal sample, complete genomic microbial DNA was extracted and shotgun sequenced using SOLiD sequencing to study the composition of the intestinal microbiota and the existing microbial metabolism. We found that the microbiota composition of 16S rRNA gene sequences obtained using Sanger, 454 and SOLiD sequencing provide results comparable to the result based on shotgun sequencing. Moreover, with SOLiD sequences we obtained more resolution down to the species level. In addition, the shotgun data allowed us to determine a functional profile using the databases SEED and KEGG. Conclusions This study shows that SOLiD mate-pair sequencing is a viable and cost-efficient option for analyzing a complex microbiome. To the best of our knowledge, this is the first time that SOLiD sequencing has been used in a human sample. PMID:24564472

  2. Molecular characterisation of Mycoplasma hyorhinis isolated from pigs using pulsed-field gel electrophoresis and 16S rRNA sequencing

    PubMed Central

    Yamaguti, Maurício; Oliveira, Rosângela C; Marques, Lucas M; Buzinhani, Melissa; Buim, Marcos R; Neto, Renata L; Guimarães, Ana Márcia S; Timenetsky, Jorge

    2015-01-01

    Economic loss in pig breeding is common due to respiratory disorders, and Mycoplasma hyopneumoniae and Mycoplasma hyorhinis, namely, are the most common infectious agents. The aim of this study is to recover these mollicutes and detect their genotypic variations by pulsed-field gel electrophoresis (PFGE) and sequencing the 16 s rRNA gene. One hundred and twenty-six swabs from tonsil and nasal mucus of pigs with respiratory disorders were analysed. A total of 78 lungs were sampled, as well as two trachea and two tonsils obtained from animals with respiratory disorder. A total of 59 isolates were obtained: 1 (1.70 per cent) of M hyopneumoniae, 2 (3.40 per cent) of Mycoplasma flocculare and 56 (94.90 per cent) of M hyorhinis. The PFGE for M hyorhinis showed 10 profiles with enzyme AvaI and 9 profiles with XhoI. A low polymorphism of the 16sRNS gene was detected in M hyorhinis isolates compared with the type strain in the GenBank. M hyorhinis isolates of different herds showed a large heterogenicity with enzymes AvaI and XhoI. The sequencing of the 16S rRNA gene allowed for analysing the interspecific and intraspecific variations of isolated mycoplasmas. PMID:26688737

  3. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species.

  4. Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences.

    PubMed

    Kuhnert, P; Capaul, S E; Nicolet, J; Frey, J

    1996-10-01

    The sequences of the 16S rRNA genes (rrs genes) of Clostridium chauvoei, the causative agent of blackleg in cattle, and the phenotypically related organism Clostridium septicum were determined. After amplification of 1,507-bp PCR fragments from the corresponding rrs genes, the sequences were determined in a single round of sequencing by using conserved region primers. A sequence similarity analysis of the sequences revealed the close phylogenetic relationship of C. chauvoei and C. septicum in Clostridium cluster I (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994), which includes Clostridium carnis, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. We found that 99.3% of the nucleotides in the genes of C. chauvoei and C. septicum are identical.

  5. Archaea box C/D enzymes methylate two distinct substrate rRNA sequences with different efficiency.

    PubMed

    Graziadei, Andrea; Masiewicz, Pawel; Lapinaite, Audrone; Carlomagno, Teresa

    2016-05-01

    RNA modifications confer complexity to the 4-nucleotide polymer; nevertheless, their exact function is mostly unknown. rRNA 2'-O-ribose methylation concentrates to ribosome functional sites and is important for ribosome biogenesis. The methyl group is transferred to rRNA by the box C/D RNPs: The rRNA sequence to be methylated is recognized by a complementary sequence on the guide RNA, which is part of the enzyme. In contrast to their eukaryotic homologs, archaeal box C/D enzymes can be assembled in vitro and are used to study the mechanism of 2'-O-ribose methylation. In Archaea, each guide RNA directs methylation to two distinct rRNA sequences, posing the question whether this dual architecture of the enzyme has a regulatory role. Here we use methylation assays and low-resolution structural analysis with small-angle X-ray scattering to study the methylation reaction guided by the sR26 guide RNA fromPyrococcus furiosus We find that the methylation efficacy at sites D and D' differ substantially, with substrate D' turning over more efficiently than substrate D. This observation correlates well with structural data: The scattering profile of the box C/D RNP half-loaded with substrate D' is similar to that of the holo complex, which has the highest activity. Unexpectedly, the guide RNA secondary structure is not responsible for the functional difference at the D and D' sites. Instead, this difference is recapitulated by the nature of the first base pair of the guide-substrate duplex. We suggest that substrate turnover may occur through a zip mechanism that initiates at the 5'-end of the product.

  6. Confirmation and identification of parasitic stages of obligate endobionts (Harpellales) in blackflies (Simuliidae) by means of rRNA sequence data.

    PubMed

    White, Merlin M; Lichtwardt, Robert W; Colbo, Murray H

    2006-09-01

    Over the last 35y, the life cycle of endosymbiotic gut fungi (Harpellales) has been expanded to include cyst stages associated with the developing ovaries. Ovarian cysts (chlamydospore stages) have been identified after germination and production of asexual trichospores in vitro, but germination is not always successful, and spores exhibit morphological variation. Sequence data (for partial 18S and 28S rRNA genes) were generated for these putative stages of Harpellales using ungerminated cysts from adult blackflies and germinated cysts associated with field-collected blackfly egg masses. Cladistic analyses of the 18S and 28S rRNA sequences confirmed that ovarian cysts are stages in the life cycle of Harpellales. Ungerminated cysts, from a blackfly collected from New York state were identified as Pennella simulii and two samples from Newfoundland Prosimulium mixtum adults were identified as Harpella melusinae. Cysts with bipolar germ tubes, associated with field-collected Simulium egg masses from Newfoundland, were also identified as H. melusinae. Two other samples of cysts could not be matched with available sequences of gut fungi from larval hosts. The potential use of this approach to identify pathogenic stages associated with adult ovaries or field-collected egg masses among other host groups is highlighted and promoted as a tool to test the hypothesis that ovarian cysts are a dispersal stage common to all genera of Harpellales.

  7. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations.

    PubMed Central

    Taylor, D E; Ge, Z; Purych, D; Lo, T; Hiratsuka, K

    1997-01-01

    In this study, two identical copies of a 23S-5S gene cluster, which are separately situated within the Helicobacter pylori UA802 chromosome, were cloned and sequenced. Comparison of the DNA sequence of the H. pylori 23S rRNA gene with known sequences of other bacterial 23S rRNA genes indicated that the H. pylori UA802 23S rRNA genes are closely related to those of Campylobacter spp. and therefore belong in the proposed Proteobacteria subdivision. The 5'-terminal nucleotide T or A of the 23S rRNA is close to a Pribnow box which could be a -10 region of the transcription promoter for the 23S rRNA gene, suggesting that a posttranscriptional process is likely not involved in the maturation of the H. pylori 23S rRNA. Clinical isolates of H. pylori resistant to clarithromycin were examined by using natural transformation and pulsed-field gel electrophoresis. Cross-resistance to clarithromycin and erythromycin, which was transferred by natural transformation from the Cla(r) Ery(r) donor strain H. pylori E to the Cla(s) Ery(s) recipient strain H. pylori UA802, was associated with an single A-to-G transition mutation at position 2142 of both copies of the 23S rRNA in UA802 Cla(r) Ery(r) mutants. The transformation frequency for Cla(r) and Ery(r) was found to be approximately 2 x 10(-6) transformants per viable cell, and the MICs of both clarithromycin and erythromycin for the Cla(r) Ery(r) mutants were equal to those for the donor isolate. Our results confirmed the previous findings that mutations at positions 2142 and 2143 of the H. pylori 23S rRNA gene are responsible for clarithromycin resistance and suggest that acquisition of clarithromycin resistance in H. pylori could also result from horizontal transfer. PMID:9420030

  8. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    PubMed

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  9. Description of an Unusual Neisseria meningitidis Isolate Containing and Expressing Neisseria gonorrhoeae-Specific 16S rRNA Gene Sequences

    PubMed Central

    Skvoretz, Rhonda; Montgomery-Fullerton, Megan; Jonas, Vivian; Brentano, Steve

    2013-01-01

    An apparently rare Neisseria meningitidis isolate containing one copy of a Neisseria gonorrhoeae 16S rRNA gene is described herein. This isolate was identified as N. meningitidis by biochemical identification methods but generated a positive signal with Gen-Probe Aptima assays for the detection of Neisseria gonorrhoeae. Direct 16S rRNA gene sequencing of the purified isolate revealed mixed bases in signature regions that allow for discrimination between N. meningitidis and N. gonorrhoeae. The mixed bases were resolved by sequencing individually PCR-amplified single copies of the genomic 16S rRNA gene. A total of 121 discrete sequences were obtained; 92 (76%) were N. meningitidis sequences, and 29 (24%) were N. gonorrhoeae sequences. Based on the ratio of species-specific sequences, the N. meningitidis strain seems to have replaced one of its four intrinsic 16S rRNA genes with the gonococcal gene. Fluorescence in situ hybridization (FISH) probes specific for meningococcal and gonococcal rRNA were used to demonstrate the expression of the rRNA genes. Interestingly, the clinical isolate described here expresses both N. meningitidis and N. gonorrhoeae 16S rRNA genes, as shown by positive FISH signals with both probes. This explains why the probes for N. gonorrhoeae in the Gen-Probe Aptima assays cross-react with this N. meningitidis isolate. The N. meningitidis isolate described must have obtained N. gonorrhoeae-specific DNA through interspecies recombination. PMID:23863567

  10. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes

    PubMed Central

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2017-01-01

    Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5’ end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and

  11. Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences.

    PubMed

    Pan, Hong-Chun; Zhou, Kai-Ya; Song, Da-Xiang; Qiu, Yang

    2004-03-01

    The family status of the genus Nephila, which belongs to Tetragnathidae currently but Araneidae formerly, was reexamined based on molecular phylogenetic analyses. In the present study, 12S and 18S rRNA gene fragments of eight species of spiders were amplified and sequenced. In addition, 3'-end partial cDNA of major ampullate spidroin-1 (MaSp1) gene of Argiope amoena was cloned and sequenced, and the 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and the predicted amino acid sequence of C-terminal non-repetitive region of MaSp1 were aligned with some previously known sequences. The resulting phylogeny showed that Araneidae and Tetragnathidae are not a sister group in the superfamily Araneoidea, and the genus Nephila is closer to the genera of the family Araneidae rather than to those of Tetragnathidae. We suggest that the genus Nephila should be transferred back to Araneidae. Or the subfamily Nephilinae might be elevated to family level after it was redefined and redelimited. Furthermore, the study showed that 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and C-terminal non-repetitive region's amino acid sequence of MaSp1 are useful molecular markers for phylogenetic analysis of spiders.

  12. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  13. MSClust: A Multi-Seeds Based Clustering Algorithm for microbiome profiling using 16S rRNA Sequence

    PubMed Central

    Chen, Wei; Cheng, Yongmei; Zhang, Clarence; Zhang, Shaowu; Zhao, Hongyu

    2013-01-01

    Recent developments of next generation sequencing technologies have led to rapid accumulation of 16s rRNA sequences for microbiome profiling. One key step in data processing is to cluster short sequences into operational taxonomic units (OTUs). Although many methods have been proposed for OTU inferences, a major challenge is the balance between inference accuracy and computational efficiency, where inference accuracy is often sacrificed to accommodate the need to analyze large numbers of sequences. Inspired by the hierarchical clustering method and a modified greedy network clustering algorithm, we propose a novel multi-seeds based heuristic clustering method, named MSClust, for OTU inference. MSClust first adaptively selects multi-seeds instead of one seed for each candidate cluster, and the reads are then processed using a greedy clustering strategy. Through many numerical examples, we demonstrate that MSClust enjoys less memory usage, and better biological accuracy compared to existing heuristic clustering methods while preserving efficiency and scalability. PMID:23899776

  14. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.

  15. The identification of rRNA maturation sites in the microsporidian Encephalitozoon cuniculi argues against the full excision of presumed ITS1 sequence.

    PubMed

    Peyretaillade, E; Peyret, P; Metenier, G; Vivares, C P; Prensier, G

    2001-01-01

    In Encephalitozoon cuniculi like in other microsporidia, the primary transcript for SSU and LSU rRNAs includes only one internal transcribed spacer (ITS1) which separates SSU rRNA from the 5.8S region associated with LSU rRNA. The extraction of total RNA from E. cuniculi-infected MRC5 cells using a hot phenol/chloroform procedure enabled us to perform primer extension and S1 nuclease protection experiments in the aim of identifying rRNA maturation sites. Our data support a simple processing (four cleavage sites) with elimination of only nine nucleotides between SSU and LSU rRNA regions. Most of the presumed ITS1 sequence characterized by strain-dependent polymorphism therefore remains linked to SSU rRNA 3' end. A new secondary structure for the sixth domain of E. cuniculi LSU rRNA is proposed following the identification of its 3' terminus.

  16. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  17. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  18. Morphology and small subunit (SSU) rRNA gene sequence of the new brackish water ciliate Neobakuella flava n. g., n. sp. (Ciliophora, Spirotricha, Bakuellidae) and SSU rRNA gene sequences of six additional hypotrichs from Korea.

    PubMed

    Li, Liqiong; Khan, Sadia Nawroz; Ji, Daode; Shin, Mann Kyoon; Berger, Helmut

    2011-01-01

    The morphology and the small subunit (SSU) rRNA gene sequence of the hypotrich Neobakuella flava n. g., n. sp. from the estuary of the Taehwagang River (Ulsan, South Korea) were investigated. The three frontal cirri, the composition of the midventral complex of cirral pairs and rows, and the simple dorsal kinety pattern of three bipolar kineties assign it to the urostyloid taxon Bakuellidae. The increased number of buccal and parabuccal cirri, the presence of transverse cirri, and more than one left marginal row, as well as the lack of caudal cirri separate Neobakuella n. g. from the other bakuellids. Neobakuella flava n. sp. has many 0.3 μm sized green and/or yellow usually dark-green cortical granules and some sparsely distributed, 2 × 1 μm sized grass green with yellowish shimmer granules. The gene sequence data indicate a close relationship with Diaxonella and a distinct separation from the bakuellid Metaurostylopsis and parabirojimid Parabirojimia. The SSU rRNA gene sequences of four further urostyloids (i.e. Diaxonella pseudorubra, Anteholosticha monilata, Metaurostylopsis struederkypkeae, Pseudourostyla cristata) and two stylonychines (i.e. Sterkiella cavicola, Sterkiella histriomuscorum) from Korea were analyzed. Anteholosticha monilata, type of the genus, is clearly separated from the Holosticha clade, supporting the morphological separation from Holosticha. Sterkiella cavicola, type of Sterkiella, clusters within the stylonychines and is obviously closely related with S. histriomuscorum.

  19. Reconsideration of the phylogenetic positions of five peritrich genera, Vorticella, Pseudovorticella, Zoothamnopsis, Zoothamnium, and Epicarchesium (Ciliophora, Peritrichia, Sessilida), based on small subunit rRNA gene sequences.

    PubMed

    Li, Lifang; Song, Weibo; Warren, Alan; Shin, Mann Kyoon; Chen, Zigui; Ji, Daode; Sun, Ping

    2008-01-01

    In order to re-evaluate the systematics of sessilid peritrich ciliates, small subunit (SSU) rRNA gene sequences were determined for 12 species belonging to five genera: Vorticella, Pseudovorticella, Epicarchesium, Zoothamnium, and Zoothamnopsis. Phylogenetic trees were deduced using Bayesian inference, maximum parsimony, and maximum likelihood methods. The phylogenetic analyses suggest that (1) sessilids which have stalks with continuous myonemes that contract in a zig-zag fashion form a separate clade from those which have stalks that contract independently and in a spiral fashion, supporting the separation of the family Zoothamniidae from the family Vorticellidae and (2) Epicarchesium and Pseudovorticella, both of which have reticulate silverline systems, are more closely related to each other than to other vorticellids, suggesting that differences in the silverline system (i.e. transverse vs. reticulate) may be the result of genuine evolutionary divergence among sessilid peritrichs. However, the newly sequenced Zoothamnopsis sinica, which has a reticulate silverline pattern, nests within the unresolved Zoothamnium species that have transverse silverline patterns. Thus, there were at least two evolutions of the reticulate silverline pattern character state from a plesiomorphic transverse state in the peritrichid ciliates. The molecular work demonstrates the genus Zoothamnium to be paraphyletic in relation to morphological studies, and suggests that Astylozoon, Opisthonecta, and Vorticella microstoma possibly share a SSU rRNA secondary structure in the helix E10-1 region.

  20. Genetic diversity among Babesia rossi detected in naturally infected dogs in Abeokuta, Nigeria, based on 18S rRNA gene sequences.

    PubMed

    Takeet, Michael I; Oyewusi, Adeoye J; Abakpa, Simon A V; Daramola, Olukayode O; Peters, Sunday O

    2017-03-01

    Adequate knowledge of the genetic diversity among Babesia species infecting dogs is necessary for a better understanding of the epidemiology and control of canine babesiosis. Hence, this study determined the genetic diversity among the Babesia rossi detected in dogs presented for routine examination in Veterinary Hospitals in Abeokuta, Nigeria. Blood were randomly collected from 209 dogs. Field-stained thin smears were made and DNA extracted from the blood. Partial region of the 18S small subunit ribosomal RNA (rRNA) gene was amplified, sequenced and analysed. Babesia species was detected in 16 (7.7%) of the dogs by microscopy. Electrophoresed PCR products from 39 (18.66%) dogs revealed band size of 450 bp and 2 (0.95%) dogs had band size of 430 bp. The sequences obtained from 450 bp amplicon displayed homology of 99.74% (387/388) with partial sequences of 18S rRNA gene of Babesia rossi in the GeneBank. Of the two sequences that had 430 bp amplicon, one was identified as T. annulata and second as T. ovis. A significantly (p<0.05) higher prevalence of B. rossi was detected by PCR compared to microscopy. The mean PCV of Babesia infected dogs was significantly (p<0.05) lower than non-infected dogs. Phylogenetic analysis revealed minimal diversity among B. rossi with the exception of one sequence that was greatly divergent from the others. This study suggests that more than one genotype of B. rossi may be in circulation among the dog population in the study area and this may have potential implication on clinical outcome of canine babesiosis.

  1. Using DGGE and 16S rRNA Gene Sequence Analysis to Evaluate Changes in Oral Bacterial Composition

    PubMed Central

    CHEN, Zhou; TRIVEDI, Harsh M.; CHHUN, Nok; BARNES, Virginia M.; SAXENA, Deepak; XU, Tao; LI, Yihong

    2015-01-01

    Objective To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Methods Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan/2.0% PVM/MA copolymer/0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles of PCR-amplified and 16S rRNA gene segments sequence analysis. Results Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified six phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. Conclusion The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan/2.0% PVM/MA copolymer/0.243% sodium fluoride may promote a healthier composition within the oral bacterial community. PMID:22319750

  2. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes

    SciTech Connect

    Gihring, Thomas; Green, Stefan; Schadt, Christopher Warren

    2011-01-01

    Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g. Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.

  3. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses.

    PubMed

    Mathur, Rinku; Adlakha, Neeru

    2014-06-01

    Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

  4. Genotypic variation of Pneumocystis jirovecii isolates in India based on sequence diversity at mitochondrial large subunit rRNA.

    PubMed

    Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Agarwal, Sanjay Kumar; Samantaray, Jyotish Chandra; Kumar, Lalit; Kabra, Sushil Kumar; Luthra, Kalpana; Sreenivas, Vishnubhatla; Iyer, Venkateswaran K

    2011-03-01

    Pneumocystis pneumonia (PCP), a common and serious opportunistic infection in immunocompromised patients, is caused by Pneumocystis jirovecii (formerly known as Pneumocystis carinii f. sp. hominis). The aim of the present study was to describe the prevalence and distribution of genotypes of P. jirovecii based on sequence polymorphisms at mitochondrial large subunit ribosomal RNA (mt LSU rRNA) region in both HIV and non-HIV immunocompromised individuals with a positive PCR result for PCP in a tertiary health care centre in northern India. From January 2005 to October 2008, 50 patients [22 HIV-seropositive individuals, 10 post-renal transplant (PRT) recipients, 3 cancer patients, and 15 patients with various other kinds of immunosuppression] were found to be positive for P. jirovecii using PCR at the mt LSU rRNA gene. Genotyping of the positive samples was performed at the mt LSU rRNA locus. Genotype 2 was the most common accounting for 42% of total types. This was followed by the genotypes 3 (24%), 1 (20%), and 4 (8%). Mixed infection was observed in 3 cases (6%). The rates of genotype distribution were similar in HIV-seropositive individuals, cancer patients, and in patients with other kinds of immunosuppression. In the PRT recipients, genotype 1 was the most prevalent type (80%). This is the first study describing the prevalence of genotypes in HIV-infected and HIV-uninfected, immunocompromised patients based on the mt LSU rRNA gene from the Indian subcontinent. The most prevalent genotype observed was type 2 in contrast to many studies from other parts of the world where genotype 1 was the most prevalent type, suggesting geographical variation.

  5. Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences.

    PubMed

    Elsheikha, Hany M; Lacher, David W; Mansfield, Linda S

    2005-11-01

    Phylogenetic analyses based on sequences of the nuclear-encoded small subunit rRNA (ssurRNA) gene were performed to examine the origin, phylogeny, and biogeographic relationships of Sarcocystis neurona isolates from opossums and horses from the State of Michigan, USA, in relation to other cyst-forming coccidia. A total of 31 taxa representing all recognized subfamilies and genera of Sarcocystidae were included in the analyses with clonal isolates of two opossum and two horse S. neurona. Phylogenies obtained by the four tree-building methods were consistent with the classical taxonomy based on morphological criteria. The "isosporid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora lacking stieda bodies, and Hyaloklossia formed a sister group to the Sarcocystis spp. Sarcocystis species were divided into three main lineages; S. neurona isolates were located in the second lineage and clustered with S. mucosa, S. dispersa, S. lacertae, S. rodentifelis, S. muris, and Frenkelia spp. Alignment of S. neurona SSU rRNA gene sequences of Michigan opossum isolates (MIOP5, MIOP20) and a S. neurona Michigan horse isolate (MIH8) showed 100% identity. These Michigan isolates differed in 2/1085 bp (0.2%) from a Kentucky S. neurona horse isolate (SN5). Additionally, S. neurona isolates from horses and opossums were identical based on the ultrastructural features and PCR-RFLP analyses thus forming a phylogenetically indistinct group in these regions. These findings revealed the concordance between the morphological and molecular data and confirmed that S. neurona from opossums and horses originated from the same phylogenetic origin.

  6. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    PubMed Central

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0–9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community. PMID:25798135

  7. Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing.

    PubMed

    Chen, Feng; Chan, Ho-Yin Edwin; Wong, Ka-Lok; Wang, Jun; Yu, Man-Tang; But, Paul Pui-Hay; Shaw, Pang-Chui

    2008-06-01

    Wild SAUSSUREA LAPPA in the family Asteraceae is a highly endangered plant. On the other hand, the dried root of cultivated S. LAPPA (Radix Aucklandia, Muxiang) is a popular medicinal material for treating various gastrointestinal diseases. In the market, several medicinal plants including VLADIMIRIA BERARDIOIDEA, V. SOULIEI, V. SOULIEI var. MIRABILIS, INULA HELENIUM and I. RACEMOSA in the family Asteraceae and ARISTOLOCHIA DEBILIS in the family Aristolochiaceae have the trade name of Muxiang. To manage the concerned medicinal material, we investigated if the ITS and 5S rRNA intergenic spacers are effective for discriminating S. LAPPA from its substitutes and adulterants. Sequencing results showed that the similarities of ITS-1, ITS-2 and 5S rRNA intergenic spacers among S. LAPPA and related species were 56.3 - 97.8 %, 58.5 - 97.0 %, and 26.4 - 77.9 %, respectively. The intraspecific variation was much lower. There are also several unique changes in the S. LAPPA sequences that may be used as differentiation markers.

  8. Relative Prevalence and Antimicrobial Susceptibility of Clinical Isolates of Elizabethkingia Species Based on 16S rRNA Gene Sequencing.

    PubMed

    Han, Mi-Soon; Kim, Hyunsoo; Lee, Yangsoon; Kim, Myungsook; Ku, Nam Su; Choi, Jun Yong; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2017-01-01

    Some of the previously reported clinical isolates of Elizabethkingia meningoseptica may be later named species of Elizabethkingia We determined the accuracy of species identification (with two matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS] systems and the Vitek 2 GN card), relative prevalence of three Elizabethkingia spp. in clinical specimens, and antimicrobial susceptibility of the species identified by 16S rRNA gene sequencing. Specimens for culture were collected from patients in a university hospital in Seoul, South Korea, between 2009 and 2015. All 3 Elizabethkingia spp. were detected in patients; among the 86 isolates identified by 16S rRNA gene sequencing, 17 (19.8%) were E. meningoseptica, 18 (20.9%) were Elizabethkingia miricola, and 51 (59.3%) were Elizabethkingia anophelis Only the MALDI-TOF Vitek MS system with an amended database correctly identified all of the isolates. The majority (76.7%) of the isolates were from the lower respiratory tract, and 8 (9.3%) were from blood. Over 90% of E. meningoseptica and E. anophelis isolates were susceptible to piperacillin-tazobactam and rifampin. In contrast, all E. miricola isolates were susceptible to fluoroquinolones except ciprofloxacin. Further studies are urgently needed to determine the optimal antimicrobial agents for the treatment of infections due to each individual Elizabethkingia species.

  9. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences

    PubMed Central

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-01-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species. PMID:25313278

  10. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species.

  11. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences.

    PubMed

    Dorsch, M; Lane, D; Stackebrandt, E

    1992-01-01

    The inter- and intrageneric relationships of the genus Vibrio were investigated by performing a comparative analysis of the 16S rRNAs of 10 species, including four pathogenic representatives. The results of immunological and 5S rRNA studies were confirmed in that the genus is a neighboring taxon of the family Enterobacteriaceae. With regard to the intrageneric structure, Vibrio alginolyticus, Vibrio campbellii, Vibrio natriegens, Vibrio harveyi, Vibrio proteolyticus, Vibrio parahaemolyticus, and Vibrio vulnificus form the core of the genus, while Vibrio (Listonella) anguillarum, Vibrio diazotrophicus, and Vibrio hollisae are placed on the outskirts of the genus. Variable regions around positions 80, 180, and 450 could be used as target sites for genus- and species-specific oligonucleotide probes and polymerase chain reaction primers to be used in molecular identification.

  12. Next-Generation Sequencing of the Bacterial 16S rRNA Gene for Forensic Soil Comparison: A Feasibility Study.

    PubMed

    Jesmok, Ellen M; Hopkins, James M; Foran, David R

    2016-05-01

    Soil has the potential to be valuable forensic evidence linking a person or item to a crime scene; however, there is no established soil individualization technique. In this study, the utility of soil bacterial profiling via next-generation sequencing of the 16S rRNA gene was examined for associating soils with their place of origin. Soil samples were collected from ten diverse and nine similar habitats over time, and within three habitats at various horizontal and vertical distances. Bacterial profiles were analyzed using four methods: abundance charts and nonmetric multidimensional scaling provided simplification and visualization of the massive datasets, potentially aiding in expert testimony, while analysis of similarities and k-nearest neighbor offered objective statistical comparisons. The vast majority of soil bacterial profiles (95.4%) were classified to their location of origin, highlighting the potential of bacterial profiling via next-generation sequencing for the forensic analysis of soil samples.

  13. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology.

    PubMed

    Turbeville, J M; Field, K G; Raff, R A

    1992-03-01

    Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.

  14. Leptospira spp. strain identification by MALDI TOF MS is an equivalent tool to 16S rRNA gene sequencing and multi locus sequence typing (MLST)

    PubMed Central

    2012-01-01

    Background In this study mass spectrometry was used for evaluating extracted leptospiral protein samples and results were compared with molecular typing methods. For this, an extraction protocol for Leptospira spp. was independently established in two separate laboratories. Reference spectra were created with 28 leptospiral strains, including pathogenic, non-pathogenic and intermediate strains. This set of spectra was then evaluated on the basis of measurements with well-defined, cultured leptospiral strains and with 16 field isolates of veterinary or human origin. To verify discriminating peaks for the applied pathogenic strains, statistical analysis of the protein spectra was performed using the software tool ClinProTools. In addition, a dendrogram of the reference spectra was compared with phylogenetic trees of the 16S rRNA gene sequences and multi locus sequence typing (MLST) analysis. Results Defined and reproducible protein spectra using MALDI-TOF MS were obtained for all leptospiral strains. Evaluation of the newly-built reference spectra database allowed reproducible identification at the species level for the defined leptospiral strains and the field isolates. Statistical analysis of three pathogenic genomospecies revealed peak differences at the species level and for certain serovars analyzed in this study. Specific peak patterns were reproducibly detected for the serovars Tarassovi, Saxkoebing, Pomona, Copenhageni, Australis, Icterohaemorrhagiae and Grippotyphosa. Analysis of the dendrograms of the MLST data, the 16S rRNA sequencing, and the MALDI-TOF MS reference spectra showed comparable clustering. Conclusions MALDI-TOF MS analysis is a fast and reliable method for species identification, although Leptospira organisms need to be produced in a time-consuming culture process. All leptospiral strains were identified, at least at the species level, using our described extraction protocol. Statistical analysis of the three genomospecies L. borgpetersenii

  15. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments.

    PubMed

    Inagaki, Fumio; Sakihama, Yuri; Inoue, Akira; Kato, Chiaki; Horikoshi, Koki

    2002-05-01

    A depth profile of naturally occurring bacterial community structures associated with the deep-sea cold seep push-core sediment in the Japan Trench at a depth of 5343 m were evaluated using molecular phylogenetic analyses of RNA reverse transcription-PCR (RT-PCR) amplified 16S crDNA fragments. A total of 137 clones of bacterial crDNA (complimentary rDNA) phylotypes (phylogenetic types) obtained at three different depths (2-4, 8-10 and 14-16 cm) were identified in partial crDNA sequencings. crDNA phylotypes from the cold seep sediment were dominantly composed of delta- and epsilon-Proteobacteria (36% and 42% respectively). Phylotype analysis of crDNA clone libraries and terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the majority of bacterial components shifted from delta- Proteobacteria to epsilon-Proteobacteria with increasing depth. Among the delta-proteobacterial crDNA clones, the sequences related to the genus Desulfosarcina were dominant. Almost all sequences of crDNA belonging to epsilon-Proteobacteria were affiliated with the same cluster (epsilon-CSG: epsilon-proteobacterial cold seep group), and were closely related with rDNA sequences from deep-sea hydrothermal vent environments.

  16. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  17. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  18. The sequence of Methanospirillum hungatei 23S rRNA confirms the specific relationship between the extreme halophiles and the Methanomicrobiales

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Ching, A.; Stetter, K. O.; Woese, C. R.

    1991-01-01

    We have determined the sequence of the 23S rRNA from the methanogenic archaeon Methanospirillum hungatei. This is the first such sequence from a member of the Methanomicrobiales. Moreover, it brings additional evidence to bear on the possible specific relationship between this particular group of methanogens and the extreme halophiles. Such evidence is critical in that several new (and relatively untested) methods of phylogenetic inference have lead to the controversial conclusion that the extreme halophiles are either not related to the archaea, or are only peripherally so. Analysis of the Methanospirillum hungatei 23S rRNA sequence shows the Methanomicrobiales are indeed a sister group of the extreme halophiles, further strengthening the conclusions reached from analysis of 16S rRNA sequences.

  19. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity

    PubMed Central

    2010-01-01

    Background The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. Results We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. Conclusions The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition. PMID:20214780

  20. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia.

    PubMed

    Salvi, Daniele; Mariottini, Paolo

    2012-11-01

    In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.

  1. 16S rRNA Gene Sequencing, Multilocus Sequence Analysis, and Mass Spectrometry Identification of the Proposed New Species “Clostridium neonatale”

    PubMed Central

    Bouvet, Philippe; Ferraris, Laurent; Dauphin, Brunhilde; Popoff, Michel-Robert; Butel, Marie Jose

    2014-01-01

    In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, “Clostridium neonatale.” To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies. PMID:25232167

  2. 16S rRNA gene sequencing, multilocus sequence analysis, and mass spectrometry identification of the proposed new species "Clostridium neonatale".

    PubMed

    Bouvet, Philippe; Ferraris, Laurent; Dauphin, Brunhilde; Popoff, Michel-Robert; Butel, Marie Jose; Aires, Julio

    2014-12-01

    In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, "Clostridium neonatale." To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies.

  3. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied.

  4. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data.

    PubMed

    Berbee, M L; Taylor, J W

    1992-01-01

    For the true fungi, phylogenetic relationships inferred from 18S ribosomal DNA sequence data agree with morphology when (1) the fungi exhibit diagnostic morphological characters, (2) the sequence-based phylogenetic groups are statistically supported, and (3) the ribosomal DNA evolves at roughly the same rate in the lineages being compared. 18S ribosomal RNA gene sequence data and biochemical data provide a congruent definition of true fungi. Sequence data support the traditional fungal subdivisions Ascomycotina and Basidiomycotina. In conflict with morphology, some zygomycetes group with chytrid water molds rather than with other terrestrial fungi, possibly owing to unequal rates of nucleotide substitutions among zygomycete lineages. Within the ascomycetes, the taxonomic consequence of simple or reduced morphology has been a proliferation of mutually incongruent classification systems. Sequence data provide plausible resolution of relationships for some cases where reduced morphology has created confusion. For example, phylogenetic trees from rDNA indicate that those morphologically simple ascomycetes classified as yeasts are polyphyletic and that forcible spore discharge was lost convergently from three lineages of ascomycetes producing flask-like fruiting bodies.

  5. Molecular diversity of drinking water bacterial communities using 16S rRNA gene sequence analyses

    EPA Science Inventory

    Our understanding of the microbial community structure of drinking water distribution system has relied on culture-based methods. However, recent studies have suggested that the majority of bacteria inhabiting distribution systems are unable to grow on artificial media. The goal ...

  6. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  7. Differentiation of Acinetobacter baumannii biotypes by amplification of 16S-23S rRNA intergenic spacer sequences.

    PubMed

    Garcia, A; Montoya, R; Bello, H; Gonzalez, G; Dominguez, M; Zemelman, R

    1996-01-01

    Isolates of Acinetobacter baumannii (32 strains) from blood samples obtained from patients in five Chilean hospitals were identified and biotyped according to their phenotypic properties. They were also submitted to random amplified polymorphic DNA (RAPD) using eight randomly designed 10-mers and the core sequence of M13 phage (15-mers) as well as amplification of the spacer regions between 16S and 23S genes in the prokaryotic rRNA genetic loci. With some primers, RAPD discriminated between biotypes, whereas with others each isolate showed a particular profile. When amplification of spacer regions was performed, a clear correlation between patterns and biotypes was found. This last technique allowed correct biotyping of clinical isolates. Both genetic methods might be used for the identification of A. baumannii biotypes.

  8. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.

    PubMed

    Chaw, S M; Zharkikh, A; Sung, H M; Lau, T C; Li, W H

    1997-01-01

    To study the evolutionary relationships among the four living gymnosperm orders and the interfamilial relationships in each order, a set of 65 nuclear 18S rRNA sequences from ferns, gymnosperms, and angiosperms was analyzed using the neighbor-joining and maximum-parsimony methods. With Selaginella as the outgroup, the analysis strongly indicates that the seed plants form a monophyletic group with the ferns as a sister group. Within the seed plants the angiosperms are clearly a monophyletic group. Although the bootstrap support for the monophyly of the gymnosperm clade is moderate, the monophyly is further supported by its lack of angiosperm-specific indels. Within the gymnosperms there appear to be three monophyletic clades: Cycadales-Ginkgoales, Gnetales, and Coniferales. The cycad-ginkgo clade is the earliest gymnosperm lineage. Given the strong support for the sister group relationship between Gnetales and Coniferales, it is unlikely that Gnetales is a sister group of the angiosperms, contrary to the view of many plant taxonomists. Within Coniferales, Pinaceae is monophyletic and basal to the remaining conifer families, among which there are three monophyletic clades: Phyllocladaceae-Podocarpaceae, Araucariaceae, and Sciadopityaceae-Taxaceae-Cephalotaxaceae-Taxodiacea e-Cupressaceae. Within the latter clade, Sciadopityaceae may be an outgroup to the other four families. Among the angiosperms, no significant cluster at the level of subclass was found, but there was evidence that Nymphaeaceae branched off first. Within the remaining angiosperms, the monocots included in this study are nested and form a monophyletic group. This study attests to the utility of nuclear 18S rRNA sequences in addressing relationships among living gymnosperms. Considerable variation in substitution rates was observed among the ferns and seed plants.

  9. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.

  10. 16S rRNA gene sequences analysis of Ficus elastica rubber latex degrading thermophilic Bacillus strain ASU7 isolated from Egypt.

    PubMed

    Hesham, Abd El-Latif; Mohamed, Nadia H; Ismail, Mady A; Shoreit, Ahmed A M

    2012-09-01

    A thermophilic Bacillus strain ASU7 was isolated from soil sample collected from Assiut governorate in Upper Egypt on latex rubber-containing medium at 45 °C. Genetically, the 16S bacterial ribosomal RNA gene of the strain ASU7 was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR product was compared with known 16S rRNA gene sequences in the GenBank database. Based on phylogenetic analyses, strain ASU7 was identified as Bacillus amyloliquefaciens. The strain was able to utilize Ficus elastica rubber latex as a sole source for carbon and energy. The ability for degradation was determined by measuring the increase in protein content of bacterium (mg/g dry wt), reduction in molecular weight (g/mol), and inherent viscosity (dl/g) of the latex. Moreover, the degradation was also confirmed by observing the growth of bacterium and formation of aldehyde or keto group using scanning electron microscopy (SEM) and shiff's reagent, respectively.

  11. Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons.

    PubMed

    Marin, Birger; Melkonian, Michael

    2010-04-01

    Molecular phylogenetic analyses of the Mamiellophyceae classis nova, a ubiquitous group of largely picoplanktonic green algae comprising scaly and non-scaly prasinophyte unicells, were performed using single and concatenated gene sequence comparisons of the nuclear- and plastid-encoded rRNA operons. The study resolved all major clades within the class, identified molecular signature sequences for most clades through an exhaustive search for non-homoplasious synapomorphies [Marin et al. (2003): Protist 154: 99-145] and incorporated these signatures into the diagnoses of two novel orders, Monomastigales ord nov., Dolichomastigales ord. nov., and four novel families, Monomastigaceae fam. nov., Dolichomastigaceae fam. nov., Crustomastigaceae fam. nov., and Bathycoccaceae fam. nov., within a revised classification of the class. A database search for the presence of environmental rDNA sequences in the Monomastigales and Dolichomastigales identified an unexpectedly large genetic diversity of Monomastigales confined to freshwater, a novel clade (Dolicho_B) in the Dolichomastigaceae from deep sea sediments and a novel freshwater clade in the Crustomastigaceae. The Mamiellophyceae represent one of the ecologically most successful groups of eukaryotic, photosynthetic picoplankters in marine and likely also freshwater environments.

  12. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene.

    PubMed

    Xue, Xiao-Feng; Dong, Yan; Deng, Wei; Hong, Xiao-Yue; Shao, Renfu

    2017-04-01

    Eriophyoid mites (superfamily Eriophyoidea) comprise >4400 species worldwide. Despite over a century of study, the phylogenetic position of these mites within Acariformes is still poorly resolved. Currently, Eriophyoidea is placed in the order Trombidiformes. We inferred the high-level phylogeny of Acari with the mitochondrial (mt) genome sequences of 110 species including four eriophyoid species, and the nuclear small subunit (18S) rRNA gene sequences of 226 species including 25 eriophyoid species. Maximum likelihood (ML), Bayesian inference (BI) and Maximum parsimony (MP) methods were used to analyze the sequence data. Divergence times were estimated for major lineages of Acari using Bayesian approaches. Our analyses consistently recovered the monophyly of Eriophyoidea but rejected the monophyly of Trombidiformes. The eriophyoid mites were grouped with the sarcoptiform mites, or were the sister group of sarcoptiform mites+non-eriophyoid trombidiform mites, depending on data partition strategies. Eriophyoid mites diverged from other mites in the Devonian (384Mya, 95% HPD, 352-410Mya). The origin of eriophyoid mites was dated to the Permian (262Mya, 95% HPD 230-307Mya), mostly prior to the radiation of gymnosperms (Triassic-Jurassic) and angiosperms (early Cretaceous). We propose that the placement of Eriophyoidea in the order Trombidiformes under the current classification system should be reviewed.

  13. Clinical impact of the use of 16S rRNA sequencing method for the identification of "difficult-to-identify" bacteria in immunocompromised hosts.

    PubMed

    Bharadwaj, R; Swaminathan, S; Salimnia, H; Fairfax, M; Frey, A; Chandrasekar, P H

    2012-04-01

    Molecular method of 16S rRNA sequencing is reported to be helpful in the accurate identification of organisms with ambiguous phenotypic profiles. We analyzed the use of 16S rRNA sequencing method to identify clinically significant, "difficult-to-identify" bacteria recovered from clinical specimens, and evaluated its role in patient management and consequent clinical outcome. Among the 172 "difficult-to-identify" bacteria recovered over a 4-year period, 140 were gram-positive cocci or gram-negative bacilli; identification by 16S rRNA did not play a role in the management of patients infected with these bacteria. From 32 patients, 33 "difficult-to-identify" gram-positive bacilli were identified; the organisms were mycobacteria, Nocardia, Tsukamurella, Rhodococcus, and Gordonia. In 24 patients for whom clinical data were available, results from the 16S rRNA sequencing method led to treatment change in 14 immunocompromised patients (including 7 hematopoietic stem cell recipients and 1 liver transplant recipient). Therapy was modified in 9 patients, initiated in 3 patients, and discontinued in 2 patients. Most patients' therapy was switched to oral antibiotics with discontinuation of intravascular catheters, facilitating early hospital discharge. All 14 patients were alive 30 days after infection onset. The present study demonstrates the clinical application of 16S rRNA sequencing method to identify "difficult-to-identify" mycobacteria and other gram-positive bacilli in clinical specimens, particularly in immunocompromised hosts.

  14. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences.

    PubMed

    Wilkinson, Mark; A Sheps, Jonathan; Oommen, Oommen V; Cohen, Bernard L

    2002-06-01

    India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia.

  15. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing.

    PubMed

    Volokhov, Dmitriy V; George, Joseph; Liu, Sue X; Ikonomi, Pranvera; Anderson, Christine; Chizhikov, Vladimir

    2006-08-01

    We have completed sequencing the 16S-23S rRNA intergenic transcribed spacer (ITS) region of most known Mycoplasma , Acholeplasma , Ureaplasma , Mesoplasma , and Spiroplasma species. Analysis of the sequence data revealed a significant interspecies variability and low intraspecies polymorphism of the ITS region among Mollicutes . This finding enabled the application of a combined polymerase chain reaction-microarray technology for identifying Mollicutes species. The microarray included individual species-specific oligonucleotide probes for characterizing human Mollicutes species and other species known to be common cell line contaminants. Evaluation of the microarray was conducted using multiple, previously characterized, Mollicutes species. The microarray analysis of the samples used demonstrated a highly specific assay, which is capable of rapid and accurate discrimination among Mollicutes species.

  16. Sequence Diversity of the oprI Gene, Coding for Major Outer Membrane Lipoprotein I, among rRNA Group I Pseudomonads

    PubMed Central

    De Vos, Daniel; Bouton, Christiane; Sarniguet, Alain; De Vos, Paul; Vauterin, Marc; Cornelis, Pierre

    1998-01-01

    The sequence of oprI, the gene coding for the major outer membrane lipoprotein I, was determined by PCR sequencing for representatives of 17 species of rRNA group I pseudomonads, with a special emphasis on Pseudomonas aeruginosa and Pseudomonas fluorescens. Within the P. aeruginosa species, oprI sequences for 25 independent isolates were found to be identical, except for one silent substitution at position 96. The oprI sequences diverged more for the other rRNA group I pseudomonads (85 to 91% similarity with P. aeruginosa oprI). An accumulation of silent and also (but to a much lesser extent) nonsilent substitutions in the different sequences was found. A clustering according to the respective presence and/or positions of the HaeIII, PvuII, and SphI sites could also be obtained. A sequence cluster analysis showed a rather widespread distribution of P. fluorescens isolates. All other rRNA group I pseudomonads clustered in a manner that was in agreement with other studies, showing that the oprI gene can be useful as a complementary phylogenetic marker for classification of rRNA group I pseudomonads. PMID:9851998

  17. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  18. Analysis of 525 Samples To Determine the Usefulness of PCR Amplification and Sequencing of the 16S rRNA Gene for Diagnosis of Bone and Joint Infections

    PubMed Central

    Fenollar, Florence; Roux, Véronique; Stein, Andréas; Drancourt, Michel; Raoult, Didier

    2006-01-01

    The 16S rRNA gene PCR in the diagnosis of bone and joint infections has not been systematically tested. Five hundred twenty-five bone and joint samples collected from 525 patients were cultured and submitted to 16S rRNA gene PCR detection of bacteria in parallel. The amplicons with mixed sequences were also cloned. When discordant results were observed, culture and PCR were performed once again. Bacteria were detected in 139 of 525 samples. Culture and 16S rRNA gene PCR yielded identical documentation in 475 samples. Discrepancies were linked to 13 false-positive culture results, 5 false-positive PCR results, 9 false-negative PCR results, 16 false-negative culture results, and 7 mixed infections. Cloning and sequencing of 16S rRNA gene amplicons in 6 of 8 patients with mixed infections identified 2 to 8 bacteria per sample. Rarely described human pathogens such as Alcaligenes faecalis, Comamonas terrigena, and 21 anaerobes were characterized. We also detected, by 16S rRNA gene PCR, four previously identified bacteria never reported in human infection, Alkanindiges illinoisensis, dehydroabietic acid-degrading bacterium DhA-73, unidentified Hailaer soda lake bacterium, and uncultured bacterium clone HuCa4. Seven organisms representing new potential species were also detected. PCR followed by cloning and sequencing may help to identify new pathogens involved in mixed bone infection. PMID:16517890

  19. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences.

    PubMed

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A; Allsopp, Michael H

    2003-10-01

    High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.

  20. The Gut Microbial Community of Antarctic Fish Detected by 16S rRNA Gene Sequence Analysis

    PubMed Central

    Song, Wei; Li, Lingzhi; Huang, Hongliang; Jiang, Keji; Chen, Xuezhong

    2016-01-01

    Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and a range of fitness in fish, but little is known about the gut microbial community in Antarctic fish. In this study, the composition of intestinal microbial community in four species of Antarctic fish was detected based on 16S rRNA gene sequencing. As a result, 1 004 639 sequences were obtained from 13 samples identified into 36 phyla and 804 genera, in which Proteobacteria, Actinobacteria, Firmicutes, Thermi, and Bacteroidetes were the dominant phyla, and Rhodococcus, Thermus, Acinetobacter, Propionibacterium, Streptococcus, and Mycoplasma were the dominant genera. The number of common OTUs (operational taxonomic units) varied from 346 to 768, while unique OTUs varied from 84 to 694 in the four species of Antarctic fish. Moreover, intestinal bacterial communities in individuals of each species were not really similar, and those in the four species were not absolutely different, suggesting that bacterial communities might influence the physiological characteristics of Antarctic fish, and the common bacterial communities might contribute to the fish survival ability in extreme Antarctic environment, while the different ones were related to the living habits. All of these results could offer certain information for the future study of Antarctic fish physiological characteristics. PMID:27957494

  1. Phylogenetic relationships between Vorticella convallaria and other species inferred from small subunit rRNA gene sequences.

    PubMed

    Itabashi, Takeshi; Mikami, Kazuyuki; Fang, Jie; Asai, Hiroshi

    2002-08-01

    Vorticellid ciliates generally dwell in freshwater. In nature, the species have up until now been identified by comparison with previous descriptions. It is difficult to identify between species of the genus Vorticella, because the morphological markers of vorticellid ciliates described in reports are limited and variable. Unfortunately, culturing them has only succeeded with certain species such as Vorticella convallaria, but many others have been impossible to culture. To find out whether the sequence of a small subunit rRNA gene was an appropriate marker to identify vorticellid ciliates, the gene was aligned and compared. Finding a new convenient method will contribute to research on vorticellid ciliates. In strains of V. convallaria, classified morphologically, some varieties of the SSrRNA gene sequences were recognized, but there were large variations within the same species. According to the phylogenetic tree, these strains are closely related. However, the difference was not as big as between Vorticella and Carchesium. In addition, Carchesium constructed a distinct clade from the genus Vorticella and Epistylis. These results show the possibility that the SSrRNA gene is one of the important markers to identify species of Vorticella. This study is first to approach and clarify the complicated taxa in the genus Vorticella.

  2. The Gut Microbial Community of Antarctic Fish Detected by 16S rRNA Gene Sequence Analysis.

    PubMed

    Song, Wei; Li, Lingzhi; Huang, Hongliang; Jiang, Keji; Zhang, Fengying; Chen, Xuezhong; Zhao, Ming; Ma, Lingbo

    2016-01-01

    Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and a range of fitness in fish, but little is known about the gut microbial community in Antarctic fish. In this study, the composition of intestinal microbial community in four species of Antarctic fish was detected based on 16S rRNA gene sequencing. As a result, 1 004 639 sequences were obtained from 13 samples identified into 36 phyla and 804 genera, in which Proteobacteria, Actinobacteria, Firmicutes, Thermi, and Bacteroidetes were the dominant phyla, and Rhodococcus, Thermus, Acinetobacter, Propionibacterium, Streptococcus, and Mycoplasma were the dominant genera. The number of common OTUs (operational taxonomic units) varied from 346 to 768, while unique OTUs varied from 84 to 694 in the four species of Antarctic fish. Moreover, intestinal bacterial communities in individuals of each species were not really similar, and those in the four species were not absolutely different, suggesting that bacterial communities might influence the physiological characteristics of Antarctic fish, and the common bacterial communities might contribute to the fish survival ability in extreme Antarctic environment, while the different ones were related to the living habits. All of these results could offer certain information for the future study of Antarctic fish physiological characteristics.

  3. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  4. CHARACTERIZATION OF BACTERIAL BIOMASS IN MARINE SEDIMENTS BENEATH THE ROSS ICE SHEET, ANTARCTICA BY PHOSPHOLIPIDS ANALYSIS AND 16S RRNA GENE SEQUENCING

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Glossner, A. W.; Dunbar, R. B.; Vogel, S. W.; Brandes, J.; Sahl, J. W.; Pepe-Ranney, C.; Spear, J. R.; Naish, T.; Powell, R. D.; Mandernack, K. W.

    2009-12-01

    heterotrophic organisms dominate these sediments, with the implication that primary productivity is derived from above. Integrating structural analyses and δ13C values of phospholipids, porewater chemistry, δ13CDIC and δ13CDIC values with 16S rRNA gene sequences provides a more comprehensive understanding of the biogeochemical influences of microbial carbon cycling that occur beneath marine sediments of Antarctica and elsewhere.

  5. Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality

    PubMed Central

    Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea

    2017-01-01

    Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368

  6. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  7. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern United States, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Howe...

  8. Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico.

    PubMed Central

    Niner, B M; Brandt, J P; Villegas, M; Marshall, C R; Hirsch, A M; Valdés, M

    1996-01-01

    Filamentous bacteria isolated from surface-sterilized nodules of Casuarina equisetifolia trees in México were capable of reducing acetylene, a diagnostic test for nitrogenase, but were unable to nodulate their host. Analysis of partial 16S rRNA gene sequences suggests that the Mexican isolates are not Frankia strains but members of a novel clade. PMID:8702297

  9. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Tremblay, Julien [DOE JGI

    2016-07-12

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  10. DNA polymorphism in morels: complete sequences of the internal transcribed spacer of genes coding for rRNA in Morchella esculenta (yellow morel) and Morchella conica (black morel).

    PubMed

    Wipf, D; Munch, J C; Botton, B; Buscot, F

    1996-09-01

    The internal transcribed spacer (ITS) of the gene coding for rRNA was sequenced in both directions with the gene walking technique in a black morel (Morchella conica) and a yellow morel (M. esculenta) to elucidate the ITS length discrepancy between the two species groups (750-bp ITS in black morels and 1,150-bp ITS in yellow morels.

  11. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes.

    PubMed

    Daniell, Henry; Lee, Seung-Bum; Grevich, Justin; Saski, Christopher; Quesada-Vargas, Tania; Guda, Chittibabu; Tomkins, Jeffrey; Jansen, Robert K

    2006-05-01

    Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33-45 direct and inverted repeats >or=30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.

  12. An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms.

    PubMed

    Derakhshani, Hooman; Tun, Hein Min; Khafipour, Ehsan

    2016-03-01

    The primary 16S rRNA sequencing protocol for microbial community analysis using Illumina platforms includes a single-indexing approach that allows pooling of hundreds of samples in each sequencing run. The protocol targets the V4 hypervariable region (HVR) of 16S rRNA using 150 bp paired-end (PE) sequencing. However, the latest improvement in Illumina chemistry has increased the read length up to 600 bp using 300 bp PE sequencing. To take advantage of the longer read length, a dual-indexing approach was previously developed for targeting different HVRs. However, due to simple working protocols, the single-index 150 bp PE approach still continues to be attractive to many researchers. Here, we described an extended single-indexing protocol for 300 bp PE illumina sequencing that targets the V3-V4 HVRs of 16S rRNA. The new primer set led to increased read length and alignment resolution, as well as increased richness and diversity of resulting microbial profile compared to that obtained from150 bp PE protocol for V4 sequencing. The β-diversity profile also differed qualitatively and quantitatively between the two approaches. Both primer sets had high coverage rates and specificity to detect dominant phyla; however, their coverage rate with regards to the rare biosphere varied. Our data further confirms that the choice of primer is the most deterministic factor in sequencing coverage and specificity.

  13. Relationships between parasitoid wasps (Hymenoptera: Braconidae: Opiinae), fruit flies (Diptera: Tephritidae) and their host plants based on 16S rRNA, 12S rRNA, and ND1 gene sequences

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. J.; Md-Zain, B. M.; Yaakop, S.

    2013-11-01

    Opiinae is among the l0 largest subfamilies under the family Braconidae. Opiines species have great potential as natural enemies against fruit fly pests. Before using them as a biological control agent, construction of the phylogenetic trees could facilitate in the molecular identification of individual species and their relationships among members of the Opiines, as well as between Opiines and their host plants. Larval specimens of tephritids were collected from four crop species at five localities throughout the Peninsular Malaysia. A total of 44 specimens of opiines had successfully emerged from the hosts, fruit fly larvae. The DNA sequences of 12S and 16S rRNA were obtained for the braconids while the mitochondrial ND1 sequences were obtained for the tephritids species through polymerase chain reaction. Maximum Parsimony and Bayesian trees were constructed by using PAUP 4.0b10 and MrBayes 3.1.2 to identify the relationships among the taxa. This study illustrates the phylogenetic relationships among parasitoid opiines collected and reared from parasitized fruit flies. The phylogenetic trees constructed based on the mitochondrial 12S and 16S rRNA sequences exhibited similar topology and sequence divergence. The opiines were divided into several clades and subclades according to the genus and species. Each clade also was supported by the similar host plants with high support values. However, their pests were not specific, except for Bactrocera cucurbitae. This study has reconfirmed the associations between Opiinae, tephritids, and host plants based on molecular data.

  14. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    González, Angel; Mas, Albert

    2011-06-30

    The 16S-23S gene internal transcribed spacer sequence of sixty-four strains belonging to different acetic acid bacteria genera were analyzed, and phylogenetic trees were generated for each genera. The topologies of the different trees were in accordance with the 16S rRNA gene trees, although the similarity percentages obtained between the species was shown to be much lower. These values suggest the usefulness of including the 16S-23S gene internal transcribed spacer region as a part of the polyphasic approach required for the further classification of acetic acid bacteria. Furthermore, the region could be a good target for primer and probe design. It has also been validated for use in the identification of unknown samples of this bacterial group from wine vinegar and fruit condiments.

  15. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing.

    PubMed

    De Filippis, Francesca; La Storia, Antonietta; Blaiotta, Giuseppe

    2017-05-01

    Spontaneous alcoholic fermentation of grape must is a complex process, carried out by indigenous yeast populations arising from the vineyard or the winery environment and therefore representing an autochthonous microbial terroir of the production area. Microbial diversity at species and biotype level is extremely important in order to develop the composite and typical flavour profile of DOCG (Appellation of Controlled and Guaranteed Origin) wines. In this study, we monitored fungal populations involved in spontaneous fermentations of Aglianico and Greco di Tufo grape must by high-throughput sequencing (HTS) of 18S rRNA gene amplicons. We firstly proposed an alternative/addition to ITS as target gene in HTS studies and highlighted consistency between the culture-dependent and -independent approaches. A complex mycobiota was found at the beginning of the fermentation, mainly characterized by non-Saccharomyces yeasts and several moulds, with differences between the two types of grapes. Moreover, Interdelta patterns revealed a succession of several Saccharomyces cerevisiae biotypes and a high genetic diversity within this species.

  16. Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis

    PubMed Central

    Xiang, Hong; Li, Shu; Liang, Lina; Sui, Hua; Zhan, Libin; Lu, Xiaoguang

    2016-01-01

    The aim of the present pilot study was deciphering bacterial community changes in Zucker diabetic fatty rats (ZDF rats), a model of type 2 diabetes. Recent studies unmasked that the status of gastrointestinal tract microbiota has a marked impact on nutrition-related syndromes such as obesity and type-2 diabetes (T2D). In this study, samples taken from the gastrointestinal tracts (GI tracts) of ZDF and their lean littermates (ZL rats) were subjected to 16S rRNA gene sequence-based analysis to examine the characteristic bacterial communities, including those located in the stomach, duodenum, jejunum, ileum, cecum and feces. Results revealed that the Firmicutes/Bacteroidetes ratio was increased and greater numbers of Lactobacillus were detected along GI tracts in ZDF rats compared to ZL rats. In conclusion, this work is the first study to systematically characterize bacterial communities along ZDF rat GI tract and provides substantial evidence supporting a prospective strategy to alter the GI microbial communities improving obesity and T2D. PMID:27418144

  17. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy.

    PubMed

    Kim, Young Suk; Kim, Jinu; Park, Soo-Je

    2015-06-01

    The mammalian gastrointestinal tract harbors a highly complex microbial community that comprises hundreds of different types of bacterial cells. The gastrointestinal microbiota plays an important role in the function of the host intestine. Most cancer patients undergoing pelvic irradiation experience side effects such as diarrhea; however, little is currently known about the effects of irradiation on the microorganisms colonizing the mucosal surfaces of the gastrointestinal tract. The aim of this study was to investigate the effects of gamma irradiation on the compositions of the large and small intestinal microbiotas. The gut microbiotas in control mice and mice receiving irradiation treatment were characterized by high-throughput sequencing of the bacterial 16S rRNA gene. Irradiation treatment induced significant alterations in the bacterial compositions of the large and small intestines at the genus level. Unexpectedly, irradiation treatment increased the number of operational taxonomic units in the small intestine but not the large intestine. In particular, irradiation treatment increased the level of the genera Alistipes in the large intestine and increased the level of the genus Corynebacterium in the small intestine. By contrast, compared with that in the corresponding control group, the level of the genera Prevotella was lower in the irradiated large intestine, and the level of the genera Alistipes was lower in the irradiated small intestine. Overall, the data presented here reveal the potential microbiological effects of pelvic irradiation on the gastrointestinal tracts of cancer patients.

  18. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring

    PubMed Central

    Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.

    2016-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  19. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring.

    PubMed

    Vierheilig, J; Savio, D; Ley, R E; Mach, R L; Farnleitner, A H; Reischer, G H

    2015-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems.

  20. Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records.

    PubMed Central

    Kano, Yasunori; Chiba, Satoshi; Kase, Tomoki

    2002-01-01

    A well-supported phylogeny of the Neritopsina, a gastropod superorder archaic in origin, radiated ecologically and diverse in morphology, is reconstructed based on partial 28S rRNA sequences. The result (Neritopsidae (Hydrocenidae (Helicinidae + Neritiliidae) (Neritidae + Phenacolepadidae))) is highly congruent with the fossil records and the character distribution of reproductive tracts in extant taxa. We suggest that the Neritopsina originated in subtidal shallow waters, invaded the land and became fully terrestrial at least three times in different clades, by the extinct Dawsonellidae in the Late Palaeozoic and by the Helicinidae and Hydrocenidae in the Mesozoic. Invasion of fresh- and brackish waters is prevalent among the Neritopsina as the Jurassic and freshwater ancestory is most probable for helicinids. The Phenacolepadidae, a group exclusively inhabiting dysoxic environments, colonized deep-sea hydrothermal vents and seeps in the Late Cretaceous or Early Cenozoic. Submarine caves have served as refuges for the archaic Neritopsidae since the Early to Middle Cenozoic, and the marine neritopsine slug Titiscania represents a highly specialized but relatively recent offshoot of this family. The Neritiliidae is another clade to be found utilizing submarine caves as shelter by the Oligocene; once adapted to the completely dark environment, but some neritiliids have immigrated to surface freshwater habitats. PMID:12495489

  1. Variability in 3' end of 16S rRNA sequence of Mycobacterium ulcerans is related to geographic origin of isolates.

    PubMed Central

    Portaels, F; Fonteyene, P A; de Beenhouwer, H; de Rijk, P; Guédénon, A; Hayman, J; Meyers, M W

    1996-01-01

    Mycobacterium ulcerans causes extensive ulcers (Buruli ulcers) in the skin of humans. Analysis of the 3'-terminal region of the 16S rRNA gene sequence of 17 strains of M. ulcerans from Africa, the Americas, and Australia revealed three subgroups corresponding to the continent of origin, and some variable phenotypic characteristics. This sequence is useful for the rapid detection of M. ulcerans and discriminates M. marinum and M. shinshuense from M. ulcerans. PMID:8815117

  2. Sequence and Structural Analyses for Functional Non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yasubumi; Sato, Kengo

    Analysis and detection of functional RNAs are currently important topics in both molecular biology and bioinformatics research. Several computational methods based on stochastic context-free grammars (SCFGs) have been developed for modeling and analysing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNAs and are used for structural alignments of RNA sequences. Such stochastic models, however, are not sufficient to discriminate member sequences of an RNA family from non-members, and hence to detect non-coding RNA regions from genome sequences. Recently, the support vector machine (SVM) and kernel function techniques have been actively studied and proposed as a solution to various problems in bioinformatics. SVMs are trained from positive and negative samples and have strong, accurate discrimination abilities, and hence are more appropriate for the discrimination tasks. A few kernel functions that extend the string kernel to measure the similarity of two RNA sequences from the viewpoint of secondary structures have been proposed. In this article, we give an overview of recent progress in SCFG-based methods for RNA sequence analysis and novel kernel functions tailored to measure the similarity of two RNA sequences and developed for use with support vector machines (SVM) in discriminating members of an RNA family from non-members.

  3. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  4. Sequencing and comparative analyses of the genomes of zoysiagrasses

    PubMed Central

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-01-01

    Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp. PMID:26975196

  5. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  6. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment.

    PubMed

    Oh, Jeongsu; Choi, Chi-Hwan; Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo

    2016-01-01

    High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology-a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA

  7. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  8. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling.

    PubMed

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.

  9. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment

    PubMed Central

    Guerrero-Preston, Rafael; Godoy-Vitorino, Filipa; Jedlicka, Anne; Rodríguez-Hilario, Arnold; González, Herminio; Bondy, Jessica; Lawson, Fahcina; Folawiyo, Oluwasina; Michailidi, Christina; Dziedzic, Amanda; Thangavel, Rajagowthamee; Hadar, Tal; Noordhuis, Maartje G.; Westra, William; Koch, Wayne; Sidransky, David

    2016-01-01

    Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection. The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors. PMID:27259999

  10. Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum say (Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis.

    PubMed Central

    Eisen, J A; Smith, S W; Cavanaugh, C M

    1992-01-01

    The protobranch bivalve Solemya velum Say (Mollusca: Bivalvia) houses chemoautotrophic symbionts intracellularly within its gills. These symbionts were characterized through sequencing of polymerase chain reaction-amplified 16S rRNA coding regions and hybridization of an Escherichia coli gene probe to S. velum genomic DNA restriction fragments. The symbionts appeared to have only one copy of the 16S rRNA gene. The lack of variability in the 16S sequence and hybridization patterns within and between individual S. velum organisms suggested that one species of symbiont is dominant within and specific for this host species. Phylogenetic analysis of the 16S sequences of the symbionts indicates that they lie within the chemoautotrophic cluster of the gamma subdivision of the eubacterial group Proteobacteria. Images PMID:1577710

  11. Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum say (Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis.

    PubMed

    Eisen, J A; Smith, S W; Cavanaugh, C M

    1992-05-01

    The protobranch bivalve Solemya velum Say (Mollusca: Bivalvia) houses chemoautotrophic symbionts intracellularly within its gills. These symbionts were characterized through sequencing of polymerase chain reaction-amplified 16S rRNA coding regions and hybridization of an Escherichia coli gene probe to S. velum genomic DNA restriction fragments. The symbionts appeared to have only one copy of the 16S rRNA gene. The lack of variability in the 16S sequence and hybridization patterns within and between individual S. velum organisms suggested that one species of symbiont is dominant within and specific for this host species. Phylogenetic analysis of the 16S sequences of the symbionts indicates that they lie within the chemoautotrophic cluster of the gamma subdivision of the eubacterial group Proteobacteria.

  12. Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis.

    PubMed

    Vogel, B F; Jørgensen, K; Christensen, H; Olsen, J E; Gram, L

    1997-06-01

    Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole-cell protein profiling and ribotyping, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently defined species S. alga (U. Simidu et al., Int. J. Syst. Bacteriol, 40:331-336, 1990). Fifty-two typically psychrotolerant strains formed the other, more heterogeneous major cluster, with 43 to 47 mol% G + C. The type strain of S. putrefaciens was included in this group. The two groups were confirmed by 16S rRNA gene sequence analysis. It is concluded that the isolates must be considered two different species, S. alga and S. putrefaciens, and that most mesophilic isolates formerly identified as S. putrefaciens belong to S. alga. The ecological role and potential pathogenicity of S. alga can be evaluated only if the organism is correctly identified.

  13. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  14. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing.

    PubMed

    Lee, Da-Eun; Lee, Jinhwan; Kim, Young-Mog; Myeong, Jeong-In; Kim, Kyoung-Ho

    2016-04-01

    Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters.

  15. Human Blastocystis subtyping with subtype-specific primers developed from unique sequences of the SSU rRNA gene.

    PubMed

    Yoshikawa, Hisao; Iwamasa, Ayana

    2016-12-01

    The genus Blastocystis is one of the most genetically diverse parasites. Blastocystis isolates from humans and animals have been classified into subtypes (STs) based on the phylogeny of the small subunit rRNA gene (SSU rDNA). Although human Blastocystis isolates are limited to STs 1-9, the identification of all 9 STs remains challenging due to the lack of specific primers for several STs. The sequencing of partial SSU rDNA is therefore essential for the identification of several STs. In this study, we developed 9 sets of PCR primers to detect each of the 9 kinds of ST in humans. When these ST-specific primer pairs were examined reference Blastocystis for the 9 STs, all 9 amplified only the target ST even in a DNA mixture of all 9 STs. The specificities of the 9 primer sets were tested against several intestinal parasites and fungi found in human stool samples. No amplification with these common human intestinal eukaryotes was observed using the primer pairs for 8 STs, while the ST5 primer set gave only faint bands with some parasites. Since genomic DNA levels of these parasites extracted from Blastocystis-positive cultures are expected to be markedly lower than the pure or highly concentrated DNA samples tested, the cross-amplifications with these organisms are unlikely to be detected when DNA samples are extracted from Blastocystis-positive cultures. The PCR conditions for all 9 primer sets were the same, hence a one-step analysis by PCR amplification, followed by electrophoresis has potential as a simple tool for the subtyping of human Blastocystis isolates.

  16. Rapid identification of Penicillium marneffei by PCR-based detection of specific sequences on the rRNA gene.

    PubMed

    Vanittanakom, Nongnuch; Vanittanakom, Pramote; Hay, Roderick J

    2002-05-01

    An emerging pathogenic dimorphic fungus, Penicillium marneffei, is one of the major causes of morbidity in patients with human immunodeficiency virus infection in Southeast Asia. A PCR-hybridization assay has been developed to identify this pathogen. This study describes the use of single and nested PCR methods for the rapid identification of P. marneffei. Two sets of oligonucleotide primers were derived from the sequence of 18S rRNA genes of P. marneffei. The outer primers (RRF1 and RRH1) were fungus specific. The inner primers (Pm1 and Pm2) were specific for P. marneffei and were used in nested or single PCR. The specific fragment of approximately 400-bp was amplified from both mold and yeast forms of 13 P. marneffei human isolates, 12 bamboo rat isolates, and 1 soil isolate, but not from other fungi, bacteria, and human DNA. The amplified products were analyzed by agarose gel electrophoresis followed by ethidium bromide staining. The sensitivities of the single PCR and nested PCR were 1.0 pg/microl and 1.8 fg/microl, respectively. The assay is useful for rapid identification of P. marneffei cultures. Very young culture of P. marneffei (2-day-old filamentous colony, 2 mm in diameter) could be performed by this assay. The species was identified within 7 h (single PCR) or 10 h (nested PCR), compared to 4 to 7 days for confirmation of dimorphism. The application of these PCR methods for early diagnosis of the disease needs to be studied further.

  17. Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing.

    PubMed

    Del Campo, Javier; Mallo, Diego; Massana, Ramon; de Vargas, Colomban; Richards, Thomas A; Ruiz-Trillo, Iñaki

    2015-09-01

    The opisthokonts are one of the major super groups of eukaryotes. It comprises two major clades: (i) the Metazoa and their unicellular relatives and (ii) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here, we begin to address this gap by analysing high-throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyse the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant representation of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Taken together, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high-throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages.

  18. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  19. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  20. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  1. 16S rRNA Gene Sequence-Based Identification of Bacteria in Automatically Incubated Blood Culture Materials from Tropical Sub-Saharan Africa

    PubMed Central

    Schwarz, Norbert Georg; Hahn, Andreas; Boahen, Kennedy; Sarpong, Nimako; Adu-Sarkodie, Yaw; Halbgewachs, Eva; Marks, Florian; von Kalckreuth, Vera; Poppert, Sven; Loderstaedt, Ulrike; May, Jürgen; Hagen, Ralf Matthias

    2015-01-01

    Background The quality of microbiological diagnostic procedures depends on pre-analytic conditions. We compared the results of 16S rRNA gene PCR and sequencing from automatically incubated blood culture materials from tropical Ghana with the results of cultural growth after automated incubation. Methods Real-time 16S rRNA gene PCR and subsequent sequencing were applied to 1500 retained blood culture samples of Ghanaian patients admitted to a hospital with an unknown febrile illness after enrichment by automated culture. Results Out of all 1500 samples, 191 were culture-positive and 98 isolates were considered etiologically relevant. Out of the 191 culture-positive samples, 16S rRNA gene PCR and sequencing led to concordant results in 65 cases at species level and an additional 62 cases at genus level. PCR was positive in further 360 out of 1309 culture-negative samples, sequencing results of which suggested etiologically relevant pathogen detections in 62 instances, detections of uncertain relevance in 50 instances, and DNA contamination due to sample preparation in 248 instances. In two instances, PCR failed to detect contaminants from the skin flora that were culturally detectable. Pre-analytical errors caused many Enterobacteriaceae to be missed by culture. Conclusions Potentially correctable pre-analytical conditions and not the fastidious nature of the bacteria caused most of the discrepancies. Although 16S rRNA gene PCR and sequencing in addition to culture led to an increase in detections of presumably etiologically relevant blood culture pathogens, the application of this procedure to samples from the tropics was hampered by a high contamination rate. Careful interpretation of diagnostic results is required. PMID:26270631

  2. Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene.

    PubMed

    Liu, Tingting; Kong, Weiwen; Chen, Nan; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2016-02-01

    Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 10(3) cells/mL to 1.6 × 10(4) cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9-42.3%) or Cyanobacteria (42.0-3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune-compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.

  3. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes.

    PubMed

    Kim, Mincheol; Oh, Hyun-Seok; Park, Sang-Cheol; Chun, Jongsik

    2014-02-01

    Among available genome relatedness indices, average nucleotide identity (ANI) is one of the most robust measurements of genomic relatedness between strains, and has great potential in the taxonomy of bacteria and archaea as a substitute for the labour-intensive DNA-DNA hybridization (DDH) technique. An ANI threshold range (95-96%) for species demarcation had previously been suggested based on comparative investigation between DDH and ANI values, albeit with rather limited datasets. Furthermore, its generality was not tested on all lineages of prokaryotes. Here, we investigated the overall distribution of ANI values generated by pairwise comparison of 6787 genomes of prokaryotes belonging to 22 phyla to see whether the suggested range can be applied to all species. There was an apparent distinction in the overall ANI distribution between intra- and interspecies relationships at around 95-96% ANI. We went on to determine which level of 16S rRNA gene sequence similarity corresponds to the currently accepted ANI threshold for species demarcation using over one million comparisons. A twofold cross-validation statistical test revealed that 98.65% 16S rRNA gene sequence similarity can be used as the threshold for differentiating two species, which is consistent with previous suggestions (98.2-99.0%) derived from comparative studies between DDH and 16S rRNA gene sequence similarity. Our findings should be useful in accelerating the use of genomic sequence data in the taxonomy of bacteria and archaea.

  4. Molecular characterization of Argulus bengalensis and Argulus siamensis (Crustacea: Argulidae) infecting the cultured carps in West Bengal, India using 18S rRNA gene sequences

    PubMed Central

    Patra, Avijit; Mondal, Anjan; Banerjee, Sayani; Adikesavalu, Harresh; Joardar, Siddhartha Narayan; Abraham, Thangapalam Jawahar

    2016-01-01

    The present study characterized Argulus spp. infecting the cultured carps using 18S rRNA gene sequences, estimated the genetic similarity among Argulus spp. and established their phylogenetic relationship. Of the 320 fish samples screened, 34 fish (10.6%) had Argulus infection. The parasitic frequency index (PFI) was observed to be high (20%) in Hypophthalmichthys molitrix and Labeo bata. The frequency of infection was high in September (PFI: 17%) and October (PFI: 12.9%). The 18S rRNA sequences of five A. bengalensis (KF583878, KF192316, KM016968, KM016969, and KM016970) and one A. siamensis (KF583879) of this study showed genetic heterogeneity and exhibited 77-99% homology among the 18S rRNA gene sequences of Argulus spp. of NCBI GenBank database. Among the Indian Argulus spp. the sequence homology was 87–100%. Evolutionary pair-wise distances between Indian Argulus spp. and other Argulus spp. ranged from 0 to 20.20%. In the phylogenetic tree, all the crustaceans were clustered together as a separate clade with two distinct lineages. The lineage-1 comprised exclusive of Branchiura (Argulus spp.). All Argulus bengalensis clustered together and A. siamensis (KF583879) was closely related to Argulus sp. JN558648. The results of the present study provided baseline data for future work on population structure analysis of Indian Argulus species. PMID:28097169

  5. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients

    PubMed Central

    Turek, Elena M.; Hennessy, Catherine; Mirza, Ghazala K.; James, Phillip L.; Coleman, Meg; Jones, Andrew; Wilson, Robert; Bilton, Diana

    2017-01-01

    Background Bronchiectasis is accompanied by chronic bronchial infection that may drive disease progression. However, the evidence base for antibiotic therapy is limited. DNA based methods offer better identification and quantification of microbial constituents of sputum than standard clinical culture and may help inform patient management strategies. Our study objective was to determine the longitudinal variability of the non-cystic fibrosis (CF) bronchiectasis microbiome in sputum with respect to clinical variables. Eighty-five patients with non-CF bronchiectasis and daily sputum production were recruited from outpatient clinics and followed for six months. Monthly sputum samples and clinical measurements were taken, together with additional samples during exacerbations. 16S rRNA gene sequencing of the sputum microbiota was successful for 381 samples from 76 patients and analysed in conjunction with clinical data. Results Microbial communities were highly individual in composition and stability, usually with limited diversity and often containing multiple pathogens. When compared to DNA sequencing, microbial culture had restricted sensitivity in identifying common pathogens such as Pseudomonas aeruginosa, Haemophilus influenzae, Moraxella catarrhalis. With some exceptions, community characteristics showed poor correlations with clinical features including underlying disease, antibiotic use and exacerbations, with the subject showing the strongest association with community structure. When present, the pathogens mucoid Pseudomonas aeruginosa and Haemophilus influenzae may also shape the structure of the rest of the microbial community. Conclusions The use of microbial community analysis of sputum added to information from microbial culture. A simple model of exacerbations driven by bacterial overgrowth was not supported, suggesting a need for revision of principles for antibiotic therapy. In individual patients, the management of chronic bronchial infection may be

  6. Identification of food and beverage spoilage yeasts from DNA sequence analyses.

    PubMed

    Kurtzman, Cletus P

    2015-11-20

    Detection, identification and classification of yeasts have undergone major changes in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences has resulted in a major revision of yeast systematics resulting in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, especially in the context of food and beverage spoilage yeasts.

  7. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses

    PubMed Central

    Liu, X.-Z.; Wang, Q.-M.; Theelen, B.; Groenewald, M.; Bai, F.-Y.; Boekhout, T.

    2015-01-01

    The Tremellomycetes (Basidiomycota) contains a large number of unicellular and dimorphic fungi with stable free-living unicellular states in their life cycles. These fungi have been conventionally classified as basidiomycetous yeasts based on physiological and biochemical characteristics. Many currently recognised genera of these yeasts are mainly defined based on phenotypical characters and are highly polyphyletic. Here we reconstructed the phylogeny of the majority of described anamorphic and teleomorphic tremellomycetous yeasts using Bayesian inference, maximum likelihood, and neighbour-joining analyses based on the sequences of seven genes, including three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB). With the consideration of morphological, physiological and chemotaxonomic characters and the congruence of phylogenies inferred from analyses using different algorithms based on different data sets consisting of the combined seven genes, the three rRNA genes, and the individual protein-coding genes, five major lineages corresponding to the orders Cystofilobasidiales, Filobasidiales, Holtermanniales, Tremellales, and Trichosporonales were resolved. A total of 45 strongly supported monophyletic clades with multiple species and 23 single species clades were recognised. This phylogenetic framework will be the basis for the proposal of an updated taxonomic system of tremellomycetous yeasts that will be compatible with the current taxonomic system of filamentous basidiomycetes accommodating the ‘one fungus, one name’ principle. PMID:26955196

  8. Application of 16S rRNA, cytochrome b and control region sequences for understanding the phylogenetic relationships in Oryx species.

    PubMed

    Khan, H A; Arif, I A; Al Homaidan, A A; Al Farhan, A H

    2008-12-16

    The present study reports the application of mitochondrial markers for the molecular phylogeny of Oryx species, including the Arabian oryx (AO), scimitar-horned oryx (SHO) and plains oryx (PO), using the Addax as an outgroup. Sequences of three molecular markers, 16S rRNA, cytochrome b and a control region, for the above four taxa were aligned and the topologies of respective phylogenetic trees were compared. All these markers clearly differentiated the genus Addax from Oryx. However, for species-level grouping, while 16S rRNA and cytochrome b produced similar phylogeny (SHO grouped with PO), the control region grouped SHO with AO. Further studies are warranted to generate more sequencing data, apply multiple bioinformatics tools and to include relevant nuclear markers for phylogenetic analysis of Oryx species.

  9. Identification of Two Distinct Hybridization Groups in the Genus Hafnia by 16S rRNA Gene Sequencing and Phenotypic Methods

    PubMed Central

    Janda, J. Michael; Abbott, Sharon L.; Bystrom, Sue; Probert, Will S.

    2005-01-01

    A collection of 52 strains belonging to the Hafnia alvei complex were subjected to molecular (16S rRNA gene sequencing) and biochemical analysis. Based upon 16S rRNA gene sequencing results, two genetic groups were identified which correspond with previously recognized DNA hybridization group 1 (ATCC 13337T and ATCC 29926; n = 23) and DNA hybridization group 2 (ATCC 29927; n = 29). Of 46 biochemical tests used to characterize hafniae, 19 reactions (41%) yielded variable results. Of these 19 tests, 6 were determined to have discriminatory value in the separation of DNA groups 1 and 2, with malonate utilization found to be the most differential test. Test results of malonate utilization alone correctly assigned 90% of Hafnia isolates to their correct DNA group. PMID:16000455

  10. Sequencing of variable regions of the 16S rRNA gene for identification of lactic acid bacteria isolated from the intestinal microbiota of healthy salmonids.

    PubMed

    Balcázar, José Luis; de Blas, Ignacio; Ruiz-Zarzuela, Imanol; Vendrell, Daniel; Gironés, Olivia; Muzquiz, José Luis

    2007-03-01

    The aim of this study was to identify lactic acid bacteria (LAB) using polymerase chain reaction (PCR) amplification of variable regions of the 16S rRNA gene. Thirteen LAB strains were isolated from the intestinal microbiota of healthy salmonids. A approximately 500-bp region of the highly conserved 16S rRNA gene was PCR-amplified and following this, a portion of the amplicon (272-bp) including the V1 and V2 variable regions was sequenced. The sequence containing both the V1 and V2 region provided strong evidence for the identification of LAB. The LAB strains were identified as Carnobacterium maltaromaticum, Lactobacillus curvatus, Lactobacillus sakei, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, and Leuconostoc mesenteroides. The method described was found to be a very simple, rapid, specific, and low-cost tool for the identification of unknown strains of LAB.

  11. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses.

  12. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    PubMed Central

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  13. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior.

    PubMed

    Murphy, Nicholas P; Framenau, Volker W; Donnellan, Stephen C; Harvey, Mark S; Park, Yung-Chul; Austin, Andrew D

    2006-03-01

    Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.

  14. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses.

    PubMed

    Fang, Jiasong; Shizuka, Arakawa; Kato, Chiaki; Schouten, Stefan

    2006-09-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.

  15. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. [Calyptogena magnifica; Bathymodiolus thermophilus; Lucinoma annulata; Lucinoma aequizonata; Codakia orbicularis

    SciTech Connect

    Distel, D.L.; Lane, D.J.; Olsen, G.J.; Giovannoni, S.J.; Pace, B.; Pace, N.R.; Stahl, D.A.; Felbeck, H.

    1988-06-01

    The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis. Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.

  16. Whale song analyses using bioinformatics sequence analysis approaches

    NASA Astrophysics Data System (ADS)

    Chen, Yian A.; Almeida, Jonas S.; Chou, Lien-Siang

    2005-04-01

    Animal songs are frequently analyzed using discrete hierarchical units, such as units, themes and songs. Because animal songs and bio-sequences may be understood as analogous, bioinformatics analysis tools DNA/protein sequence alignment and alignment-free methods are proposed to quantify the theme similarities of the songs of false killer whales recorded off northeast Taiwan. The eighteen themes with discrete units that were identified in an earlier study [Y. A. Chen, masters thesis, University of Charleston, 2001] were compared quantitatively using several distance metrics. These metrics included the scores calculated using the Smith-Waterman algorithm with the repeated procedure; the standardized Euclidian distance and the angle metrics based on word frequencies. The theme classifications based on different metrics were summarized and compared in dendrograms using cluster analyses. The results agree with earlier classifications derived by human observation qualitatively. These methods further quantify the similarities among themes. These methods could be applied to the analyses of other animal songs on a larger scale. For instance, these techniques could be used to investigate song evolution and cultural transmission quantifying the dissimilarities of humpback whale songs across different seasons, years, populations, and geographic regions. [Work supported by SC Sea Grant, and Ilan County Government, Taiwan.

  17. In silico analysis of 16S rRNA gene sequencing based methods for identification of medically important aerobic Gram-negative bacteria.

    PubMed

    Teng, Jade L L; Yeung, Ming-Yiu; Yue, Geoffrey; Au-Yeung, Rex K H; Yeung, Eugene Y H; Fung, Ami M Y; Tse, Herman; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2011-09-01

    This study provides guidelines on the usefulness of full and 527 bp 16S rRNA gene sequencing and Microseq databases for identifying medically important aerobic Gram-negative bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 26.1 % and 32.6 %, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15.2 % and 26.1 %, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level. Among the major groups of aerobic Gram-negative bacteria, the methods and databases are least useful for identification of Aeromonas, Bordetella and Bartonella species. None of the Aeromonas species can be confidently or doubtfully identified, whereas only 0 % and 0-33.3 % of Bordetella species and 0-10 % and 0-10 % of Bartonella species can be confidently and doubtfully identified, respectively. On the other hand, these methods and databases are most useful for identification of members of the families Pasteurellaceae and Legionellaceae and Campylobacter species: 29.6-59.3 % and 7.4-18.5 % of members of Pasteurellaceae, 36-52 % and 12-24 % of members of Legionellaceae, and 26.7-60 % and 0-13.3 % of Campylobacter species can be confidently and doubtfully identified, respectively. Thirty-nine medically important aerobic Gram-negative bacteria that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. Twenty-three medically important aerobic Gram-negative bacteria that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. Compared with results of our previous studies on anaerobic and Gram-positive bacteria, full and 527 bp 16S rRNA gene sequencing are able to confidently identify significantly more anaerobic Gram-positive and Gram-negative bacteria than aerobic Gram

  18. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria.

    PubMed

    Stephen, J R; McCaig, A E; Smith, Z; Prosser, J I; Embley, T M

    1996-11-01

    We have conducted a preliminary phylogenetic survey of ammonia-oxidizing beta-proteobacteria, using 16S rRNA gene libraries prepared by selective PCR and DNA from acid and neutral soils and polluted and nonpolluted marine sediments. Enrichment cultures were established from samples and analyzed by PCR. Analysis of 111 partial sequences of c. 300 bases revealed that the environmental sequences formed seven clusters, four of which are novel, within the phylogenetic radiation defined by cultured autotrophic ammonia oxidizers. Longer sequences from 13 cluster representatives support their phylogenetic positions relative to cultured taxa. These data suggest that known taxa may not be representative of the ammonia-oxidizing beta-proteobacteria in our samples. Our data provide further evidence that molecular and culture-based enrichment methods can select for different community members. Most enrichments contained novel Nitrosomonas-like sequences whereas novel Nitrosospira-like sequences were more common from gene libraries of soils and marine sediments. This is the first evidence for the occurrence of Nitrosospira-like strains in marine samples. Clear differences between the sequences of soil and marine sediment libraries were detected. Comparison of 16S rRNA sequences from polluted and nonpolluted sediments provided no strong evidence that the community composition was determined by the degree of pollution. Soil clone sequences fell into four clusters, each containing sequences from acid and neutral soils in varying proportions. Our data suggest that some related strains may be present in both samples, but further work is needed to resolve whether there is selection due to pH for particular sequence types.

  19. Phylogenetic Analysis of Bacteroidales 16S rRNA Genes Unveils Sequences Specific to Diverse Swine Fecal Sources

    EPA Science Inventory

    Two of the currently available methods to assess swine fecal pollution (Bac1 and PF163) target Bacteroidales 16S rRNA genes. However, these assays have been shown to exhibit poor host-specificity and low detection limits in environmental waters, in part due to the limited number...

  20. Dynamics and persistence of Dead Sea microbial populations as shown by high-throughput sequencing of rRNA.

    PubMed

    Rhodes, Matthew E; Oren, Aharon; House, Christopher H

    2012-04-01

    16S rRNA amplicon libraries from a haloarchaeal bloom in the hypersaline Dead Sea in 1992 were analyzed together with the 2007 residual population and simulated blooms in experimental mesocosms. Significant population shifts were observed during the bloom, and surprisingly a signature from the bloom was retained 15 years later.

  1. Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis.

    PubMed

    Miranda, Catia A C; Martins, Orlando B; Clementino, Maysa Mandetta

    2008-03-01

    The aim of this study was to compare the ability of commonly used conventional biochemical tests, sequencing analysis of 16S rRNA genes and tDNA-intergenic spacer length polymorphism (tDNA-PCR) to identify species of the genus Bacillus recovered from marine sediments. While biochemical tests were not sufficiently sensitive to distinguish between the 23 marine strains analyzed, partial 16S rRNA gene sequences allowed a correct identification, clustering them into four species belonging to Bacillus licheniformis (n = 6), Bacillus cereus (n = 9), Bacillus subtilis (n = 7) and Bacillus pumilus (n = 1). The identification results obtained with 16S rRNA sequencing were validated by tDNA-PCR analysis of 23 marine isolates that were identified by the similarities of their fingerprints to those of reference strains. tDNA-PCR fingerprinting was as discriminatory as 16S rRNA sequencing analysis. Although it was not able to distinguish among the species of the B. cereus and B. subtilis groups, it should be considered a rapid and easy approach for the reliable identification of unknown Bacillus isolates or at least for the primary differentiation of Bacillus groups.

  2. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy.

    PubMed

    Ekendahl, S; Arlinger, J; Ståhl, F; Pedersen, K

    1994-07-01

    This paper presents the molecular characterization of attached bacterial populations growing in slowly flowing artesian groundwater from deep crystalline bed-rock of the Stripa mine, south central Sweden. Bacteria grew on glass slides in laminar flow reactors connected to the anoxic groundwater flowing up through tubing from two levels of a borehole, 812-820 m and 970-1240 m. The glass slides were collected, the bacterial DNA was extracted and the 16S rRNA genes were amplified by PCR using primers matching universally conserved positions 519-536 and 1392-1405. The resulting PCR fragments were subsequently cloned and sequenced. The sequences were compared with each other and with 16S rRNA gene sequences in the EMBL database. Three major groups of bacteria were found. Signature bases placed the clones in the appropriate systematic groups. All belonged to the proteobacterial groups beta and gamma. One group was found only at the 812-820 m level, where it constituted 63% of the sequenced clones, whereas the second group existed almost exclusively at the 970-1240 m level, where it constituted 83% of the sequenced clones. The third group was equally distributed between the levels. A few other bacteria were also found. None of the 16S rRNA genes from the dominant bacteria showed more than 88% similarity to any of the others, and none of them resembled anything in the database by more than 96%. Temperature did not seem to have any effect on species composition at the deeper level. SEM images showed rods appearing in microcolonies.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. 16S rRNA Gene Sequence Analysis of Photobacterium damselae and Nested PCR Method for Rapid Detection of the Causative Agent of Fish Pasteurellosis

    PubMed Central

    Osorio, Carlos R.; Collins, Matthew D.; Toranzo, Alicia E.; Barja, Juan L.; Romalde, Jesús L.

    1999-01-01

    The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis. PMID:10388687

  4. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment

    PubMed Central

    Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo

    2016-01-01

    High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology–a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in

  5. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Hong, Jin-Kyung; Kim, Hye-Jin; Cho, Jae-Chang

    2014-01-01

    Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer's specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and

  6. Novel PCR Primers for the Archaeal Phylum Thaumarchaeota Designed Based on the Comparative Analysis of 16S rRNA Gene Sequences

    PubMed Central

    Hong, Jin-Kyung; Kim, Hye-Jin; Cho, Jae-Chang

    2014-01-01

    Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer’s specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and

  7. Draft Genome Sequence of a Sequence Type 11 Klebsiella pneumoniae Clinical Strain Carrying a blaKPC-2 Carbapenemase Gene and an rmtB 16S rRNA Methylase Gene.

    PubMed

    Yao, Zhihong; Feng, Yu; Wei, Li; Zong, Zhiyong

    2017-02-09

    Klebsiella pneumoniae strain WCHKP649, recovered from a human wound, carried the carbapenemase gene blaKPC-2 and 16S rRNA methylase gene rmtB Here, we report its 5.6-Mb draft genome sequence, comprising 171 contigs with an average 57.34% G+C content. The genome contained 5,284 coding sequences and 84 tRNA genes.

  8. Draft Genome Sequence of a Sequence Type 11 Klebsiella pneumoniae Clinical Strain Carrying a blaKPC-2 Carbapenemase Gene and an rmtB 16S rRNA Methylase Gene

    PubMed Central

    Yao, Zhihong; Feng, Yu; Wei, Li

    2017-01-01

    ABSTRACT Klebsiella pneumoniae strain WCHKP649, recovered from a human wound, carried the carbapenemase gene blaKPC-2 and 16S rRNA methylase gene rmtB. Here, we report its 5.6-Mb draft genome sequence, comprising 171 contigs with an average 57.34% G+C content. The genome contained 5,284 coding sequences and 84 tRNA genes. PMID:28183754

  9. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  10. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates.

    PubMed

    Lee, Min Jung; Jang, Sook Jin; Li, Xue Min; Park, Geon; Kook, Joong-Ki; Kim, Min Jung; Chang, Young-Hyo; Shin, Jong Hee; Kim, Soo Hyun; Kim, Dong-Min; Kang, Seong-Ho; Moon, Dae-Soo

    2014-01-01

    Since accurate identification of species is necessary for proper treatment of Acinetobacter infections, we compared the performances of 4 bacterial identification methods using 167 Acinetobacter clinical isolates to identify the best identification method. To secure more non-baumannii Acinetobacter (NBA) strains as target strains, we first identified Acinetobacter baumannii in a total of 495 Acinetobacter clinical isolates identified using the VITEK 2 system. Because 371 of 495 strains were identified as A. baumannii using gyrB multiplex 1 PCR and blaOXA51-like PCR, we performed rpoB gene sequencing and 16S rRNA gene sequencing on remaining 124 strains belonging to NBA and 52 strains of A. baumannii. For identification of Acinetobacter at the species level, the accuracy rates of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK 2 were 98.2%, 93.4%, 77.2%, and 35.9%, respectively. The gyrB multiplex PCR seems to be very useful for the detection of ACB complex because its concordance rates to the final identification of strains of ACB complex were 100%. Both the rpoB gene sequencing and the 16S rRNA gene sequencing may be useful in identifying Acinetobacter.

  11. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.

    PubMed

    Uhart, Marina; Sirand-Pugnet, Pascal; Labarère, Jacques

    2007-04-01

    Mitochondrial small subunit (mtSSU) rDNA variable (V1, V2, V4, V6, V8 and V9) domain sequences and rRNA secondary structures evidenced eight molecular groups within 32 strains of the Agrocybe aegerita multispecies complex from different continents. mtSSU-rRNA secondary structure evolution occurred mainly by insertion/deletion of sequences from 8 to 57nt long. Preferential insertion/deletion sites correlated with loops of the mtSSU-rRNA secondary structures, and suggested that these events occurred in regions without interactions in the ribosomal-protein assembly. Indels modified the stem length (V1 and V4 domains) or the size and loop number (V6 and V9 domains). Three indels inserted in the V1 and V4 domains had 76.5% to 94.7% identity with short sequences of the mitochondrial cytochrome c oxidase gene; this fact and the presence of inverted repeated motifs within indel sequences suggested a mechanism of evolution based on insertion/deletion of sequences from another region of the mitochondrial genome. Phylogenetic relationships inferred using both ribosomal DNA sequences and rRNA secondary structures were congruent and evidenced three clades within the A. aegerita complex: European, Argentinean, and a more distant Asian-American clade including A. aegerita and A. chaxingu strains. These results suggested that numerous genetic exchanges occurred between Asian-American strains after isolation of the European clade. V4-V6-V9 concatenated sequences of European and Argentinean clades had 86.1% identity, similar to the value calculated between two Agrocybe closely related species, suggesting that these clades could represent different species. A cleaved amplified polymorphic sequence test for rapid characterization of strains was developed.

  12. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge.

    PubMed

    Voordeckers, James W; Do, My H; Hügler, Michael; Ko, Vivian; Sievert, Stefan M; Vetriani, Costantino

    2008-09-01

    The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.

  13. At Least 1 in 20 16S rRNA Sequence Records Currently Held in Public Repositories Is Estimated To Contain Substantial Anomalies

    PubMed Central

    Ashelford, Kevin E.; Chuzhanova, Nadia A.; Fry, John C.; Jones, Antonia J.; Weightman, Andrew J.

    2005-01-01

    A new method for detecting chimeras and other anomalies within 16S rRNA sequence records is presented. Using this method, we screened 1,399 sequences from 19 phyla, as defined by the Ribosomal Database Project, release 9, update 22, and found 5.0% to harbor substantial errors. Of these, 64.3% were obvious chimeras, 14.3% were unidentified sequencing errors, and 21.4% were highly degenerate. In all, 11 phyla contained obvious chimeras, accounting for 0.8 to 11% of the records for these phyla. Many chimeras (43.1%) were formed from parental sequences belonging to different phyla. While most comprised two fragments, 13.7% were composed of at least three fragments, often from three different sources. A separate analysis of the Bacteroidetes phylum (2,739 sequences) also revealed 5.8% records to be anomalous, of which 65.4% were apparently chimeric. Overall, we conclude that, as a conservative estimate, 1 in every 20 public database records is likely to be corrupt. Our results support concerns recently expressed over the quality of the public repositories. With 16S rRNA sequence data increasingly playing a dominant role in bacterial systematics and environmental biodiversity studies, it is vital that steps be taken to improve screening of sequences prior to submission. To this end, we have implemented our method as a program with a simple-to-use graphic user interface that is capable of running on a range of computer platforms. The program is called Pintail, is released under the terms of the GNU General Public License open source license, and is freely available from our website at http://www.cardiff.ac.uk/biosi/research/biosoft/. PMID:16332745

  14. Xenopus U3 snoRNA GAC-Box A′ and Box A Sequences Play Distinct Functional Roles in rRNA Processing

    PubMed Central

    Borovjagin, Anton V.; Gerbi, Susan A.

    2001-01-01

    Mutations in the 5′ portion of Xenopus U3 snoRNA were tested for function in oocytes. The results revealed a new cleavage site (A0) in the 3′ region of vertebrate external transcribed spacer sequences. In addition, U3 mutagenesis uncoupled cleavage at sites 1 and 2, flanking the 5′ and 3′ ends of 18S rRNA, and generated novel intermediates: 19S and 18.5S pre-rRNAs. Furthermore, specific nucleotides in Xenopus U3 snoRNA that are required for cleavages in pre-rRNA were identified: box A is essential for site A0 cleavage, the GAC-box A′ region is necessary for site 1 cleavage, and the 3′ end of box A′ and flanking nucleotides are required for site 2 cleavage. Differences between metazoan and yeast U3 snoRNA-mediated rRNA processing are enumerated. The data support a model where metazoan U3 snoRNA acts as a bridge to draw together the 5′ and 3′ ends of the 18S rRNA coding region within pre-rRNA to coordinate their cleavage. PMID:11509664

  15. A sequence dimorphism in a conserved domain of human 28S rRNA. Uneven distribution of variant genes among individuals. Differential expression in HeLa cells.

    PubMed Central

    Qu, L H; Nicoloso, M; Bachellerie, J P

    1991-01-01

    In humans, cellular 28S rRNA displays a sequence dimorphism within an evolutionarily conserved motif, with the presence, at position +60, of either a A (like the metazoan consensus) or a G. The relative abundance of the two forms of variant genes in the genome exhibit large differences among individuals. The two variant forms are generally represented in cellular 28S rRNA in proportion of their relative abundance in the genome, at least for leucocytes. However, in some cases, one form of variant may be markedly underexpressed as compared to the other. Thus, in HeLa cells, A-form genes contribute to only 1% of the cellular content in mature 28S rRNA although amounting to 15% of the ribosomal genes. The differential expression seems to result from different transcriptional activities rather than from differences in pre-rRNA processing efficiency or in stabilities of mature rRNAs. G-form ribosomal genes were not detected in other mammals, including chimpanzee, which suggests that the fixation of this variant type is a rather recent event in primate evolution. Images PMID:2020541

  16. Sequence diversity in the 16S-23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection.

    PubMed

    Antón, A I; Martínez-Murcia, A J; Rodríguez-Valera, F

    1998-07-01

    The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S-23S intergenic spacer region (ISR) for tRNA(Glu-2) and three (rrnA, D, and H) contain genes for tRNA(Ile-1) and tRNA(Ala-1B). To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions.

  17. Characterization of Enterococcus spp. from human and animal feces using 16S rRNA sequences, the esp gene, and PFGE for microbial source tracking in Korea.

    PubMed

    Kim, Sei-Yoon; Lee, Jung Eun; Lee, Sunghee; Lee, Hee Tae; Hur, Ho-Gil; Ko, Gwangpyo

    2010-05-01

    Contamination from human and animal fecal waste is a primary cause of water pollution. Microbial source tracking (MST) may be a useful tool for high-quality environmental management and for assessing human health risks associated with water pollution. The goal of this study was to evaluate Enterococcus spp. as a target organism for MST. Thirty-four fecal samples were collected from five different sources (human, chicken, pig, cow, and goose) in South Korea. In total, 237 Enterococcus spp. were isolated from feces using membrane- Enterococcus indoxyl-beta-d-glucoside agar. The 16S rRNA gene and the whole genome were analyzed using nucleic acid sequencing and pulsed-field gel electrophoresis (PFGE), respectively. Both phylogenetic analysis and principal coordinate analysis using UniFrac were performed on the nucleic acid sequences of the 16S rRNA gene. According to P-tests from UniFrac, significant differences existed between Enterococcus spp. isolated from human feces and those from animal feces. In addition, we evaluated whether the esp gene of Enterococcus faecium could be a specific target for Enterococcus spp. isolated from human feces. Of 58 E. faecium isolates tested, only three were esp-positive. The specificity of the esp gene of E. faecium isolated from human feces was 100%, but the sensitivity was <10%. These results suggest that Enterococcus spp. have different molecular characteristics according to their fecal source and that these characteristics can be further identified by analyzing the esp gene and 16S rRNA sequences, whereas PFGE provides limited information on the fecal sources of Enterococcus spp.

  18. A new PCR primer for the identification of Paracoccidioides brasiliensis based on rRNA sequences coding the internal transcribed spacers (ITS) and 5 x 8S regions.

    PubMed

    Imai, T; Sano, A; Mikami, Y; Watanabe, K; Aoki, F H; Branchini, M L; Negroni, R; Nishimura, K; Miyaji, M

    2000-08-01

    Internal transcribed spacer (ITS) genes including the 5.8S ribosomal (r)RNA of Paracoccidioides brasiliensis were amplified and the DNA sequences were determined. Based on a comparison of the sequence information, a new polymerase chain reaction (PCR) primer pair was designed for specific amplification of DNA for P. brasiliensis. This primer pair amplified a 418-bp DNA sequence and was 100% successful in identifying 29 strains of P. brasiliensis (including the reference strains) isolated from the regions of Brazil, Costa Rica, Japan, Argentina or from different sources. The results of specificity tests of these primers to compare the fungus with those of Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum and Penicillium marneffei are also reported.

  19. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations.

  20. Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences

    PubMed Central

    Rodrigues, Jorge L. M.; Silva-Stenico, M. E.; Gomes, J. E.; Lopes, J. R. S.; Tsai, S. M.

    2003-01-01

    The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease. PMID:12839807

  1. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing.

    PubMed

    Delforno, Tiago Palladino; Lacerda Júnior, Gileno Vieira; Noronha, Melline F; Sakamoto, Isabel K; Varesche, Maria Bernadete A; Oliveira, Valéria M

    2017-02-23

    The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin).

  2. Ultrastructure, SSU rRNA gene sequences and phylogenetic relationships of Flamella Schaeffer, 1926 (Amoebozoa), with description of three new species.

    PubMed

    Kudryavtsev, Alexander; Wylezich, Claudia; Schlegel, Martin; Walochnik, Julia; Michel, Rolf

    2009-02-01

    We isolated and described three new freshwater amoebozoan species that could be unambiguously assigned to the genus Flamella Schaeffer, 1926 by light microscopy. The phylogenetic position of the genus Flamella within the Amoebozoa was unknown, and gene sequence data were lacking. We sequenced the SSU rRNA gene of five Flamella spp., including a previously described F. aegyptia Michel et Smirnov, 1999. The phylogenetic trees inferred from these data showed, that Flamella is monophyletic and robustly branches within Amoebozoa. It belongs to a clade comprising Filamoeba spp., "Arachnula" sp., some protostelids and several SSU rRNA sequences of unidentified or uncultured eukaryotes. This clade consistently branched close to Archamoebae, Mycetozoa, Acramoeba dendroida and Multicilia marina; in contrast to the previous hypotheses, Flamella spp. did not show any relatedness either to Leptomyxida, or to Flabellinea. The ultrastructure of trophic amoebae and especially cysts of the species studied showed considerable similarity to Comandonia operculata Pernin et Pussard, 1979. We therefore suggest that Comandonia may be a junior synonym of Flamella, although more ultrastructural data about Comandonia operculata are necessary to test this hypothesis.

  3. Application of SmartGene IDNS Software to Partial 16S rRNA Gene Sequences for a Diverse Group of Bacteria in a Clinical Laboratory▿

    PubMed Central

    Simmon, Keith E.; Croft, Ann C.; Petti, Cathy A.

    2006-01-01

    Laboratories often receive clinical isolates for bacterial identification that have ambiguous biochemical profiles by conventional testing. With the emergence of 16S rRNA gene sequencing as an identification tool, we evaluated the usefulness of SmartGene IDNS, a 16S rRNA sequence database and software program for microbial identification. Identification by conventional methods of a diverse group of bacterial clinical isolates was compared with gene sequences interrogated by the SmartGene and MicroSeq databases. Of 300 isolates, SmartGene identified 295 (98%) to the genus level and 262 (87%) to the species level, with 5 (2%) being inconclusive. MicroSeq identified 271 (90%) to the genus level and 223 (74%) to the species level, with 29 (10%) being inconclusive. SmartGene and MicroSeq agreed on the genus for 233 (78%) isolates and the species for 212 (71%) isolates. Conventional methods identified 291 (97%) isolates to the genus level and 208 (69%) to the species level, with 9 (3%) being inconclusive. SmartGene, MicroSeq, and conventional identifications agreed for 193 (64%) of the results. Twenty-seven microorganisms were not represented in MicroSeq, compared to only 2 not represented in SmartGene. Overall, SmartGene IDNS provides comprehensive and accurate identification of a diverse group of bacteria and has the added benefit of being a user-friendly program that can be modified to meet the unique needs of clinical laboratories. PMID:17050811

  4. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers.

    PubMed

    Pan, Y B; Burner, D M; Legendre, B L

    2000-01-01

    5S rRNA intergenic spacers were amplified from two elite sugarcane (Saccharum hybrids) cultivars and their related taxa by polymerase chain reaction (PCR) with 5S rDNA consensus primers. Resulting PCR products were uniform in length from each accession but exhibited some degree of length variation among the sugarcane accessions and related taxa. These PCR products did not always cross hybridize in Southern blot hybridization experiments. These PCR products were cloned into a commercial plasmid vector PCR 2.1 and sequenced. Direct sequencing of cloned PCR products revealed spacer length of 231-237 bp for S. officinarum, 233-237 for sugarcane cultivars, 228-238 bp for S. spontaneum, 239-252 bp for S. giganteum, 385-410 bp for Erianthus spp., 226-230 bp for Miscanthus sinensis Zebra, 206-207 bp for M. sinensis IMP 3057, 207-209 bp for Sorghum bicolor, and 247-249 bp for Zea mays. Nucleotide sequence polymorphism were found at both the segment and single nucleotide level. A consensus sequence for each taxon was obtained by Align X. Multiple sequences were aligned and phylogenetic trees constructed using Align X. CLUSTAL and DNAMAN programs. In general, accessions of the following taxa tended to group together to form distinct clusters: S. giganteum, Erianthus spp., M. sinensis, S. bicolor, and Z. mays. However, the two S. officinarum clones and two sugarcane cultivars did not form distinct clusters but interrelated within the S. spontaneum cluster. The disclosure of these 5S rRNA intergenic spacer sequences will facilitate marker-assisted breeding in sugarcane.

  5. Prevalence of infection and 18S rRNA gene sequences of Cytauxzoon species in Iberian lynx (Lynx pardinus) in Spain.

    PubMed

    Millán, J; Naranjo, V; Rodríguez, A; de la Lastra, J M Pérez; Mangold, A J; de la Fuente, J

    2007-07-01

    The Iberian lynx (Lynx pardinus) is the most endangered felid in the world. Only about 160 individuals remain in 2 separate metapopulations in Southern Spain (Sierra Morena and Doñana). We obtained blood samples of 20 lynxes captured from 2004 to 2006, and determined the prevalence of infection and genetic diversity of Cytauxzoon spp. using 18S rRNA PCR and sequence analysis. Prevalence of infection was 15% (3 of 20). Cytauxzoon sp. was only detected in Sierra Morena. For phylogenetic analysis, we used the sequences reported in the present study and those characterized in different domestic and wild felids and ticks from North and South America, Asia and Europe. Three different Cytauxzoon sp. sequences were obtained. They were closely related to that obtained from a Spanish cat, but diverged in up to 1.0% with respect to the only previously reported sequence from an Iberian lynx. Conversely, the latter sequence clustered together with C. manul sequences obtained from Pallas cats (Otocolobus manul) in Mongolia. Our analysis yields a separate cluster of C. felis sequences from cats, wild felids and ticks in the United States and Brazil. These results suggest that at least 2 different Cytauxzoon spp. may be present in Iberian lynx. The apparent absence in one of the areas, together with the possibility of fatal cytauxzoonosis in lynxes makes necessary disease risks to be taken into account in management conservation strategies, such as translocations and re-introductions.

  6. Screening, Isolation and Identification of Probiotic Producing Lactobacillus acidophilus Strains EMBS081 & EMBS082 by 16S rRNA Gene Sequencing.

    PubMed

    Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj

    2015-09-01

    16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

  7. Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria.

    PubMed

    Lu, Yong-Ze; Ding, Zhao-Wei; Ding, Jing; Fu, Liang; Zeng, Raymond J

    2015-12-15

    To develop universal 16S rRNA gene primers for high-throughput sequencing for the simultaneous detection of denitrifying anaerobic methane oxidation (DAMO) archaea, DAMO bacteria, and anaerobic ammonium oxidation (anammox) bacteria, four published primer sets (PS2-PS5) were modified. The overall coverage of the four primer pairs was evaluated in silico with the Silva SSU r119 dataset. Based on the virtual evaluation, the two best primer pairs (PS4 and PS5) were selected for further verification. Illumina MiSeq sequencing of a freshwater sediment and a culture from a DAMO-anammox reactor using these two primer pairs revealed that PS5 (341b4F-806R) was the most promising universal primer pair. This pair of primers detected both archaea and bacteria with less bias than PS4. Furthermore, an anaerobic fermentation culture and a wastewater treatment plant culture were used to verify the accuracy of PS5. More importantly, it detected DAMO archaea, DAMO bacteria, and anammox bacteria simultaneously with no false positives appeared. This universal 16S rRNA gene primer pair extends the existing molecular tools for studying the community structures and distributions of DAMO microbes and their potential interactions with anammox bacteria in different environments.

  8. Molecular Methods for Identification of Acinetobacter Species by Partial Sequencing of the rpoB and 16S rRNA Genes

    PubMed Central

    Khosravi, Azar Dokht; Shahraki, Abdolrazagh Hashemi; Heidarieh, Parvin; Sheikhi, Nasrin

    2015-01-01

    Background Acinetobacter spp. is a diverse group of Gram-negative bacteria which are ubiquitous in soil and water, and an important cause of nosocomial infections. The purpose of this study was to identify a collection of Acinetobacter spp. clinical isolates accurately and to investigate their antibiotic susceptibility patterns. Materials and Methods A total of 197 non-duplicate clinical isolates of Acinetobacter spp. isolates identified using conventional biochemical tests. The molecular technique of PCR-RFLP and sequence analysis of rpoB and 16S rRNA genes was applied for species identification. Antimicrobial susceptibility test was performed with a disk diffusion assay. Results Based on 16S rRNA and rpoB genes analysis separately, most of clinical isolates can be identified with high bootstrap values. However, the identity of the isolate 555T was uncertain due to high similarity of A. grimontii and A. junii. Identification by concatenation of 16S rRNA and rpoB confirmed the identity of clinical isolates of Acenitobacer to species level confidently. Accordingly, the isolate 555T assigned as A. grimontii due to 100% similarity to A. grimontii. Moreover, this isolate showed 98.64% to A. junii. Besides, the identity of the isolates 218T and 364T was confirmed as Genomic species 3 and A. calcoaceticus respectively. So, the majority of Acinetobacter spp. isolates, were identified as: A. baumannii (131 isolates, 66%), A. calcoaceticus (9 isolates, 4.5%), and A. genomosp 16 (8 isolates, 4%). The rest of identified species showed the lower frequencies. In susceptibility test, 105 isolates (53%), presented high antibiotic resistance of 90% to ceftriaxone, piperacillin, piperacillin tazobactam, amikacin, and 81% to ciprofloxacin. Conclusion Sequence analysis of the 16S rRNA and rpoB spacer simultaneously was able to do identification of Acinetobacter spp. to species level. A.baumannii was identified as the most prevalent species with high antibiotic resistance. Other

  9. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards).

    PubMed

    Edger, Patrick P; Tang, Michelle; Bird, Kevin A; Mayfield, Dustin R; Conant, Gavin; Mummenhoff, Klaus; Koch, Marcus A; Pires, J Chris

    2014-01-01

    The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  10. Comparative analyses of potato expressed sequence tag libraries.

    PubMed

    Ronning, Catherine M; Stegalkina, Svetlana S; Ascenzi, Robert A; Bougri, Oleg; Hart, Amy L; Utterbach, Teresa R; Vanaken, Susan E; Riedmuller, Steve B; White, Joseph A; Cho, Jennifer; Pertea, Geo M; Lee, Yuandan; Karamycheva, Svetlana; Sultana, Razvan; Tsai, Jennifer; Quackenbush, John; Griffiths, Helen M; Restrepo, Silvia; Smart, Christine D; Fry, William E; Van Der Hoeven, Rutger; Tanksley, Steve; Zhang, Peifen; Jin, Hailing; Yamamoto, Miki L; Baker, Barbara J; Buell, C Robin

    2003-02-01

    The cultivated potato (Solanum tuberosum) shares similar biology with other members of the Solanaceae, yet has features unique within the family, such as modified stems (stolons) that develop into edible tubers. To better understand potato biology, we have undertaken a survey of the potato transcriptome using expressed sequence tags (ESTs) from diverse tissues. A total of 61,940 ESTs were generated from aerial tissues, below-ground tissues, and tissues challenged with the late-blight pathogen (Phytophthora infestans). Clustering and assembly of these ESTs resulted in a total of 19,892 unique sequences with 8,741 tentative consensus sequences and 11,151 singleton ESTs. We were able to identify a putative function for 43.7% of these sequences. A number of sequences (48) were expressed throughout the libraries sampled, representing constitutively expressed sequences. Other sequences (13,068, 21%) were uniquely expressed and were detected only in a single library. Using hierarchal and k means clustering of the EST sequences, we were able to correlate changes in gene expression with major physiological events in potato biology. Using pair-wise comparisons of tuber-related tissues, we were able to associate genes with tuber initiation, dormancy, and sprouting. We also were able to identify a number of characterized as well as novel sequences that were unique to the incompatible interaction of late-blight pathogen, thereby providing a foundation for further understanding the mechanism of resistance.

  11. Diversity and Structure of the Methanogenic Community in Anoxic Rice Paddy Soil Microcosms as Examined by Cultivation and Direct 16S rRNA Gene Sequence Retrieval

    PubMed Central

    Großkopf, Regine; Janssen, Peter H.; Liesack, Werner

    1998-01-01

    A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Methanobacterium formicicum, six were closely related but not identical to those of strains of Methanosaeta concilii, two grouped with members of the genus Methanosarcina, and two were related to the methanogenic endosymbiont of Plagiopyla nasuta. The cultivation approach via most-probable-number counts with a subsample of the same soil as an inoculum yielded cell numbers of up to 107 per g of dry soil for the H2-CO2-utilizing methanogens and of up to 106 for the acetate-utilizing methanogens. Strain VeH52, isolated from the terminal positive dilution on H2-CO2, grouped within the phylogenetic radiation characterized by M. bryantii and M. formicicum and the environmental sequences of the Methanobacterium-like group. A consortium of two distinct methanogens grew in the terminal positive culture on acetate. These two organisms showed absolute 16S rRNA gene identities with environmental sequences of the novel Methanosaeta-like group and the Methanobacterium-like group. Methanosarcina spp. were identified only in the less-dilute levels of the same dilution series on acetate. These data correlate well with acetate concentrations of about 11 μM in the pore water of this rice paddy soil. These concentrations are too low for the growth of known Methanosarcina spp. but are at the acetate utilization threshold of Methanosaeta spp. Thus, our data indicated Methanosaeta spp. and Methanobacterium spp. to be the dominant methanogenic groups in the anoxic rice soil, whereas Methanosarcina spp. appeared to be less abundant. PMID:9501436

  12. Diversity and phylogeny of bacteria on Zimbabwe tobacco leaves estimated by 16S rRNA sequence analysis.

    PubMed

    Su, Can; Gu, Wen; Zhe, Wei; Zhang, Ke-Qin; Duan, Yanqing; Yang, Jinkui

    2011-12-01

    Microorganisms play important roles in the tobacco aging process. However, microbial communities on flue-cured tobacco leaves (FCTL) remain largely unknown. In this study, the total microbial genomic DNA of unaged and aging FCTL from Zimbabwe were isolated using a culture-independent method, and the bacterial communities were investigated through analyzing two 16S rRNA gene libraries. Eighty-four and 65 operational taxonomic units were obtained from the libraries of the unaged and aging FCTL, respectively. The following genera were represented more than 4% in both libraries (aging and unaged library): Sphingomonas (4.84%, 4.18%), Stenotrophomonas (4.84%, 5.23%), Erwinia (5.81%, 4.88%), Pantoea (19.35%, 18.47%), and Pseudomonas (21.29%, 24.04%). The dominant species varied between the two libraries. Specifically, several dominant species in unaged FCTL including Pseudomonas fulva, Pseudomonas sp. (AM909658), Klebsiella sp. (HM584796), and Pantoea sp. (AY501386) were not identified in aging FCTL, while several dominant species in aging FCTL such as Pantoea sp. (GU566350), Pseudomonas sp. (EF157292), and Buttiauxella izardii were not found in unaged FCTL. The phylogenetic analysis showed that bacteria from unaged and aging FCTL were divided into two clades, and two unique subclades were identified in aging FCTL. Our results revealed for the first time the bacterial diversities on Zimbabwe tobacco, and provided a basis for clarifying the roles of bacteria in aging process of FCTL.

  13. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  14. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences.

    PubMed

    Verma, Mansi; Lal, Devi; Kaur, Jaspreet; Saxena, Anjali; Kaur, Jasvinder; Anand, Shailly; Lal, Rup

    2013-09-01

    Actinobacteria constitute one of the largest and ancient taxonomic phylum within the domain bacteria and are well known for their secondary metabolites. Considerable variation in the metabolic properties, genome size and GC content of the members of this phylum has been observed. Therefore, the placement of new or existing species based on 16S rRNA gene sometimes becomes problematic due to the low congruence level. In the present study, phylogeny of ninety actinobacterial genomes was reconstructed using single gene and whole genome based data. Where alignment-free phylogenetic method was found to be more robust, the concatenation of 94 proteins improved the resolution which all single gene based phylogenies failed to resolve. The comprehensive analysis of 94 conserved proteins resulted in a total of 42,447 informative sites, which is so far the largest meta-alignment obtained for this phylum. But the ultimate resolved phylogeny was obtained by generating a consensus tree by combining the information from single gene and genome based phylogenies. The present investigation clearly revealed that the consensus approach is a useful tool for phylogenetic inference and the taxonomic affiliations must be based on this approach. The consensus approach suggested that there is a need for taxonomic amendments of the orders Frankiales and Micrococcales.

  15. Analyses of Response-Stimulus Sequences in Descriptive Observations

    ERIC Educational Resources Information Center

    Samaha, Andrew L.; Vollmer, Timothy R.; Borrero, Carrie; Sloman, Kimberly; Pipkin, Claire St. Peter; Bourret, Jason

    2009-01-01

    Descriptive observations were conducted to record problem behavior displayed by participants and to record antecedents and consequences delivered by caregivers. Next, functional analyses were conducted to identify reinforcers for problem behavior. Then, using data from the descriptive observations, lag-sequential analyses were conducted to examine…

  16. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    PubMed Central

    Rubin, Benjamin E R; Sanders, Jon G; Hampton-Marcell, Jarrad; Owens, Sarah M; Gilbert, Jack A; Moreau, Corrie S

    2014-01-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied. PMID:25257543

  17. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    SciTech Connect

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.

  18. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  19. Sequence of specific mitochondrial 16S rRNA gene fragment from Egyptian buffalo is used as a pattern for discrimination between river buffaloes, cattle, sheep and goats.

    PubMed

    Ramadan, Hassan A I

    2011-08-01

    Characterization of molecular markers and the development of better assays for precise and rapid detection of domestic species are always in demand. This is particularly due to recent food scares and the crisis of biodiversity resulting from the huge ongoing illegal traffic of endangered species. The aim of this study was to develop a new and easy method for domestic species identification (river buffalo, cattle, sheep and goat) based on the analysis of a specific mitochondrial nucleotide sequence. For this reason, a specific fragment of Egyptian buffalo mitochondrial 16S rRNA gene (422 bp) was amplified by PCR using two universal primers. The sequence of this specific fragment is completely conserved between all tested Egyptian buffaloes and other river buffaloes in different places in the world. Also, the lengths of the homologous fragments were less by one nucleotide (421 bp) in case of goats and two nucleotides (420 bp) in case of both cattle and sheep. The detection of specific variable sites between investigated species within this fragment was sufficient to identify the biological origin of the samples. This was achieved by alignment between the unknown homologous sequence and the reference sequences deposited in GenBank database (accession numbers, FJ748599-FJ748607). Considering multiple alignment results between 16S rRNA homologous sequences obtained from GenBank database with the reference sequence, it was shown that definite nucleotides are specific for each of the four studied species of the family Bovidae. In addition, other nucleotides are detected which can allow discrimination between two groups of animals belonging to two subfamilies of family Bovidae, Group one (closely related species like cattle and buffalo, Subfamily Bovinae) and Group two (closely related species like sheep and goat, Subfamily Caprinae). This 16S DNA barcode character-based approach could be used to complement cytochrome c oxidase I (COI) in DNA barcoding. Also, it is a

  20. Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing

    PubMed Central

    Li, Gang; Shen, Mengyu; Le, Shuai; Tan, Yinling; Li, Ming; Zhao, Xia; Shen, Wei; Yang, Yuhui; Wang, Jing; Zhu, Hongbin; Li, Shu; Rao, Xiancai; Hu, Fuquan; Lu, Shuguang

    2016-01-01

    As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin–antitoxin (T–A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen. PMID:27765811

  1. Characterization of the vaginal fungal flora in pregnant diabetic women by 18S rRNA sequencing.

    PubMed

    Zheng, N-N; Guo, X-C; Lv, W; Chen, X-X; Feng, G-F

    2013-08-01

    Pregnancy and diabetes are regarded as individual risk factors for vaginal candidiasis. The high prevalence of vaginal candidiasis in pregnant diabetic women can be explained by disruption of the balance of the vaginal normal flora. However, little is known about the overall structure and composition of the vaginal fungal flora in pregnant diabetic women. In the present study, the diversity and richness of the vaginal fungal flora in healthy non-pregnant women (group HN), healthy pregnant women (group HP), women with gestational diabetes mellitus (group GDM), and pregnant women with diabetes mellitus type I (group T1DM) were investigated using an 18S rRNA gene clone library method. Our data demonstrated that the composition of the vaginal fungal flora in the four groups could be divided into two phyla (Ascomycetes, 20/26, and Basidiomycetes, 6/26). The most predominant vaginal fungal species belonged to the Candida and Saccharomyces genera, uncultured fungi, and a large number of low-abundance taxa that were unrecorded or underrepresented in previous studies using cultivation-dependent methods. Variation in operational taxonomic units (OTUs) between the study cohorts was generally high in the clone libraries, as 9, 13, 17, and 20 phylotypes were identified in groups HN, HP, GDM, and T1DM, respectively. The Shannon indices of groups GDM and T1DM (with poorer glycemic control) were significantly higher compared to groups HN and HP (p < 0.05). The data presented here revealed an increased diversity and varied composition of the vaginal fungal flora in pregnant diabetic women and demonstrated that poor glycemic control might be associated with disturbances in the vaginal fungal flora.

  2. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.

  3. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling

    SciTech Connect

    Podar, Mircea; Shakya, Migun; D'Amore, Rosalinda; Ijaz, Umer Zeeshan; Schirmer, Melanie; Kenny, John G.; Gregory, Richard; Darby, Alistair C.; Quince, Christopher; Hall, Neil

    2016-01-14

    In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. Here, the most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated.

  4. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling

    DOE PAGES

    Podar, Mircea; Shakya, Migun; D'Amore, Rosalinda; ...

    2016-01-14

    In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. Here, the most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions aremore » interrogated.« less

  5. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification☆

    PubMed Central

    Loh, Chye Ying; Tan, Yin Yin; Rohani, Rahim; Weber, Jean-Frédéric F.; Bhore, Subhash Janardhan

    2013-01-01

    Bacterial endophytes do have several potential applications in pharmacy, medicine and agricultural biotech industry. The main objective of this study was to understand types of bacterial endophytes associated with dicotyledonous (dicot) and monocotyledonous (monocot) plant species. Isolation of the endophytic bacteria was performed using surface-sterilized various tissue samples, and identification of the endophytic bacterial isolates (EBIs) was completed using 16S rRNA encoding gene sequence similarity based method. In total, 996 EBIs were isolated and identified from 1055 samples of 31 monocot and 65 dicot plant species from Peninsular Malaysia. The 996 EBIs represented 71 different types of bacterial species. Twelve (12) out of 71 species are reported as endophytes for the first time. We conclude that diverse types of bacterial endophytes are associated with dicot and monocot plants, and could be useful in pharmacy, medicine and agricultural biotechnology for various potential applications. PMID:24396249

  6. Toward an Understanding of Changes in Diversity Associated with Fecal Microbiome Transplantation Based on 16S rRNA Gene Deep Sequencing

    PubMed Central

    Shahinas, Dea; Silverman, Michael; Sittler, Taylor; Chiu, Charles; Kim, Peter; Allen-Vercoe, Emma; Weese, Scott; Wong, Andrew; Low, Donald E.; Pillai, Dylan R.

    2012-01-01

    ABSTRACT Fecal microbiome transplantation by low-volume enema is an effective, safe, and inexpensive alternative to antibiotic therapy for patients with chronic relapsing Clostridium difficile infection (CDI). We explored the microbial diversity of pre- and posttransplant stool specimens from CDI patients (n = 6) using deep sequencing of the 16S rRNA gene. While interindividual variability in microbiota change occurs with fecal transplantation and vancomycin exposure, in this pilot study we note that clinical cure of CDI is associated with an increase in diversity and richness. Genus- and species-level analysis may reveal a cocktail of microorganisms or products thereof that will ultimately be used as a probiotic to treat CDI. PMID:23093385

  7. Analyses of Expressed Sequence Tags from Apple1

    PubMed Central

    Newcomb, Richard D.; Crowhurst, Ross N.; Gleave, Andrew P.; Rikkerink, Erik H.A.; Allan, Andrew C.; Beuning, Lesley L.; Bowen, Judith H.; Gera, Emma; Jamieson, Kim R.; Janssen, Bart J.; Laing, William A.; McArtney, Steve; Nain, Bhawana; Ross, Gavin S.; Snowden, Kimberley C.; Souleyre, Edwige J.F.; Walton, Eric F.; Yauk, Yar-Khing

    2006-01-01

    The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5′-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop. PMID:16531485

  8. Group-specific PCR primers for the phylum Acidobacteria designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Lee, Sang-Hoon; Cho, Jae-Chang

    2011-08-01

    We performed a comprehensive phylogenetic analysis of the phylum Acidobacteria and developed novel, group-specific PCR primers for Acidobacteria and its class-level subgroups. Acidobacterial 16S rRNA gene sequences deposited in the RDP database were used to construct a local database then subsequently analyzed. A total of 556 phylotypes were observed and the majority of the phylotypes belonged to five major subgroups (subgroups 1, 2, 3, 4, and 6), which comprised >80% of the acidobacterial sequences in the RDP database. Phylum-specific and subgroup-specific primers were designed from the consensus sequences of the phylotype sequences, and the specificities of the designed primers were evaluated both in silico and empirically for coverage and tolerance. The phylum-specific primer ACIDO, which was designed in this study, showed increased coverage for Acidobacteria, as compared to the previous phylum-specific primer 31F. However, the tolerance of the primer ACIDO for non-target sequences was slightly higher than that of the primer 31F. We also developed subgroup-specific PCR primers for the major subgroups of Acidobacteria, except for subgroup 4. Subgroup-specific primers S1, S2, and S3, which targeted subgroups 1, 2, and 3, respectively, showed high coverage for their target subgroups and low tolerance for non-target sequences. However, the primer S6 targeting subgroup 6 showed a lower specificity in its empirical evaluation than expected from the in silico results. The subgroup-specific primers, as well as the phylum-specific primer designed in this study, will be valuable tools in understanding the phylogenetic diversity and ecological niche of the phylum Acidobacteria and its subgroups.

  9. Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting.

    PubMed

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.

  10. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics.

    PubMed

    Yu, Meng; Jia, Hongmei; Zhou, Chao; Yang, Yong; Zhao, Yang; Yang, Maohua; Zou, Zhongmei

    2017-05-10

    As a prevalent, life-threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota-gut-brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in chronic variable stress (CVS)-induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be further applied to assess pathogenesis of depression.

  11. Microdiversity of Deep-Sea Bacillales Isolated from Tyrrhenian Sea Sediments as Revealed by ARISA, 16S rRNA Gene Sequencing and BOX-PCR Fingerprinting

    PubMed Central

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments. PMID:24005887

  12. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes.

    PubMed

    Duperron, Sébastien; Fiala-Médioni, Aline; Caprais, Jean-Claude; Olu, Karine; Sibuet, Myriam

    2007-01-01

    Symbioses between lucinid clams (Bivalvia: Lucinidae) and autotrophic sulphide-oxidizing bacteria have mainly been studied in shallow coastal species, and information regarding deep-sea species is scarce. Here we study the symbiosis of a clam, resembling Lucinoma kazani, which was recently collected in sediment cores from new cold-seep sites in the vicinity of the Nile deep-sea fan, eastern Mediterranean, at depths ranging from 507 to 1691 m. A dominant bacterial phylotype, related to the sulphide-oxidizing symbiont of Lucinoma aequizonata, was identified in gill tissue by comparative 16S rRNA gene sequence analysis. A second phylotype, related to spirochete sequences, was identified twice in a library of 94 clones. Comparative analyses of gene sequences encoding the APS reductase alpha subunit and ribulose-1,5-bisphosphate carboxylase oxygenase support the hypothesis that the dominant symbiont can perform sulphide oxidation and autotrophy. Transmission electron micrographs of gills confirmed the dominance of sulphide-oxidizing bacteria, which display typical vacuoles, and delta(13)C values measured in gill and foot tissue further support the hypothesis for a chemoautotrophic-sourced host carbon nutrition.

  13. The phylogenetic position of Myxobolus carnaticus (Myxozoa, Myxosporea, Bivalvulida) infecting gill lamellae of Cirrhinus mrigala (Hamilton, 1822) based on 18S rRNA sequence analysis

    PubMed Central

    Banerjee, Sayani; Patra, Avijit; Adikesavalu, Harresh; Mondal, Anjan; Jawahar Abraham, Thangapalam

    2015-01-01

    Myxozoans are an economically important group of microscopic parasites best known for the diseases they cause in commercially important fish hosts. The classification of myxosporeans is generally based on the morphology of their myxospores. Without molecular data, it is very difficult to identify new or existing species. DNA sequence information is therefore, a prerequisite to taxonomic and phylogenic studies of myxosporeans. In the present study, a myxozoan parasite, Myxobolus carnaticus, infecting the gill lamellae of mrigal carp, Cirrhinus mrigala, was characterized by the 18S rRNA gene sequence. The DNA sequence of M. carnaticus clustered phylogenetically with other gill infecting Myxobolus spp. of freshwater clades, forming a dichotomy with closely related M. pavlovskii (HM991164) that infects the gill lamellae epithelium of silver carp, Hypophthalmichthys molitrix with 95% similarity. Evolutionary pair-wise distances among M. carnaticus and other species of myxosporeans indicated high genetic diversity among myxosporeans. The present study demonstrated that tissue tropism, host specificity and habitat play important roles in phylogenetic relationships among myxozoan species. PMID:27844004

  14. Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa.

    PubMed

    Ishaq, Suzanne L; Wright, André-Denis G

    2014-09-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.

  15. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Silberman, Jeffrey D.; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino–Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira–Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny. PMID:11504944

  17. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  18. Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface.

    PubMed

    Soh, Jung; Dong, Xiaoli; Caffrey, Sean M; Voordouw, Gerrit; Sensen, Christoph W

    2013-09-20

    We have developed Phoenix 2, a ribosomal RNA gene sequence analysis pipeline, which can be used to process large-scale datasets consisting of more than one hundred environmental samples and containing more than one million reads collectively. Rapid handling of large datasets is made possible by the removal of redundant sequences, pre-partitioning of sequences, parallelized clustering per partition, and subsequent merging of clusters. To build the pipeline, we have used a combination of open-source software tools and custom-developed Perl scripts. For our project we utilize hardware-accelerated searches, but it is possible to reconfigure the analysis pipeline for use with generic computing infrastructure only, with a considerable reduction in speed. The set of analysis results produced by Phoenix 2 is comprehensive, including taxonomic annotations using multiple methods, alpha diversity indices, beta diversity measurements, and a number of visualizations. To date, the pipeline has been used to analyze more than 1500 environmental samples from a wide variety of microbial communities, which are part of our Hydrocarbon Metagenomics Project (http://www.hydrocarbonmetagenomics.com). The software package can be installed as a local software suite with a Web interface. Phoenix 2 is freely available from http://sourceforge.net/projects/phoenix2.

  19. C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.

    PubMed

    Ghosh, Tarini Shankar; Gajjalla, Purnachander; Mohammed, Monzoorul Haque; Mande, Sharmila S

    2012-04-01

    Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.

  20. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  1. Genome sequence analyses show that Neisseria oralis is the same species as ‘Neisseria mucosa var. heidelbergensis’

    PubMed Central

    Jolley, Keith A.; Maiden, Martin C. J.

    2013-01-01

    Phylogenies generated from whole genome sequence (WGS) data provide definitive means of bacterial isolate characterization for typing and taxonomy. The species status of strains recently defined with conventional taxonomic approaches as representing Neisseria oralis was examined by the analysis of sequences derived from WGS data, specifically: (i) 53 Neisseria ribosomal protein subunit (rps) genes (ribosomal multi-locus sequence typing, rMLST); and (ii) 246 Neisseria core genes (core genome MLST, cgMLST). These data were compared with phylogenies derived from 16S and 23S rRNA gene sequences, demonstrating that the N. oralis strains were monophyletic with strains described previously as representing ‘Neisseria mucosa var. heidelbergensis’ and that this group was of equivalent taxonomic status to other well-described species of the genus Neisseria. Phylogenetic analyses also indicated that Neisseria sicca and Neisseria macacae should be considered the same species as Neisseria mucosa and that Neisseria flavescens should be considered the same species as Neisseria subflava. Analyses using rMLST showed that some strains currently defined as belonging to the genus Neisseria were more closely related to species belonging to other genera within the family; however, whole genome analysis of a more comprehensive selection of strains from within the family Neisseriaceae would be necessary to confirm this. We suggest that strains previously identified as representing ‘N. mucosa var. heidelbergensis’ and deposited in culture collections should be renamed N. oralis. Finally, one of the strains of N. oralis was able to ferment lactose, due to the presence of β-galactosidase and lactose permease genes, a characteristic previously thought to be unique to Neisseria lactamica, which therefore cannot be thought of as diagnostic for this species; however, the rMLST and cgMLST analyses confirm that N. oralis is most closely related to N. mucosa. PMID:24097834

  2. Anterior Foregut Microbiota of the Glassy-Winged Sharpshooter Explored Using Deep 16S rRNA Gene Sequencing from Individual Insects

    PubMed Central

    Rogers, Elizabeth E.; Backus, Elaine A.

    2014-01-01

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where it may interact with other naturally-occurring bacterial species. To evaluate such interactions, a comprehensive list of bacterial species associated with the sharpshooter cibarium and precibarium is needed. Here, a survey of microbiota associated with the GWSS anterior foregut was conducted. Ninety-six individual GWSS, 24 from each of 4 locations (Bakersfield, CA; Ojai, CA; Quincy, FL; and a laboratory colony), were characterized for bacteria in dissected sharpshooter cibaria and precibaria by amplification and sequencing of a portion of the 16S rRNA gene using Illumina MiSeq technology. An average of approximately 150,000 sequence reads were obtained per insect. The most common genus detected was Wolbachia; sequencing of the Wolbachia ftsZ gene placed this strain in supergroup B, one of two Wolbachia supergroups most commonly associated with arthropods. X. fastidiosa was detected in all 96 individuals examined. By multilocus sequence typing, both X. fastidiosa subspecies fastidiosa and subspecies sandyi were present in GWSS from California and the colony; only subspecies fastidiosa was detected in GWSS from Florida. In addition to Wolbachia and X. fastidiosa, 23 other bacterial genera were detected at or above an average incidence of 0.1%; these included plant-associated microbes (Methylobacterium, Sphingomonas, Agrobacterium, and Ralstonia) and soil- or water-associated microbes (Anoxybacillus, Novosphingobium, Caulobacter, and Luteimonas). Sequences belonging to species of the family Enterobacteriaceae also were detected but it was not possible to assign these to individual genera. Many of these species likely interact with X. fastidiosa in the cibarium and

  3. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes.

    PubMed

    Terenius, Olle; de Oliveira, Caroline Dantas; Pinheiro, Waleria Dasso; Tadei, Wanderli Pedro; James, Anthony Amade; Marinotti, Osvaldo

    2008-01-01

    The microbial flora associated with Anopheles darlingi Root (Diptera: Culicidae), a major Neotropical malaria vector, was investigated for the development of a paratransgenesis-based approach to control malaria transmission in Brazil. Female mosquitoes were collected using human land catches and captured insects provided a bloodmeal. The controlled blood feeding resulted in increased detection of mosquito bacterial population because it was possible to retrieve bacterial DNA from all blood-fed mosquitoes. The 16S sequences of bacteria recovered, include some closely related to those found in other vector mosquitoes, including Aeromonas, Pantoea and Pseudomonas species.

  4. Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences.

    PubMed

    Huber, R; Dyba, D; Huber, H; Burggraf, S; Rachel, R

    1998-01-01

    Recently, a new procedure was developed which allowed for the first time the isolation of a hyperthermophilic archaeum tracked by 165 rRNA analysis from a terrestrial hot solfataric spring ('Obsidian Pool', Yellowstone National Park, WY, USA). This novel isolate is characterized here. Cells are round cocci with a diameter of 0.2-0.8 micron, occurring singly, in pairs, short chains and in grape-like aggregates. The aggregates exhibit a weak bluish-green fluorescence under UV radiation at 420 nm. The new isolate is an anaerobic obligate heterotroph, using preferentially yeast extract for growth. The metabolic products include CO2, H2, acetate and isovalerate. Growth is observed between 65 and 90 degrees C (optimum: 85 degrees C), from pH 5.0 to 7.0 (optimum: 6.5) and up to 0.7% NaCl. The apparent activation energy for growth is about 149 kJ mol-1. Elemental sulfur or hydrogen inhibits growth. The core lipids consist mainly of acyclic and cyclic glycerol diphytanyl tetraethers. The cell envelope contains a cytoplasmic membrane covered by an amorphous layer of unknown composition; there is no evidence for a regularly arrayed surface-layer protein. The G + C content is 46 mol%. On the basis of 165 rRNA sequence comparisons in combination with morphological, physiological and biochemical properties, the isolate represents a new genus within the Desulfurococcaceae, which has been named Thermosphaera. The type species is Thermosphaera aggregans, the type strain is isolate M11TLT (= DSM 11486T).

  5. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.

  6. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    PubMed Central

    2012-01-01

    Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus) complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1) or of multiple pooled genomes (approach 2), the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3). All protein-coding genes were shown to be

  7. Morphology, morphogenesis and small subunit rRNA gene sequence of a soil hypotrichous ciliate, Perisincirra paucicirrata (Ciliophora, Kahliellidae), from the shoreline of the Yellow River, North China.

    PubMed

    Li, Fengchao; Xing, Yi; Li, Jiamei; Al-Rasheid, Khaled A S; He, Songke; Shao, Chen

    2013-01-01

    The morphology, morphogenesis, and 18S rRNA gene sequence of a soil hypotrichous ciliate Perisincirra paucicirrata, isolated from north China, were investigated. Perisincirra paucicirrata differs from its congeners in: (1) having a body length to width ratio in vivo of 4:1, (2) its adoral zone occupying between 15% and 25% of the total body length, and (3) the presence of two parabuccal cirri, three left (with 10-16 cirri each) and two right marginal rows (with 14-24 cirri each), and three dorsal kineties. Our study offers a first attempt to begin to map the morphogenetic processes of the genus, which are mainly characterised by the following: the formation of four frontal ventral transverse anlagens for each daughter cell, with the proter's anlage I originating from the reorganised anterior part of the parental paroral; the paroral and endoral anlage developed from the reorganised old endoral and do not contribute the first frontal cirrus; the frontoventral transverse anlage I contributing the left frontal cirrus; anlage II generating the middle frontal and the buccal cirri; anlage III developing the right frontal cirrus and the anterior parabuccal cirrus; and anlage IV contributing the posterior parabuccal cirrus. As an additional contribution, we judge that the inner one or the two right rows of P. kahli and P. longicirrata are marginal rows. Phylogenetic analysis based on SSU rDNA sequences suggests that Perisincirra is related to sporadotrichids, but provides no credible evidence for its taxonomic position.

  8. Molecular Characterization of Cryptosporidium spp. in Wild Rodents of Southwestern Iran Using 18s rRNA Gene Nested-PCR-RFLP and Sequencing Techniques

    PubMed Central

    Saki, Jasem; Asadpouri, Reza

    2016-01-01

    Background. Rodents could act as reservoir for Cryptosporidium spp. specially C. parvum, a zoonotic agent responsible for human infections. Since there is no information about Cryptosporidium infection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization of Cryptosporidium spp. in this region. Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method using SspI and VspI restriction enzymes was carried out to genotype the species and then obtained results were sequenced. Results. Three out of 100 samples were diagnosed as positive and overall prevalence of Cryptosporidium spp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples and C. parvum pattern was identified. Finally PCR-RFLP findings were sequenced and presence of C. parvum was confirmed again. Conclusions. Our study showed rodents could be potential reservoir for C. parvum. So an integrated program for control and combat with them should be adopted and continued. PMID:27956905

  9. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes.

    PubMed

    Choi, Dong H; An, Sung M; Chun, Sungjun; Yang, Eun C; Selph, Karen E; Lee, Charity M; Noh, Jae H

    2016-02-01

    Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of oligotrophic open waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, prasinophytes, Bacillariophyceaea and Pelagophyceae. These distributions were influenced by temperature, salinity and chlorophyll a and nutrient concentrations.

  10. Development and evaluation of two novel oligonucleotide probes based on 16S rRNA sequence for the identification of Salmonella in foods.

    PubMed

    Lin, C K; Tsen, H Y

    1995-05-01

    DNA sequence in the V3 to V6 region of the 16S rRNA gene of Salmonella enteritidis was determined. By comparison of this sequence with those of Escherichia coli and Proteus vulgaris obtained from GenBank/EMBL database, three oligonucleotides termed as 16S I, 16S II and 16S III were synthesized. Hybridization of these oligonucleotides with 325 Salmonella isolates and some non-Salmonella isolates including the Salmonella closely related species of the family of Enterobacteriaceae showed that 16S II could not be used as a Salmonella specific-probe. 16S I and 16S III hybridized with all the Salmonella isolates tested, the former also hybridizing with Citrobacter spp. and the latter hybridizing with Klebsiella pneumoniae as well as Serratia marcescens. Since enrichment of the target cells in food samples was usually required prior to the DNA hybridization assay, the interference from those non-Salmonella isolates could be prevented by enrichment by culturing in lactose-combined tetrathionate (CTET) broth followed by Gram-negative (GN) broth at 37 degrees C and/or 43 degrees C. Such a culture step could inhibit the growth of Klebsiella spp., Ser. marcescens and/or Citrobacter spp. and allowed the specific detection of Salmonella.

  11. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    PubMed

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity.

  12. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing

    PubMed Central

    Li, Mao; Zhou, Hanlin; Pan, Xiangyu; Xu, Tieshan; Zhang, Zhenwen; Zi, Xuejuan; Jiang, Yu

    2017-01-01

    Geese are extremely adept in utilizing plant-derived roughage within their diet. However, the intestinal microbiome of geese remains limited, especially the dietary effect on microbial diversity. Cassava foliage was widely used in animal feed, but little information is available for geese. In this study, the geese were fed with control diet (CK), experimental diet supplemented with 5% cassava foliage (CF5) or 10% (CF10) for 42 days, respectively. The cecal samples were collected after animals were killed. High-throughput sequencing technology was used to investigate the microbial diversity in the caecum of geese with different dietary supplements. Taxonomic analysis indicated that the predominant phyla were distinct with different dietary treatments. The phyla Firmicutes (51.4%), Bacteroidetes (29.55%) and Proteobacteria (7.90%) were dominant in the CK group, but Bacteroidetes (65.19% and 67.29%,) Firmicutes (18.01% and 17.39%), Proteobacteria (8.72% and 10.18%), Synergistete (2.51% and 1.76%) and Spirochaetes (2.60% and 1.46%) were dominant in CF5 and CF10 groups. The abundance of Firmicutes was negatively correlated with the supplementation of cassava foliage. However, the abundance of Bacteroidetes and Proteobacteria were positively correlated with the supplementation of cassava foliage. Our study also revealed that the microbial communities were significantly different at genus levels. Genes related to nutrient and energy metabolism, immunity and signal transduction pathways were primarily enriched by the microbiome. PMID:28383519

  13. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland.

    PubMed

    Jiang, Xiao-Tao; Peng, Xin; Deng, Guan-Hua; Sheng, Hua-Fang; Wang, Yu; Zhou, Hong-Wei; Tam, Nora Fung-Yee

    2013-07-01

    The microbial community plays an essential role in the high productivity in mangrove wetlands. A proper understanding of the spatial variations of microbial communities will provide clues about the underline mechanisms that structure microbial groups and the isolation of bacterial strains of interest. In the present study, the diversity and composition of the bacterial community in sediments collected from four locations, namely mudflat, edge, bulk, and rhizosphere, within the Mai Po Ramsar Wetland in Hong Kong, SAR, China were compared using the barcoded Illumina paired-end sequencing technique. Rarefaction results showed that the bulk sediment inside the mature mangrove forest had the highest bacterial α-diversity, while the mudflat sediment without vegetation had the lowest. The comparison of β-diversity using principal component analysis and principal coordinate analysis with UniFrac metrics both showed that the spatial effects on bacterial communities were significant. All sediment samples could be clustered into two major groups, inner (bulk and rhizosphere sediments collected inside the mangrove forest) and outer mangrove sediments (the sediments collected at the mudflat and the edge of the mangrove forest). With the linear discriminate analysis scores larger than 3, four phyla, namely Actinobacteria, Acidobacteria, Nitrospirae, and Verrucomicrobia, were enriched in the nutrient-rich inner mangrove sediments, while abundances of Proteobacteria and Deferribacterias were higher in outer mangrove sediments. The rhizosphere effect of mangrove plants was also significant, which had a lower α-diversity, a higher amount of Nitrospirae, and a lower abundance of Proteobacteria than the bulk sediment nearby.

  14. Analysing the performance of personal computers based on Intel microprocessors for sequence aligning bioinformatics applications.

    PubMed

    Nair, Pradeep S; John, Eugene B

    2007-01-01

    Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.

  15. Bacterial Primary Colonization and Early Succession on Surfaces in Marine Waters as Determined by Amplified rRNA Gene Restriction Analysis and Sequence Analysis of 16S rRNA Genes

    PubMed Central

    Dang, Hongyue; Lovell, Charles R.

    2000-01-01

    The nearly universal colonization of surfaces in marine waters by bacteria and the formation of biofilms and biofouling communities have important implications for ecological function and industrial processes. However, the dynamics of surface attachment and colonization in situ, particularly during the early stages of biofilm establishment, are not well understood. Experimental surfaces that differed in their degrees of hydrophilicity or hydrophobicity were incubated in a salt marsh estuary tidal creek for 24 or 72 h. The organisms colonizing these surfaces were examined by using a cultivation-independent approach, amplified ribosomal DNA restriction analysis. The goals of this study were to assess the diversity of bacterial colonists involved in early succession on a variety of surfaces and to determine the phylogenetic affiliations of the most common early colonists. Substantial differences in the representation of different cloned ribosomal DNA sequences were found when the 24- and 72-h incubations were compared, indicating that some new organisms were recruited and some other organisms were lost. Phylogenetic analyses of the most common sequences recovered showed that the colonists were related to organisms known to inhabit surfaces or particles in marine systems. A total of 22 of the 26 clones sequenced were affiliated with the Roseobacter subgroup of the α subdivision of the division Proteobacteria (α-Proteobacteria), and most of these clones were recovered at a high frequency from all surfaces after 24 or 72 h of incubation. Two clones were affiliated with the Alteromonas group of the γ-Proteobacteria and appeared to be involved only in the very early stages of colonization (within the first 24 h). A comparison of the colonization patterns on the test surfaces indicated that the early bacterial community succession rate and/or direction may be influenced by surface physicochemical properties. However, organisms belonging to the Roseobacter subgroup are

  16. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes.

    PubMed

    Dang, H; Lovell, C R

    2000-02-01

    The nearly universal colonization of surfaces in marine waters by bacteria and the formation of biofilms and biofouling communities have important implications for ecological function and industrial processes. However, the dynamics of surface attachment and colonization in situ, particularly during the early stages of biofilm establishment, are not well understood. Experimental surfaces that differed in their degrees of hydrophilicity or hydrophobicity were incubated in a salt marsh estuary tidal creek for 24 or 72 h. The organisms colonizing these surfaces were examined by using a cultivation-independent approach, amplified ribosomal DNA restriction analysis. The goals of this study were to assess the diversity of bacterial colonists involved in early succession on a variety of surfaces and to determine the phylogenetic affiliations of the most common early colonists. Substantial differences in the representation of different cloned ribosomal DNA sequences were found when the 24- and 72-h incubations were compared, indicating that some new organisms were recruited and some other organisms were lost. Phylogenetic analyses of the most common sequences recovered showed that the colonists were related to organisms known to inhabit surfaces or particles in marine systems. A total of 22 of the 26 clones sequenced were affiliated with the Roseobacter subgroup of the alpha subdivision of the division Proteobacteria (alpha-Proteobacteria), and most of these clones were recovered at a high frequency from all surfaces after 24 or 72 h of incubation. Two clones were affiliated with the Alteromonas group of the gamma-Proteobacteria and appeared to be involved only in the very early stages of colonization (within the first 24 h). A comparison of the colonization patterns on the test surfaces indicated that the early bacterial community succession rate and/or direction may be influenced by surface physicochemical properties. However, organisms belonging to the Roseobacter

  17. Seasonal Diversity of Planktonic Protists in Southwestern Alberta Rivers over a 1-Year Period as Revealed by Terminal Restriction Fragment Length Polymorphism and 18S rRNA Gene Library Analyses

    PubMed Central

    Thomas, Matthew C.; Selinger, L. Brent

    2012-01-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143

  18. Effects of Cr(III) and CR(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments

    EPA Science Inventory

    The effect of Cr(III) and Cr(VI) on ammonia oxidation, the transcriptional responses of functional genes involved in nitrification and changes in 16S rRNA level sequences were examined in nitrifying enrichment cultures. The nitrifying bioreactor was operated as a continuous react...

  19. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

    PubMed

    Ward, B B; Martino, D P; Diaz, M C; Joye, S B

    2000-07-01

    Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.

  20. 16S rRNA Phylogeny of Sponge-Associated Cyanobacteria

    PubMed Central

    Steindler, Laura; Huchon, Dorothée; Avni, Adi; Ilan, Micha

    2005-01-01

    Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales. PMID:16000832

  1. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis.

    PubMed

    Parulekar, Niranjan Nitin; Kolekar, Pandurang; Jenkins, Andrew; Kleiven, Synne; Utkilen, Hans; Johansen, Anette; Sawant, Sangeeta; Kulkarni-Kale, Urmila; Kale, Mohan; Sæbø, Mona

    2017-01-01

    Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.

  2. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis

    PubMed Central

    Parulekar, Niranjan Nitin; Kolekar, Pandurang; Jenkins, Andrew; Kleiven, Synne; Utkilen, Hans; Johansen, Anette; Sawant, Sangeeta; Kulkarni-Kale, Urmila; Kale, Mohan; Sæbø, Mona

    2017-01-01

    Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities. PMID:28282404

  3. Subcuticular bacteria associated with two common New Zealand echinoderms: Characterization using 16S rRNA sequence analysis and fluorescence in situ hybridization.

    PubMed

    Lawrence, Scott A; O'Toole, Ronan; Taylor, Michael W; Davy, Simon K

    2010-02-01

    Many echinoderms contain subcuticular bacteria (SCB), symbionts which reside in the lumen between the host's epidermal cells and outer cuticle. This relationship is common, existing in about 60% of echinoderms studied so far, yet the function of SCB remains largely unknown. In this study, phylogenetic analysis was carried out on 16S rRNA sequences obtained from echinoderm-associated bacteria, resulting in the identification of four species of putative SCB. All four bacteria were identified from the holothurian Stichopus mollis, and two of the four were also found in the asteroid Patiriella sp. Two of these bacteria belong to the Alphaproteobacteria, and two to the Gammaproteobacteria. In addition to phylogenetic analysis, fluorescence in situ hybridization (FISH) assays were carried out on Patiriella sp., S. mollis, and the asteroid Astrostole scabra. Results showed that Patiriella sp. and S. mollis contain SCB, in agreement with the phylogenetic analysis, while SCB were not detected in A. scabra. Of the bacteria detected using FISH, more than 80% were recognized as belonging to the Alphaproteobacteria in both host species. However, in S. mollis about 20% of the detected SCB successfully hybridized with the Gammaproteobacteria-specific probe, whereas bacteria belonging to this class were never observed in Patiriella sp. This is only the second study to characterize SCB by molecular means, and is the first to identify SCB in situ using FISH.

  4. Analysis of the gut microbiota by high-throughput sequencing of the V5-V6 regions of the 16S rRNA gene in donkey.

    PubMed

    Liu, Xinfeng; Fan, Hanlu; Ding, Xiangbin; Hong, Zhongshan; Nei, Yongwei; Liu, Zhongwei; Li, Guangpeng; Guo, Hong

    2014-05-01

    Considerable evidence suggests that the gut microbiota is complex in many mammals and gut bacteria communities are essential for maintaining gut homeostasis. To date the research on the gut microbiota of donkey is surprisingly scarce. Therefore, we performed high-throughput sequencing of the 16S rRNA genes V5-V6 hypervariable regions from gut fecal material to characterize the gut microbiota of healthy donkeys and compare the difference of gut microbiota between male and female donkeys. Sixty healthy donkeys (30 males and 30 females) were enrolled in the study, a total of 915,691 validated reads were obtained, and the bacteria found belonged to 21 phyla and 183 genera. At the phylum level, the bacterial community composition was similar for the male and female donkeys and predominated by Firmicutes (64 % males and 64 % females) and Bacteroidetes (23 % males and 21 % females), followed by Verrucomicrobia, Euryarchaeota, Spirochaetes, and Proteobacteria. At the genus level, Akkermansia was the most abundant genus (23 % males and 17 % females), followed by Sporobacter, Methanobrevibacter, and Treponema, detected in higher distribution proportion in males than in females. On the contrary, Acinetobacter and Lysinibacillus were lower in males than in females. In addition, six phyla and 15 genera were significantly different between the male and female donkeys for species abundance. These findings provide previously unknown information about the gut microbiota of donkeys and also provide a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in donkey and other animals.

  5. Characterization and potential of three temperature ranges for hydrogen fermentation of cellulose by means of activity test and 16s rRNA sequence analysis.

    PubMed

    Gadow, Samir I; Jiang, Hongyu; Li, Yu-You

    2016-06-01

    A series of standardized activity experiments were performed to characterize three different temperature ranges of hydrogen fermentation from different carbon sources. 16S rRNA sequences analysis showed that the bacteria were close to Enterobacter genus in the mesophilic mixed culture (MMC) and Thermoanaerobacterium genus in the thermophilic and hyper-thermophilic mixed cultures (TMC and HMC). The MMC was able to utilize the glucose and cellulose to produce methane gas within a temperature range between 25 and 45 °C and hydrogen gas from 35 to 60°C. While, the TMC and HMC produced only hydrogen gas at all temperature ranges and the highest activity of 521.4mlH2/gVSSd was obtained by TMC. The thermodynamic analysis showed that more energy is consumed by hydrogen production from cellulose than from glucose. The experimental results could help to improve the economic feasibility of cellulosic biomass energy using three-phase technology to produce hythane.

  6. Evaluation of commercial universal rRNA gene PCR plus sequencing tests for identification of bacteria and fungi associated with infectious endocarditis.

    PubMed

    Kühn, Christian; Disqué, Claudia; Mühl, Helge; Orszag, Peter; Stiesch, Meike; Haverich, Axel

    2011-08-01

    Two new commercially available universal rRNA gene PCR plus sequencing tests, SepsiTest and universal microbe detection (UMD; Molzym, Bremen, Germany), were evaluated using blood specimens and heart valves from 30 patients with suspected infectious endocarditis (IE). The sensitivity of PCR (85%) was nearly twice as high as that of culture (45%), which in 10/20 IE cases presumably stayed negative as a consequence of growth inhibition of the pathogens by antibiotics. Further, PCR provided the basis for reclassification of 5/10 non-IE cases into IE cases. Culture-negative infections were identified by PCR, including single infections due to streptococci and Gram-negative bacteria (Escherichia coli, Haemophilus parainfluenzae) and mixed infections involving two Gram-positive bacteria or Candida spp. with Gram-positive bacteria. The new commercial tests proved to be of value for the rapid diagnosis of IE, particularly in cases of culture-negative infections. Issues regarding the feasibility of these tests for routine use are discussed.

  7. Genotyping of Pneumocystis jirovecii isolates from Chinese HIV-infected patients based on nucleotide sequence variations in the internal transcribed spacer regions of rRNA genes.

    PubMed

    Li, Kai; He, Ai; Cai, Wei Ping; Tang, Xiao Ping; Zheng, Xiao Ying; Li, Zhuo Ya; Zhan, Xi Mei

    2013-01-01

    Genetic diversity of Pneumocystis jirovecii isolates based on internal transcribed spacer (ITS) of the nuclear rRNA locus has previously been reported. The information about ITS genotype and epidemiology of this organism in Chinese human immunodeficiency virus-infected patients has not been available. In this study, 12 bronchoalveolar lavage fluid specimens obtained from HIV-infected patients were analyzed by PCR followed by cloning, sequencing and typing. Three ITS1 genotypes (E, B and 'H') and four ITS2 genotypes (b, g, i and r) as previously reported were identified, the most common of which were E, b and i. Five ITS haplotypes (Eg, Eb, Bi, Er and 'H'r) and 19 new combination types were also identified with the most common types being Eg (four of 12 patients, 10 of 60 clones), Eb (three of 12 patients, 11 of 60 clones) and Bi (three of 12 patients, 10 of 60 clones). Nine patients were found to be co-infected with more than one ITS genotype of P. jirovecii. The prevalence of ITS genotypes in HIV patients from one Chinese hospital did not seem to be significantly different when compared to reports from other countries.

  8. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  9. StreamingTrim 1.0: a Java software for dynamic trimming of 16S rRNA sequence data from metagenetic studies.

    PubMed

    Bacci, G; Bazzicalupo, M; Benedetti, A; Mengoni, A

    2014-03-01

    Next-generation sequencing technologies are extensively used in the field of molecular microbial ecology to describe taxonomic composition and to infer functionality of microbial communities. In particular, the so-called barcode or metagenetic applications that are based on PCR amplicon library sequencing are very popular at present. One of the problems, related to the utilization of the data of these libraries, is the analysis of reads quality and removal (trimming) of low-quality segments, while retaining sufficient information for subsequent analyses (e.g. taxonomic assignment). Here, we present StreamingTrim, a DNA reads trimming software, written in Java, with which researchers are able to analyse the quality of DNA sequences in fastq files and to search for low-quality zones in a very conservative way. This software has been developed with the aim to provide a tool capable of trimming amplicon library data, retaining as much as taxonomic information as possible. This software is equipped with a graphical user interface for a user-friendly usage. Moreover, from a computational point of view, StreamingTrim reads and analyses sequences one by one from an input fastq file, without keeping anything in memory, permitting to run the computation on a normal desktop PC or even a laptop. Trimmed sequences are saved in an output file, and a statistics summary is displayed that contains the mean and standard deviation of the length and quality of the whole sequence file. Compiled software, a manual and example data sets are available under the BSD-2-Clause License at the GitHub repository at https://github.com/GiBacci/StreamingTrim/.

  10. Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene.

    PubMed

    Zhao, Yiping; Li, Bei; Bai, Dongyi; Huang, Jinlong; Shiraigo, Wunierfu; Yang, Lihua; Zhao, Qinan; Ren, Xiujuan; Wu, Jing; Bao, Wuyundalai; Dugarjaviin, Manglai

    2016-09-01

    The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and

  11. Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene

    PubMed Central

    Zhao, Yiping; Li, Bei; Bai, Dongyi; Huang, Jinlong; Shiraigo, Wunierfu; Yang, Lihua; Zhao, Qinan; Ren, Xiujuan; Wu, Jing; Bao, Wuyundalai; Dugarjaviin, Manglai

    2016-01-01

    The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and

  12. Chromosomal mapping of rRNA genes, core histone genes and telomeric sequences in Brachidontes puniceus and Brachidontes rodriguezi (Bivalvia, Mytilidae)

    PubMed Central

    2010-01-01

    Background Chromosome rearrangements are an important part of the speciation process in many taxa. The study of chromosome evolution in bivalves is hampered by the absence of clear chromosomal banding patterns and the similarity in both chromosome size and morphology. For this reason, obtaining good chromosome markers is essential for reliable karyotypic comparisons. To begin this task, the chromosomes of the mussels Brachidontes puniceus and B. rodriguezi were studied by means of fluorochrome staining and fluorescent in situ hybridization (FISH). Results Brachidontes puniceus and B. rodriguezi both have 2n = 32 chromosomes but differing karyotype composition. Vertebrate-type telomeric sequences appear at both ends of every single chromosome. B. puniceus presents a single terminal major rRNA gene cluster on a chromosome pair while B. rodriguezi shows two. Both mussels present two 5S rDNA and two core histone gene clusters intercalary located on the long arms of two chromosome pairs. Double and triple-FISH experiments demonstrated that one of the 5S rDNA and one of the major rDNA clusters appear on the same chromosome pair in B. rodriguezi but not in B. puniceus. On the other hand, the second 5S rDNA cluster is located in one of the chromosome pairs also bearing one of the core histone gene clusters in the two mussel species. Conclusion Knowledge of the chromosomal distribution of these sequences in the two species of Brachidontes is a first step in the understanding of the role of chromosome changes on bivalve evolution. PMID:21143946

  13. Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences.

    PubMed

    Imhoff, Johannes F

    2003-07-01

    A new taxonomy of the green sulfur bacteria is proposed, based on phylogenetic relationships determined using the sequences of the independent 16S rRNA and fmo (Fenna-Matthews-Olson protein) genes, and supported by the DNA G + C content and sequence signatures. Comparison of the traditional classification system for these bacteria with their phylogenetic relationship yielded a confusing picture, because properties used for classification (such as cell morphology, photosynthetic pigments and substrate utilization) do not concur with their phylogeny. Using the genetic information available, strains and species assigned to the genera Chlorobium, Pelodictyon and Prosthecochloris are considered, and the following changes are proposed. Pelodictyon luteolum is transferred to the genus Chlorobium as Chlorobium luteolum comb. nov. Pelodictyon clathratiforme and Pelodictyon phaeoclathratiforme are transferred to the genus Chlorobium and combined into one species, Chlorobium clathratiforme comb. nov. The name Pelodictyon will become a synonym of Chlorobium. Strains known as Chlorobium limicola subsp. thiosulfatophilum that have a low DNA G + C content (52-52.5 mol%) are treated as strains of Chlorobium limicola; those with a high DNA G + C content (58.1 mol%) are transferred to Chlorobaculum gen. nov., as Chlorobaculum thiosulfatiphilum sp. nov. Chlorobium tepidum is transferred to Chlorobaculum tepidum comb. nov., and defined as the type species of the genus Chlorobaculum. Strains assigned to Chlorobium phaeobacteroides, but phylogenetically distant from the type strain of this species, are assigned to Chlorobium limicola and to Chlorobaculum limnaeum sp. nov. Strains known as Chlorobium vibrioforme subsp. thiosulfatophilum are transferred to Chlorobaculum parvum sp. nov. Chlorobium chlorovibrioides is transferred to 'Chlorobaculum chlorovibrioides' comb. nov. The type strain of Chlorobium vibrioforme is phylogenetically related to Prosthecochloris, and is therefore

  14. Optimizing selection of microsatellite loci from 454 pyrosequencing via post-sequencing bioinformatic analyses.

    PubMed

    Fernandez-Silva, Iria; Toonen, Robert J

    2013-01-01

    The comparatively low cost of massive parallel sequencing technology, also known as next-generation sequencing (NGS), has transformed the isolation of microsatellite loci. The most common NGS approach consists of obtaining large amounts of sequence data from genomic DNA or enriched microsatellite libraries, which is then mined for the discovery of microsatellite repeats using bioinformatics analyses. Here, we describe a bioinformatics approach to isolate microsatellite loci, starting from the raw sequence data through a subset of microsatellite primer pairs. The primary difference to previously published approaches includes analyses to select the most accurate sequence data and to eliminate repetitive elements prior to the design of primers. These analyses aim to minimize the testing of primer pairs by identifying the most promising microsatellite loci.

  15. Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    PubMed Central

    Buchheim, Mark A.; Keller, Alexander; Koetschan, Christian; Förster, Frank; Merget, Benjamin; Wolf, Matthias

    2011-01-01

    Background Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated

  16. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  17. Shift in prokaryotic diversity in Arctic sediment along a continuum Glacier -River - Fjord using massive 16S rRNA gene tag sequencing

    NASA Astrophysics Data System (ADS)

    Laghdass, M.; Deloffre, J.; Lafite, R.; Hänni, C.; Gillet, B.; Cecillon, S.; Simonet, P.; Petit, F.

    2012-04-01

    In Arctic environment, one of indirect consequences of the global climate warming is the significant amplification of the amount of inland water during the spring thaw resulting from the snow cover and permafrost melting. These freshwater transfers to the coast cause sedimentary transfers. The Arctic fjords that represent deep glacial valleys of the sea are particularly vulnerable systems. Although the previous studies have highlighted potentially the high bacterial diversity in Arctic environment by the pyrosequencing, a new-generation sequencing and high throughput method, does not escape the same bias as the one of classical molecular biology techniques involved at different stages of the analysis. In this context, our objective was to characterize the prokaryotic diversity associated to the sediment transfer along a gradient from the head of the glacier to mud patch sediment in the Goule river streaming in Kongsfjorden (Svalbard) during an active thaw. The prokaryotic diversity in sediment was characterized by combining a massive of 16S rRNA gene tag sequencing with a specific and original approach in order to overcome the bias associated to the sampling and extraction. The sediment was extracted by three different methods. One method was done in duplicate. Negative controls performed at extraction and PCR stages were also sequenced. The phylogenetic analysis of the environmental samples below phylum level revealed significantly changes in the diversity and the function of the prokaryotic community along the gradient. The subglacial Goule river sediment is characterized by bacteria with specific functions methylotroph bacteria, aerobic chemoautolithotrophic bacteria (Alphaproteobacteria with Methylobacteriaceae) whereas the mouth of the river Goule and the freshwater part of the Goule River was dominated by sulphate-reducing-bacteria, anaerobic chemooorganotroph (Deltaprotobacteria with the Desulfobulbaceae and Desulfuromonadaceae) and by

  18. Complete rRNA sequence, arrangement of tandem repeated units and phylogeny of Nosema fumiferanae from spruce budworm, Choristoneura fumiferana (Clemens).

    PubMed

    Kyei-Poku, George; Gauthier, Debbie; van-Frankenhuyzen, Kees

    2012-01-01

    We provide molecular systematics of a microporidian species, Nosema fumiferanae, one of the most common natural enemies of spruce budworm, Choristoneura fumiferana. The uncharacterized flanking region upstream of the large subunit (LSU) rRNA and the complete rRNA cistron of N. fumiferanae was 4,769 bp long. The organization of the rRNA gene was 5'-LSU rRNA-ITS-SSU rRNA-IGS-5S-3' and corresponded primarily to most insect (i.e. lepidopteran) Nosema species identified and classified to date. Phylogenetic analysis based on the complete rRNA cistron indicated that N. fumiferanae is closely related to Nosema plutellae and is correctly assigned to the "true" Nosema group. Suggestions were provided on a criterion to delineate the "true" Nosema from other microsporidian species.

  19. Noma Affected Children from Niger Have Distinct Oral Microbial Communities Based on High-Throughput Sequencing of 16S rRNA Gene Fragments

    PubMed Central

    Whiteson, Katrine L.; Lazarevic, Vladimir; Tangomo-Bento, Manuela; Girard, Myriam; Maughan, Heather; Pittet, Didier; Francois, Patrice; Schrenzel, Jacques

    2014-01-01

    We aim to understand the microbial ecology of noma (cancrum oris), a devastating ancient illness which causes severe facial disfigurement in>140,000 malnourished children every year. The cause of noma is still elusive. A chaotic mix of microbial infection, oral hygiene and weakened immune system likely contribute to the development of oral lesions. These lesions are a plausible entry point for unidentified microorganisms that trigger gangrenous facial infections. To catalog bacteria present in noma lesions and identify candidate noma-triggering organisms, we performed a cross-sectional sequencing study of 16S rRNA gene amplicons from sixty samples of gingival fluid from twelve healthy children, twelve children suffering from noma (lesion and healthy sites), and twelve children suffering from Acute Necrotizing Gingivitis (ANG) (lesion and healthy sites). Relative to healthy individuals, samples taken from lesions in diseased mouths were enriched with Spirochaetes and depleted for Proteobacteria. Samples taken from healthy sites of diseased mouths had proportions of Spirochaetes and Proteobacteria that were similar to healthy control individuals. Samples from noma mouths did not have a higher abundance of Fusobacterium, casting doubt on its role as a causative agent of noma. Microbial communities sampled from noma and ANG lesions were dominated by the same Prevotella intermedia OTU, which was much less abundant in healthy sites sampled from the same mouths. Multivariate analysis confirmed that bacterial communities in healthy and lesion sites were significantly different. Several OTUs in the Orders Erysipelotrichales, Clostridiales, Bacteroidales, and Spirochaetales were identified as indicators of noma, suggesting that one or more microbes within these Orders is associated with the development of noma lesions. Future studies should include longitudinal sampling of viral and microbial components of this community, before and early in noma lesion development. PMID

  20. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing

    PubMed Central

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J.

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria. PMID:28223972

  1. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes

    PubMed Central

    Bledsoe, Jacob W.; Peterson, Brian C.; Swanson, Kelly S.; Small, Brian C.

    2016-01-01

    Aquaculture recently overtook capture fisheries as the largest producer of food fish, but to continue increasing fish production the industry is in search of better methods of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, however, for such approaches to be successful, we must first gain a more holistic understanding of the factors influencing the microbial communities present in the intestines of fish. In this study, we characterize the bacterial communities associated with the digestive tract of a highly valuable U.S. aquaculture species, channel catfish Ictalurus punctatus, over the first 193 days of life to evaluate temporal changes that may occur throughout ontogenetic development of the host. Intestinal microbiota were surveyed with high-throughput DNA sequencing of 16S rRNA V4 gene amplicons derived from fish at 3, 65, 125, and 193 days post hatch (dph), while also characterizing the environmental microbes derived from the water supply and the administered diets. Microbial communities inhabiting the intestines of catfish early in life were dynamic, with significant shifts occurring up to 125 dph when the microbiota somewhat stabilized, as shifts were less apparent between 125 to 193 dph. Bacterial phyla present in the gut of catfish throughout ontogeny include Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria; with the species Cetobacterium somerae and Plesiomonas shigelloides showing the highest abundance in the catfish microbiota after 3 dph. Comparisons of the gut microbiota to the environmental microbes reveals that the fish gut is maintained as a niche habitat, separate from the overall microbial communities present in diets and water-supply. Although, there is also evidence that the environmental microbiota serves as an inoculum to the fish gut. Our results have implications for future research related to channel catfish biology and culture, and increase our

  2. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing.

    PubMed

    Thiel, Vera; Wood, Jason M; Olsen, Millie T; Tank, Marcus; Klatt, Christian G; Ward, David M; Bryant, Donald A

    2016-01-01

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus

  3. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

    PubMed Central

    Thiel, Vera; Wood, Jason M.; Olsen, Millie T.; Tank, Marcus; Klatt, Christian G.; Ward, David M.; Bryant, Donald A.

    2016-01-01

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus

  4. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

    DOE PAGES

    Thiel, Vera; Wood, Jason M.; Olsen, Millie T.; ...

    2016-06-17

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, stronglymore » dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H-2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Therrnodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arrninicenantes (OP8) represented ≥ 1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. In conclusion, this study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community

  5. Worldwide Distribution of Nitrosococcus oceani, a Marine Ammonia-Oxidizing γ-Proteobacterium, Detected by PCR and Sequencing of 16S rRNA and amoA Genes

    PubMed Central

    Ward, Bess B.; O'Mullan, Gregory D.

    2002-01-01

    Diversity of cultured ammonia-oxidizing bacteria in the γ-subdivision of the Proteobacteria was investigated by using strains isolated from various parts of the world ocean. All the strains were very similar to each other on the basis of the sequences of both the 16S rRNA and ammonia monooxygenase genes and could be characterized as a single species. Sequences were also cloned directly from environmental DNA from coastal Pacific and Atlantic sites, and these sequences represented the first Nitrosococcus oceani-like sequences obtained directly from the ocean. Most of the environmental sequences clustered tightly with those of the cultivated strains, but some sequences could represent new species of Nitrosococcus. These findings imply that organisms similar to the cultivated N. oceani strains have a worldwide distribution. PMID:12147525

  6. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment.

  7. Clinical and Microbiological Features of a Cystic Fibrosis Patient Chronically Colonized with Pandoraea sputorum Identified by Combining 16S rRNA Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fernández-Olmos, A.; Morosini, M. I.; Lamas, A.; García-Castillo, M.; García-García, L.; Máiz, L.

    2012-01-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  8. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion.

    PubMed

    Abouheif, E; Zardoya, R; Meyer, A

    1998-10-01

    We document the phylogenetic behavior of the 18S rRNA molecule in 67 taxa from 28 metazoan phyla and assess the effects of among-site rate variation on reconstructing phylogenies of the animal kingdom. This empirical assessment was undertaken to clarify further the limits of resolution of the 18S rRNA gene as a phylogenetic marker and to address the question of whether 18S rRNA phylogenies can be used as a source of evidence to infer the reality of a Cambrian explosion. A notable degree of among-site rate variation exists between different regions of the 18S rRNA molecule, as well as within all classes of secondary structure. There is a significant negative correlation between inferred number of nucleotide substitutions and phylogenetic information, as well as with the degree of substitutional saturation within the molecule. Base compositional differences both within and between taxa exist and, in certain lineages, may be associated with long branches and phylogenetic position. Importantly, excluding sites with different degrees of nucleotide substitution significantly influences the topology and degree of resolution of maximum-parsimony phylogenies as well as neighbor-joining phylogenies (corrected and uncorrected for among-site rate variation) reconstructed at the metazoan scale. Together, these data indicate that the 18S rRNA molecule is an unsuitable candidate for reconstructing the evolutionary history of all metazoan phyla, and that the polytomies, i.e., unresolved nodes within 18S rRNA phylogenies, cannot be used as a single or reliable source of evidence to support the hypothesis of a Cambrian explosion.

  9. Comparative Sequence Analyses of La Crosse Virus Strain Isolated from Patient with Fatal Encephalitis, Tennessee, USA

    PubMed Central

    Fryxell, Rebecca Trout; Freyman, Kimberly; Ulloa, Armando; Velez, Jason O.; Paulsen, Dave; Lanciotti, Robert S.; Moncayo, Abelardo

    2015-01-01

    We characterized a La Crosse virus (LACV) isolate from the brain of a child who died of encephalitis-associated complications in eastern Tennessee, USA, during summer 2012. We compared the isolate with LACV sequences from mosquitoes collected near the child’s home just after his postmortem diagnosis. In addition, we conducted phylogenetic analyses of these and other sequences derived from LACV strains representing varied temporal, geographic, and ecologic origins. Consistent with historical findings, results of these analyses indicate that a limited range of LACV lineage I genotypes is associated with severe clinical outcomes. PMID:25898269

  10. Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data.

    PubMed

    Artiss, T; Schultz, T R; Polhemus, D A; Simon, C

    2001-03-01

    Molecular phylogenetic relationships among members of the odonate genus Libellula (Odonata: Anisoptera: Libellulidae) were examined using 735 bp of mitochondrial COI and 416 bp of 16S ribosomal RNA gene sequences. Considerable debate exists over several relationships within Libellula, as well over the status of two putative genera often placed as subgenera within Libellula: Ladona and Plathemis. Parsimony and maximum-likelihood analyses of the separate and combined data sets indicate that Plathemis is basal and monophyletic and that Ladona is the sister clade to the remainder of Libellula sensu stricto (s.s.) (all species within the genus Libellula, excluding Plathemis and Ladona). Moreover, two European taxa, Libellula fulva and L. depressa, were found to occupy a sister group relationship within the Ladona clade. Relationships within Libellula s.s. are less well resolved. However, monophyletic lineages within the genus are largely consistent with morphologically based subgeneric classifications. Although tree topologies from each analysis differed in some details, the differences were in no case statistically significant. The analysis of the combined COI and 16S data yielded trees with overall stronger support than analyses of either gene alone. Several analyses failed to support the monophyly of Libellula sensu lato due to the inclusion of one or more outgroup species. However, statistical comparisons of topologies produced by unconstrained analyses and analyses in which the monophyly of Libellula was constrained indicate that any differences are nonsignificant. Based on morphological data, we therefore reject the paraphyly of Libellula and accept the outgroup status of Orthemis ferruginea and Pachydiplax longipennis.

  11. Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses

    PubMed Central

    Marti, Romain; Ribun, Sébastien; Aubin, Jean-Baptiste; Colinon, Céline; Petit, Stéphanie; Marjolet, Laurence; Gourmelon, Michèle; Schmitt, Laurent; Breil, Pascal; Cottet, Marylise; Cournoyer, Benoit

    2017-01-01

    Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was

  12. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  13. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  14. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  15. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  16. [Archaeal diversity in permafrost deposits of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing].

    PubMed

    Karaevskaia, E S; Demchenko, L S; Demidov, N É; Rivkina, E M; Bulat, S A; Gilichinskiĭ, D A

    2014-01-01

    Archaeal communities of permafrost deposits of King George Island and Bunger Hills Oasis (Antarctica) differing in the content of biogenic methane were analyzed using clone libraries of two 16S rRNA gene regions. Phylotypes belonging to methanogenic archaea were identified in all horizons.

  17. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    SciTech Connect

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in host

  18. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  19. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  20. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    PubMed

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.

  1. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  2. A weighted U-statistic for genetic association analyses of sequencing data.

    PubMed

    Wei, Changshuai; Li, Ming; He, Zihuai; Vsevolozhskaya, Olga; Schaid, Daniel J; Lu, Qing

    2014-12-01

    With advancements in next-generation sequencing technology, a massive amount of sequencing data is generated, which offers a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, the high-dimensional sequencing data poses a great challenge for statistical analysis. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a Weighted U Sequencing test, referred to as WU-SEQ, for the high-dimensional association analysis of sequencing data. Based on a nonparametric U-statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used sequence kernel association test (SKAT) method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-SEQ to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol.

  3. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

    SciTech Connect

    Thiel, Vera; Wood, Jason M.; Olsen, Millie T.; Tank, Marcus; Klatt, Christian G.; Ward, David M.; Bryant, Donald A.

    2016-06-17

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H-2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Therrnodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arrninicenantes (OP8) represented ≥ 1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. In conclusion, this study suggests

  4. Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II-Birkenau concentration and extermination camp.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2015-02-01

    The aim of this work was to analyze the bacterial communities in four samples of historical materials (plaster, brick, and wood) derived from buildings located in the former Auschwitz II-Birkenau concentration and extermination camp in Brzezinka, Poland. For this purpose a molecular strategy based on the construction of 16S rRNA clone libraries was used. In total, 138 partial 16S rRNA gene sequences (∼600bp) were obtained and compared. The clones belonged to phyla Proteobacteria (classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes. The plaster samples predominantly contained clones closely related to Actinobacteria and Alphaproteobacteria, brick samples contained Gammaproteobacteria, while wood samples had Actinobacteria clones. Interestingly, the historic plaster and brick samples contained the following bacteria with known and described biodeterioration potential: chemoorganotrophic Streptomyces sp. and Pseudonocardia sp., halotolerant or halophilic Rubrobacter sp., Salinisphaera sp. and Halomonas sp. Principal component analysis (PCA) showed that amongst the bacterial species detected and identified none occurred on all the tested historical materials. The 16S rRNA clone library construction method was successfully used for the detection and diversity determination of bacterial communities inhabiting brick barracks located in the former Auschwitz II-Birkenau concentration and extermination camp in Brzezinka.

  5. Taxonomic relationships among Turkish water frogs as revealed by phylogenetic analyses using mtDNA gene sequences.

    PubMed

    Bülbül, Ufuk; Matsui, Masafumi; Kutrup, Bilal; Eto, Koshiro

    2011-12-01

    We assessed taxonomic relationships among Turkish water frogs through estimation of phylogenetic relationships among 62 adult specimens from 44 distinct populations inhabiting seven main geographical regions of Turkey using 2897 bp sequences of the mitochondrial Cytb, 12S rRNA and 16S rRNA genes with equally-weighted parsimony, likelihood, and Bayesian methods of inference. Monophyletic clade (Clade A) of the northwesternmost (Thrace) samples is identified as Pelophylax ridibundus. The other clade (Clade B) consisted of two monophyletic subclades. One of these contains specimens from southernmost populations that are regarded as an unnamed species. The other subclade consists of two lineages, of which one corresponds to P. caralitanus and another to P. bedriagae. Taxonomic relationships of these two species are discussed and recognition of P. caralitanus as a subspecies of P. bedriagae is proposed.

  6. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    PubMed

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status.

  7. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers

    PubMed Central

    Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R

    2015-01-01

    We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554

  8. Power Spectrum and Mutual Information Analyses of DNA Base (Nucleotide) Sequences

    NASA Astrophysics Data System (ADS)

    Isohata, Yasuhiko; Hayashi, Masaki

    2003-03-01

    On the basis of the power spectrum analyses for the base (nucleotide) sequences of various genes, we have studied long-range correlations in total base sequences which are expressed as 1/fα, behaviour of the exponent α for the accumulated base sequences as well as periodicities at short range. In particular from the analysis of content rate distributions of α we have obtained the average value \\barα=0.40± 0.01 and \\barα=0.20± 0.01 for the human genes and S. cerevisiae genes, respectively. We have also performed the analyses using the mutual information function. We show that there exists a clear difference between the content rate distributions of correlation lengths for the sample human genes and the S. cerevisiae genes. We are led to a conjecture that the elongation of the correlation length in the base sequences of genes from the early eukaryote (S. cerevisiae) to the late eukaryote (human) should be the definite reflection of the evolutionary process.

  9. Characterization of Streptomyces venezuelae ATCC 10595 rRNA gene clusters and cloning of rrnA.

    PubMed Central

    La Farina, M; Stira, S; Mancuso, R; Grisanti, C

    1996-01-01

    Streptomyces venezuelae ATCC 10595 harbors seven rRNA gene clusters which can be distinguished by BglII digestion. The three rRNA genes present in each set are closely linked with the general structure 16S-23S-5S. We cloned rrnA and sequenced the 16S-23S spacer region and the region downstream of the 5S rRNA gene. No tRNA gene was found in these regions. PMID:8631730

  10. [Pathological Diagnoses and Whole-genome Sequence Analyses of the Jaagsiekte Sheep Retrovirus in Xinjiang, China].

    PubMed

    Yang, Sufang; Liang, Tian; Zhao, Qingliang; Zhang, Dianqing; Si Junqiang; Zhang, Jing; Yang, Xia; Sheng, Jinliang

    2015-05-01

    To carry out pathologic diagnoses and whole-genome sequence analyses of the Jaagsiekte sheep retrovirus (JSRV) in Xinjiang, China, we first observed sheep suspected to have the JSRV. Then, the extracted virus suspension was observed by transmission electron microscopy (TEM). Total RNAs from lungs of JSRV-infected sheep were extracted and reverse-transcribed using a cDNA synthesis kit. Six pairs of primers were designed according to the exogenous reference virus strain (AF105220). Reverse transcription-polymerase chain reaction was carried out from JSRV-infected tissue, and the whole genome of the JSRV sequenced. Our results showed: flow of nasal fluid ("wheelbarrow test"); different sizes of adenoma lesions in the lungs; papillary hyperplasia of alveolar epithelial cells; alveolar cavity filled with macrophages; dissolute nuclei in central lesions. TEM revealed JSRV particles with a diameter of 88 nm to 125. 4 nm. The full-length of the viral genome sequence was 7456 bp. BLAST analyses showed nucleotide homology of 96% and 95% compared with that of the representative strain from the USA (AF105220) and UK (AF357971). Nucleotide homology was 89.8% and 89.9% compared with the endogenous Jaagsiekte sheep retrovirus, Inner Mongolia strain (DQ838493) and USA strain (EF680300). The specific pathogenic amino-acid sequence "YXXM" was found in the TM district, similar to the exogenous JSRV: this gene has been reported to be oncogenic. This is the first report of the complete genomic sequence of the exogenous JSRV from Xinjiang, and could lay the foundation for study of the biological characteristics and pathogenic mechanisms of the pulmonary adenomatosis virus in sheep.

  11. Phylogenetic analyses of novel squamate adenovirus sequences in wild-caught Anolis lizards.

    PubMed

    Ascher, Jill M; Geneva, Anthony J; Ng, Julienne; Wyatt, Jeffrey D; Glor, Richard E

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity.

  12. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  13. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  14. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS)

    PubMed Central

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm. PMID:27617008

  15. Phylogenetic relationships of the marine Haplosclerida (Phylum Porifera) employing ribosomal (28S rRNA) and mitochondrial (cox1, nad1) gene sequence data.

    PubMed

    Redmond, Niamh E; Raleigh, Jean; van Soest, Rob W M; Kelly, Michelle; Travers, Simon A A; Bradshaw, Brian; Vartia, Salla; Stephens, Kelly M; McCormack, Grace P

    2011-01-01

    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here.

  16. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.

    PubMed

    Jakse, Jernej; Telgmann, Alexa; Jung, Christian; Khar, Anil; Melgar, Sergio; Cheung, Foo; Town, Christopher D; Havey, Michael J

    2006-12-01

    The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome

  17. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  18. Genome sequence determinations and analyses of novel circoviruses from goose and pigeon.

    PubMed

    Todd, D; Weston, J H; Soike, D; Smyth, J A

    2001-08-01

    The genomes of novel circoviruses from goose and pigeon, which were isolated using degenerate primer and inverse primer PCR methods, were cloned and sequenced. Comparative nucleotide (nt) sequence analyses showed that the goose circovirus (GCV) and pigeon circovirus (PiCV) possessed genomes which were 1821 and 2037 or 2036 nt, respectively, and which had features in common with the genomes of porcine circoviruses types 1 and 2 (PCV1, PCV2) and psittacine beak and feather disease virus (BFDV), such that they can now be assigned to the genus Circovirus of the family Circoviridae. Common features include the possession of (i) a potential stem-loop/nonanucleotide motif with which the initiation of rolling circle replication of the virus DNA is associated; (ii) two major ORFs, located on the virus (V1 ORF) and complementary (C1 ORF) strands, which encode the replication-associated protein (Rep) and capsid protein, respectively; (iii) high levels of amino acid identity (41.2--58.2%) shared with other circovirus Rep proteins; and (iv) direct/inverted repeat sequences within the putative intergenic region. On the basis of nt and amino acid sequence identities, GCV is substantially less closely related to BFDV than PiCV is to BFDV.

  19. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene

    PubMed Central

    Vilchez-Vargas, Ramiro; Desimpel, Fabian; Jauregui, Ruy; Vankeirsbilck, Nele; Weyers, Steven; Verhelst, Rita; De Sutter, Petra; Pieper, Dietmar H.; Van De Wiele, Tom

    2016-01-01

    Background. It is widely assumed that the uterine cavity in non-pregnant women is physiologically sterile, also as a premise to the long-held view that human infants develop in a sterile uterine environment, though likely reflecting under-appraisal of the extent of the human bacterial metacommunity. In an exploratory study, we aimed to investigate the putative presence of a uterine microbiome in a selected series of non-pregnant women through deep sequencing of the V1-2 hypervariable region of the 16S ribosomal RNA (rRNA) gene. Methods. Nineteen women with various reproductive conditions, including subfertility, scheduled for hysteroscopy and not showing uterine anomalies were recruited. Subjects were highly diverse with regard to demographic and medical history and included nulliparous and parous women. Endometrial tissue and mucus harvesting was performed by use of a transcervical device designed to obtain endometrial biopsy, while avoiding cervicovaginal contamination. Bacteria were targeted by use of a barcoded Illumina MiSeq paired-end sequencing method targeting the 16S rRNA gene V1-2 region, yielding an average of 41,194 reads per sample after quality filtering. Taxonomic annotation was pursued by comparison with sequences available through the Ribosomal Database Project and the NCBI database. Results. Out of 183 unique 16S rRNA gene amplicon sequences, 15 phylotypes were present in all samples. In some 90% of the women included, community architecture was fairly similar inasmuch B. xylanisolvens, B. thetaiotaomicron, B. fragilis and an undetermined Pelomonas taxon constituted over one third of the endometrial bacterial community. On the singular phylotype level, six women showed predominance of L. crispatus or L. iners in the presence of the Bacteroides core. Two endometrial communities were highly dissimilar, largely lacking the Bacteroides core, one dominated by L. crispatus and another consisting of a highly diverse community, including Prevotella spp

  20. Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes.

    PubMed Central

    Eardly, B D; Young, J P; Selander, R K

    1992-01-01

    Phenotypic and DNA sequence comparisons are presented for eight Rhizobium isolates that were cultured from field-grown alfalfa (Medicago sativa L.) in Oregon. These isolates were previously shown to nodulate both alfalfa and common bean (Phaseolus vulgaris (L.) Savi.). The objective of the present study was to determine their phylogenetic relationships to the normal symbionts of these plants, Rhizobium meliloti and Rhizobium leguminosarum biovar phaseoli, respectively. Phenotypically, the Oregon isolates more nearly resemble strains from P. vulgaris than those from M. sativa. For example, even though nitrogen fixation levels were low with both host species, the symbiotic efficiency of a representative Rhizobium isolate (Or 191) with common bean was twice that observed with alfalfa. Comparative sequencing of a 260-bp segment of the 16S rRNA gene (directly sequenced after amplification by the polymerase chain reaction) demonstrated that Or 191 is not closely related to the type strain of R. meliloti (ATCC 9930), R. leguminosarum (ATCC 10004), or Rhizobium tropici (CIAT 899). Instead, sequence comparisons of the 16S gene indicated that Or 191 belongs to a distinct and previously unrecognized taxonomic group that includes strains that have previously been called R. leguminosarum bv. phaseoli type I. Unlike type I strains, however, Or 191 has only a single copy of the nifH gene (type I strains have three), and the nucleotide sequence of this gene is substantially different from those of other rhizobial and nonrhizobial nifH genes examined thus far. Images PMID:1377901

  1. Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences.

    PubMed

    Kwak, Hae-Ryun; Kim, Jaedeok; Kim, Mi-Kyeong; Seo, Jang-Kyun; Jung, Mi-Nam; Kim, Jeong-Soo; Lee, Sukchan; Choi, Hong-Soo

    2015-12-01

    Sweet potatoes (Ipomea batatas L.) are grown extensively, in tropical and temperate regions, and are important food crops worldwide. In Korea, potyviruses, including Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato virus G (SPVG), Sweet potato virus 2 (SPV2), and Sweet potato latent virus (SPLV), have been detected in sweet potato fields at a high (~95%) incidence. In the present work, complete genome sequences of 18 isolates, representing the five potyviruses mentioned above, were compared with previously reported genome sequences. The complete genomes consisted of 10,081 to 10,830 nucleotides, excluding the poly-A tails. Their genomic organizations were typical of the Potyvirus genus, including one target open reading frame coding for a putative polyprotein. Based on phylogenetic analyses and sequence comparisons, the Korean SPFMV isolates belonged to the strains RC and O with >98% nucleotide sequence identity. Korean SPVC isolates had 99% identity to the Japanese isolate SPVC-Bungo and 70% identity to the SPFMV isolates. The Korean SPVG isolates showed 99% identity to the three previously reported SPVG isolates. Korean SPV2 isolates had 97% identity to the SPV2 GWB-2 isolate from the USA. Korean SPLV isolates had a relatively low (88%) nucleotide sequence identity with the Taiwanese SPLV-TW isolates, and they were phylogenetically distantly related to SPFMV isolates. Recombination analysis revealed that possible recombination events occurred in the P1, HC-Pro and NIa-NIb regions of SPFMV and SPLV isolates and these regions were identified as hotspots for recombination in the sweet potato potyviruses.

  2. Biogas production from hydrothermal liquefaction wastewater (HTLWW): Focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes.

    PubMed

    Chen, Huihui; Wan, Jingjing; Chen, Kaifei; Luo, Gang; Fan, Jiajun; Clark, James; Zhang, Shicheng

    2016-12-01

    Hydrothermal liquefaction (HTL) is an emerging and promising technology for the conversion of wet biomass into bio-crude, however, little attention has been paid to the utilization of hydrothermal liquefaction wastewater (HTLWW) with high concentration of organics. The present study investigated biogas production from wastewater obtained from HTL of straw for bio-crude production, with focuses on the analysis of the microbial communities and characterization of the organics. Batch experiments showed the methane yield of HTLWW (R-HTLWW) was 184 mL/g COD, while HTLWW after petroleum ether extraction (PE-HTLWW), to extract additional bio-crude, had higher methane yield (235 mL/g COD) due to the extraction of recalcitrant organic compounds. Sequential batch experiments further demonstrated the higher methane yield of PE-HTLWW. LC-TOF-MS, HPLC and gel filtration chromatography showed organics with molecular weight (MW) < 1000 were well degraded. Results from the high-throughput sequencing of full-length 16S rRNA genes analysis showed similar microbial community compositions were obtained for the reactors fed with either R-HTLWW or PE-HTLWW. The degradation of fatty acids were related with Mesotoga infera, Syntrophomonas wolfei et al. by species level identification. However, the species related to the degradation of other compounds (e.g. phenols) were not found, which could be due to the presence of uncharacterized microorganisms. It was also found previously proposed criteria (97% and 98.65% similarity) for species identification of 16S rRNA genes were not suitable for a fraction of 16S rRNA genes.

  3. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    PubMed Central

    Har, Jia Y.; Helbig, Tim; Lim, Ju H.; Fernando, Samodha C.; Reitzel, Adam M.; Penn, Kevin; Thompson, Janelle R.

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing <85% identity with cultivated strains, and two γ-Proteobacterial ribotypes sharing >99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N

  4. Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses

    PubMed Central

    Wang, Q.-M.; Groenewald, M.; Takashima, M.; Theelen, B.; Han, P.-J.; Liu, X.-Z.; Boekhout, T.; Bai, F.-Y.

    2015-01-01

    In addition to rusts, the subphylum Pucciniomycotina (Basidiomycota) includes a large number of unicellular or dimorphic fungi which are usually studied as yeasts. Ribosomal DNA sequence analyses have shown that the current taxonomic system of the pucciniomycetous yeasts which is based on phenotypic criteria is not concordant with the molecular phylogeny and many genera are polyphyletic. Here we inferred the molecular phylogeny of 184 pucciniomycetous yeast species and related filamentous fungi using maximum likelihood, maximum parsimony and Bayesian inference analyses based on the sequences of seven genes, including the small subunit ribosomal DNA (rDNA), the large subunit rDNA D1/D2 domains, the internal transcribed spacer regions (ITS 1 and 2) of rDNA including the 5.8S rDNA gene; the nuclear protein-coding genes of the two subunits of DNA polymerase II (RPB1 and RPB2) and the translation elongation factor 1-α (TEF1); and the mitochondrial gene cytochrome b (CYTB). A total of 33 monophyletic clades and 18 single species lineages were recognised among the pucciniomycetous yeasts employed, which belonged to four major lineages corresponding to Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes and Mixiomycetes. These lineages remained independent from the classes Atractiellomycetes, Classiculomycetes, Pucciniomycetes and Tritirachiomycetes formed by filamentous taxa in Pucciniomycotina. An updated taxonomic system of pucciniomycetous yeasts implementing the ‘One fungus = One name’ principle will be proposed based on the phylogenetic framework presented here. PMID:26955197

  5. PHYLOGENETIC ANALYSIS OF 16S RRNA GENE SEQUENCES REVEALS THE PREVALENCE OF MYCOBACTERIA SP., ALPHA-PROTEOBACTERIA, AND UNCULTURED BACTERIA IN DRINKING WATER MICROBIAL COMMUNITIES

    EPA Science Inventory

    Previous studies have shown that culture-based methods tend to underestimate the densities and diversity of bacterial populations inhabiting water distribution systems (WDS). In this study, the phylogenetic diversity of drinking water bacteria was assessed using sequence analysis...

  6. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis

    PubMed Central

    Lacerda, Inayara C. A.; Gomes, Fátima C. O.; Borelli, Beatriz M.; Faria Jr., César L. L.; Franco, Gloria R.; Mourão, Marina M.; Morais, Paula B.; Rosa, Carlos A.

    2011-01-01

    We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6% of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8% of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9% of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75% of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9% of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent. PMID:24031676

  7. Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques.

    PubMed

    Murayama, Mayumi; Kakinuma, Yuki; Maeda, Yasunori; Rao, Juluri R; Matsuda, Motoo; Xu, Jiru; Moore, Peter J A; Millar, B Cherie; Rooney, Paul J; Goldsmith, Colin E; Loughrey, Anne; McMahon, M Ann S; McDowell, David A; Moore, John E

    2010-03-01

    Polymerase chain reaction amplification of the universal 16S ribosomal RNA (rRNA) gene was performed on a collection of 38 bacterial isolates, originating from air sampled immediately adjacent to the agricultural spreading of bovine slurry. A total of 16 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 34/38 (89.5%) of total bacterial numbers consisting of 12 genera and included Staphylococcus (most common genus isolated), Arthrobacter (2nd most common genus isolated), Brachybacterium, Exiguobacterium, Lactococcus, Microbacterium and Sporosarcina (next most common genera isolated) and finally, Bacillus, Brevibacterium, Frigoribacterium, Mycoplana and Pseudoclavibacter. Gram-negative organisms accounted for only 4/38 (10.5%) bacterial isolates and included the following genera, Brevundimonas, Lysobacter, Psychrobacter and Rhizobium. No gastrointestinal pathogens were detected. Although this study demonstrated a high diversity of the microorganisms present, only a few have been shown to be opportunistically pathogenic to humans and none of these organisms described have been described previously as having an inhalational route of infection and therefore we do not believe that the species of organisms identified pose a significant health and safety threat for immunocompetant individuals.

  8. Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from RBCL sequence analyses.

    PubMed

    Goffinet, B; Bayer, R J; Vitt, D H

    1998-09-01

    The affinities as well as the circumscription of the Orthotrichaceae (Bryopsida), one of the most diverse families of mosses, have been the focus of a controversy for much of the last century. We obtained rbcL sequences for 37 arthrodontous mosses, including 27 taxa of the Orthotrichales. The sequences were analyzed using maximum parsimony and neighbor joining in order to (1) test the monophyly of the Orthotrichales and the Orthotrichaceae; (2) determine their phylogenetic relationships; and (3) test the current subfamilial classification within the Orthotrichaceae. Both analyses suggest that the Orthotrichales are polyphyletic. The Erpodiaceae and the Rhachitheciaceae as well as Amphidium and Drummondia, two genera of the Orthotrichaceae, are shown to be of haplolepideous affinity. The Splachnales, the Bryales sensu lato, and the Orthotrichales form a monophyletic clade sister to the Haplolepideae. Both neighbor joining and maximum parsimony also suggest that the Orthotrichaceae are composed of two major lineages dominated either by acrocarpous or cladocarpous taxa. The monophyly of the family is, however, only well supported by Tamura's distances. The genera Macrocoma, Macromitrium, Orthotrichum, Ulota, and Zygodon all appear to be artificial assemblages. This study illustrates the contribution of rbcL sequence data to bryophyte systematics and, particularly, in determining the affinities of taxa lacking a peristome, whose characters are central to the classification of mosses.

  9. Application of multilocus sequence analysis (MLSA) for accurate identification of Legionella spp. Isolated from municipal fountains in Chengdu, China, based on 16S rRNA, mip, and rpoB genes.

    PubMed

    Guan, Wang; Xu, Ying; Chen, Da-Li; Xu, Jia-Nan; Tian, Yu; Chen, Jian-Ping

    2012-02-01

    Legionellosis (Legionnaires' disease; LD) is a form of severe pneumonia caused by species of Legionella bacteria. Because inhalation of Legionella-contaminated aerosol is considered the major infection route, routine assessments of potential infection sources such as hot water systems, air-conditioner cooling water, and municipal fountains are of great importance. In this study, we utilized in vitro culture and multilocus sequence analysis (MLSA) targeting 16S rRNA, mip, rpoB, and mip-rpoB concatenation to isolate and identify Legionella spp. from 5 municipal fountains in Chengdu City, Sichuan Province, China. Our results demonstrated that 16S rRNA was useful for initial identification, as it could recognize isolates robustly at the genus level, while the genes mip, rpoB, and mip-rpoB concatenation could confidently discriminate Legionella species. Notably, the three subspecies of L. pneumophila could be distinguished by the analysis based on rpoB. The serotyping result of strain CD-1 was consistent with genetic analysis based on the concatenation of mip and rpoB. Despite regular maintenance and sanitizing methods, 4 of the 5 municipal fountains investigated in this study were positive for Legionella contamination. Thus, regularly scheduled monitoring of municipal fountains is urgently needed as well as vigilant disinfection. Although the application of MLSA for inspection of potential sites of infection in public areas is not standard procedure, further investigations may prove its usefulness.

  10. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

    PubMed Central

    Vernon, Suzanne D; Shukla, Sanjay K; Conradt, Jennifer; Unger, Elizabeth R; Reeves, William C

    2002-01-01

    Background The association of an infectious agent with chronic fatigue syndrome (CFS) has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA) sequences. Results DNA was isolated from 81 (91%) of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng) and more CFS subjects (6/34, 18%) had no detectable plasma DNA than non-fatigued subjects (2/55, 4%), but these differences were not significant. Bacterial sequences were detected in 23 (26%) of 89. Only 4 (14%) CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32%) of the non-fatigued (P = 0.03). All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present. Conclusions CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects. PMID:12498618

  11. DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs.

    PubMed

    Ogata, Jun; Uchiyama, Nahoko; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2013-04-10

    In recent years, various herbal products adulterated with synthetic cannabinoids have been distributed worldwide via the Internet. These herbal products are mostly sold as incense, and advertised as not for human consumption. Although their labels indicate that they contain mixtures of several potentially psychoactive plants, and numerous studies have reported that they contain a variety of synthetic cannabinoids, their exact botanical contents are not always clear. In this study, we investigated the origins of botanical materials in 62 Spice-like herbal products distributed on the illegal drug market in Japan, by DNA sequence analyses and BLAST searches. The nucleotide sequences of four regions were analyzed to identify the origins of each plant species in the herbal mixtures. The sequences of "Damiana" (Turnera diffusa) and Lamiaceae herbs (Mellissa, Mentha and Thymus) were frequently detected in a number of products. However, the sequences of other plant species indicated on the packaging labels were not detected. In a few products, DNA fragments of potent psychotropic plants were found, including marijuana (Cannabis sativa), "Diviner's Sage" (Salvia divinorum) and "Kratom" (Mitragyna speciosa). Their active constituents were also confirmed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), although these plant names were never indicated on the labels. Most plant species identified in the products were different from the plants indicated on the labels. The plant materials would be used mainly as diluents for the psychoactive synthetic compounds, because no reliable psychoactive effects have been reported for most of the identified plants, with the exception of the psychotropic plants named above.

  12. New Highly Divergent rRNA Sequence among Biodiverse Genotypes of Enterocytozoon bieneusi Strains Isolated from Humans in Gabon and Cameroon▿

    PubMed Central

    Breton, Jacques; Bart-Delabesse, Emmanuelle; Biligui, Sylvestre; Carbone, Alessandra; Seiller, Xavier; Okome-Nkoumou, Madeleine; Nzamba, Chantal; Kombila, Maryvonne; Accoceberry, Isabelle; Thellier, Marc

    2007-01-01

    Intestinal microsporidiosis due to Enterocytozoon bieneusi is a leading cause of chronic diarrhea in severely immunocompromised human immunodeficiency virus (HIV)-positive patients. It may be a public health problem in Africa due to the magnitude of the HIV pandemic and to poor sanitary conditions. We designed two prevalence studies of E. bieneusi in Central Africa, the first with HIV-positive patients from an urban setting in Gabon and the second with a nonselected rural population in Cameroon. Stool samples were analyzed by an immunofluorescence antibody test and PCR. Twenty-five out of 822 HIV-positive patients from Gabon and 22 out of 758 villagers from Cameroon were found to be positive for E. bieneusi. The prevalence rates of the two studies were surprisingly similar (3.0% and 2.9%). Genotypic analysis of the internal transcribed spacer region of the rRNA gene showed a high degree of diversity in samples from both countries. In Gabon, 15 isolates showed seven different genotypes: the previously reported genotypes A, D, and K along with four new genotypes, referred to as CAF1, CAF2, CAF3, and CAF4. In Cameroon, five genotypes were found in 20 isolates: the known genotypes A, B, D, and K and the new genotype CAF4. Genotypes A and CAF4 predominated in Cameroon, whereas K, CAF4, and CAF1 were more frequent in Gabon, suggesting that different genotypes present differing risks of infection associated with immune status and living conditions. Phylogenetic analysis of the new genotype CAF4, identified in both HIV-negative and HIV-positive subjects, indicates that it represents a highly divergent strain. PMID:17537939

  13. Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences.

    PubMed

    Klee, Julia; Tek Tay, Wee; Paxton, Robert J

    2006-02-01

    A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 10(7) down to 10 spores diluted in 100 microl of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of approximately 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to be more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy.

  14. Evolutionary dynamics of influenza A nucleoprotein (NP) lineages revealed by large-scale sequence analyses.

    PubMed

    Xu, Jianpeng; Christman, Mary C; Donis, Ruben O; Lu, Guoqing

    2011-12-01

    Influenza A viral nucleoprotein (NP) plays a critical role in virus replication and host adaptation, however, the underlying molecular evolutionary dynamics of NP lineages are less well-understood. In this study, large-scale analyses of 5094 NP nucleotide sequences revealed eight distinct evolutionary lineages, including three host-specific lineages (human, classical swine and equine), two cross-host lineages (Eurasian avian-like swine and swine-origin human pandemic H1N1 2009) and three geographically isolated avian lineages (Eurasian, North American and Oceanian). The average nucleotide substitution rate of the NP lineages was estimated to be 2.4 × 10(-3) substitutions per site per year, with the highest value observed in pandemic H1N1 2009 (3.4 × 10(-3)) and the lowest in equine (0.9 × 10(-3)). The estimated time of most recent common ancestor (TMRCA) for each lineage demonstrated that the earliest human lineage was derived around 1906, and the latest pandemic H1N1 2009 lineage dated back to December 17, 2008. A marked time gap was found between the times when the viruses emerged and were first sampled, suggesting the crucial role for long-term surveillance of newly emerging viruses. The selection analyses showed that human lineage had six positive selection sites, whereas pandemic H1N1 2009, classical swine, Eurasian avian and Eurasian swine had only one or two sites. Protein structure analyses revealed several positive selection sites located in epitope regions or host adaptation regions, indicating strong adaptation to host immune system pressures in influenza viruses. Along with previous studies, this study provides new insights into the evolutionary dynamics of influenza A NP lineages. Further lineage analyses of other gene segments will allow better understanding of influenza A virus evolution and assist in the improvement of global influenza surveillance.

  15. Variation in the ITS-1 and ITS-2 rRNA genomic regions of Cytauxzoon felis from bobcats and pumas in the eastern United States and comparison with sequences from domestic cats.

    PubMed

    Shock, Barbara C; Birkenheuer, Adam J; Patton, Laura L; Olfenbuttel, Colleen; Beringer, Jeff; Grove, Daniel M; Peek, Matt; Butfiloski, Joseph W; Hughes, Daymond W; Lockhart, J Mitchell; Cunningham, Mark W; Brown, Holly M; Peterson, David S; Yabsley, Michael J

    2012-11-23

    Cytauxzoon felis, a tick-borne protozoan parasite, is the causative agent of cytauxzoonosis in domestic cats in the United States. The natural reservoir for this parasite is the bobcat (Lynx rufus), which typically does not develop clinical signs. Although not likely important reservoirs, C. felis has also been detected in pumas (Puma concolor) in Florida and Louisiana. Recent studies suggest that specific genotypes of C. felis that circulate in domestic cats may be associated with variable clinical outcomes and specific spatial locations. In the current study, we investigated the intraspecific variation of the C. felis internal transcribed spacer (ITS)-1 and ITS-2 rRNA regions from 145 wild felids (139 bobcats and six pumas) from 11 states (Florida, Georgia, Kansas, Kentucky, Louisiana, Missouri, North Carolina, North Dakota, South Carolina, Oklahoma, and Pennsylvania). Unambiguous ITS-1 and ITS-2 data were obtained for 144 and 112 samples, respectively, and both ITS-1 and ITS-2 sequences were obtained for 111 (77%) samples. For the ITS-1 region, sequences from 65 samples collected from wild felids were identical to those previously reported in domestic cats, while the other 79 sequences were unique. C. felis from 45 bobcats and one puma had ITS-1 sequences identical to the most common sequence reported from domestic cats. Within the ITS-2 region, sequences from 49 bobcats were identical to those previously reported in domestic cats and 63 sequences were unique (with some occurring in more than one bobcat). The most common ITS-2 sequence from domestic cats was also common in wild felids (31 bobcats and a puma). Samples from three pumas from Florida and two bobcats from Missouri had a 40- or 41-bp insert in the ITS-2 similar to one described previously in a domestic cat from Arkansas. Additionally, a previously undescribed 198- or 199-bp insert was detected in the ITS-2 sequence from four bobcats. Collectively, based on combined ITS-1 and ITS-2 sequences, five

  16. Determining RNA quality for NextGen sequencing: some exceptions to the gold standard rule of 23S to 16S rRNA ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using next-generation-sequencing technology to assess entire transcriptomes requires high quality starting RNA. Currently, RNA quality is routinely judged using automated microfluidic gel electrophoresis platforms and associated algorithms. Here we report that such automated methods generate false-n...

  17. Microbiome characterization using SMRT sequencing on 16S rRNA genes across a range of amplicon sizes and variable region content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sequence of variable regions along the 16S ribosomal RNA gene is often used to conduct metagenomic surveys of bacterial populations in specific habitats, because of the inter-species variability in these regions and because it is possible to design amplification primers in sections of the gene t...

  18. Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes.

    PubMed Central

    Fialho, A M; Zielinski, N A; Fett, W F; Chakrabarty, A M; Berry, A

    1990-01-01

    Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages. Images PMID:1689562

  19. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase

    SciTech Connect

    Henckel, T.; Friedrich, M.; Conrad, R.

    1999-05-01

    Rice field soil with a nonsaturated water content induced CH{sub 4} consumption activity when it was supplemented with 5% CH{sub 4}. After a lag phase of 3 days, CH{sub 4} was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH{sub 4} mixing ratios. The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type 1 methylotrophs and type 2 methylotrophs were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH{sub 4} was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH{sub 4}.

  20. Analysis of Fungal Diversity in the Wheat Rhizosphere by Sequencing of Cloned PCR-Amplified Genes Encoding 18S rRNA and Temperature Gradient Gel Electrophoresis

    PubMed Central

    Smit, Eric; Leeflang, Paula; Glandorf, Boet; Dirk van Elsas, Jan; Wernars, Karel

    1999-01-01

    Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic

  1. Evidence for Balancing Selection from Nucleotide Sequence Analyses of Human G6PD

    PubMed Central

    Verrelli, Brian C.; McDonald, John H.; Argyropoulos, George; Destro-Bisol, Giovanni; Froment, Alain; Drousiotou, Anthi; Lefranc, Gerard; Helal, Ahmed N.; Loiselet, Jacques; Tishkoff, Sarah A.

    2002-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) mutations that result in reduced enzyme activity have been implicated in malarial resistance and constitute one of the best examples of selection in the human genome. In the present study, we characterize the nucleotide diversity across a 5.2-kb region of G6PD in a sample of 160 Africans and 56 non-Africans, to determine how selection has shaped patterns of DNA variation at this gene. Our global sample of enzymatically normal B alleles and A, A−, and Med alleles with reduced enzyme activities reveals many previously uncharacterized silent-site polymorphisms. In comparison with the absence of amino acid divergence between human and chimpanzee G6PD sequences, we find that the number of G6PD amino acid polymorphisms in human populations is significantly high. Unlike many other G6PD-activity alleles with reduced activity, we find that the age of the A variant, which is common in Africa, may not be consistent with the recent emergence of severe malaria and therefore may have originally had a historically different adaptive function. Overall, our observations strongly support previous genotype-phenotype association studies that proposed that balancing selection maintains G6PD deficiencies within human populations. The present study demonstrates that nucleotide sequence analyses can reveal signatures of both historical and recent selection in the genome and may elucidate the impact that infectious disease has had during human evolution. PMID:12378426

  2. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution.

    PubMed Central

    Saier, M H

    1994-01-01

    Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed. PMID:8177172

  3. Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions

    NASA Technical Reports Server (NTRS)

    Hedenstierna, K. O.; Siefert, J. L.; Fox, G. E.; Murgola, E. J.

    2000-01-01

    Terminal loops containing four nucleotides (tetraloops) are common in structural RNAs, and they frequently conform to one of three sequence motifs, GNRA, UNCG, or CUUG. Here we compare available sequences and secondary structures for rRNAs from bacteria, and we show that helices capped by phylogenetically conserved GNRA loops display a strong tendency to be of conserved length. The simplest interpretation of this correlation is that the conserved GNRA loops are involved in higher-order interactions, intramolecular or intermolecular, resulting in a selective pressure for maintaining the lengths of these helices. A small number of conserved UNCG loops were also found to be associated with conserved length helices, consistent with the possibility that this type of tetraloop also takes part in higher-order interactions.

  4. Analysis of the Bacterial Communities in Two Liquors of Soy Sauce Aroma as Revealed by High-Throughput Sequencing of the 16S rRNA V4 Hypervariable Region

    PubMed Central

    Tang, Jing; Tang, Xiaoxin; Tang, Ming; Zhang, Ximin; Xu, Xiaorong

    2017-01-01

    Chinese liquor is one of the world's oldest distilled alcoholic beverages and an important commercial fermented product in China. The Chinese liquor fermentation process has three stages: making Daqu (the starter), stacking fermentation on the ground, and liquor fermentation in pits. We investigated the bacterial diversity of Maotai and Guotai Daqu and liquor fermentation using high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene. A total of 70,297 sequences were obtained from the Daqu samples and clustered into 17 phyla. The composition of the bacterial communities in the Daqu from these two soy sauce aroma-style Chinese liquors was the same, although some bacterial species changed in abundance. Between the Daqu and liquor fermentation samples, 12 bacterial phyla increased. The abundance of Lactobacillus and Pseudomonas increased in the liquor fermentation. This study has used high-throughput sequencing to provide new insights into the bacterial composition of the Chinese liquor Daqu and fermentation. Similarities in the distribution of bacteria in the soy sauce aroma-style Chinese liquors Daqu suggest that the abundance of bacteria might be generally concerned to other liquor. PMID:28337455

  5. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses.

    PubMed

    Demirkan, Ayşe; Henneman, Peter; Verhoeven, Aswin; Dharuri, Harish; Amin, Najaf; van Klinken, Jan Bert; Karssen, Lennart C; de Vries, Boukje; Meissner, Axel; Göraler, Sibel; van den Maagdenberg, Arn M J M; Deelder, André M; C 't Hoen, Peter A; van Duijn, Cornelia M; van Dijk, Ko Willems

    2015-01-01

    Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10-32), PRODH with proline (P-value  = 1.11×10-19), SLC16A9 with carnitine level (P-value  = 4.81×10-14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10-19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10-8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10-8) and 2p12 locus with valine (P-value  = 3.49×10-8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the

  6. Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses

    PubMed Central

    Verhoeven, Aswin; Dharuri, Harish; Amin, Najaf; van Klinken, Jan Bert; Karssen, Lennart C.; de Vries, Boukje; Meissner, Axel; Göraler, Sibel; van den Maagdenberg, Arn M. J. M.; Deelder, André M.; C ’t Hoen, Peter A.; van Duijn, Cornelia M.; van Dijk, Ko Willems

    2015-01-01

    Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10−32), PRODH with proline (P-value  = 1.11×10−19), SLC16A9 with carnitine level (P-value  = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10−8) and 2p12 locus with valine (P-value  = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional

  7. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media

    PubMed Central

    Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    ABSTRACT The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations

  8. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing.

    PubMed

    Wang, Jiale; Gong, Benzhou; Huang, Wei; Wang, Yingmu; Zhou, Jian

    2017-03-01

    A simultaneous nitrification, denitrification and organic matter removal (SNDOR) process in sequencing batch biofilm reactor (SBBR) was established to treat saline mustard tuber wastewater (MTWW) in this study. An average COD removal efficiency of 86.48% and total nitrogen removal efficiency of 86.48% were achieved at 30gNaClL(-1) during 100days' operation. The underlying mechanisms were investigated by PacBio SMRT DNA sequencing (V1-V9) to analyze the microbial community structures and its variation from low salinity at 10gNaClL(-1) to high salinity at 30gNaClL(-1). Results showed elevated salinity did not affect biological performance but reduced microbial diversity in SBBR, and halophilic bacteria gradually predominated by succession. Despite of high C/N, autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas and ammonia-oxidizing archaea (AOA) Candidatus Nitrososphaera both contributed to ammonium oxidation. As salinity increasing, nitrite-oxidizing bacteria (NOB) were significantly inhibited, partial nitrification and denitrification (PND) process gradually contributed to nitrogen removal.

  9. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes

    PubMed Central

    Zhang, Yanming; Ji, Peifeng; Wang, Jinfeng; Zhao, Fangqing

    2016-01-01

    16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities. PMID:26984526

  10. The Mitochondrial Genomes of Aquila fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, Structure and Phylogenetic Analyses

    PubMed Central

    Jiang, Lan; Chen, Juan; Wang, Ping; Ren, Qiongqiong; Yuan, Jian; Qian, Chaoju; Hua, Xinghong; Guo, Zhichun; Zhang, Lei; Yang, Jianke; Wang, Ying; Zhang, Qin; Ding, Hengwu; Bi, De; Zhang, Zongmeng; Wang, Qingqing; Chen, Dongsheng; Kan, Xianzhao

    2015-01-01

    The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide‘C’is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes. PMID:26295156

  11. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  12. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    SciTech Connect

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  13. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  14. Phylogeny of the Genus Nocardia Based on Reassessed 16S rRNA Gene Sequences Reveals Underspeciation and Division of Strains Classified as Nocardia asteroides into Three Established Species and Two Unnamed Taxons

    PubMed Central

    Roth, Andreas; Andrees, Sebastian; Kroppenstedt, Reiner M.; Harmsen, Dag; Mauch, Harald

    2003-01-01

    Conventional identification of Nocardia in the routine laboratory remains problematic due to a paucity of reliable phenotypic tests and due to the yet-unresolved taxonomy of strains classified as belonging to the species Nocardia asteroides, which comprises the type strain and isolates with drug pattern types II and VI. The 16S rRNA gene of 74 representative strains of the genus Nocardia, encompassing 25 established species, was sequenced in order to provide a molecular basis for accurate species identification and with the aim of reassessing the phylogeny of taxons assigned to the species N. asteroides. The result of this phylogenetic analysis confirms that the interspecies heterogeneity of closely related nocardial species can be considerably low (a sequence divergence of only 0.5% was found between N. paucivorans and N. brevicatena). We observed a sequence microheterogeneity (sequence divergence of fewer than five bases) in 8 of 11 species of which more than one strain in the species was studied. At least 10 taxons were found that merit description as new species. Strains previously classified as N. asteroides fell into five distinct phylogenetic groups: the type strain cluster (N. asteroides sensu strictu), N. abscessus, N. cyriacigeorgica, and two clusters closely related to N. carnea or N. flavorosea. The strains within the latter two groups probably represent new species, pending further genetic and phenotypic evaluation. Restricted phenotypic data revealed that N. abscessus, N. cyriacigeorgica, and the two Nocardia species taxons are equivalent to drug patterns I, VI, and II, respectively. In the future, these data will help in finding species-specific markers after adoption of a more precise nomenclature for isolates closely related to N. asteroides and unravel confusing phenotypic data obtained in the past for unresolved groups of strains that definitely belong to separate taxons from a phylogenetic point of view. PMID:12574299

  15. Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing

    PubMed Central

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-01-01

    The non-conventional yeast Pichia pastoris is a popular host for recombinant protein production in scientific research and industry. Typically, the expression cassette is integrated into the genome via homologous recombination. Due to unknown integration events, a large clonal variability is often encountered consisting of clones with different productivities as well as aberrant morphological or growth characteristics. In this study, we analysed several clones with abnormal colony morphology and discovered unpredicted integration events via whole genome sequencing. These include (i) the relocation of the locus targeted for replacement to another chromosome (ii) co-integration of DNA from the E. coli plasmid host and (iii) the disruption of untargeted genes affecting colony morphology. Most of these events have not been reported so far in literature and present challenges for genetic engineering approaches in this yeast. Especially, the presence and independent activity of E. coli DNA elements in P. pastoris is of concern. In our study, we provide a deeper insight into these events and their potential origins. Steps preventing or reducing the risk for these phenomena are proposed and will help scientists working on genetic engineering of P. pastoris or similar non-conventional yeast to better understand and control clonal variability. PMID:27958335

  16. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.

    PubMed

    Stelzer, Gil; Rosen, Naomi; Plaschkes, Inbar; Zimmerman, Shahar; Twik, Michal; Fishilevich, Simon; Stein, Tsippi Iny; Nudel, Ron; Lieder, Iris; Mazor, Yaron; Kaplan, Sergey; Dahary, Dvir; Warshawsky, David; Guan-Golan, Yaron; Kohn, Asher; Rappaport, Noa; Safran, Marilyn; Lancet, Doron

    2016-06-20

    GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.

  17. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  18. Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries.

    PubMed

    Saski, Christopher A; Bhattacharjee, Ranjana; Scheffler, Brian E; Asiedu, Robert

    2015-01-01

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches

  19. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

    PubMed Central

    Nelson, Michael C.; Morrison, Hilary G.; Benjamino, Jacquelynn; Grim, Sharon L.; Graf, Joerg

    2014-01-01

    The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity. PMID:24722003

  20. Genomic resources for water yam (Dioscorea alata L.): analyses of EST-Sequences, De Novo sequencing and GBS libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources such as SSRs, SNPs and InDels in several model and non-model plant species. Yam (Dioscorea spp.) i...

  1. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa.

    PubMed

    Zhi, Xiao-Yang; Li, Wen-Jun; Stackebrandt, Erko

    2009-03-01

    The higher ranks of the class Actinobacteria were proposed and described in 1997. At each rank, the taxa were delineated from each other solely on the basis of 16S rRNA gene sequence phylogenetic clustering and taxon-specific 16S rRNA signature nucleotides. In the past 10 years, many novel members have been assigned to this class while, at the same time, some members have been reclassified. The new 16S rRNA gene sequence information and the changes in phylogenetic positions of some taxa influence decisions about which 16S rRNA nucleotides to define as taxon-specific. As a consequence, the phylogenetic relationships of Actinobacteria at higher levels may need to be reconstructed. Here, we present new 16S rRNA signature nucleotide patterns of taxa above the family level and indicate the affiliation of genera to families. These sets replace the signatures published in 1997. In addition, Actinopolysporineae subord. nov. and Actinopolysporaceae fam. nov. are proposed to accommodate the genus Actinopolyspora, Kineosporiineae subord. nov. and Kineosporiaceae fam. nov. are proposed to accommodate the genera Kineococcus, Kineosporia and Quadrisphaera, Beutenbergiaceae fam. nov. is proposed to accommodate the genera Beutenbergia, Georgenia and Salana and Cryptosporangiaceae fam. nov. is proposed to accommodate the genus Cryptosporangium. The families Nocardiaceae and Gordoniaceae are proposed to be combined in an emended family Nocardiaceae. Emended descriptions are also proposed for most of the other higher taxa.

  2. Gordonia Species as Emerging Causes of Continuous-Ambulatory-Peritoneal-Dialysis-Related Peritonitis Identified by 16S rRNA and secA1 Gene Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Lam, Jimmy Y. W.; Leung, Wai-Shing; Cheung, Ingrid; Chan, Jasper F. W.; Tse, Cindy W. S.; Lee, Rodney A.; Lau, Susanna K. P.

    2014-01-01

    We report here four cases of continuous ambulatory peritoneal dialysis-related peritonitis caused by three different species of Gordonia. The portal of entry was likely through Tenckhoff catheters. 16S rRNA and secA1 gene sequencing are so far the most reliable methods for the accurate identification of Gordonia species. PMID:25428146

  3. DNA Sequence Analyses Reveal Abundant Diversity, Endemism and Evidence for Asian Origin of the Porcini Mushrooms

    PubMed Central

    Feng, Bang; Xu, Jianping; Wu, Gang; Zeng, Nian-Kai; Li, Yan-Chun; Tolgor, Bau; Kost, Gerhard W.; Yang, Zhu L.

    2012-01-01

    The wild gourmet mushroom Boletus edulis and its close allies are of significant ecological and economic importance. They are found throughout the Northern Hemisphere, but despite their ubiquity there are still many unresolved issues with regard to the taxonomy, systematics and biogeography of this group of mushrooms. Most phylogenetic studies of Boletus so far have characterized samples from North America and Europe and little information is available on samples from other areas, including the ecologically and geographically diverse regions of China. Here we analyzed DNA sequence variation in three gene markers from samples of these mushrooms from across China and compared our findings with those from other representative regions. Our results revealed fifteen novel phylogenetic species (about one-third of the known species) and a newly identified lineage represented by Boletus sp. HKAS71346 from tropical Asia. The phylogenetic analyses support eastern Asia as the center of diversity for the porcini sensu stricto clade. Within this clade, B. edulis is the only known holarctic species. The majority of the other phylogenetic species are geographically restricted in their distributions. Furthermore, molecular dating and geological evidence suggest that this group of mushrooms originated during the Eocene in eastern Asia, followed by dispersal to and subsequent speciation in other parts of Asia, Europe, and the Americas from the middle Miocene through the early Pliocene. In contrast to the ancient dispersal of porcini in the strict sense in the Northern Hemisphere, the occurrence of B. reticulatus and B. edulis sensu lato in the Southern Hemisphere was probably due to recent human-mediated introductions. PMID:22629418

  4. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    PubMed

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene.

  5. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  6. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  7. Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences.

    PubMed

    Sawada, H; Takeuchi, T; Matsuda, I

    1997-01-01

    Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin. We confirmed that the latter is also resistant to phaseolotoxin and possesses ROCT, and we compared the two pathovars by using sequence data of the ROCT gene and the intergenic spacer region located between the 16S and 23S rRNA genes (16S-23S spacer region) as an index. It was found that the identical ROCT gene (argK) is contained not only in bean isolates of P. syringae pv. phaseolicola in Mexico and the United States but also in bean isolates in Japan and Canada, and that it is also distributed in the kudzu (Pueraria lobata) isolates of P. syringae pv. phaseolicola. Moreover, the kiwifruit and tara vine isolates of P. syringae pv. actinidiae were also found to possess the identical argK. On the contrary, the 16S-23S spacer regions showed a significant level of sequence variation between P. syringae pv. actinidiae and pv. phaseolicola, suggesting that these two pathovars evolved differently from each other in the phylogenetic development. The fact that even synonymous substitution has not occurred in argK among these strains despite their extreme differences in phylogenetic evolution and geographical distribution suggests that it was only recently in evolutionary time that argK was transferred from its origin to P. syringae pv. actinidiae and/or pv. phaseolicola.

  8. Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences.

    PubMed Central

    Sawada, H; Takeuchi, T; Matsuda, I

    1997-01-01

    Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin. We confirmed that the latter is also resistant to phaseolotoxin and possesses ROCT, and we compared the two pathovars by using sequence data of the ROCT gene and the intergenic spacer region located between the 16S and 23S rRNA genes (16S-23S spacer region) as an index. It was found that the identical ROCT gene (argK) is contained not only in bean isolates of P. syringae pv. phaseolicola in Mexico and the United States but also in bean isolates in Japan and Canada, and that it is also distributed in the kudzu (Pueraria lobata) isolates of P. syringae pv. phaseolicola. Moreover, the kiwifruit and tara vine isolates of P. syringae pv. actinidiae were also found to possess the identical argK. On the contrary, the 16S-23S spacer regions showed a significant level of sequence variation between P. syringae pv. actinidiae and pv. phaseolicola, suggesting that these two pathovars evolved differently from each other in the phylogenetic development. The fact that even synonymous substitution has not occurred in argK among these strains despite their extreme differences in phylogenetic evolution and geographical distribution suggests that it was only recently in evolutionary time that argK was transferred from its origin to P. syringae pv. actinidiae and/or pv. phaseolicola. PMID:8979356

  9. Automation of Molecular-Based Analyses: A Primer on Massively Parallel Sequencing

    PubMed Central

    Nguyen, Lan; Burnett, Leslie

    2014-01-01

    Recent advances in genetics have been enabled by new genetic sequencing techniques called massively parallel sequencing (MPS) or next-generation sequencing. Through the ability to sequence in parallel hundreds of thousands to millions of DNA fragments, the cost and time required for sequencing has dramatically decreased. There are a number of different MPS platforms currently available and being used in Australia. Although they differ in the underlying technology involved, their overall processes are very similar: DNA fragmentation, adaptor ligation, immobilisation, amplification, sequencing reaction and data analysis. MPS is being used in research, translational and increasingly now also in clinical settings. Common applications include sequencing of whole genomes, whole exomes or targeted genes for disease-causing gene discovery, genetic diagnosis and targeted cancer therapy. Even though the revolution that is occurring with MPS is exciting due to its increasing use, improving and emerging technologies and new applications, significant challenges still exist. Particularly challenging issues are the bioinformatics required for data analysis, interpretation of results and the ethical dilemma of ‘incidental findings’. PMID:25336762

  10. Nonradioactive sequence-tagged microsatellite site analyses: a method transferable to the tropics.

    PubMed

    Lagoda, P J; Dambier, D; Grapin, A; Baurens, F C; Lanaud, C; Noyer, J L

    1998-02-01

    Utilization of existing isozyme analysis facilities to detect sequence-tagged microsatellite site (STMS) polymorphism or any simple sequence repeat (SSR) variation is described. Different parameters concerning the difficulties in transferring molecular techniques to less sophisticated laboratory infrastructures (i.e. tropical outstations) are discussed (e.g. reproducibility, efficacy, precision). Nonradioactive STMS analysis is bound to foster collaborative research between "biodiversity" and "biotechnology" centers.

  11. Factorial Moments Analyses Show a Characteristic Length Scale in DNA Sequences

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.; Narayana Rao, A. V. S. S.

    2000-02-01

    A unique feature of most of the DNA sequences, found through the factorial moments analysis, is the existence of a characteristic length scale around which the density distribution is nearly Poissonian. Above this point, the DNA sequences, irrespective of their intron contents, show long range correlations with a significant deviation from the Gaussian statistics, while, below this point, the DNA statistics are essentially Gaussian. The famous DNA walk representation is also shown to be a special case of the present analysis.

  12. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and standard protocol for genomovar assignment.

    PubMed

    LaFrentz, B R; Waldbieser, G C; Welch, T J; Shoemaker, C A

    2014-07-01

    Genetic variability in 16S rRNA gene sequences has been demonstrated among isolates of Flavobacterium columnare, and a restriction fragment length polymorphism (RFLP) assay is available for genetic typing of this important fish pathogen. Interpretation of restriction patterns can be difficult due to the lack of a formal description of the expected number and sizes of DNA fragments generated for each of the described genomovars. In this study, partial 16S rRNA gene sequences (ca. 1250-bp fragment) from isolates representing each described genomovar and isolates generating unique restriction patterns were cloned and sequenced. The results demonstrated that some isolates contained up to three different 16S rRNA genes whose sequences generate different RFLP patterns due to intragenomic heterogeneity within HaeIII restriction sites. The occurrence of HaeIII restriction sites within the portion of the 16S rRNA gene used for typing the F. columnare isolates and intragenomic heterogeneity within these sites explained the restriction patterns observed following RFLP analyses. This research provides a standard protocol for typing isolates of F. columnare by RFLP and a formal description of the expected restriction patterns for the previously described genomovars I, II, II-B and III. Additionally, we describe a new genomovar, I/II.

  13. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  14. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae

    PubMed Central

    Hershman, Steve G.; Chen, Qijun; Lee, Julia Y.; Kozak, Marina L.; Yue, Peng; Wang, Li-San; Johnson, F. Brad

    2008-01-01

    Although well studied in vitro, the in vivo functions of G-quadruplexes (G4-DNA and G4-RNA) are only beginning to be defined. Recent studies have demonstrated enrichment for sequences with intramolecular G-quadruplex forming potential (QFP) in transcriptional promoters of humans, chickens and bacteria. Here we survey the yeast genome for QFP sequences and similarly find strong enrichment for these sequences in upstream promoter regions, as well as weaker but significant enrichment in open reading frames (ORFs). Further, four findings are consistent with roles for QFP sequences in transcriptional regulation. First, QFP is correlated with upstream promoter regions with low histone occupancy. Second, treatment of cells with N-methyl mesoporphyrin IX (NMM), which binds G-quadruplexes selectively in vitro, causes significant upregulation of loci with QFP-possessing promoters or ORFs. NMM also causes downregulation of loci connected with the function of the ribosomal DNA (rDNA), which itself has high QFP. Third, ORFs with QFP are selectively downregulated in sgs1 mutants that lack the G4-DNA-unwinding helicase Sgs1p. Fourth, a screen for yeast mutants that enhance or suppress growth inhibition by NMM revealed enrichment for chromatin and transcriptional regulators, as well as telomere maintenance factors. These findings raise the possibility that QFP sequences form bona fide G-quadruplexes in vivo and thus regulate transcription. PMID:17999996

  15. Novel approaches for the taxonomic and metabolic characterization of lactobacilli: Integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR

    PubMed Central

    Parolin, Carola; Giordani, Barbara; Compri, Monica; Cevenini, Roberto; Vitali, Beatrice

    2017-01-01

    Lactobacilli represent a wide range of bacterial species with several implications for the human host. They play a crucial role in maintaining the ecological equilibrium of different biological niches and are essential for fermented food production and probiotic formulation. Despite the consensus about the ‘health-promoting’ significance of Lactobacillus genus, its genotypic and phenotypic characterization still poses several difficulties. The aim of this study was to assess the integration of different approaches, genotypic (16S rRNA gene sequencing), proteomic (MALDI-TOF MS) and metabolomic (1H-NMR), for the taxonomic and metabolic characterization of Lactobacillus species. For this purpose we analyzed 40 strains of various origin (intestinal, vaginal, food, probiotics), belonging to different species. The high discriminatory power of MALDI-TOF for species identification was underlined by the excellent agreement with the genotypic analysis. Indeed, MALDI-TOF allowed to correctly identify 39 out of 40 Lactobacillus strains at the species level, with an overall concordance of 97.5%. In the perspective to simplify the MALDI TOF sample preparation, especially for routine practice, we demonstrated the perfect agreement of the colony-picking from agar plates with the protein extraction protocol. 1H-NMR analysis, applied to both culture supernatants and bacterial lysates, identified a panel of metabolites whose variations in concentration were associated with the taxonomy, but also revealed a high intra-species variability that did not allow a species-level identification. Therefore, despite not suitable for mere taxonomic purposes, metabolomics can be useful to correlate particular biological activities with taxonomy and to understand the mechanisms related to the antimicrobial effect shown by some Lactobacillus species. PMID:28207855

  16. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing.

    PubMed

    Guo, Mingzhang; Bao, Qi; Chen, Siyuan; Cui, Xingtian; Xu, Wentao; He, Xiaoyun; Luo, Yunbo; Qi, Xiaozhe; Huang, Kunlun

    2016-03-01

    Rabbit neutrophils peptide-1 (NP-1) is a type of defensin that possesses a broad spectrum of antimicrobial activity. Chlorella ellipsoidea is a new eukaryotic expression system for exogenously producing NP-1. The NP-1 transgenic C. ellipsoidea can be directly added into feed as antimicrobial agent without any purification procedure for the NP-1 peptide. However, the effects of C. ellipsoidea and NP-1 on the host gut microbiota should be explored before application. In this study, diets containing different concentrations (1.25, 2.5, and 5%) of C. ellipsoidea and NP-1 transgenic C. ellipsoidea were administered to male Sprague-Dawley rats. Compared with the chow diet control group, none of the experimental groups showed any significant differences in their growth indices, and no histopathological damage was observed. The phylotypes of gut microbiota in the control group, the 5% C. ellipsoidea diet group and the 5% NP-1 transgenic C. ellipsoidea diet group were determined by 16S rRNA sequencing. The results showed that both 5% experimental groups had shifted community memberships of gut microbiota. In particular, the 5% NP-1 transgenic C. ellipsoidea diet exhibited an increased abundance of most Gram-positive bacterial taxa and a reduced abundance of most Gram-negative bacterial taxa, and it promoted the growth of some lactic acid bacterial genera. Lactic acid bacteria, especially the Bifidobacterium and Lactobacillus, have been widely reported to be benefic effects on the host. Thus NP-1 transgenic C. ellipsoidea is promising feed additive and gut regulator, as it have the potential to increase the abundance of Bifidobacterium and Lactobacillus in gut microbiota of animal.

  17. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR.

    PubMed

    Segawa, Takahiro; Miyamoto, Koji; Ushida, Kazunari; Agata, Kiyokazu; Okada, Norihiro; Kohshima, Shiro

    2005-01-01

    The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4 degrees C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 x 10(5)-fold, 1.5 x 10(5)-fold, and 1.0 x 10(4)-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world.

  18. Improved procedures for automated liquid phase sequence analyses of protein and peptide.

    PubMed

    Hayashi, H; Ohe, Y; Hayashi, T; Iwai, K

    1985-02-01

    For the sequence analysis of histones rich in lysine, we modified the subprograms for two reagents of a JEOL JAS-47KS protein sequence analyzer. Together with this modification, the use of a synthetic carrier, Polybrene, the minimization of aldehyde contamination in Quadrol buffer, and the introduction of hydrophilic groups into epsilon-N-amino groups of lysine residues, markedly increased the repetitive yield of PTH-amino acids. Tetrahymena histones H3 and H4 were thus sequenced up to residues 104 and 92, respectively, in each consecutive analysis (Hayashi, T., Hayashi, H., Fusauchi, Y., & Iwai, K. (1984) J. Biochem. 95, 1741-1749; Hayashi, H., Nomoto, M., & Iwai, K. (1984) J. Biochem. 96, 1449-1456). The details for these improved procedures and results are described here.

  19. ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences.

    PubMed

    Hérisson, Joan; Ferey, Nicolas; Gros, Pierre-Emmanuel; Gherbi, Rachid

    2007-01-20

    Most of biologists work on textual DNA sequences that are limited to the linear representation of DNA. In this paper, we address the potential offered by Virtual Reality for 3D modeling and immersive visualization of large genomic sequences. The representation of the 3D structure of naked DNA allows biologists to observe and analyze genomes in an interactive way at different levels. We developed a powerful software platform that provides a new point of view for sequences analysis: ADNViewer. Nevertheless, a classical eukaryotic chromosome of 40 million base pairs requires about 6 Gbytes of 3D data. In order to manage these huge amounts of data in real-time, we designed various scene management algorithms and immersive human-computer interaction for user-friendly data exploration. In addition, one bioinformatics study scenario is proposed.

  20. Identification and sequence analyses of the granulin gene of Choristoneura fumiferana granulovirus.

    PubMed

    Bah, A; Bergeron, J; Arella, M; Lucarotti, C J; Guertin, C

    1997-01-01

    The nucleotide sequence of the granulin gene of Choristoneura fumiferana granulovirus (CfGV) was determined. The gene encodes a protein of 248 amino acids with a predicted Mr of 29.299 kDa. The granulin genes of Trichoplusia ni, Pieris brassicae and Cryptophlebia leucotreta granuloviruses showed homologies ranging from 76.7-80.5% for nucleotide sequences and 84.2-88.3% for amino acid sequences when compared to CfGV. The secondary structure of CfGV granulin protein, including the hydrophilic (polar) and hydrophobic (basic) regions, was predicted and found to be similar to other granulins. A very late baculovirus promoter motif, ATAAG, was found within the putative promoter region of the CfGV granulin gene.

  1. Analyses of DNA Base Sequences for Eukaryotes in Terms of Power Spectrum Method

    NASA Astrophysics Data System (ADS)

    Isohata, Yasuhiko; Hayashi, Masaki

    2005-02-01

    By adopting a power spectrum method we have analyzed long-range correlations in the gene base sequences, exons and introns for five or six eukaryote species. As a measure of the long-range correlations, we have used an exponent α in 1/fα, which is an approximation of a power spectrum in a low-frequency region. We have analyzed frequency distributions of α and the dependence of its average values <α> on the sequence length for the five or six species, paying particular attention to the species dependence. We have shown that long-range correlations have been formed mainly due to the intron's elongation as well as by the sequence structures of introns acquired over the course of evolution.

  2. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso Sea.

    PubMed

    Cottrell, Matthew T; Yu, Liying; Kirchman, David L

    2005-12-01

    Sequence analysis of environmental DNA promises to provide new insights into the ecology and biogeochemistry of uncultured marine microbes. In this study we used the Sargasso Sea Whole Genome Sequence (WGS) data set to search for hydrolases used by Cytophaga-like bacteria to degrade biopolymers such as polysaccharides and proteins. Analysis of the Sargasso WGS data for contigs bearing both the 16S rRNA genes of Cytophaga-like bacteria and hydrolase genes revealed a cellulase gene (celM) most similar to the gene found in Cytophaga hutchinsonii. A BLAST search of the entire Sargasso Sea WGS data set indicated that celM was the most abundant cellulase-like gene in the Sargasso Sea. However, the similarity between CelM-like cellulases and peptidases belonging to metalloprotease family M42 led us to question whether CelM is involved in the degradation of polysaccharides or proteins. PCR primers were designed for the celM genes in the Sargasso Sea WGS data set and used to identify celM in a fosmid library constructed with prokaryotic DNA from the western Arctic Ocean. Expression analysis of the Cytophaga-like Arctic CelM, which is 63% identical and 77% similar to CelM in C. hutchinsonii, indicated that there was peptidase activity, whereas cellulase activity was not detected. Our analysis suggests that the celM gene plays a role in the degradation of protein by Cytophaga-like bacteria. The abundance of peptidase genes in the Cytophaga-like fosmid clone provides further evidence for the importance of Cytophaga-like bacteria in the degradation of protein in high-molecular-weight dissolved organic matter.

  3. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  4. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri.

    PubMed

    Yang, Mei-Kwei; Hsu, Chien-Hsiu; Sung, Vin-Long

    2008-07-01

    Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.

  5. Genome sequencing and analyses of the postharvest fungus Penicillium expansum R21

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blue mold is the vernacular name of a common postharvest disease of stored apples, pears and quince that is caused by several common species of Penicillium. This study reports the draft genome sequence of Penicillium expansum strain R21, a strain isolated from a Red Delicious apple in 2011 in Pennsy...

  6. Whole genome sequence analyses of Xylella fastidiosa PD strains from different geographical regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequences were determined for two Pierce’s disease (PD) causing Xylella fastidiosa (Xf) strains, one from Florida and one from Taiwan. The Florida strain was ATCC 35879, the type of strain used as a standard reference for related taxonomy research. By contrast, the Taiwan strain used was only...

  7. Molecular analyses of a repetitive DNA sequence in wheat (Triticum aestivum L.).

    PubMed

    Ueng, P P; Hang, A; Tsang, H; Vega, J M; Wang, L; Burton, C S; He, F T; Liu, B

    2000-06-01

    A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of lambda wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some lambda wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.

  8. Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses

    PubMed Central

    Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco

    2014-01-01

    The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should

  9. The Complete Chloroplast DNA Sequence of Eleutherococcus senticosus (Araliaceae); Comparative Evolutionary Analyses with Other Three Asterids

    PubMed Central

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-01-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or

  10. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids.

    PubMed

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-05-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or

  11. Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia.

    PubMed

    Tribolo, Chantal; Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem

    2017-01-01

    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region.

  12. Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia

    PubMed Central

    Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem

    2017-01-01

    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region. PMID:28125597

  13. Heteroduplex Mobility and Sequence Analyses for Assessment of Variability of Zucchini yellow mosaic virus.

    PubMed

    Lin, S S; Hou, R F; Yeh, S D

    2000-03-01

    ABSTRACT A heteroduplex mobility assay (HMA) was used to analyze the variability among five isolates of Zucchini yellow mosaic virus (ZYMV; TW-TC1, TW-CY2, TW-TN3, TW-TNML1, and TW-NT1) collected from cucurbit fields in different areas of Taiwan. A cDNA fragment of 760 bp covering the variable region of the N terminal half of the coat protein (CP) gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and subsequently subjected to HMA analysis for sequence variation. When TW-NT1 combined with any of the other Taiwan isolates, the heteroduplexes obtained migrated much more slowly than did the heteroduplexes obtained in combinations among the other four Taiwan isolates, indicating that TW-TC1, TW-CY2, TW-TN3, and TW-TNML1 share a high degree of sequence homology, while the TW-NT1 isolate is more distinct. The complete nucleotide sequences of the CP genes and the 3' noncoding regions of the five isolates were determined from RT-PCR-derived cDNA clones. A phylogenetic tree derived from the actual sequences of the 760-bp fragments of the five Taiwan and another six ZYMV isolates from different geographic areas revealed four genotypes. TW-TNML1, TW-TC1, TWC-Y2, and TW-TN3 were in genotype I, while TW-NT1 and U.S. isolates were in genotype II. The Singapore and Reunion Island isolates were separated into genotypes III and IV, respectively. Comparison of the CP genes of the five Taiwan isolates indicated that they share 92.8 to 98.7% nucleotide identities and 96.4 to 99.3% amino acid identities. The amino acid positions 73, 102, 109, and 149 of the CP gene, where lysine, serine, arginine, and aspartic acid reside, respectively, were uniquely conserved for genotype I Taiwan isolates. Thus, results of HMA agreed well with those of phylogenetic analysis based on the sequence data of the five Taiwan ZYMV isolates. These five ZYMV isolates of known sequence can be used as reference strains for HMA to analyze the variability of ZYMV in Taiwan.

  14. Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens.

    PubMed

    Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D; Callac, Philippe

    2016-01-01

    The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated.

  15. Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens

    PubMed Central

    Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe

    2016-01-01

    The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131

  16. Transcriptome analyses of Sclerotinia sclerotiorum infecting chickpea and lentil using RNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes white mold of many important crops. To elucidate its pathogenic mechanisms, transcriptome analyses were used to study its interactions with chickpea and lentil. Five mRNA libraries were constructed from S. sclertiorum (strain WM-A1), healthy chickpea (cv. Spansih Whit...

  17. cDNA sequence and protein bioinformatics analyses of MSTN in African catfish (Clarias gariepinus).

    PubMed

    Kanjanaworakul, Poonmanee; Sawatdichaikul, Orathai; Poompuang, Supawadee

    2016-04-01

    Myostatin, also known as growth differentiation factor 8, has been identified as a potent negative regulator of skeletal muscle growth. The purpose of this study was to characterize and predict function of the myostatin gene of the African catfish (Cg-MSTN). Expression of Cg-MSTN was determined at three growth stages to establish the relationship between the levels of MSTN transcript and skeletal muscle growth. The partial cDNA sequence of Cg-MSTN was cloned by using published information from its congener walking catfish (Cm-MSTN). The Cg-MSTN was 1194 bp in length encoding a protein of 397 amino acids. The deduced MSTN sequence exhibited key functional sites similar to those of other members of the TGF-β superfamily, especially, the proteolytic processing site (RXXR motif) and nine conserved cysteines at the C-terminal. Expression of MSTN appeared to be correlated with muscle development and growth of African catfish. Protein bioinformatics revealed that the primary sequence of Cg-MSTN shared 98 % sequence identity with that of walking catfish Cm-MSTN with only two different residues, [Formula: see text]. and [Formula: see text]. The proposed model of Cg-MSTN revealed the key point mutation [Formula: see text] causing a 7.35 Å shorter distance between the N- and C-lobes and an approximately 11° narrow angle than those of Cm-MSTN. The substitution of a proline residue near the proteolytic processing site which altered the structure of myostatin may play a critical role in reducing proteolytic activity of this protein in African catfish.

  18. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  19. Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores.

    PubMed

    Nicholson, Matthew J; McSweeney, Christopher S; Mackie, Roderick I; Brookman, Jayne L; Theodorou, Michael K

    2010-04-01

    Gut fungal-specific PCR primers have been used to selectively amplify the ITS1 region of gut fungal rDNA recovered from faeces of domestic and wild animals to investigate population diversity. Two different gel-based methods are described for separating populations of gut fungal rDNA amplicons, namely (1) denaturing gradient gel electrophoresis (DGGE) and (2) separation according to small size differences using Spreadex, a proprietary matrix for electrophoresis. Gut fungal populations were characterised by analysis of rDNA in faeces of seventeen domesticated and ten wild herbivores. Sequences derived from these gel-based characterisations were analysed and classified using a hidden Markov model-based fingerprint matching algorithm. Faecal samples contained a broad spectrum of fungi and sequences from five of the six recognised genera were identified, including Cyllamyces, the most recently described gut fungal genus, which was found to be widely distributed in the samples. Furthermore, four other novel groupings of gut fungal sequences were identified that did not cluster with sequences from any of the previously described genera. Both gel- and sequence- based profiles for gut fungal populations suggested a lack of geographical restriction on occurrence of any individual fungal type.

  20. Gene Sequence Analyses of the Healthy Oral Microbiome in Humans and Companion Animals.

    PubMed

    Davis, Eric M

    2016-06-01

    It has long been accepted that certain oral bacterial species are responsible for the development of periodontal disease. However, the focus of microbial and immunological research is shifting from studying the organisms associated with disease to examining the indigenous microbial inhabitants that are present in health. Microbiome refers to the aggregate genetic material of all microorganisms living in, or on, a defined habitat. Recent developments in gene sequence analysis have enabled detection and identification of bacteria from polymicrobial samples, including subgingival plaque. Diversity surveys utilizing this technology have demonstrated that bacterial culture techniques have vastly underestimated the richness and diversity of microorganisms in vivo, since only certain bacteria grow in vitro. Surveys using gene sequence analysis have demonstrated that the healthy oral microbiome is composed of an unexpectedly high number of diverse species, including putative pathogens. These findings support the view that coevolution microorganisms and macroscopic hosts has occurred in which certain microorganisms have adapted to survive in the oral cavity and host immune tolerance has allowed the establishment of a symbiotic relationship in which both parties receive benefits (mutualism). This review describes gene sequence analysis as an increasingly common, culture-independent tool for detecting bacteria in vivo and describes the results of recent oral microbiome diversity surveys of clinically healthy humans, dogs, and cats. Six bacterial phyla consistently dominated the healthy oral microbiome of all 3 host species. Previous hypotheses on etiology of periodontitis are reviewed in light of new scientific findings. Finally, the consideration that clinically relevant periodontal disease occurs when immune tolerance of the symbiotic oral microbiome is altered to a proinflammatory response will be discussed.

  1. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  2. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains

    PubMed Central

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a

  3. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains.

    PubMed

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a

  4. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA

    PubMed Central

    2013-01-01

    Background Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. Results Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). Conclusion This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures. PMID:23937650

  5. Sequence analyses and chromosomal distribution of the Tc1/Mariner element in Parodontidae fish (Teleostei: Characiformes).

    PubMed

    Schemberger, Michelle Orane; Nogaroto, Viviane; Almeida, Mara Cristina; Artoni, Roberto Ferreira; Valente, Guilherme Targino; Martins, Cesar; Moreira-Filho, Orlando; Cestari, Marta Margarete; Vicari, Marcelo Ricardo

    2016-11-30

    Transposable elements are able to move along eukaryotic genomes. They are divided into two classes according to their transposition intermediate: RNA (class I or retrotransposons) or DNA (class II or DNA transposons). Most of these sequences are inactive or non-autonomous in eukaryotic genomes. Inactivate transposons can accumulate mutations at neutral rates until losing their molecular identity. They may either be eliminated from the genome or take on different molecular functions. Transposable elements may also participate in the differentiation of sex chromosomes. Therefore, the structural variations and nucleotide similarity of Tc1/Mariner sequences were analyzed along with their potential participation in the differentiation processes of sex chromosomes in the genomes of Parodontidae fish. All Parodontidae species presented non-autonomous copies of Tc1/Mariner with structural variation, different levels of deterioration (genetic distance), and variations in insertion and deletion patterns. The physical mapping of Tc1/Mariner on chromosomes revealed dispersed signals in euchromatins, with small accumulations in terminal regions and in the sex chromosomes. The gene dosage ratios indicated copy number variations of Tc1/Mariner among the genomes and high transposase open reading frame deterioration in Parodon hilarii and Parodon pongoensis genomes. This transposon presented transcriptional activity in gonads, but there was no significant difference between sexes. This may indicate non-functional protein expression or may correspond to DNA binding proteins derived from Tc1/Mariner. Thus, our results show Tc1/Mariner inactivation along with a diversity in Parodontidae genomes and its participation in the differentiation of the W sex chromosome.

  6. Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize

    PubMed Central

    Lough, Ashley N.; Faries, Kaitlyn M.; Koo, Dal-Hoe; Hussain, Abid; Roark, Leah M.; Langewisch, Tiffany L.; Backes, Teresa; Kremling, Karl A. G.; Jiang, Jiming; Birchler, James A.; Newton, Kathleen J.

    2015-01-01

    The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (∼252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ∼1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize. PMID:26333837

  7. Acinetobacter seifertii Isolated from China: Genomic Sequence and Molecular Epidemiology Analyses.

    PubMed

    Yang, Yunxing; Wang, Jianfeng; Fu, Ying; Ruan, Zhi; Yu, Yunsong

    2016-03-01

    Clinical infections caused by Acinetobacter spp. have increasing public health concerns because of their global occurrence and ability to acquire multidrug resistance. Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex encompasses A. calcoaceticus, A. baumannii, A. pittii (formerly genomic species 3), and A nosocomial (formerly genomic species 13TU), which are predominantly responsible for clinical pathogenesis in the Acinetobacter genus. In our previous study, a putative novel species isolated from 385 non-A. baumannii spp. strains based on the rpoB gene phylogenetic tree was reported. Here, the putative novel species was identified as A. seifertii based on the whole-genome phylogenetic tree. A. seifertii was recognized as a novel member of the ACB complex and close to A. baumannii and A. nosocomials. Furthermore, we studied the characteristics of 10 A. seifertii isolates, which were distributed widely in 6 provinces in China and mainly caused infections in the elderly or children. To define the taxonomic status and characteristics, the biochemical reactions, antimicrobial susceptibility testing, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and whole-genome sequence analysis were performed. The phenotypic characteristics failed to distinguish A. serfertii from other species in the ACB complex. Most of the A. seifertii isolates were susceptible to antibiotics commonly used for nosocomial Acinetobacter spp. infections, but one isolate (strain A362) was resistant to ampicillin/sulbactam, ceftazidime and amikacin. The different patterns of MLST and PFGE suggested that the 10 isolates were not identical and lacked clonal relatedness. Our study reported for the first time the molecular epidemiological and genomic features of widely disseminated A. seifertii in China. These observations could enrich the knowledge of infections caused by non-A. baumannii and may provide a scientific basis for future clinical treatment.

  8. Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete data matrix

    PubMed Central

    Braun, Edward L.

    2014-01-01

    The resolution of rapid evolutionary radiations or “bushes” in the tree of life has been one of the most difficult and interesting problems in phylogenetics. The avian order Galliformes appears to have undergone several rapid radiations that have limited the resolution of prior studies and obscured the position of taxa important both agriculturally and as model systems (chicken, turkey, Japanese quail). Here we present analyses of a multi-locus data matrix comprising over 15,000 sites, primarily from nuclear introns but also including three mitochondrial regions, from 46 galliform taxa with all gene regions sampled for all taxa. The increased sampling of unlinked nuclear genes provided strong bootstrap support for all but a small number of relationships. Coalescent-based methods to combine individual gene trees and analyses of datasets that are independent of published data indicated that this well-supported topology is likely to reflect the galliform species tree. The inclusion or exclusion of mitochondrial data had a limited impact upon analyses upon analyses using either concatenated data or multispecies coalescent methods. Some of the key phylogenetic findings include support for a second major clade within the core phasianids that includes the chicken and Japanese quail and clarification of the phylogenetic relationships of turkey. Jackknifed datasets suggested that there is an advantage to sampling many independent regions across the genome rather than obtaining long sequences for a small number of loci, possibly reflecting the differences among gene trees that differ due to incomplete lineage sorting. Despite the novel insights we obtained using this increased sampling of gene regions, some nodes remain unresolved, likely due to periods of rapid diversification. Resolving these remaining groups will likely require sequencing a very large number of gene regions, but our analyses now appear to support a robust backbone for this order. PMID:24795852

  9. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  10. Phylogenetic analyses of termite post-embryonic sequences illuminate caste and developmental pathway evolution.

    PubMed

    Legendre, Frédéric; Whiting, Michael F; Grandcolas, Philippe

    2013-01-01

    Termites are highly eusocial insects with a caste polyphenism (i.e., discontinuous morphological differences between castes) and elaborated behaviors. While the developmental pathways leading to caste occurrence are well-known in many species, the evolutionary origin of these pathways is still obscure. Recent molecular phylogenetic studies suggest multiple independent origins of sterile castes in termites, reviving a 30 years old debate. We demonstrate here that diploid sterile castes ("true" workers) evolved several times independently in this group and that this caste was lost at least once in a lineage with developmentally more flexible workers called pseudergates or "false" workers. We also infer that flexibility in post-embryonic development was acquired multiple times independently during termite evolution. We suggest that focusing on detailed developmental pathways in phylogenetic analyses is essential for elucidating the origin of caste polyphenism in termites.

  11. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  12. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-10-11

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years.

  13. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes

    PubMed Central

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods. PMID:28241056

  14. Multilocus sequence analyses reveal extensive diversity and multiple origins of fluconazole resistance in Candida tropicalis from tropical China

    PubMed Central

    Wu, Jin-Yan; Guo, Hong; Wang, Hua-Min; Yi, Guo-Hui; Zhou, Li-Min; He, Xiao-Wen; Zhang, Ying; Xu, Jianping

    2017-01-01

    Candida tropicalis is among the most prevalent human pathogenic yeast species, second only to C. albicans in certain geographic regions such as East Asia and Brazil. However, compared to C. albicans, relatively little is known about the patterns of genetic variation in C. tropicalis. This study analyzed the genetic diversity and relationships among isolates of C. tropicalis from the southern Chinese island of Hainan. A total of 116 isolates were obtained from seven geographic regions located across the Island. For each isolate, a total of 2677 bp from six gene loci were sequenced and 79 (2.96%) polymorphic nucleotide sites were found in our sample. Comparisons with strains reported from other parts of the world identified significant novel diversities in Hainan, including an average of six novel sequences (with a range 1 to 14) per locus and 80 novel diploid sequence types. Most of the genetic variation was found within individual strains and there was abundant evidence for gene flow among the seven geographic locations within Hainan. Interestingly, our analyses identified no significant correlation between the diploid sequence types at the six loci and fluconazole susceptibility, consistent with multiple origins of fluconazole resistance in the Hainan population of C. tropicalis. PMID:28186162

  15. Palaeoenvironmental and sequence stratigraphic analyses of the Jurassic Datta Formation, Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Jan, Irfan U.; Akhter, M. Gulraiz; Bibi, Mehwish

    2015-06-01

    The Lower Jurassic Datta Formation, western Salt Range, Pakistan, comprises three facies associations: (1) channel belt facies association (CBFA), (2) channel margin, and overbank facies association (CMOFA), and (3) lagoonal facies association (LFA). A cyclic fining-upward trend in the succession is represented by basal quartzose conglomerate/pebbly sandstone, through coarse to fine quartzose sandstone to siltstone and shales/claystone, which contains some carbonate accumulation. Two prominent depositional sequences are recognized in the Datta Formation with the lower high and upper low magnitude cycles. The Datta Formation thus represents a thick sedimentary succession and in the study area, i.e., western Salt Range, mainly channel belt, flood plain and/or delta top facies are exposed. The palaeocurrent analysis shows that the source area with acidic plutonic rocks laid to S-SE in the Indian shield, aravalies or older sedimentary rocks of the Indus Basin (i.e., Khewra, Tobra and Warchha formations). A tentative stratigraphic correlation of the Datta Formation with the lower Jurassic Lathi Formation, India invites further work in parts of India, which will elaborate the extent of the Datta Formation in the Greater Indian peninsula and develop palaeogeographic setting for this Lower Jurassic deltaic rock unit.

  16. Requirements for Efficient Correction of ΔF508 CFTR Revealed by Analyses of Evolved Sequences

    PubMed Central

    Mendoza, Juan L.; Schmidt, André; Li, Qin; Caspa, Emmanuel; Barrett, Tyler; Bridges, Robert J.; Feranchak, Andrew P.; Brautigam, Chad A.; Thomas, Philip J.

    2012-01-01

    SUMMARY Misfolding of ΔF508 CFTR underlies pathology in most CF patients. F508 resides in the first nucleotide binding domain (NBD1) of CFTR near a predicted interface with the fourth intracellular loop (ICL4). Efforts to identify small molecules that restore function by correcting the folding defect have revealed an apparent efficacy ceiling. To understand the mechanistic basis of this obstacle, positions statistically coupled to 508, in evolved sequences, were identified and assessed for their impact on both NBD1 and CFTR folding. The results indicate that both NBD1 folding and interaction with ICL4 are altered by the ΔF508 mutation and that correction of either individual process is only partially effective. By contrast, combination of mutations that counteract both defects restores ΔF508 maturation and function to wild type levels. These results provide a mechanistic rationale for the limited efficacy of extant corrector compounds and suggest approaches for identifying compounds that correct both defective steps. PMID:22265409

  17. Neotomine-peromyscine rodent systematics based on combined analyses of nuclear and mitochondrial DNA sequences.

    PubMed

    Reeder, Serena A; Carroll, Darin S; Edwards, Cody W; Kilpatrick, C William; Bradley, Robert D

    2006-07-01

    Recently, sequences from two nuclear genes (exon 6 of the dentin matrix protein 1 gene and intron 7 of the beta-fibrinogen gene) and one mitochondrial gene (cytochrome b gene) were used independently in an attempt to resolve phylogenetic relationships within the neotomine-peromyscine complex. Although these studies provided testable hypotheses regarding this group of rodents, the affinities of certain tribes and genera remain uncertain. To elucidate these relationships, the three data partitions were tested for heterogeneity and then concatenated according to conditional data combination and total evidence approaches. Support was found for five clades, four of which correspond to well recognized tribes (the Neotomini, Peromyscini=Reithrodontomyini, Baiomyini, and Tylomyini). Recommendations are made regarding the recognition of Ochrotomys as a tribe of its own, the Ochrotomyini, paralleling other recent findings. The Peromyscini, Baiomyini, and Ochrotomyini are unresolved in relation to each other, but as a whole are sister to the Neotomini. The Tylomyini is basal to all clades. It appears that combined data from the nuclear and mitochondrial genes (analyzing all three partitions simultaneously) resulted in the best phylogenetic hypothesis regarding the complex.

  18. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma

    PubMed Central

    Li, C-Q; Huang, G-W; Wu, Z-Y; Xu, Y-J; Li, X-C; Xue, Y-J; Zhu, Y; Zhao, J-M; Li, M; Zhang, J; Wu, J-Y; Lei, F; Wang, Q-Y; Li, S; Zheng, C-P; Ai, B; Tang, Z-D; Feng, C-C; Liao, L-D; Wang, S-H; Shen, J-H; Liu, Y-J; Bai, X-F; He, J-Z; Cao, H-H; Wu, B-L; Wang, M-R; Lin, D-C; Koeffler, H P; Wang, L-D; Li, X; Li, E-M; Xu, L-Y

    2017-01-01

    Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy. PMID:28194033

  19. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans

    NASA Technical Reports Server (NTRS)

    Jurtshuk, R. J.; Blick, M.; Bresser, J.; Fox, G. E.; Jurtshuk, P. Jr

    1992-01-01

    A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.

  20. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion).