Sample records for rt pulsed operation

  1. Pulsed operation of (Al,Ga,In)N blue laser diodes

    NASA Astrophysics Data System (ADS)

    Abare, Amber C.; Mack, Michael P.; Hansen, Mark W.; Sink, R. K.; Kozodoy, Peter; Keller, Sarah L.; Hu, Evelyn L.; Speck, James S.; Bowers, John E.; Mishra, Umesh K.; Coldren, Larry A.; DenBaars, Steven P.

    1998-04-01

    Room temperature (RT) pulsed operation of blue (420 nm) nitride based multi-quantum well (MQW) laser diodes grown on a-plane and c-plane sapphire substrates has been demonstrated. A combination of atmospheric and low pressure metal organic chemical vapor deposition (MOCVD) using a modified two-flow horizontal reactor was employed. The emission is strongly TE polarized and has a sharp transition in the far field pattern above threshold. Threshold current densities as low as 12.6 kA/cm2 were observed for 10 X 1200 micrometer lasers with uncoated reactive ion etched (RIE) facets on c-plane sapphire. Cleaved facet lasers were also demonstrated with similar performance on a-plane sapphire. Differential efficiencies as high as 7% and output powers up to 77 mW were observed. Laser diodes tested under pulsed conditions operated up to 6 hours at room temperature. Performance was limited by resistive heating during the electrical pulses. Lasing was achieved up to 95 degrees Celsius and up to a 150 ns pulse length (RT). Threshold current increased with temperature with a characteristic temperature, T0, of 125 K.

  2. Interactive signal analysis and ultrasonic data collection system user's manual

    NASA Technical Reports Server (NTRS)

    Smith, G. R.

    1978-01-01

    The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.

  3. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser.

    PubMed

    Wood, John P M; Shibeeb, O'Sam; Plunkett, Malcolm; Casson, Robert J; Chidlow, Glyn

    2013-03-28

    To determine detailed effects to retinal cells and, in particular, neurons following laser photocoagulation using a conventional 532 nm Nd:YAG continuous wave (CW) laser. Furthermore, to determine whether a novel 3 ns pulse laser (retinal regeneration therapy; 2RT) could specifically ablate retinal pigment epithelium (RPE) cells without causing collateral damage to other retinal cells. Adult Dark Agouti (DA) rats were separated into four groups: control, CW laser (12.7 J/cm(2)/pulse, 100 ms pulse duration), or 3 ns pulse 2RT laser at one of two energy settings ("High," 2RT-H, 163 mJ/cm(2)/pulse; "Low," 2RT-L, 109 mJ/cm(2)/pulse). Animals were treated and killed after 6 hours to 7 days, and retina/RPE was analyzed by histologic assessment, Western blot, polymerase chain reaction, and immunohistochemistry. Both lasers caused focal loss of RPE cells with no destruction of Bruch's membrane; RPE cells were present at lesion sites again within 7 days of treatments. CW and 2RT-H treatments caused extensive and moderate damage, respectively, to the outer retina. There were no obvious effects to horizontal, amacrine, or ganglion cells, as defined by immunolabeling, but an activation of PKCα within bipolar cells was noted. There was little discernible damage to any cells other than the RPE with the 2RT-L treatment. Conventional laser photocoagulation caused death of RPE cells with associated widespread damage to the outer retina but little influence on the inner retina. The novel 3 ns 2RT laser, however, was able to selectively kill RPE cells without causing collateral damage to photoreceptors. Potential benefits of this laser for clinical treatment of diabetic macular edema are discussed.

  4. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.

    PubMed

    Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude

    2018-02-01

    The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.

  5. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.

    PubMed

    Chung, C K; Zhou, R X; Liu, T Y; Chang, W T

    2009-02-04

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  6. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    NASA Astrophysics Data System (ADS)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    NASA Astrophysics Data System (ADS)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2017-02-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  8. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    PubMed

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  9. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  10. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  11. Electron acceleration by laser produced wake field: Pulse shape effect

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  12. Effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in severe haemophilia A patients with osteoporosis: a randomized controlled trial.

    PubMed

    Parhampour, Behrouz; Torkaman, Giti; Hoorfar, Hamid; Hedayati, Mehdi; Ravanbod, Roya

    2014-05-01

    To assess the effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in patients with haemophilia with osteoporosis. A randomized, controlled, patient and blood sample assessor-blinded, six-week trial, three times weekly. Hospital outpatients with severe haemophilia A and osteoporosis. Forty-eight patients were randomly assigned to resistance training (RT, n = 13), combined resistance training with pulsed electromagnetic fields (RTPEMF, n = 12), pulsed electromagnetic fields (PEMF, n = 11) and control (n = 12) groups. The RT group received 30-40 minutes of resistance exercises and placebo pulsed electromagnetic fields. The RTPEMF group received the same exercises with lower repetition and 30 minutes of pulsed electromagnetic fields. The PEMF group was exposed to 60 minutes of pulsed electromagnetic fields (30 Hz and 40 Gauss). Bone-specific alkaline phosphatase, N-terminal telopeptide of type 1 collagen, and joint function, using the modified Colorado Questionnaire, were measured before and after the programme. The absolute change of bone-specific alkaline phosphatase was significant in the RT and RTPEMF groups compared with the control group (25.41 ± 14.40, 15.09 ± 5.51, and -4.73 ± 2.93 U/L, respectively). The absolute changes in the total score for joint function were significant for knees, ankles, and elbows in the RT group (9.2 ± 1.38, 5.1 ± 0.5, and 3.2 ± 0.8, respectively) and the RTPEMF group (7.7 ± 1.0, 3.3 ± 0.6, and 2.5 ± 0.7, respectively) compared to the PEMF and control groups. This value was significant for knee joints in the PEMF group compared to the control group (3.4 ± 0.5 and 0.66 ± 0.4, respectively). Resistance training is effective for improving bone formation and joint function in severe haemophilia A patients with osteoporosis.

  13. MR-guided pulsed high intensity focused ultrasound enhancement of docetaxel combined with radiotherapy for prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Mu, Zhaomei; Ma, C.-M.; Chen, Xiaoming; Cvetkovic, Dusica; Pollack, Alan; Chen, Lili

    2012-01-01

    The purpose of this study is to evaluate the efficacy of the enhancement of docetaxel by pulsed focused ultrasound (pFUS) in combination with radiotherapy (RT) for treatment of prostate cancer in vivo. LNCaP cells were grown in the prostates of male nude mice. When the tumors reached a designated volume by MRI, tumor bearing mice were randomly divided into seven groups (n = 5): (1) pFUS alone; (2) RT alone; (3) docetaxel alone; (4) docetaxel + pFUS (5) docetaxel + RT (6) docetaxel + pFUS + RT, and (7) control. MR-guided pFUS treatment was performed using a focused ultrasound treatment system (InSightec ExAblate 2000) with a 1.5T GE MR scanner. Animals were treated once with pFUS, docetaxel, RT or their combinations. Docetaxel was given by i.v. injection at 5 mg kg-1 before pFUS. RT was given 2 Gy after pFUS. Animals were euthanized 4 weeks after treatment. Tumor volumes were measured on MRI at 1 and 4 weeks post-treatment. Results showed that triple combination therapies of docetaxel, pFUS and RT provided the most significant tumor growth inhibition among all groups, which may have potential for the treatment of prostate cancer due to an improved therapeutic ratio.

  14. Characteristics of indium-gallium-nitride multiple-quantum-well blue laser diodes grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Mack, M. P.; Abare, A. C.; Hansen, M.; Kozodoy, P.; Keller, S.; Mishra, U.; Coldren, L. A.; DenBaars, S. P.

    1998-06-01

    Room temperature (RT) pulsed operation of blue (420 nm) nitride-based multi-quantum well (MQW) laser diodes grown on c-plane sapphire substrates has been demonstrated. Atmospheric pressure MOCVD was used to grow the active region of the device which consisted of a 10 pair In 0.21Ga 0.79N (2.5 nm)/In 0.07Ga 0.93N (5 nm) InGaN MQW. Threshold current densities as low as 12.6 kA/cm 2 were observed for 10×1200 μm lasers with uncoated reactive ion etched (RIE) facets. The emission is strongly TE polarized and has a sharp transition in the far-field pattern above threshold. Laser diodes were tested under pulsed conditions lasted up to 6 h at room temperature.

  15. Novel simultaneous combination chemical thrombolysis/rheolytic thrombectomy therapy for acute critical limb ischemia: the power-pulse spray technique.

    PubMed

    Allie, David E; Hebert, Chris J; Lirtzman, Mitchell D; Wyatt, Charles H; Keller, V Antoine; Khan, Mohamed H; Barker, Esmond A; McElderry, Michael W; Khan, Muhammad A; Fail, Peter S; Stagg, Samuel J; Mitran, Elena V; Chaisson, Gary; Allie, Sonja D; Allie, Adam A; Walker, Craig M

    2004-12-01

    The novel power-pulse spray (P-PS) technique maximizes and combines the advantages and minimizes the disadvantages of both chemical thrombolysis (CT) and rheolytic thrombectomy (RT). Forty-nine consecutive patients with iliofemoral thrombotic occlusion were treated via P-PS technique. Using a 6 Fr RT catheter, saline prime was exchanged for thrombolytic solution [group 1, 10-20 mg tenecteplase (TNK)/50 cc saline, n = 25; group 2, 1,000,000 urokinase (UK)/50 cc saline, n = 24]. The outflow port was closed, then the catheter was advanced at 1 mm increments while pulsing lytic agent. After 30-min lysis time, RT and definitive treatment of the underlying stenosis were performed. Procedure success was 23/25 (92%) and 22/24 (91.6%) for group 1 and 2, respectively. The mean total procedure time was 72 and 75 min in group 1 and 2, respectively. Thirty-day limb salvage was 91% in both groups. There were no major surgical complications. The P-PS technique is safe and effective using either UK or TNK, offering several potential advantages over monotherapy, including more rapid revascularization, decreases systemic lytic exposure and bleeding complications while facilitating both CT and RT capacity and efficacy. (c) 2004 Wiley-Liss, Inc.

  16. Pulsed Versus Conventional Radiation Therapy in Combination With Temozolomide in a Murine Orthotopic Model of Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David Y.; Chunta, John L.; Park, Sean S.

    Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as amore » single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.« less

  17. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    NASA Astrophysics Data System (ADS)

    Kisielewski, Jan; Sveklo, Iosif; Kurant, Zbigniew; Bartnik, Andrzej; Jakubowski, Marcin; Dynowska, ElŻbieta; Klinger, Dorota; Sobierajski, Ryszard; Wawro, Andrzej; Maziewski, Andrzej

    2017-05-01

    We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001) substrates. Pt buffers were grown at room temperature (RT) and at 750°C (high temperature, HT). The samples were irradiated with a broad range of light energy densities (up to film ablation) using two different single pulse irradiation sources: (i) 40 fs laser with 800 nm wavelength and (ii) 3 ns laser-plasma source of extreme ultraviolet (EUV) with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT) crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  18. NSTX-U Control System Upgrades

    DOE PAGES

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; ...

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  19. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    PubMed

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.

  20. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    PubMed

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  1. An Investigation of Acoustic Cavitation Produced by Pulsed Ultrasound

    DTIC Science & Technology

    1987-12-01

    S~ PVDF Hydrophone Sensitivity Calibration Curves C. DESCRIPTION OF TEST AND CALIBRATION TECHNIQUE We chose the reciprocity technique for calibration...NAVAL POSTGRADUATE SCHOOLN a n Monterey, Calif ornia ITHESIS AN INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED BY PULSED ULTRASOUND by Robert L. Bruce...INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED B~Y PULSED ULTRASOUND !2 PERSONAL AUTHOR(S) .RR~r. g~rtL_ 1DLJN, Rober- ., Jr. 13a TYPE OF REPORT )3b TIME

  2. Influence of Noncompliance With Radiation Therapy Protocol Guidelines and Operative Bed Recurrences for Children With Rhabdomyosarcoma and Microscopic Residual Disease: A Report From the Children's Oncology Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Million, Lynn, E-mail: lynn.million@hci.utah.ed; Anderson, James; Breneman, John

    2011-06-01

    Purpose: Postoperative radiation therapy (RT) is recommended for patients with rhabdomyosarcoma having microscopic disease. Sometimes RT dose/volume is reduced or omitted in an attempt to avoid late effects, particularly in young children. We reviewed operative bed recurrences to determine if noncompliance with RT protocol guidelines influenced local-regional control. Methods and Materials: All operative bed recurrences among 695 Group II rhabdomyosarcoma patients in Intergroup Rhabdomyosarcoma Study Group (IRS) I through IV were reviewed for deviation from RT protocol. Major/minor dose deviation was defined as >10% or 6-10% of the prescribed dose (40-60 Gy), respectively. Major/minor volume deviation was defined as tumormore » excluded from the RT field or treatment volume not covered by the specified margin (preoperative tumor volume and 2- to 5-cm margin), respectively. No RT was a major deviation. Results: Forty-six of 83 (55%) patients with operative bed recurrences did not receive the intended RT (39 major and 7 minor deviations). RT omission was the most frequent RT protocol deviation (19/46, 41%), followed by dose (17/46, 37%), volume (9/46, 20%), and dose and volume deviation (1/46, 2%). Only 7 operative bed recurrences occurred in IRS IV (5% local-regional failure) with only 3 RT protocol deviations. Sixty-three (76%) patients with recurrence died of disease despite retrieval therapy, including 13 of 19 nonirradiated children. Conclusion: Over half of the operative bed recurrences were associated with noncompliance; omission of RT was the most common protocol deviation. Three fourths of children die when local-regional disease is not controlled, emphasizing the importance of RT in Group II rhabdomyosarcoma.« less

  3. [Effects of electromagnetic pulses on apoptosis and TGF-β3 expression of mouse testis tissue].

    PubMed

    Luo, Yaning; Ding, Guirong; Chen, Yongbin; Xu, Shenglong; Wang, Xiaowu

    2014-04-01

    To investigate the effects of electromagnetic pulses (EMP) on the apoptosis and transforming growth factor beta 3 (TGF-β3) expression of mouse testis tissue. Thirty-two male BALB/c mice were randomly and equally divided into one control group and three EMP treated groups, which were whole-body exposed to EMP at 200 kV/m with 100, 200, and 400 pulses, respectively. The control group received no treatment. The pathological changes and cell apoptosis in testis tissue were analyzed by TUNEL assay. The mRNA expression of TGF-β3 in testis tissue was determined by RT-PCR, and the protein expression of TGF-β3 was determined by immunohistochemistry and Western blot. No obvious pathological changes were found in testis tissue after EMP exposure at 200 kV/m with 100 and 200 pulses. However, after EMP exposure with 400 pulses, degeneration and shedding of testis tissue, accompanied by significant increase in apoptosis rate (P < 0.05), was observed. The RT-PCR, immunohistochemistry, and Western blot showed that the expression of TGF-β3 mRNA and protein increased significantly after EMP exposure with 400 pulses as compared with that of the control group (P < 0.05). EMP exposure at 200 kV/m with 400 pulses increases the incidence of apoptosis and expression of TGF-β3 in mouse testis tissue, which is potentially one of the mechanisms by which EMP increases blood-testis barrier permeability in mice.

  4. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  5. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  6. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared countermeasures for protecting aircraft from MANPADS, testing of infrared countermeasures, MWIR and LWIR lasers for identify-friend-or-foe (IFF) personnel beacons, infrared target illuminators and designators and tunable QCL applications including in-situ and standoff detection of chemical warfare agents (CWAs) and explosives. The last of these applications addresses a very important and timely need for detection of improvised explosive devices (IEDs) in combat environments like Iraq and Afghanistan.

  7. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.

  8. For-profit hospital ownership status and use of brachytherapy after breast-conserving surgery.

    PubMed

    Sen, Sounok; Soulos, Pamela R; Herrin, Jeph; Roberts, Kenneth B; Yu, James B; Lesnikoski, Beth-Ann; Ross, Joseph S; Krumholz, Harlan M; Gross, Cary P

    2014-05-01

    Little is known about the relationship between operative care for breast cancer at for-profit hospitals and subsequent use of adjuvant radiation therapy (RT). Among Medicare beneficiaries, we examined whether hospital ownership status is associated with the use of breast brachytherapy--a newer and more expensive modality--as well as overall RT. We conducted a retrospective study of female Medicare beneficiaries who received breast-conserving surgery for invasive breast cancer in 2008 and 2009. We assessed the relationship between hospital ownership and receipt of brachytherapy or overall RT by using hierarchical generalized linear models. The sample consisted of 35,118 women, 8.0% of whom had breast-conserving operations at for-profit hospitals. Among patients who received RT, those who underwent operation at for-profit hospitals were more likely to receive brachytherapy (20.2%) than patients treated at not-for-profit hospitals (15.2%; odds ratio [OR] for for-profit versus not-for-profit: 1.50; 95% confidence interval [95% CI] 1.23-1.84; P < .001). Among women aged 66-79 years, there was no relationship between hospital ownership status and overall use of RT. Among women ages 80-94 years of age--the group least likely to benefit from RT due to shorter life expectancy--undergoing breast-conserving operations at a for-profit hospital was associated with greater overall use of RT (OR 1.22; 95% CI 1.03-1.45, P = .03) and brachytherapy use (OR 1.66; 95% CI 1.18-2.34, P = .003). Operative care at for-profit hospitals was associated with increased use of the newer and more expensive RT modality, brachytherapy. Among the oldest women who are least likely to benefit from RT, operative care at a for-profit hospital was associated with greater overall use of RT, with this difference largely driven by the use of brachytherapy. Copyright © 2014 Mosby, Inc. All rights reserved.

  9. Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition.

    PubMed

    Chun, Jinsoo; Peltier, Scott J; Yoon, Daehyun; Manschreck, Theo C; Deldin, Patricia J

    2016-08-01

    Recording EEG and fMRI data simultaneously inside a fully-operating scanner has been recognized as a novel approach in human brain research. Studies have demonstrated high concordance between the EEG signals and hemodynamic response. However, a few studies reported altered cognitive process inside the fMRI scanner such as delayed reaction time (RT) and reduced and/or delayed N100 and P300 event-related brain potential (ERP) components. The present study investigated the influence of electromagnetic field (static magnetic field, radio frequency (RF) pulse, and gradient switching) and experimental environment on posterior N100 and P300 ERP components in four different settings with six healthy subjects using a visual oddball task: (1) classic fMRI acquisition inside the scanner (e.g., supine position, mirror glasses for stimulus presentation), (2) standard behavioral experiment outside the scanner (e.g., seated position, keyboard response), (3) controlled fMRI acquisition inside the scanner (e.g., organic light-emitting diode (OLED) goggles for stimulus presentation) inside; and (4) modified behavioral experiment outside the scanner (e.g., supine position, OLED goggles). The study findings indicated that the experimental environment in simultaneous EEG/fMRI acquisition could substantially delay N1P, P300 latency, and RT inside the scanner, and was associated with a reduced N1P amplitude. There was no effect of electromagnetic field in the prolongation of RT, N1P and P300 latency inside the scanner. N1P, but not P300, latency was sensitive to stimulus presentation method inside the scanner. Future simultaneous EEG/fMRI data collection should consider experimental environment in both design and analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  11. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  12. SU-F-J-225: Histology Study of MR Guided Pulsed Focused Ultrasound On Treatment of Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Cvetkovic, D; Chen, X

    Purpose: Our previous study demonstrated significant tumor growth delay in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. The temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized atmore » pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level using the DAB analysis software. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality may synergize with PARP inhibitors to achieve better therapeutic result.« less

  13. Verbal Dominant Memory Impairment and Low Risk for Post-operative Memory Worsening in Both Left and Right Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis.

    PubMed

    Khalil, Amr Farid; Iwasaki, Masaki; Nishio, Yoshiyuki; Jin, Kazutaka; Nakasato, Nobukazu; Tominaga, Teiji

    2016-11-15

    Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3-36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired.

  14. Vulnerability assessment of RC frames considering the characteristic of pulse-like ground motions

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Wen, Zengping

    2017-04-01

    Pulse-like ground motions are a special class of ground motions that are particularly challenging to characterize for earthquake hazard assessment. These motions are characterized by a "pulse" in the velocity time history of the motion, and they are typically very intense and have been observed to cause severe damage to structures in past earthquakes. So it is particularly important to characterize these ground motions. Previous studies show that the severe response of structure is not entirely accounted for by measuring the intensity of the ground motion using spectral acceleration of the elastic first-mode period of a structure (Sa(T1)). This paper will use several alternative intensity measures to characterize the effect of pulse-like ground motions in vulnerability assessment. The ability of these intensity measures to characterize pulse-like ground motions will be evaluated. Pulse-like ground motions and ordinary ground motions are selected as input to carry out incremental dynamic analysis. Structural response and vulnerability are estimated by using Sa(T1) as the intensity measure. The impact of pulse period on structural response is studied through residual analysis. By comparing the difference between the structural response and vulnerability curves using pulse-like ground motions and ordinary ground motions as the input, the impact of velocity pulse on vulnerability is investigated and the shortcoming of using Sa(T1) to characterize pulse-like ground motion is analyzed. Then, vector-valued ground motion intensity measures(Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa) and inelastic displacement spectra(Sdi(T1)) are used to characterize the damage potential of pulse-like ground motions, the efficiency and sufficiency of these intensity measures are evaluated. The study shows that: have strong the damage potential of near fault ground motions with velocity pulse is closely related to the pulse period of strong motion as well as first mode period of vibration and nonlinear features of the structure. The above factors should be taken into account when choosing a reasonable ground motion parameter to characterize the damage potential of pulse-like ground motions. Vulnerability curves based on Sa(T1) show obvious differences between using near fault ground motions and ordinary ground motions, as well as pulse-like ground motions with different pulse periods as the input. When using vector-valued intensity measures such as Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa and inelastic displacement spectra, the results of vulnerability analysis are roughly the same. These ground motion intensity measures are more efficient and sufficient to characterize the damage potential of near fault ground motions with velocity pulse.

  15. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less

  16. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  17. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  18. Salvage surgery in the treatment of local recurrences of nasopharyngeal carcinomas.

    PubMed

    Salom, María Cecilia; López, Fernando; Pacheco, Esteban; Muñoz, Gabriela; García-Cabo, Patricia; Fernández, Laura; Suárez, Vanessa; Llorente, José Luis

    2018-04-03

    Chemoradiotherapy is the treatment of choice for nasopharyngeal carcinoma. Local recurrences are one of the leading causes of death in these patients, and surgical salvage the treatment of choice. Our goal was to evaluate and compare the results of salvage surgery in the treatment of local recurrence of nasopharyngeal carcinomas comparing endoscopic to open approaches. Twenty patients with local recurrence of nasopharyngeal carcinomas underwent surgery: 12 patients underwent open surgery and 8 endoscopic endonasal transpterygoid nasopharyngectomy. One patient was classified as rT1; 3 as rT2;2 as rT3; and 6 as rT4 in the group of open approaches; in the endoscopic series, 2 patients were rT1, 5 rT2 and one rT3. In 3 patients (25%) operated by an open approach (one rT4, one rT3 and one rT2) a complete gross resection was not achieved. Gross total resection was achieved in patients operated by endoscopic surgery. The complication rate in the group operated by an open approach was 92% (5 minor complications, 5 moderate complications, and one serious complication) and in the group that underwent endoscopic surgery all patients had some complication (7 had minor complications and one patient developed a severe complication). Survival at 3 and 5 years was 53% and 42% with the open approach and 100% and 50% with the endoscopic approach, respectively. Endoscopic approaches decrease the morbidity associated with open approaches and allow for favourable oncological control. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Transient effects of harsh luminous conditions on the visual performance of aviators in a civil aircraft cockpit.

    PubMed

    Yang, Biao; Lin, Yandan; Sun, Yaojie

    2013-03-01

    The aim of this work was to examine how harsh luminous conditions in a cockpit, such as lightning in a thunderstorm or direct sunlight immediately after an aircraft passes through clouds, may affect the visual performance of pilots, and how to improve it. Such lighting conditions can result in the temporary visual impairment of aviators, which may greatly increase the risk of accidents. Tests were carried out in a full-scale simulator cockpit in which two kinds of dynamic lighting scenes, namely pulse changed and step changed lighting, were used to represent harsh luminous conditions. Visual acuity (VA), reaction time (RT) and identification accuracy (IA) were recorded as dependent variables. Data analysis results indicate that standardized VA values decreased significantly in both pulsing and step conditions in comparison with the dark condition. Standardized RT values increased significantly in the step condition; on the contrary, less reaction time was observed in the pulsing condition. Such effects could be reduced by an ambient illumination provided by a fluorescent lamp in both conditions. The results are to be used as a principle for optimizing lighting design with a thunderstorm light. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Transition of Suomi National Polar-Orbiting Partnership (S-NPP) Data Products for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.

    2012-01-01

    SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.

  1. Rayleigh-Taylor instability of two-specie laser-accelerated foils

    NASA Astrophysics Data System (ADS)

    Ratliff, T. H.; Yi, S. A.; Khudik, V.; Yu, T. P.; Pukhov, A.; Chen, M.; Shvets, G.

    2010-11-01

    When an ultra intense circularly polarized laser pulse irradiates an ultra thin film, a monoenergetic ion beam is produced with characteristics well suited for applications in science and medicine. Upon laser incidence, the electrons in the foil are pushed via the ponderomotive force to the foil rear; the charge separation field then accelerates ions. In the accelerating frame the ions are trapped in a potential well formed by the electrostatic and inertial forces. However, their energy spectrum can be quickly degraded by the Rayleigh-Taylor (RT) instability. Stabilization in the case of a two-specie foil is the subject of this poster. First, we use a 1D particle-in-cell (PIC) simulation to establish an equilibrium state of the two-specie foil in the accelerating frame. Next we perturb this equilibrium and analytically investigate the 2D RT instability. Analytical results are compared with 2-D simulations. We also investigate parametrically various effects on the RT growth rate. The protons completely separate from the carbons, and although the vacuum-carbon interface remains unstable, the large spatial extent of the carbon layer prevents perturbations from feeding through to the proton layer. The monoenergetic proton beam is shown to persist beyond the conclusion of the laser pulse interaction. [1] T.P. Yu, A. Pukhov, G. Shvets, and M Chen, Phys. Rev. Lett. (in press)

  2. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation

    PubMed Central

    Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok

    2016-01-01

    Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123

  3. Method and apparatus for controlling carrier envelope phase

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS

    2011-12-06

    A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

  4. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  5. Sonothrombolysis is effective with recombinant tissue-type plasminogen activator, but not with Abciximab. Results from an in vitro study with whole blood clots and platelet-rich clots.

    PubMed

    Eggers, Jürgen; Ossadnik, Stefan; Hütten, Heiko; Seidel, Günter

    2009-12-01

    Transcranial "diagnostic" ultrasound (US) has been shown to accelerate thrombolysis related to recombinant tissue-type plasminogen activator (rt-PA). In this in vitro study, we evaluated the potential of US to increase clot dissolution mediated by Abciximab (Abc) compared to rt-PA. The effect of 1.8-MHz pulsed wave (PW) Doppler US on dissolution of whole venous blood clots (WBC) and platelet-rich clots (PRC) treated with Abc and rt-PA was investigated in an in vitro model. Clot dissolution was measured by weight loss. Abc-related WBC dissolution was enhanced by additional US, but the effect was not any more detectable when the US was attenuated by a human temporal bone (US-tb). In PRC there was no additional effect of US on the Abc-related clot lysis. Rt-PA-related clot dissolution was increased by US in WBC and PRC as well, however, US-tb was only effective in WBC. The effect of insonation on WBC dissolution treated with the combination of Abc plus rt-PA was lower compared with those treated with rt-PA. In this in vitro experiment, the additional effect of "diagnostic" US in combination with Abc was only present in WBC and less strong than with rt-PA. The results do not support the use of Abc for sonothrombolysis targeting both, fibrin-rich and platelet-rich clots. In contrast, US when combined with rt-PA increases dissolution in both, WBC and PRC as well.

  6. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  7. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  8. Are levels of NT-proBNP and SDMA useful to determine diastolic dysfunction in chronic kidney disease and renal transplant patients?

    PubMed

    Memon, Lidija; Spasojevic-Kalimanovska, Vesna; Stanojevic, Natasa Bogavac; Kotur-Stevuljevic, Jelena; Simic-Ogrizovic, Sanja; Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana; Spasic, Slavica

    2013-11-01

    The aim of the study was to determine the clinical usefulness of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and symmetric dimethylarginine (SDMA) for detection of renal and left ventricular (LV) diastolic dysfunction in chronic kidney disease (CKD) patients and renal transplant (RT) recipients. We included 98 CKD and 44 RT patients. We assessed LV function using pulsed-wave Doppler ultrasound. Diastolic dysfunction was defined when the E:A ratio was <1. Independent predictors of NT-proBNP levels were age, creatinine, and albumin in CKD patients and age and urea in RT patients. Determinants of SDMA in CKD patients were glomerular filtration rate (GFR) and NT-proBNP and creatinine in RT patients. In RT patients with diastolic dysfunction, NT-proBNP and SDMA were significantly higher than in patients without diastolic dysfunction (F = 7.478, P < 0.011; F = 2.631, P < 0.017). After adjustment for GFR, the differences were not seen. In CKD patients adjusted NT-proBNP and SDMA values for GFR were not significantly higher in patients with diastolic dysfunction than in patients without diastolic dysfunction. NT-proBNP is useful for detection of LV diastolic dysfunction in RT recipients. When evaluating both NT-proBNP and SDMA it is necessary to consider GFR as a confounding factor. © 2013 Wiley Periodicals, Inc.

  9. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  10. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  11. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  12. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence.

    PubMed

    Krauss, Maike; Ruser, Reiner; Müller, Torsten; Hansen, Sissel; Mäder, Paul; Gattinger, Andreas

    2017-02-15

    Organic reduced tillage aims to combine the environmental benefits of organic farming and conservation tillage to increase sustainability and soil quality. In temperate climates, there is currently no knowledge about its impact on greenhouse gas emissions and only little information about soil organic carbon (SOC) stocks in these management systems. We therefore monitored nitrous oxide (N 2 O) and methane (CH 4 ) fluxes besides SOC stocks for two years in a grass-clover ley - winter wheat - cover crop sequence. The monitoring was undertaken in an organically managed long-term tillage trial on a clay rich soil in Switzerland. Reduced tillage (RT) was compared with ploughing (conventional tillage, CT) in interaction with two fertilisation systems, cattle slurry alone (SL) versus cattle manure compost and slurry (MC). Median N 2 O and CH 4 flux rates were 13 μg N 2 O-N m -2  h -1 and -2 μg CH 4 C m -2  h -1 , respectively, with no treatment effects. N 2 O fluxes correlated positively with nitrate contents, soil temperature, water filled pore space and dissolved organic carbon and negatively with ammonium contents in soil. Pulse emissions after tillage operations and slurry application dominated cumulative gas emissions. N 2 O emissions after tillage operations correlated with SOC contents and collinearly to microbial biomass. There was no tillage system impact on cumulative N 2 O emissions in the grass-clover (0.8-0.9 kg N 2 O-N ha -1 , 369 days) and winter wheat (2.1-3.0 kg N 2 O-N ha -1 , 296 days) cropping seasons, with a tendency towards higher emissions in MC than SL in winter wheat. Including a tillage induced peak after wheat harvest, a full two year data set showed increased cumulative N 2 O emissions in RT than CT and in MC than SL. There was no clear treatment influence on cumulative CH 4 uptake. Topsoil SOC accumulation (0-0.1 m) was still ongoing. SOC stocks were more stratified in RT than CT and in MC than SL. Total SOC stocks (0-0.5 m) were higher in RT than CT in SL and similar in MC. Maximum relative SOC stock difference accounted for +8.1 Mg C ha -1 in RT-MC compared to CT-SL after 13 years which dominated over the relative increase in greenhouse gas emissions. Under these site conditions, organic reduced tillage and manure compost application seems to be a viable greenhouse gas mitigation strategy as long as SOC is sequestered.

  13. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Chen, X; Cvetkovic, D

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals weremore » euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.« less

  14. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection.

    PubMed

    Amman, Brian R; Carroll, Serena A; Reed, Zachary D; Sealy, Tara K; Balinandi, Stephen; Swanepoel, Robert; Kemp, Alan; Erickson, Bobbie Rae; Comer, James A; Campbell, Shelley; Cannon, Deborah L; Khristova, Marina L; Atimnedi, Patrick; Paddock, Christopher D; Crockett, Rebekah J Kent; Flietstra, Timothy D; Warfield, Kelly L; Unfer, Robert; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Rollin, Pierre E; Ksiazek, Thomas G; Nichol, Stuart T; Towner, Jonathan S

    2012-01-01

    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ~2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (~six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.

  15. Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection

    PubMed Central

    Amman, Brian R.; Carroll, Serena A.; Reed, Zachary D.; Sealy, Tara K.; Balinandi, Stephen; Swanepoel, Robert; Kemp, Alan; Erickson, Bobbie Rae; Comer, James A.; Campbell, Shelley; Cannon, Deborah L.; Khristova, Marina L.; Atimnedi, Patrick; Paddock, Christopher D.; Kent Crockett, Rebekah J.; Flietstra, Timothy D.; Warfield, Kelly L.; Unfer, Robert; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.; Towner, Jonathan S.

    2012-01-01

    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies. PMID:23055920

  16. Binary power multiplier for electromagnetic energy

    DOEpatents

    Farkas, Zoltan D.

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  17. Early effects of cranial irradiation on hypothalamic-pituitary function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, K.S.; Tse, V.K.; Wang, C.

    1987-03-01

    Hypothalamic-pituitary function was studied in 31 patients before and after cranial irradiation for nasopharyngeal carcinoma. The estimated radiotherapy (RT) doses to the hypothalamus and pituitary were 3979 +/- 78 (+/- SD) and 6167 +/- 122 centiGrays, respectively. All patients had normal pituitary function before RT. One year after RT, there was a significant decrease in the integrated serum GH response to insulin-induced hypoglycemia. In the male patients, basal serum FSH significantly increased, while basal serum LH and testosterone did not change. Moreover, in response to LHRH, the integrated FSH response was increased while that of LH was decreased. Such discordantmore » changes in FSH and LH may be explained by a defect in LHRH pulsatile release involving predominantly a decrease in pulse frequency. The peak serum TSH response to TRH became delayed in 28 patients, suggesting a defect in TRH release. Twenty-one patients were reassessed 2 yr after RT. Their mean basal serum T4 and plasma cortisol levels had significantly decreased. Hyperprolactinemia associated with oligomenorrhoea was found in 3 women. Further impairment in the secretion of GH, FSH, LH, TSH, and ACTH had occurred, and 4 patients had hypopituitarism. Thus, progressive impairment in hypothalamic-pituitary function occurs after cranial irradiation and can be demonstrated as early as 1 yr after RT.« less

  18. Intracellular Persisting Staphylococcus aureus Is the Major Pathogen in Recurrent Tonsillitis

    PubMed Central

    Zautner, Andreas E.; Krause, Merit; Stropahl, Gerhard; Holtfreter, Silva; Frickmann, Hagen; Maletzki, Claudia; Kreikemeyer, Bernd; Pau, Hans Wilhelm; Podbielski, Andreas

    2010-01-01

    Background The two major indications for tonsillectomy are recurrent tonsillitis (RT) and peritonsillar abscess (PTA). Unlike PTAs, which are primarily treated surgically, RT is often cured by tonsillectomy only after a series of failed drug therapy attempts. Although the bacteriological background of RT has been studied, the reason for the lack of success of conservative therapeutic approaches is not well understood. Methods In a prospective study, tonsil specimens from 130 RT patients and 124 PTA patients were examined for the presence of extra- and intracellular bacteria using antibiotic protection assays. Staphylococcus aureus isolates from RT patients were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing and MSCRAMM-gene-PCR. Their ability for biofilm formation was tested and their cell invasiveness was confirmed by a flow cytometric invasion assay (FACS), fluorescent in situ hybridization (FISH) and immunohistochemistry. Findings S. aureus was the predominant species (57.7%) in RT patients, whereas Streptococcus pyogenes was most prevalent (20.2%) in PTA patients. Three different assays (FACS, FISH, antibiotic protection assay) showed that nearly all RT-associated S. aureus strains were located inside tonsillar cells. Correspondingly, the results of the MSCRAMM-gene-PCRs confirmed that 87% of these S. aureus isolates were invasive strains and not mere colonizers. Based upon PFGE analyses of genomic DNA and on spa-gene typing the vast majority of the S. aureus isolates belonged to different clonal lineages. Conclusions Our results demonstrate that intracellular residing S. aureus is the most common cause of RT and indicate that S. aureus uses this location to survive the effects of antibiotics and the host immune response. A German translation of the Abstract is provided as supplementary material (Abstract S1). PMID:20209109

  19. General Aviation Activity and Avionics Survey. Calendar Year 1991

    DTIC Science & Technology

    1991-01-01

    Prfee The U.S. Government Printing Office ( GPO ) operates U.S. Government bookstores all around the country where you can browse through the shelves...783-3238, or contact any of the following GPO Bookstores. Addresses are listed for ordering purposes. ATLANTA, GA 275 Peachtree Street, NE, Room...rt« rt« rt« M» O» *• p>m rto m io »r- oo »roi rHM om »C4 »M »rt

  20. Signal Processing of Underwater Acoustic Waves

    DTIC Science & Technology

    1969-11-01

    Shift of CW Pulse •’m/sec m/see AMl % Af/f % <_1 iŔ S;onar Ship ±! is 1,500 - 2 0.2 Radar Airplane ±- 500 3 x 108 +-+0.0003 0 01 The sonar, radar, and...cos[wot + CFt )j (5.27) j or y(t) = a(t) cos Cowt + 0(t) sin wot (5.28) where a(t) = R(t) cos PF(t) ( 0(t) = -R(t) sin ’P(t) .(5.29) JI SEC 5 6...paper by Middleton and Van Meter (1955), but if this is not available, the Harvard thesis of van Meter (1955) and Chap- ters 18 and 19 of Middleton’s

  1. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.

    2013-01-01

    Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.

  2. Addressing BI Transactional Flows in the Real-Time Enterprise Using GoldenGate TDM

    NASA Astrophysics Data System (ADS)

    Pareek, Alok

    It's time to visit low latency and reliable real-time (RT) infrastructures to support next generation BI applications instead of continually debating the need and notion of real-time. The last few years have illuminated some key paradigms affecting data management. The arguments put forth to move away from traditional DBMS architectures have proven persuasive - and specialized architectural data stores are being adopted in the industry [1]. The change from traditional database pull methods towards intelligent routing/push models is underway, causing applications to be redesigned, redeployed, and re-architected. One direct result of this is that despite original warnings about replication [2] - enterprises continue to deploy multiple replicas to support both performance, and high availability of RT applications, with an added complexity around manageability of heterogeneous computing systems. The enterprise is overflowing with data streams that require instantaneous processing and integration, to deliver faster visibility and invoke conjoined actions for RT decision making, resulting in deployment of advanced BI applications as can be seen by stream processing over RT feeds from operational systems for CEP [3]. Given these various paradigms, a multitude of new challenges and requirements have emerged, thereby necessitating different approaches to management of RT applications for BI. The purpose of this paper is to offer a viewpoint on how RT affects critical operational applications, evolves the weight of non-critical applications, and pressurizes availability/data-movement requirements in the underlying infrastructure. I will discuss how the GoldenGate TDM platform is being deployed within the RTE to manage some of these challenges particularly around RT dissemination of transactional data to reduce latency in data integration flows, to enable real-time reporting/DW, and to increase availability of underlying operational systems. Real world case studies will be used to support the various discussion points. The paper is an argument to augment traditional DI flows with a real-time technology (referred to as transactional data management) to support operational BI requirements.

  3. Ultrashort-Pulse Laser System: Theory of Operation and Operating Procedures

    DTIC Science & Technology

    1992-07-01

    Nov 89 - Jul 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Ultrashort-Pulse Laser System : Theory of Operation and C - F33615-88-C-0631 Operating...i ’IR~A&, D2;" T.&B [E] al uicod [] j 0 Avhi lp.bilty C: oded’ Avail i Qiv ULTRASHORT-PULSE LASER SYSTEM : THEORY OF OPERATION AND OPERATING PROCEDURES

  4. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico

    2017-07-08

    Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater sensitivity to density variations than other known primary stability parameters. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Managing Contention and Timing Constraints in a Real-Time Database System

    DTIC Science & Technology

    1995-01-01

    In order to realize many of these goals, StarBase is constructed on top of RT-Mach, a real - time operating system developed at Carnegie Mellon...University [ll]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides priority...CPU and resource scheduling pro- vided by tlhe underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  6. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    NASA Astrophysics Data System (ADS)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  7. Retinal thickness after vitrectomy and internal limiting membrane peeling for macular hole and epiretinal membrane

    PubMed Central

    Kumagai, Kazuyuki; Ogino, Nobuchika; Furukawa, Mariko; Hangai, Masanori; Kazama, Shigeyasu; Nishigaki, Shirou; Larson, Eric

    2012-01-01

    Purpose To determine the retinal thickness (RT), after vitrectomy with internal limiting membrane (ILM) peeling, for an idiopathic macular hole (MH) or an epiretinal membrane (ERM). Also, to investigate the effect of a dissociated optic nerve fiber layer (DONFL) appearance on RT. Methods A non-randomized, retrospective chart review was performed for 159 patients who had successful closure of a MH, with (n = 148), or without (n = 11), ILM peeling. Also studied were 117 patients who had successful removal of an ERM, with (n = 104), or without (n = 13), ILM peeling. The RT of the nine Early Treatment Diabetic Retinopathy Study areas was measured by spectral domain optical coherence tomography (SD-OCT). In the MH-with-ILM peeling and ERM-with-ILM peeling groups, the RT of the operated eyes was compared to the corresponding areas of normal fellow eyes. The inner temporal/inner nasal ratio (TNR) was used to assess the effect of ILM peeling on RT. The effects of DONFL appearance on RT were evaluated in only the MH-with-ILM peeling group. Results In the MH-with-ILM peeling group, the central, inner nasal, and outer nasal areas of the retina of operated eyes were significantly thicker than the corresponding areas of normal fellow eyes. In addition, the inner temporal, outer temporal, and inner superior retina was significantly thinner than in the corresponding areas of normal fellow eyes. Similar findings were observed regardless of the presence of a DONFL appearance. In the ERM-with-ILM peeling group, the retina of operated eyes was significantly thicker in all areas, except the inner and outer temporal areas. In the MH-with-ILM peeling group, the TNR was 0.86 in operated eyes, and 0.96 in fellow eyes (P < 0.001). In the ERM-with-ILM peeling group, the TNR was 0.84 in operated eyes, and 0.95 in fellow eyes (P < 0.001). TNR in operated eyes of the MH-without-ILM peeling group was 0.98, which was significantly greater than that of the MH-with-ILM peeling group (P < 0.001). TNR in the operated eyes of the ERM-without-ILM peeling group was 0.98, which was significantly greater than that of ERM-with-ILM peeling group (P < 0.001). Conclusion The thinning of the temporal retina and thickening of the nasal retina after ILM peeling does not appear to be disease-specific. In addition, changes in RT after ILM peeling are not related to the presence of a DONFL appearance. PMID:22654493

  8. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  9. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  10. Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution

    NASA Astrophysics Data System (ADS)

    Morozov, A. A.

    2007-08-01

    Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one.

  11. Performance Enhancement of a GaAs Detector with a Vertical Field and an Embedded Thin Low-Temperature Grown Layer

    PubMed Central

    Currie, Marc; Dianat, Pouya; Persano, Anna; Martucci, Maria Concetta; Quaranta, Fabio; Cola, Adriano; Nabet, Bahram

    2013-01-01

    Low temperature growth of GaAs (LT-GaAs) near 200 °C results in a recombination lifetime of nearly 1 ps, compared with approximately 1 ns for regular temperature ∼600 °C grown GaAs (RT-GaAs), making it suitable for ultra high speed detection applications. However, LT-GaAs detectors usually suffer from low responsivity due to low carrier mobility. Here we report electro-optic sampling time response measurements of a detector that employs an AlGaAs heterojunction, a thin layer of LT-GaAs, a channel of RT-GaAs, and a vertical electric field that together facilitate collection of optically generated electrons while suppressing collection of lower mobility holes. Consequently, these devices have detection efficiency near that of RT-GaAs yet provide pulse widths nearly an order of magnitude faster—∼6 ps for a cathode-anode separation of 1.3 μm and ∼12 ps for distances more than 3 μm. PMID:23429510

  12. High-density carbon (HDC) capsule designs for α-heating and for ignition

    NASA Astrophysics Data System (ADS)

    Ho, D.; Amendt, A.; Clark, D.; Haan, S.; Milovich, J.; Salmonson, J.; Zimmerman, G.; Berzak Hopkins, L.; Biener, J.; Meezan, N.; Thomas, C.; Benedict, L.; Le Pape, S.; MacKinnon, A.; Ross, S.

    2014-10-01

    We show capsule designs that have HDC ablators, using 2, 3 and 4 shocks. Their advantages and disadvantages will be discussed. Two-shock designs have the shortest pulse length but have the worst 1-D ignition margin because of the high fuel adiabat. Four-shock designs have the highest 1-D ignition margin with the lowest adiabat, but have higher RT ablation front growth. This disadvantage can be overcome by using a picket to generate the 1st shock. The picket reduces the RT growth factor while the decaying 1st shock lowers the fuel adiabat further. The picket has the additional advantage of shortening the pulse length. Dopant requirements for different hohlraums will be discussed. A 3-shock design for achieving alpha heating is described, which can use either high-gas-fill (1.6 mg/cc) or near-vacuum hohlraums. A rugby-shaped hohlraum with low gas-fill (0.5 mg/cc) has high laser coupling efficiency and provides good symmetry for a 4-shock design. Comparison of simulations for selected recent HDC shots with experimental data will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  14. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  15. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  16. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  17. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  18. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses.

    PubMed

    Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T

    2014-08-01

    It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.

  19. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  20. Measurement of plantarflexor spasticity in traumatic brain injury: correlational study of resistance torque compared with the modified Ashworth scale.

    PubMed

    Annaswamy, Thiru; Mallempati, Srinivas; Allison, Stephen C; Abraham, Lawrence D

    2007-05-01

    To examine the usefulness of a biomechanical measure, resistance torque (RT), in quantifying spasticity by comparing its use with a clinical scale, the modified Ashworth scale (MAS), and quantitative electrophysiological measures. This is a correlational study of spasticity measurements in 34 adults with traumatic brain injury and plantarflexor spasticity. Plantarflexor spasticity was measured in the seated position before and after cryotherapy using the MAS and also by strapping each subject's foot and ankle to an apparatus that provided a ramp and hold stretch. The quantitative measures were (1) reflex threshold angle (RTA) calculated through electromyographic signals and joint angle traces, (2) Hdorsiflexion (Hdf)/Hcontrol (Hctrl) amplitude ratio obtained through reciprocal inhibition of the soleus H-reflex, (3) Hvibration (Hvib)/Hctrl ratio obtained through vibratory inhibition of the soleus H-reflex, and (4) RT calculated as the time integral of the torque graph between the starting and ending pulses of the stretch. Correlation coefficients between RT and MAS scores in both pre-ice (0.41) and post-ice trials (0.42) were fair (P = 0.001). The correlation coefficients between RT scores and RTA scores in both the pre-ice (0.66) and post-ice trials (0.75) were moderate (P

  1. The effects of resistance exercise training on arterial stiffness in metabolic syndrome.

    PubMed

    DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D

    2016-05-01

    Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.

  2. Rapid vaporization of kidney stones, ex vivo, using a Thulium fiber laser at pulse rates up to 500 Hz with a stone basket

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Holmium:YAG laser (λ = 2120 nm) is currently the preferred laser for fragmenting kidney stones in the clinic. However, this laser has some limitations, including operation at low pulse rates and a multimode spatial beam profile which prohibits its use with smaller, more flexible optical fibers. Our laboratory is studying the Thulium fiber laser (λ = 1908 nm) as an alternative lithotripter. The TFL has several advantages, including lower stone ablation thresholds, use with smaller and more flexible fibers, and operation at arbitrary pulse lengths and pulse rates. Previous studies have reported increased stone ablation rates with TFL operation at higher pulse rates, however, stone retropulsion remains an obstacle to even more efficient stone ablation. This study explores TFL operation at high pulse rates in combination with a stone stabilization device (e.g. stone basket) for improved efficiency. A TFL beam with pulse energy of 35 mJ, pulse duration of 500-μs, and pulse rates of 10-500 Hz was coupled into 100-μm-core, low-OH, silica fibers, in contact mode with uric acid and calcium oxalate monohydrate stones, ex vivo. TFL operation at 500 Hz produced UA and COM stone ablation rates up to 5.0 mg/s and 1.3 mg/s, respectively. High TFL pulse rates produced increased stone ablation rates sufficient for use in the clinic.

  3. End points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinality.

    PubMed

    Popescu, F C; Rymer, W Z

    2000-11-01

    A single force pulse was applied unexpectedly to the arms of five normal human subjects during nonvisually guided planar reaching movements of 10-cm amplitude. The pulse was applied by a powered manipulandum in a direction perpendicular to the motion of the hand, which gripped the manipulandum via a handle at the beginning, at the middle, or toward the end the movement. It was small and brief (10 N, 10 ms), so that it was barely perceptible. We found that the end points of the perturbed motions were systematically different from those of the unperturbed movements. This difference, dubbed "terminal error," averaged 14.4 +/- 9.8% (mean +/- SD) of the movement distance. The terminal error was not necessarily in the direction of the perturbation, although it was affected by it, and it did not decrease significantly with practice. For example, while perturbations involving elbow extension resulted in a statistically significant shift in mean end-point and target-acquisition frequency, the flexion perturbations were not clearly affected. We argue that this error distribution is inconsistent with the "equilibrium point hypothesis" (EPH), which predicts minimal terminal error is determined primarily by the variance in the command signal itself, a property referred to as "equifinality." This property reputedly derives from the "spring-like" properties of muscle and is enhanced by reflexes. To ensure that terminal errors were not due to mid-course voluntary corrections, we only accepted trials in which the final position was already established before such a voluntary response to the perturbation could have begun, that is, in a time interval shorter than the minimum reaction time (RT) for that subject. This RT was estimated for each subject in supplementary experiments in which the subject was instructed to move to a new target if perturbed and to the old target if no perturbation was detected. These RT movements were found to either stop or slow greatly at the original target, then re-accelerate to the new one. The average latency of this second motion was used to estimate the voluntary RT for each subject (316 ms mean). Additionally, we found that the hand neither exerted target-oriented force against the handle nor drifted toward the desired end point just before coming to rest, making it unlikely that the mechanical properties of the manipulandum prevented the hand from reaching its intended target.

  4. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.

    2017-07-01

    In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

  5. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  6. NASA/SPoRt: GOES-R Activities in Support of Product Development, Management, and Training

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; Jedlovec, Gary; Molthan, Andrew; Stano, Geoffrey

    2012-01-01

    SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.

  7. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  8. Operations research for resource planning and -use in radiotherapy: a literature review.

    PubMed

    Vieira, Bruno; Hans, Erwin W; van Vliet-Vroegindeweij, Corine; van de Kamer, Jeroen; van Harten, Wim

    2016-11-25

    The delivery of radiotherapy (RT) involves the use of rather expensive resources and multi-disciplinary staff. As the number of cancer patients receiving RT increases, timely delivery becomes increasingly difficult due to the complexities related to, among others, variable patient inflow, complex patient routing, and the joint planning of multiple resources. Operations research (OR) methods have been successfully applied to solve many logistics problems through the development of advanced analytical models for improved decision making. This paper presents the state of the art in the application of OR methods for logistics optimization in RT, at various managerial levels. A literature search was performed in six databases covering several disciplines, from the medical to the technical field. Papers included in the review were published in peer-reviewed journals from 2000 to 2015. Data extraction includes the subject of research, the OR methods used in the study, the extent of implementation according to a six-stage model and the (potential) impact of the results in practice. From the 33 papers included in the review, 18 addressed problems related to patient scheduling (of which 12 focus on scheduling patients on linear accelerators), 8 focus on strategic decision making, 5 on resource capacity planning, and 2 on patient prioritization. Although calculating promising results, none of the papers reported a full implementation of the model with at least a thorough pre-post performance evaluation, indicating that, apart from possible reporting bias, implementation rates of OR models in RT are probably low. The literature on OR applications in RT covers a wide range of approaches from strategic capacity management to operational scheduling levels, and shows that considerable benefits in terms of both waiting times and resource utilization are likely to be achieved. Various fields can be further developed, for instance optimizing the coordination between the available capacity of different imaging devices or developing scheduling models that consider the RT chain of operations as a whole rather than the treatment machines alone.

  9. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, David C.; Nelson, Loren D.; O'Brien, Martin J.

    1996-01-01

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength.

  10. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  11. Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin

    2018-06-01

    We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.

  12. Development of efficient time-evolution method based on three-term recurrence relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akama, Tomoko, E-mail: a.tomo---s-b-l-r@suou.waseda.jp; Kobayashi, Osamu; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp

    The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function.more » Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost.« less

  13. Fiber optic suctioning of urinary stone phantoms during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    Fiber optic attraction of urinary stones during laser lithotripsy has been previously observed, and this phenomenon may potentially be exploited to pull stones inside the urinary tract without mechanical grasping tools, thus saving the urologist valuable time and space in the ureteroscope's single working channel. In this study, Thulium fiber laser (TFL) high-pulse-rate/low-pulse-energy operation and Holmium:YAG low-pulse-rate/high-pulse-energy operation are compared for fiber optic "suctioning" of Plaster-of-Paris stone phantoms. A TFL with wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10-350 Hz, and Holmium laser with wavelength of 2120 nm, pulse energy of 35-360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz were tested using 270-μm-core fibers. A peak "pull" speed of 2.5 mm/s was measured for both TFL (35 mJ and 150-250 Hz) and Holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber optic suctioning of urinary stone phantoms is feasible for both lasers. However, TFL operation at high-pulse-rates/low-pulse-energies provides faster, smoother stone pulling than Holmium operation at low-pulserates/ high-pulse-energies. After further study, this method may be used to manipulate urinary stones in the clinic.

  14. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  15. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  16. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    NASA Astrophysics Data System (ADS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.

  17. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., C G; Bond, E; Clancy, T

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  18. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., C G; Bond, E; Clancy, T

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  19. Watering the Tree of Science: Science Education, Local Knowledge, and Agency in Zambia's PSA Program

    NASA Astrophysics Data System (ADS)

    Lample, Emily

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  20. Recent advances in chemical synthesis methodology of inorganic materials and theoretical computations of metal nanoparticles/carbon interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Andrew G.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  1. Network performance analysis and management for cyber-physical systems and their applications

    NASA Astrophysics Data System (ADS)

    Emfinger, William A.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  2. Soft error aware physical synthesis

    NASA Astrophysics Data System (ADS)

    Assis, Thiago Rocha de

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  3. Transient thermoelectric supercooling: Isosceles current pulses from a response surface perspective and the performance effects of pulse cooling a heat generating mass

    NASA Astrophysics Data System (ADS)

    Piggott, Alfred J., III

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  4. Observability of market daily volatility

    NASA Astrophysics Data System (ADS)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  5. Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm

    NASA Astrophysics Data System (ADS)

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan

    2017-04-01

    We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.

  6. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, X; Luo, F; Liu, Y

    Purpose: Extensive in vitro and in vivo studies have shown that pulsed low dose rate (PLDR) radiotherapy has potential to provide significant local tumor control and to reduce normal tissue toxicities. This work investigated the planning and dosimetry of PLDR re-irradiation for recurrent cancers. Methods: We analyzed the treatment plans and dosimetry for 13 recurrent patients who were treated with the PLDR technique in this study. All cases were planned with the 3DCRT technique with optimal beam angle selection. The treatment was performed on a Siemens accelerator using 6MV beams. The target volume ranged between 161 and 703cc. The previousmore » RT dose was 40–60Gy while the re-irradiation dose was 16–60Gy. The interval between previous RT and re-irradiation was 13–336 months, and the follow-up time was up to 27months. The total prescription dose was administered in 2Gy/day fractions with the daily dose delivered in 10 sub-fractions (pulses) of 20cGy with a 3min interval between the pulses to achieve an effective dose rate of 6.7cGy/min. Results: The clinical outcome was analyzed based on the treatment plans. All pulses were kept with Dmax<40cGy. The PLDR treatments were effective (CR: 3 patients, PR: 10 patients). The acute and late toxicities were all acceptable (generally grade II or under). Two patients died three months after the PLDR re-irradiation, one due to massive cerebral infarction and the other due to acute cardiac failure. All others survived more than 8 months. Five patients showed good conditions at the last follow-up. Among them two recurrent lung cancer patients had survived 23 months and one nasopharyngeal cancer patient had survived 27 months. Conclusion: The PLDR technique was effective for the palliative treatment of head and neck, lung, spine and GYN cancers. Further phase II and III studies are warranted to quantify the efficacy of PLDR for recurrent cancers.« less

  8. Conversion of continuous-direct-current TIG welder to pulse-arc operation

    NASA Technical Reports Server (NTRS)

    Lien, D. R.

    1969-01-01

    Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.

  9. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  10. Lab-scale demonstration of recuperative thickening technology for enhanced biogas production and dewaterability in anaerobic digestion processes.

    PubMed

    Cobbledick, Jeffrey; Aubry, Nicholas; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2016-05-15

    There is growing interest in the use of high performance anaerobic digestion (AD) processes for the production of biogas at wastewater treatment facilities to offset the energy demands associated with wastewater treatment. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the incoming feed. In general there exists a significant number of knowledge gaps in the field of RT because the studies that have been conducted to date have almost exclusively occurred in pilot plant or full scale trials; this approach greatly limits the amount of process optimization that can be done in a given trial. In this work, a detailed and comprehensive study of RT was conducted at the lab scale; two custom designed digesters (capacity = 1.5 L) were operated in parallel with one acting as a 'control' digester and the other operating under a semi-batch RT mode. There was no significant change in biogas methane composition for the two digesters, however the RT digester had an average biogas productivity over two times higher than the control one. It was found that the recycling of the polymer flocculant back into the RT digester resulted in a significant improvement in dewatering performance. At the highest polymer concentration tested, the capillary suction time (CST) values for flocculated samples for the RT digester were over 6 times lower than the corresponding values for the control digester. Thus, there exists an opportunity to decrease the overall consumption of polymer flocculants through judicious selection of the dose of polymer flocculant that is used both for the thickening and end-stage dewatering steps in RT processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  12. RT11LIB: a library of subroutines for transferring data between a PDP-11 and CDC-6600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.D.

    1978-01-01

    RT11LIB is a library of subroutines available to CDC 6600 users for the purpose of transferring data or program listings between a PDP-11 and a CDC 6600. These subroutines, operating on a CDC 6600 under the NOS/BE or SCOPE 3.4 operating systems, read or write magnetic tapes that are compatible with the PDP-11's RT11 operating system. Data written on the tape by the PDP-11 can be read by these subroutines and then translated into CDC 6600 format for subsequent data analysis. The translation process provides for many data formats, including byte, integer, floating point, and character string formats. Alternatively, datamore » from the CDC 6600 can be translated into PDP-11 format then written onto the tape for subsequent use on the PDP-11. This facility allows a program punched on a card deck by a keypunch operator to be transferred to the PDP-11, even though the PDP-11 is not itself equipped with a card reader.« less

  13. Coupled Hydrodynamic Instability Growth on Oblique Interfaces with a Reflected Rarefaction

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Flippo, K. A.; di Stefano, C. A.; Doss, F. W.; Hager, J. D.; Merritt, E. C.; Cardenas, T.; Schmidt, D. W.; Kline, J. L.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities play an important role in the evolution of inertial confinement fusion and astrophysical phenomena. Three of the Omega-EP long pulse beams (10 ns square pulse, 14 kJ total energy, 1.1 mm spot size) drive a supported shock across a heavy-to-light, oblique, interface. Single- and double-mode initial conditions seed coupled Richtmyer-Meshkov (RM), Rayleigh-Taylor (RT), and Kelvin-Helmholtz (KH) growth. At early times, growth is dominated by RM and KH, whereas at late times a rarefaction from laser turn-off reaches the interface, leading to decompression and RT growth. The addition of a thirty degree tilt does not alter mix width to within experimental error bars, even while significantly altering spike and bubble morphology. The results of single and double-mode experiments along with simulations using the multi-physics hydro-code RAGE will be presented. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956. This material is partially supported by DOE Office of Science Graduate Student Research (SCGSR) program.

  14. Automated customized retrieval of radiotherapy data for clinical trials, audit and research.

    PubMed

    Romanchikova, Marina; Harrison, Karl; Burnet, Neil G; Hoole, Andrew Cf; Sutcliffe, Michael Pf; Parker, Michael Andrew; Jena, Rajesh; Thomas, Simon James

    2018-02-01

    To enable fast and customizable automated collection of radiotherapy (RT) data from tomotherapy storage. Human-readable data maps (TagMaps) were created to generate DICOM-RT (Digital Imaging and Communications in Medicine standard for Radiation Therapy) data from tomotherapy archives, and provided access to "hidden" information comprising delivery sinograms, positional corrections and adaptive-RT doses. 797 data sets totalling 25,000 scans were batch-exported in 31.5 h. All archived information was restored, including the data not available via commercial software. The exported data were DICOM-compliant and compatible with major commercial tools including RayStation, Pinnacle and ProSoma. The export ran without operator interventions. The TagMap method for DICOM-RT data modelling produced software that was many times faster than the vendor's solution, required minimal operator input and delivered high volumes of vendor-identical DICOM data. The approach is applicable to many clinical and research data processing scenarios and can be adapted to recover DICOM-RT data from other proprietary storage types such as Elekta, Pinnacle or ProSoma. Advances in knowledge: A novel method to translate data from proprietary storage to DICOM-RT is presented. It provides access to the data hidden in electronic archives, offers a working solution to the issues of data migration and vendor lock-in and paves the way for large-scale imaging and radiomics studies.

  15. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

    NASA Astrophysics Data System (ADS)

    Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

    1997-08-01

    A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

  16. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  17. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S.; Department of Physics, University of Karachi, Karachi 75270; Rawat, R. S.

    2012-10-15

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsedmore » laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.« less

  18. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  19. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  20. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  1. Experimental Results of the EU ITER Prototype Gyrotrons

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Albajar, F.; Alberti, S.; Avramidis, K.; Bin, W.; Bonicelli, T.; Bruschi, A.; Chelis, J.; Fanale, F.; Legrand, F.; Hermann, V.; Hogge, J.-P.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kasparek, W.; Latsas, G. P.; Lechte, C.; Lontano, M.; Pagonakis, I. G.; Rzesnicki, T.; Schlatter, C.; Schmid, M.; Tigelis, I. G.; Thumm, M.; Tran, M. Q.; Vomvoridis, J. L.; Zein, A.; Zisis, A.

    2017-10-01

    The European 1 MW, 170 GHz CW industrial prototype gyrotron for ECRH&CD on ITER was under test at the KIT test facility during 2016. In order to optimize the gyrotron operation, the tube was thoroughly tested in the short-pulse regime, with pulse lengths below 10 ms, for a wide range of operational parameters. The operation was extended to longer pulses with a duration of up to 180 s. In this work we present in detail the achievements and the challenges that were faced during the long-pulse experimental campaign.

  2. Ring laser having an output at a single frequency

    DOEpatents

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  3. Development of RT-components for the M-3 Strawberry Harvesting Robot

    NASA Astrophysics Data System (ADS)

    Yamashita, Tomoki; Tanaka, Motomasa; Yamamoto, Satoshi; Hayashi, Shigehiko; Saito, Sadafumi; Sugano, Shigeki

    We are now developing the strawberry harvest robot called “M-3” prototype robot system under the 4th urgent project of MAFF. In order to develop the control software of the M-3 robot more efficiently, we innovated the RT-middleware “OpenRTM-aist” software platform. In this system, we developed 9 kind of RT-Components (RTC): Robot task sequence player RTC, Proxy RTC for image processing software, DC motor controller RTC, Arm kinematics RTC, and so on. In this paper, we discuss advantages of RT-middleware developing system and problems about operating the RTC-configured robotic system by end-users.

  4. Operative and nonoperative management for renal trauma: comparison of outcomes. A systematic review and meta-analysis

    PubMed Central

    Mingoli, Andrea; La Torre, Marco; Migliori, Emanuele; Cirillo, Bruno; Zambon, Martina; Sapienza, Paolo; Brachini, Gioia

    2017-01-01

    Introduction Preservation of kidney and renal function is the goal of nonoperative management (NOM) of renal trauma (RT). The advantages of NOM for minor blunt RT have already been clearly described, but its value for major blunt and penetrating RT is still under debate. We present a systematic review and meta-analysis on NOM for RT, which was compared with the operative management (OM) with respect to mortality, morbidity, and length of hospital stay (LOS). Methods The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was followed for this study. A systematic search was performed on Embase, Medline, Cochrane, and PubMed for studies published up to December 2015, without language restrictions, which compared NOM versus OM for renal injuries. Results Twenty nonrandomized retrospective cohort studies comprising 13,824 patients with blunt (2,998) or penetrating (10,826) RT were identified. When all RT were considered (American Association for the Surgery of Trauma grades 1–5), NOM was associated with lower mortality and morbidity rates compared to OM (8.3% vs 17.1%, odds ratio [OR] 0.471; 95% confidence interval [CI] 0.404–0.548; P<0.001 and 2% vs 53.3%, OR 0.0484; 95% CI 0.0279–0.0839, P<0.001). Likewise, NOM represented the gold standard treatment resulting in a lower mortality rate compared to OM even when only high-grade RT was considered (9.1% vs 17.9%, OR 0.332; 95% CI 0.155–0.708; P=0.004), be they blunt (4.1% vs 8.1%, OR 0.275; 95% CI 0.0957–0.788; P=0.016) or penetrating (9.1% vs 18.1%, OR 0.468; 95% CI 0.398–0.0552; P<0.001). Conclusion Our meta-analysis demonstrated that NOM for RT is the treatment of choice not only for AAST grades 1 and 2, but also for higher grade blunt and penetrating RT. PMID:28894376

  5. High-gradient, pulsed operation of superconducting niobium cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campisi, I.E.; Farkas, Z.D.

    1984-02-01

    Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30more » figures, 2 tables.« less

  6. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  7. SPoRT Participation in the GOES-R and JPSS Proving Grounds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew

    2013-01-01

    For the last several years, the NASA Short-term Prediction Research and Transition (SPoRT) project at has been working with the various algorithm working groups and science teams to demonstrate the utility of future operational sensors for GOES-R and the suite of instruments for the JPSS observing platforms. For GOES-R, imagery and products have been developed from polar-orbiting sensors such as MODIS and geostationary observations from SEVIRI, simulated imagery, enhanced products derived from existing GOES satellites, and data from ground-based observing systems to generate pseudo or proxy products for the ABI and GLM instruments. The suite of products include GOES-POES basic and RGB hybrid imagery, total lightning flash products, quantitative precipitation estimates, and convective initiation products. SPoRT is using imagery and products from VIIRS, CrIS, ATMS, and OMPS to show the utility of data and products from their operational counterparts on JPSS. The products include VIIRS imagery in swath form, the GOES-POES hybrid, a suite of RGB products including the air mass RGB using water vapor and ozone channels from CrIS, and several DNB products. Over a dozen SPoRT collaborative WFOs and several National Centers are involved in an intensive evaluation of the operational utility of these products.

  8. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  9. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hesheng, E-mail: hesheng@umich.edu; Farjam, Reza; Feng, Mary

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumesmore » with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate for response-driven adaptive RT.« less

  10. Factors Predictive of Receiving Adjuvant Radiotherapy in High-Intermediate-Risk Stage I Endometrial Cancer.

    PubMed

    McGunigal, Mary; Pollock, Ariel; Doucette, John T; Liu, Jerry; Chadha, Manjeet; Kalir, Tamara; Gupta, Vishal

    2018-06-01

    Randomized trials have shown a local control benefit with adjuvant radiotherapy (RT) in high-intermediate-risk endometrial cancer patients, although not all such patients receive RT. We reviewed the National Cancer Data Base to investigate which patient/tumor-related factors are associated with delivery of adjuvant RT. The National Cancer Data Base was queried for patients diagnosed with International Federation of Gynecology and Obstetrics 2009 stage I endometrioid adenocarcinoma from 1998 to 2012 who underwent surgery +/- adjuvant RT. Exclusion criteria were unknown stage/grade, nonsurgical primary therapy, less than 30 days' follow-up, RT of more than 6 months after surgery, or palliative treatment. High-intermediate risk was defined based on Post Operative Radiation Therapy in Endometrial Carcinoma 2 criteria: older than 60 years with stage IA grade 3 or stage IB grade 1-2. Seventeen thousand five hundred twenty-four met inclusion criteria, and the 13,651 patients with complete data were subjected to a multiple logistic regression analysis; 7814 (57.2%) received surgery alone, and 5837 (42.8%) received surgery + RT. Receipt of adjuvant RT was more likely among black women and women with higher income, Northeastern residence, diagnosis after 2010, greater than 50% myometrial invasion, and receipt of adjuvant chemotherapy (P < 0.05). Patients older than 80 years or those undergoing lymph node dissection were less likely to receive adjuvant RT (P < 0.05). Of those treated with RT, 44.0% received external beam therapy, 54.8% received vaginal cuff brachytherapy, and 0.6% received both. Among irradiated women, patients older than 80 years and those with Northeastern residence, treatment at academic facilities, diagnosis after 2004, and lymph node dissection were more likely to undergo brachytherapy over external beam radiation therapy (P < 0.05). Overall use of adjuvant RT was 28.8% between 1998 and 2004, 42.0% between 2005 and 2010, and 43.4% between 2011 and 2012; the difference between 1998-2004 and 2005-2010 was not statistically significant. Fewer than half of patients with high-intermediate-risk endometrial cancer by Post Operative Radiation Therapy in Endometrial Carcinoma 2 criteria received adjuvant RT despite evidence demonstrating improved local control. Both patient- and tumor-related factors are associated with delivery of adjuvant RT and the modality selected.

  11. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  12. Innovative phase shifter for pulse tube operating below 10 K

    NASA Astrophysics Data System (ADS)

    Duval, Jean-Marc; Charles, Ivan; Daniel, Christophe; André, Jérôme

    2016-09-01

    Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50-80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.

  13. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, A. I., E-mail: aipush@mail.ru; Isakova, Y. I.; Khaylov, I. P.

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode themore » shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.« less

  14. Camelot-a novel concept for a multiterawatt pulse power generator for single pulse, burst, or repetetion rate operation. Special report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, A.G.

    1981-04-01

    Superpower pulse generators are fast establishing themselves internationally as candidates for employment in a wide variety of military applications including electronic warfare and jamming, high energy beam weapons, and nuclear weapons effects simulation. Unfortunately, existing multimegajoule pulse power generators such as AURORA do not satisfy many Department of Defense goals for field-adaptable weapon systems-for example, repetition (rep) rate operation, high reliabilty, long life, ease of operation, and low maintenance. The Camelot concept is a multiterawatt rep ratable pulse power source, adaptable to a wide range of output parameters-both charged particles and photons. An analytical computer model has been developed tomore » predict the power flowing through the device. A 5-year development program, culminating in a source region electromagnetic pulse simulator, is presented.« less

  15. Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.

    2018-02-01

    Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.

  16. Prime Item Development Specification for IFF Transponder RT-1063B/APX101(V) CI 650100A. Part I. Revision A.

    DTIC Science & Technology

    1977-08-18

    Antenna Input/Output modem " 𔃾"TELEDYVNE ELECTRONICS DOCUMENT NO. AECA 77-1 DATE March 3j, 1977 REVISI_ A, (Aug 18, 1977) PAGE 1.1-6. OFRL-_.6 30. 2 Mode...ISOLATION REQUIRE- MENTS: None 12. RISE TIME: N/A 13. FALL TIME: N/A 14. PULSE CHARACTER- ISTICS: N/A 15. CAUTION LIGHT ON: ? 56K ohms (Open) 16. CAUTION

  17. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  18. Post-operative therapy following transoral robotic surgery for unknown primary cancers of the head and neck.

    PubMed

    Patel, Sapna A; Parvathaneni, Aarthi; Parvathaneni, Upendra; Houlton, Jeffrey J; Karni, Ron J; Liao, Jay J; Futran, Neal D; Méndez, Eduardo

    2017-09-01

    Our primary objective is to describe the post- operative management in patients with an unknown primary squamous cell carcinoma of the head and neck (HNSCC) treated with trans-oral robotic surgery (TORS). We conducted a retrospective multi-institutional case series including all patients diagnosed with an unknown primary HNSCC who underwent TORS to identify the primary site from January 1, 2010 to June 30, 2016. We excluded those with recurrent disease, ≤6months of follow up from TORS, previous history of radiation therapy (RT) to the head and neck, or evidence of primary tumor site based on previous biopsies. Our main outcome measure was receipt of post-operative therapy. The tumor was identified in 26/35 (74.3%) subjects. Post-TORS, 2 subjects did not receive adjuvant therapy due to favorable pathology. Volume reduction of RT mucosal site coverage was achieved in 12/26 (46.1%) subjects who had lateralizing tumors, ie. those confined to the palatine tonsil or glossotonsillar sulcus. In addition, for 8/26 (30.1%), the contralateral neck RT was also avoided. In 9 subjects, no primary was identified (pT0); four of these received RT to the involved ipsilateral neck nodal basin only without pharyngeal mucosal irradiation. Surgical management of an unknown primary with TORS can lead to deintensification of adjuvant therapy including avoidance of chemotherapy and reduction in RT doses and volume. There was no increase in short term treatment failures. Treatment after TORS can vary significantly, thus we advocate adherence to NCCN guideline therapy post-TORS to avoid treatment-associated variability. Published by Elsevier Ltd.

  19. [Oncological outcomes of combined therapy in patients with cervical carcinoma FIGO stage IIB].

    PubMed

    Kornovski, Y; Ismail, E; Kaneva, M

    2012-01-01

    To establish the overall and disease-free survival and the role of surgery as well as in cervical cancer stage IIB (FIGO) patients submitted to combined radiotherapy and surgery. Between 2003-2011 86 patients with cervical cancer stage IIB had been operated on. Five patients were operated on after neoajuvant chemotherapy. Thirty one women (group 3) had primary pelvic surgery (radical hysterectomy class III and lymphonodulectomy) and adjuvant RT until 52 Gy and 50 women were operated on after preoperative RT (30 Gy) and were submitted to adjuvant RT until 52 Gy (group 4). After median follow of 45 months the acturial overall and disease-free survival (OS and DFS) were estimated as 75.6% and 77.9% respectively for all patients staged IIB (FIGO). In group 3 the incidence of local relapses and distant metastases was 9.7% and 12.9%, respectively and in group 4--local and distant recurrences were 6% and 14%, respectively. The acturial OS and DFS for group 3 were 80.6% and 77.5%, respectively and for group 4--76% and 80% (NS). Combinated treatment (RT and pelvic surgery) produce reliable local control of the disease (cervical cancer IIB stage) but is ineffective for metastases outside the small pelvis which is the cause of worse survival of patients with cervical cancer stage IIB (FIGO). Preoperative RT (group 4) doesn't change the OS and DFS significantly. The main indication for surgery in patients with cervical cancer stage IIB is the surgical staging (pelvic and paraaortic lymph node dissection) which enables the appropriate individual treatment planning.

  20. Modelling of the test of the JT-60SA HTS current leads

    NASA Astrophysics Data System (ADS)

    Zappatore, A.; Heller, R.; Savoldi, L.; Zanino, R.

    2017-07-01

    The CURLEAD code, which was developed at the Karlsruhe Institute of Technology (KIT), implements an integrated 1D transient model of a high temperature superconducting (HTS) current lead (CL) including the room termination (RT), the meander-flow type heat exchanger (HX), and the HTS module. CURLEAD was successfully used for the design of the 70 kA ITER demonstrator and of the W7-X and JT-60SA CLs. Recently the code was successfully applied to the prediction and analysis of steady state operation of the ITER correction coils (CC) HTS CL. Here the steady state and pulsed operation of the JT-60SA HTS CLs are analysed, which requires also the modelling of the HX shell and of the vacuum shell, which was not present in the ITER CC. The CURLEAD model extension is presented and the capability of the new version of CURLEAD to reproduce the transient experimental data of the JT-60SA HTS CL is shown. The results obtained provide a better understanding of key parameters of the CL, among which the temperature evolution at the HX-HTS interface, the GHe mass flow rate needed in the HX to achieve the target temperature at that location and the heat load at the cold end.

  1. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-19

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  2. A unique control system simulator for the evaluation of pulsed plasma thrusters

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1973-01-01

    Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.

  3. Hydraulic flow visualization method and apparatus

    DOEpatents

    Karidis, Peter G.

    1984-01-01

    An apparatus and method for visualizing liquid flow. Pulses of gas bubbles are introduced into a liquid flow stream and a strobe light is operated at a frequency related to the frequency of the gas pulses to shine on the bubbles as they pass through the liquid stream. The gas pulses pass through a probe body having a valve element, and a reciprocating valve stem passes through the probe body to operate the valve element. A stem actuating device comprises a slidable reciprocating member, operated by a crank arm. The actuated member is adjustable to adjust the amount of the valve opening during each pulse.

  4. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  5. Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.

    PubMed

    Marchal, Claire; Sasaki, Takayo; Vera, Daniel; Wilson, Korey; Sima, Jiao; Rivera-Mulia, Juan Carlos; Trevilla-García, Claudia; Nogues, Coralin; Nafie, Ebtesam; Gilbert, David M

    2018-05-01

    This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.

  6. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.

    PubMed

    Datta, Saurabh; Coussios, Constantin-C; Ammi, Azzdine Y; Mast, T Douglas; de Courten-Myers, Gabrielle M; Holland, Christy K

    2008-09-01

    Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity, was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity. A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p < 0.0001, n = 24). The largest mean penetration depth of rt-PA (222 microm) and plasminogen (241 microm) was observed in the presence of stable cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment.

  7. A DICOM-RT based ePR radiation therapy information system for managing brain tumor patients

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Law, Maria; Huang, H. K.; Zee, C. S.; Chan, Lawrence

    2005-04-01

    The need for comprehensive clinical image data and relevant information in image-guided Radiation Therapy (RT) is becoming steadily apparent. Multiple standalone systems utilizing the most technological advancements in imaging, therapeutic radiation, and computerized treatment planning systems acquire key data during the RT treatment course of a patient. One example are patients treated for brain tumors of greater sizes and irregular shapes that utilize state-of-the-art RT technology to deliver pinpoint accurate radiation doses. One such system, the Cyberknife, is a radiation treatment system that utilizes image-guided information to control a multi-jointed, six degrees of freedom, robotic arm to deliver precise and required radiation dose to the tumor site of a cancer patient. The image-guided system is capable of tracking the lesion orientations with respect to the patient"s position throughout the treatment process. This is done by correlating live radiographic images with pre-operative, CT and MR imaging information to determine relative patient and tumor position repeatedly over the course of the treatment. The disparate and complex data generated by the Cyberknife system along with related data is scattered throughout the RT department compromising an efficient clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) Standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997. However, they are rarely used by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our research, tightly-coupling radiology and RT information systems, represents a new frontier for medical informatics research that has never been previously considered. By combining our past experience in medical imaging informatics, DICOM-RT expertise, and system integration, we propose to test our hypothesis using a brain tumor case model that a DICOM-RT electronic patient record (ePR) system can improve clinical workflow efficiency for treatment and management of patients. This RT ePR system integrated with clinical images and RT data can impact the RT department in a similar fashion as PACS has already successfully done for Radiology. As a first step, the specific treatment case of patients with brain tumors specifically patients treated with the Cyberknife system will be the initial proof of concept for the research design, implementation, evaluation, and clinical relevance.

  8. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    PubMed Central

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  9. A Genuine TEAM Player

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Qualtech Systems, Inc. developed a complete software system with capabilities of multisignal modeling, diagnostic analysis, run-time diagnostic operations, and intelligent interactive reasoners. Commercially available as the TEAMS (Testability Engineering and Maintenance System) tool set, the software can be used to reveal unanticipated system failures. The TEAMS software package is broken down into four companion tools: TEAMS-RT, TEAMATE, TEAMS-KB, and TEAMS-RDS. TEAMS-RT identifies good, bad, and suspect components in the system in real-time. It reports system health results from onboard tests, and detects and isolates failures within the system, allowing for rapid fault isolation. TEAMATE takes over from where TEAMS-RT left off by intelligently guiding the maintenance technician through the troubleshooting procedure, repair actions, and operational checkout. TEAMS-KB serves as a model management and collection tool. TEAMS-RDS (TEAMS-Remote Diagnostic Server) has the ability to continuously assess a system and isolate any failure in that system or its components, in real time. RDS incorporates TEAMS-RT, TEAMATE, and TEAMS-KB in a large-scale server architecture capable of providing advanced diagnostic and maintenance functions over a network, such as the Internet, with a web browser user interface.

  10. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2015-01-27

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  11. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2014-12-30

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  12. Pulse-excited, auto-zeroing multiple channel data transmission system

    NASA Astrophysics Data System (ADS)

    Fasching, G. E.

    1985-02-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  13. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, G.E.

    1985-02-22

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  14. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, George E.

    1987-01-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  15. Interferometer design and controls for pulse stacking in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  16. Advanced Orion Optimized Laser System Analysis

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.

  17. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    DTIC Science & Technology

    2014-12-01

    of OUTC can further be explained by the RC time constants involved in the charging and discharging of OUTC during each pulse . When the SCR is...CHARACTERISTICS OF AN SCR-BASED PULSE GENERATING CIRCUIT by Wing Chien Christopher Chang December 2014 Thesis Advisor: Gamani Karunasiri Co...COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS OPERATIONAL CHARACTERISTICS OF AN SCR-BASED PULSE GENERATING CIRCUIT 6

  18. The 30 GHz solid state amplifier for low cost low data rate ground terminals

    NASA Technical Reports Server (NTRS)

    Ngan, Y. C.; Quijije, M. A.

    1984-01-01

    This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.

  19. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of transitioning these products to collaborating WFOs throughout the country.

  20. Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.

  1. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.

    2016-08-01

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.

  2. SPoRT: Transitioning NASA and NOAA Experimental Data to the Operational Weather Community

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2013-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS, Suomi NPP, and planned JPSS and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volumes will likely increase by a factor of 5-10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.

  3. Challenges in Transitioning Research Data to Operations: The SPoRT Paradigm

    NASA Technical Reports Server (NTRS)

    Jedloved, Gary J.; Smith, Matt; McGrath, Kevin

    2010-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS and planned NPP, JPSS, and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volume will likely increase by a factor of 5- 10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.

  4. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach Control Facilities (TRACON) region around an airport. These collaborations continue to demonstrate, from the operational perspective, the utility of total lightning and the importance of continued training and preparation in advance of the Geostationary Lightning Mapper.

  5. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  6. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  7. Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.

    PubMed

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  8. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  9. Study on the steady operating state of a micro-pulse electron gun.

    PubMed

    Kui, Zhou; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Xing, Luo; Ziqin, Yang

    2014-09-01

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  10. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  11. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.

    1992-01-01

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.

  12. Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering

    NASA Astrophysics Data System (ADS)

    Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.

    2008-06-01

    We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.

  13. Voyager Uranus encounter 0.2lbf T/VA short pulse test report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.

  14. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  15. Demonstrating the Operational Value of Thermodynamic Hyperspectral Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley T.; Jedlovec, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) Weather Forecasting Offices (WFO). As a part of the transition to operations process, SPoRT attempts to identify possible limitations in satellite observations and provide operational forecasters a product that will result in the most impact on their forecasts. One operational forecast challenge that some NWS offices face, is forecasting convection in data-void regions such as large bodies of water. The Atmospheric Infrared Sounder (AIRS) is a sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. This paper will demonstrate an approach to assimilate AIRS profile data into a regional configuration of the WRF model using its three-dimensional variational (3DVAR) assimilation component to be used as a proxy for the individual profiles.

  16. Laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements

    NASA Technical Reports Server (NTRS)

    Paik, Ho J.; Canavan, Edgar R.; Kong, Qin; Moody, M. V.

    1992-01-01

    The paper describes the superconducting gravity gradiometers (SGGs) and superconducting accelerometers being developed at the University of Maryland, which take advantage of many exotic properties of superconductivity to obtain the required low noise, high stability, and large dynamic range. Results of laboratory demonstrations of some of these instruments are presented together with the design and operating principles. Particular attention is given to the three-axis Model II SGG and a six-axis superconducting accelerometer model (Model I SSA). Model II SGG, after a residual common-mode balance, exhibited a noise level of 0.05/sq rt Hz above 0.1 Hz and a 1/f-squared noise below 0.1 Hz. All six channels of Model I SSA operated simultaneously with linear and angular acceleration noise levels of 3 x 10 exp -10 g(E)/sq rt Hz and 5 x 10 exp -8 rad/sec per sec per sq rt Hz, respectively.

  17. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.

  18. High duty cycle inverse Compton scattering X-ray source

    DOE PAGES

    Ovodenko, A.; Agustsson, R.; Babzien, M.; ...

    2016-12-22

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this article reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO 2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized atmore » 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. Lastly, with the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.« less

  19. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  20. Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.

    1995-01-01

    An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.

  1. A single-frequency double-pulse Ho:YLF laser for CO2-lidar

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.

    2016-03-01

    A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.

  2. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of treatment conditions, but there was an increased incidence of damage farther downwind with decreasing duty cycle. This tendency and the deviation from the average current density model for small duty cycles were explained in terms of the Blech length, its dependence on microstructure and duty cycle, and its impact on the relative rates of damage and recovery.

  3. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    NASA Astrophysics Data System (ADS)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  4. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less

  5. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yanwen; Decker, Franz-Josef; Turner, James

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  6. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE PAGES

    Sun, Yanwen; Decker, Franz-Josef; Turner, James; ...

    2018-03-27

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  7. A 1 MA, variable risetime pulse generator for high energy density plasma research

    NASA Astrophysics Data System (ADS)

    Greenly, J. B.; Douglas, J. D.; Hammer, D. A.; Kusse, B. R.; Glidden, S. C.; Sanders, H. D.

    2008-07-01

    COBRA is a 0.5Ω pulse generator driving loads of order 10nH inductance to >1MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95to230ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.

  8. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  9. An update on intraoperative three-dimensional transesophageal echocardiography

    PubMed Central

    2017-01-01

    Transesophageal echocardiography (TEE) was first used routinely in the operating rooms in the 1980s to facilitate surgical decision-making. Since then, TEE has evolved from the standard two-dimensional (2D) exam to include focused real-time three-dimensional (RT-3D) imaging both inside and outside the operating rooms. Improved spatial and temporal resolution due to technological advances has expedited surgical interventions in diseased valves. 3D imaging has also emerged as a crucial adjunct in percutaneous interventions for structural heart disease. With continued advancement in software, RT-3D TEE will continue to impact perioperative decisions. PMID:28540070

  10. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland.

    PubMed

    Gajewska, Alina; Herman, Andrzej P; Wolińska-Witort, Ewa; Kochman, Kazimierz; Zwierzchowski, Lech

    2014-12-01

    EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo. © 2014 Society for Endocrinology.

  11. Physiological and haematological indices suggest superior heat tolerance of white-coloured West African Dwarf sheep in the hot humid tropics.

    PubMed

    Fadare, Adelodun O; Peters, Sunday O; Yakubu, Abdulmojeed; Sonibare, Adekayode O; Adeleke, Matthew A; Ozoje, Michael O; Imumorin, Ikhide G

    2013-01-01

    Coat colour contributes to physiological adaptation in mammals and mediates response to thermal stress. Twenty-four adult West African Dwarf sheep of both sexes and with different coat colour types were used in this study. We measured rectal temperature (RT), respiratory rate (RR) and pulse rate (PR) before sunrise and sunset during the late dry season (January-March) and early rainy season (April-June) as well as packed cell volume (PCV), red blood cell (RBC) count, white blood cell (WBC) count, plasma sodium (Na(+)) and potassium (K(+)). Animals with black coat colour had the highest (P < 0.05) mean values of 38.92 ± 0.03 °C, 65.09 ± 1.06 breaths/min, 81.35 ± 0.78 beats/min, 1.70 ± 0.01 for RT, RR, PR and heat stress index (HSI), respectively, followed by brown mouflon and brown with extensive white, while the Badger Face coloured sheep had the least mean values. There were significant (P < 0.05) differences between male and female sheep for RT, RR, PR and HSI. Season had a significant (P < 0.05) effect on RT, RR, PR and HSI. Coat colour and sex also significantly (P < 0.01) affected RBC, WBC, Na(+) and K(+). Seasonal variation (P < 0.05) in all the blood parameters was observed, with the exception of PCV. Interaction effect of coat colour and sex was significant (P < 0.05) on RT and HSI. Correlation coefficients among the measured traits ranged from positive to negative values. These results indicate that selection of white-coloured sheep to attenuate heat stress is desirable in the hot humid tropics.

  12. Numerical Response Surfaces of Volume of Ablation and Retropulsion Amplitude by Settings of Ho:YAG Laser Lithotripter

    PubMed Central

    Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2018-01-01

    Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187

  13. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true for areas with lower GVF in the SPoRT model runs. These differences in the heating and evaporation rates produced subtle yet quantifiable differences in the simulated convective precipitation systems for the selected severe weather case examined.

  14. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  15. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  16. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGES

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  17. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  18. Efficient Optical Logic, Interconnections and Processing Using Quantum Confined Structures

    DTIC Science & Technology

    1991-05-01

    No bis I With bias Ra ( b ’ OotI o lNo bias Use Il) felectro-refraicc n to phase-s’:t A- X I 3 Wavelength 3 Figure II-1. Efficient modulation in a...operation. The top (bottom) mirror of an AFP structure has an amplitude reflection coefficient of rt( b ) and power reflectivity of RT( B )=Ir0)12, viewed...and ( b ) for the case of a=O and a=ln(rb/rt), respectively. Adding (1) and (2), we obtain the total amplitude reflection rto as: -13- I Ii/V aoabl

  19. CASTLE (Redacted)

    DTIC Science & Technology

    1954-05-13

    nont, tho propagation dia- t&IIOo In ldl-tero, tho .,..op rt.to in u .. o/oa along tho x•uh, and tho unoithlt)- in Yolto;lootor/oa al0115 the )’-OJ...root ot the diatoace aDd 01> additional propagation lou at the rato ot about 2 or 3 db,por 1000 km. The ROUEO yield,., otti,...ttd, u aholm, to bo 12...ionbAphorio layer lutlght of about 91) loo. Tho nY .. fono condah of part of the ~OW!d .... .,. pulse, followed by tho £!rat, aooond, third, fourth

  20. A matter of time: improvement of visual temporal processing during training-induced restoration of light detection performance

    PubMed Central

    Poggel, Dorothe A.; Treutwein, Bernhard; Sabel, Bernhard A.; Strasburger, Hans

    2015-01-01

    The issue of how basic sensory and temporal processing are related is still unresolved. We studied temporal processing, as assessed by simple visual reaction times (RT) and double-pulse resolution (DPR), in patients with partial vision loss after visual pathway lesions and investigated whether vision restoration training (VRT), a training program designed to improve light detection performance, would also affect temporal processing. Perimetric and campimetric visual field tests as well as maps of DPR thresholds and RT were acquired before and after a 3 months training period with VRT. Patient performance was compared to that of age-matched healthy subjects. Intact visual field size increased during training. Averaged across the entire visual field, DPR remained constant while RT improved slightly. However, in transition zones between the blind and intact areas (areas of residual vision) where patients had shown between 20 and 80% of stimulus detection probability in pre-training visual field tests, both DPR and RT improved markedly. The magnitude of improvement depended on the defect depth (or degree of intactness) of the respective region at baseline. Inter-individual training outcome variability was very high, with some patients showing little change and others showing performance approaching that of healthy controls. Training-induced improvement of light detection in patients with visual field loss thus generalized to dynamic visual functions. The findings suggest that similar neural mechanisms may underlie the impairment and subsequent training-induced functional recovery of both light detection and temporal processing. PMID:25717307

  1. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality overmore » a pulsing sequence.« less

  2. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.

    2016-08-22

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalatedmore » at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.« less

  3. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

    NASA Astrophysics Data System (ADS)

    Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu

    2015-07-01

    An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).

  4. Design and test of the Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; Ko, Junseok; Kim, Hyo-Bong; Yeom, Han-Kil; In, Sehwan; Park, Seong-Je

    2017-12-01

    Stirling type pulse tube cryocoolers are very attractive for cooling of diverse application because it has it has several inherent advantages such as no moving part in the cold end, low manufacturing cost and long operation life. To develop the Stirling-type pulse tube cryocooler, we need to design a linear compressor to drive the pulse tube cryocooler. A moving magnet type linear motor of dual piston configuration is designed and fabricated, and this compressor could be operated with the electric power of 100 W and the frequency up to 60 Hz. A single stage coaxial type pulse tube cold finger aiming at over 1.5 W at 80K is built and tested with the linear compressor. Experimental investigations have been conducted to evaluate their performance characteristics with respect to several parameters such as the phase shifter, the charging pressure and the operating frequency of the linear compressor.

  5. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  6. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  7. Study on the steady operating state of a micro-pulse electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kui, Zhou; Xing, Luo; Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed,more » constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.« less

  8. One-Joule-per-Pulse Q-Switched 2-micron Solid State Laser

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Modlin, Ed A.; Singh, Upendra N.; Kavaya, Michael J.; Chen, Songsheng; Bai, Yingxin; Petzar, Pual J.; Petros, Mulugeta

    2005-01-01

    Q-switched output of 1.1 J per pulse at 2-micron wavelength has been achieved in a diode pumped Ho:Tm:LuLF laser using a side-pumped rod configuration in a Master-Oscillator-Power-Amplifier (MOPA) architecture. This is the first time that a 2-micron laser has broken the Joule per pulse barrier for Q-switched operation. The total system efficiency reaches 5% and 6.2% for single and double pulse operation, respectively. The system produces excellent 1.4 times of transform limited beam quality.

  9. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  10. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  11. Initial operation of high power ICRF system for long pulse in EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less

  12. Programmable Pulse Generator

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Dart, J. A.

    1982-01-01

    New pulse generator programmed to produce pulses from several ports at different pulse lengths and intervals and virtually any combination and sequence. Unit contains a 256-word-by-16-bit memory loaded with instructions either manually or by computer. Once loaded, unit operates independently of computer.

  13. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  14. Advanced Pulse Oximetry System for Remote Monitoring and Management

    PubMed Central

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841

  15. Advanced pulse oximetry system for remote monitoring and management.

    PubMed

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO(2)) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  16. 20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier

    PubMed Central

    Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh

    2017-01-01

    This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636

  17. Recent developments in high average power driver technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J>

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kVmore » and 700 kV range are reported. A 250 kV, 1.5 kA/cm/sup 2/, 30 ns electron beam diode has operated stably for 1.6 x 10/sup 5/ pulses.« less

  18. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  19. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  20. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE PAGES

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...

    2017-12-05

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  1. On a prolonged interval between rectal cancer (chemo)radiotherapy and surgery

    PubMed Central

    Glimelius, Bengt

    2017-01-01

    Preoperative radiotherapy (RT) or chemoradiotherapy (CRT) is often required before rectal cancer surgery to obtain low local recurrence rates or, in locally advanced tumours, to radically remove the tumour. RT/CRT in tumours responding completely can allow an organ-preserving strategy. The time from the end of the RT/CRT to surgery or to the decision not to operate has been prolonged during recent years. After a brief review of the literature, the relevance of the time interval to surgery is discussed depending upon the indication for RT/CRT. In intermediate rectal cancers, where the aim is to decrease local recurrence rates without any need for down-sizing/-staging, short-course RT with immediate surgery is appropriate. In elderly patients at risk for surgical complications, surgery could be delayed 5–8 weeks. If CRT is used, surgery should be performed when the acute radiation reaction has subsided or after 5–6 weeks. In locally advanced tumours, where CRT is indicated, the optimal delay is 6–8 weeks. In patients not tolerating CRT, short-course RT with a 6–8-week delay is an alternative. If organ preservation is a goal, a first evaluation should preferably be carried out after about 6 weeks, with planned surgery for week 8 if the response is inadequate. In case the response is good, a new evaluation should be carried out after about 12 weeks, with a decision to start a ‘watch-and-wait’ programme or operate. Chemotherapy in the waiting period is an interesting option, and has been the subject of recent trials with promising results. PMID:28256956

  2. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-06

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  3. Image storage in radiation oncology: What did we learn from diagnostic radiology?

    NASA Astrophysics Data System (ADS)

    Blodgett, Kurt; Luick, Marc; Colonias, Athanasios; Gayou, Olivier; Karlovits, Stephen; Werts, E. Day

    2009-02-01

    The Digital Imaging and Communications in Medicine (DICOM) standard was developed by the National Electrical Manufacturers Association (NEMA) and the American College of Radiology (ACR) for medical image archiving and retrieval. An extension to this implemented a standard named DICOM-RT for use in Radiation Oncology. There are currently seven radiotherapy-specific DICOM objects which include: RT Structure Set, RT Plan, RT Dose, RT Image, RT Beams Treatment Record, RT Brachy Treatment Record, and RT Treatment Summary Record. The type of data associated with DICOM-RT includes (1) Radiation treatment planning datasets (CT, MRI, PET) with radiation treatment plans showing beam arrangements, isodose distributions, and dose volume histograms of targets/normal tissues and (2) Image-guided radiation modalities such as Siemens MVision mega-voltage cone beam CT (MV-CBCT). With the advent of such advancing technologies, there has been an exponential increase in image data collected for each patient, and the need for reliable and accessible image storage has become critical. A potential solution is a Radiation Oncology specific picture archiving and communication systems (PACS) that would allow data storage from multiple vendor devices and support the storage and retrieval needs not only of a single site but of a large, multi-facility network of radiation oncology clinics. This PACS system must be reliable, expandable, and cost-effective to operate while protecting sensitive patient image information in a Health Insurance Portability and Accountability Act (HIPAA) compliant environment. This paper emphasizes the expanding DICOM-RT storage requirements across our network of 8 radiation oncology clinics and the initiatives we undertook to address the increased volume of data by using the ImageGrid (CANDELiS Inc, Irvine CA) server and the IGViewer license (CANDELiS Inc, Irvine CA) to create a DICOM-RT compatible PACS system.

  4. Pattern of radiotherapy care in Bulgaria

    PubMed Central

    Hadjieva, Tatiana

    2015-01-01

    The paper reveals the changing pattern of Bulgarian Radiotherapy (RT) care after the successful implementation of 15 projects for 100 million euro under the European Regional Development Fund in Operational Programme for Regional Development 2007–2013. The project enables a total one-step modernization of 14 Bulgarian RT Centres and creation of a new one. At the end of the Programme (mid 2015), 16 new Linacs and 2 modern cobalt machines will be available together with 11 virtual CT simulators, 5 CT simulators, 1 MRI and 1 PET CT for RT planning and all dosimetry facilities needed. Such a modernization has moved Bulgarian RT forward, with 2.7 MV units per one million of population (MV/mln.inh) in comparison with 0.9 MV/mln.inh in 2012. Guild of Bulgarian Radiotherapists includes 70 doctors, 46 physicists and 10 engineers, together with 118 RTTs and 114 nurses and they all have treated 16,447 patients in 2013. Major problems are inadequate reimbursement from the monopolistic Health Insurance Fund (900 euro for 3D conformal RT and 1500 euro for IMRT); fragmentation of RT care with 1–2 MV units per Centre; no payment for patient travel expenses; need for quick and profound education of 26% of doctors and 46% of physicists without RT license, along with continuous education for all others; and resource for 5000–9000 more patients to be treated yearly by RT in order to reach 45–50% from current service of 32%. After 15 years of struggle of RT experts, finally the pattern of Bulgarian RT care at 2014–2015 is approaching the level of modern European RT. PMID:26549991

  5. Genomic Prostate Cancer Classifier Predicts Biochemical Failure and Metastases in Patients After Postoperative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den, Robert B., E-mail: Robert.Den@jeffersonhospital.org; Feng, Felix Y.; Showalter, Timothy N.

    2014-08-01

    Purpose: To test the hypothesis that a genomic classifier (GC) would predict biochemical failure (BF) and distant metastasis (DM) in men receiving radiation therapy (RT) after radical prostatectomy (RP). Methods and Materials: Among patients who underwent post-RP RT, 139 were identified for pT3 or positive margin, who did not receive neoadjuvant hormones and had paraffin-embedded specimens. Ribonucleic acid was extracted from the highest Gleason grade focus and applied to a high-density-oligonucleotide microarray. Receiver operating characteristic, calibration, cumulative incidence, and Cox regression analyses were performed to assess GC performance for predicting BF and DM after post-RP RT in comparison with clinical nomograms.more » Results: The area under the receiver operating characteristic curve of the Stephenson model was 0.70 for both BF and DM, with addition of GC significantly improving area under the receiver operating characteristic curve to 0.78 and 0.80, respectively. Stratified by GC risk groups, 8-year cumulative incidence was 21%, 48%, and 81% for BF (P<.0001) and for DM was 0, 12%, and 17% (P=.032) for low, intermediate, and high GC, respectively. In multivariable analysis, patients with high GC had a hazard ratio of 8.1 and 14.3 for BF and DM. In patients with intermediate or high GC, those irradiated with undetectable prostate-specific antigen (PSA ≤0.2 ng/mL) had median BF survival of >8 years, compared with <4 years for patients with detectable PSA (>0.2 ng/mL) before initiation of RT. At 8 years, the DM cumulative incidence for patients with high GC and RT with undetectable PSA was 3%, compared with 23% with detectable PSA (P=.03). No outcome differences were observed for low GC between the treatment groups. Conclusion: The GC predicted BF and metastasis after post-RP irradiation. Patients with lower GC risk may benefit from delayed RT, as opposed to those with higher GC; however, this needs prospective validation. Genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.« less

  6. Localization of Cognitive Operations in the Human Brain.

    ERIC Educational Resources Information Center

    Posner, Michael I.; And Others

    1988-01-01

    Hypothesizes that the human brain localizes mental operations which are integrated in the performance of cognitive tasks such as reading. Provides support of this hypothesis from studies in neural imaging, mental imagery, timing, and memory. (RT)

  7. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  8. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    USGS Publications Warehouse

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  9. Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia

    NASA Astrophysics Data System (ADS)

    Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin

    2018-02-01

    The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.

  10. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  11. Post-operative radiation therapy for advanced-stage oropharyngeal cancer.

    PubMed

    Hansen, Eric; Panwala, Kathryn; Holland, John

    2002-11-01

    Between 1985 and 1999, 43 patients with locally-advanced, resectable oropharyngeal cancer were treated with combined surgery and post-operative radiation therapy (RT) at Oregon Health and Science University. Five patients (12 per cent) had Stage III disease and 38 patients (88 per cent) had Stage IV disease. All patients had gross total resections of the primary tumour. Thirty-seven patients had neck dissections for regional disease. RT consisted of a mean tumour-bed dose of 63.0 Gy delivered in 1.8-2.0 Gy fractions over a mean of 49 days. At three- and five-years, the actuarial local control was 96 per cent and the actuarial local/regional control was 80 per cent. The three- and five-year actuarial rates of distant metastases were 41 per cent and 46 per cent, respectively. The actuarial overall survival at three- and five-years was 41 per cent and 34 per cent, respectively. The actuarial rates of progression-free survival were 49 per cent at three-years and 45 per cent at five years. Combined surgery and post-operative RT for advanced-stage oropharyngeal cancer results in excellent local/regional control. This particular group of patients experienced a high-rate of developing distant metastases.

  12. Practical pulse engineering: Gradient ascent without matrix exponentiation

    NASA Astrophysics Data System (ADS)

    Bhole, Gaurav; Jones, Jonathan A.

    2018-06-01

    Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

  13. Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry.

    PubMed

    Neuhaus, Joerg; Bauer, Dominik; Zhang, Jing; Killi, Alexander; Kleinbauer, Jochen; Kumkar, Malte; Weiler, Sascha; Guina, Mircea; Sutter, Dirk H; Dekorsy, Thomas

    2008-12-08

    The pulse shaping dynamics of a diode-pumped laser oscillator with active multipass cell was studied experimentally and numerically. We demonstrate the generation of high energy subpicosecond pulses with a pulse energy of up to 25.9 microJ at a pulse duration of 928 fs directly from a thin-disk laser oscillator. These results are achieved by employing a selfimaging active multipass geometry operated in ambient atmosphere. Stable single pulse operation has been obtained with an average output power in excess of 76 W and at a repetition rate of 2.93 MHz. Self starting passive mode locking was accomplished using a semiconductor saturable absorber mirror. The experimental results are compared with numerical simulations, showing good agreement including the appearance of Kelly sidebands. Furthermore, a modified soliton-area theorem for approximating the pulse duration is presented. (c) 2008 Optical Society of America

  14. Defining the role of a PACS technologist.

    PubMed

    Cabrera, Alfred

    2002-01-01

    As hospitals convert from conventional image processing to picture archiving and communication systems (PACS) technology, new job opportunities arose for PACS analysts, PACS system administrators, PACS operators, and PACS trainers. To support a PACS, these positions require education in computer information systems and work experience in information technology. At Texas Children's Hospital, new roles for radiologic technologists (RT) in supporting the operation of PACS were not recognized until after implementation of the filmless system. A new position entitled PACS technologis was created, but roles and responsibilities largely were undefined. The inadequate job description contributed to problems with appropriate utilization of the PACS technologist. The primary role of the technologist was nebulous, and the priority of tasks was undefined. There was an excessive volume of information and technology to be mastered. The role represented a new paradigm, so no template for the job description was available that encompassed the array of functions to be performed. The result was a "morph" of the RT and PACS analyst job descriptions that was contrived and unworkable. The role of the PACS technologist is vital to the operation of the radiology department that uses PACS. There is a well-established need for cross training of RTs in PACS. PACS technology is not taught in RT training programs. There are recurrent communications problems between RT and Information Technology (IT) personnel. The PACS technologist can participate in a number of activities that improve the overall level of proficiency in the imaging operation, such as specialized PACS training for RTs, collection and analysis of quality control data, and planning for installations of PACS acquisition modalities. RTs have acquired knowledge of medical terminology and human anatomy, imaging modalities, and workflow. These qualifications constitute a common basis for communication with other RTs, physicians, and other health care providers. In addition the appropriate candidate for PACS technologist should have computer software and hardware knowledge, interpersonal skills, oral and written communications skills, and analytical skills to troubleshoot issues. This report will describe the evolution of a more accurate job description for the PACS technologist, the relationship between the PACS technologist and the RT supervisor, and specific tasks are appropriate for the PACS technologist to perform.

  15. SAFEGUARDS REPORT FOR THE NORTHROP PULSE RADIATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinauer, E.; Thomas, R.D.

    1961-03-22

    Ae description is given of the Northrop pulse Radiation Facility, (NPRF), which consists of a TRlGA Mark-F reactor and associated supporting equipment. The NPRF was designed to operate in the following modes: Mode 1-100 kw steady-state operation; Mode II--Pulsed operation up to a maximum transient giving a maximum measured fuel element temperature of 470 deg C, which corresponds to an energy release of about 18 Mw-sec (approximately 1.9% sigma K/ K). The movable reactor will be operated in three general areas in the pool: adjacent to the exposure room; adjacent to the beam ponts; or at intermediate positions. Based onmore » the analyses presented and operating experience with the prototype TRIGA Mark F and other TRlGA reactors, it is concluded that operation of the NPRF does not present any undue hazard to the health and safety of the operating personnel or the public. (auth)« less

  16. Differential effects of visual-spatial attention on response latency and temporal-order judgment.

    PubMed

    Neumann, O; Esselmann, U; Klotz, W

    1993-01-01

    Theorists from both classical structuralism and modern attention research have claimed that attention to a sensory stimulus enhances processing speed. However, they have used different operations to measure this effect, viz., temporal-order judgment (TOJ) and reaction-time (RT) measurement. We report two experiments that compared the effect of a spatial cue on RT and TOJ. Experiment 1 demonstrated that a nonmasked, peripheral cue (the brief brightening of a box) affected both RT and TOJ. However, the former effect was significantly larger than the latter. A masked cue had a smaller, but reliable, effect on TOJ. In Experiment 2, the effects of a masked cue on RT and TOJ were compared under identical stimulus conditions. While the cue had a strong effect on RT, it left TOJ unaffected. These results suggest that a spatial cue may have dissociable effects on response processes and the processes that lead to a conscious percept. Implications for the concept of direct parameter specification and for theories of visual attention are discussed.

  17. Study on a Single-Stage 120 HZ Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, Y. Z.; Gan, Z. H.; Qiu, L. M.; Chen, J.; Li, Z. P.

    2010-04-01

    Miniaturization of pulse tube cryocoolers is required for some particular applications where size and mass for devices are limited. In order to pack more cooling power in a small volume, higher operating frequencies are commonly used for Stirling-type pulse tube cryocoolers. To maintain high efficiency of the regenerator with a higher frequency, a higher charging pressure, smaller hydraulic diameters of regenerator material and a shorter regenerator length should be applied. A rapid growth of research and development on pulse tube cryocoolers operating at a high frequency over 100 Hz in the last 3 years has occurred. In this study, a single stage pulse tube cryocooler with 120 Hz to provide 10 W of lift at 80 K has been developed by using the numerical model, known as REGEN 3.2. Experiments performed on this cryocooler driven by a CFIC linear compressor show that a no-load temperature of 49.6 K was achieved and the net refrigeration power at 78.5 K was 8.0 W. The effect of pulse tube orientation was tested, and the copper velvet as a regenerator matrix was proposed for high frequency operation.

  18. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells.

    PubMed

    Xia, Bin; Zou, Yang; Xu, Zhiling; Lv, Yonggang

    2017-11-01

    Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  19. Robotic versus Open Thyroidectomy for Differentiated Thyroid Cancer: An Evidence-Based Review.

    PubMed

    Liu, Shirley Yuk Wah; Ng, Enders Kwok Wai

    2016-01-01

    While open thyroidectomy (OT) is advocated as the gold standard treatment for differentiated thyroid cancer, the contemporary use of robotic thyroidectomy (RT) is often controversial. Although RT combines the unique benefits of the surgical robot and remote access thyroidectomy, its applicability on cancer patients is challenged by the questionable oncological benefits and safety. This review aims to analyze the current literature evidence in comparing RT to OT on thyroid cancers for their perioperative and oncological outcomes. To date, no randomized controlled trial is available in comparing RT to OT. All published studies are nonrandomized or retrospective comparisons. Current data suggests that RT compares less favorably than OT for longer operative time, higher cost, and possibly inferior oncological control with lower number of central lymph nodes retrieved. In terms of morbidity, quality of life outcomes, and short-term recurrence rates, RT and OT are comparable. While conventional OT continues to be appropriate for most thyroid cancers, RT should better be continued by expert surgeons on selected patients who have low-risk thyroid cancers and have high expectations on cosmetic outcomes. Future research should embark on prospective randomized studies for unbiased comparisons. Long-term follow-up studies are also needed to evaluate outcomes on recurrence and survival.

  20. Transition of AIRS Products to the National Weather Service

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    Short-term Prediction Research and Transition Center (SPoRT) is a proven community leader for transitioning satellite products to operational end users and is working hard to bring data from Atmospheric Infrared Sounder (AIRS) to forecasters. SPoRT products using AIRS data are currently or will soon be evaluated at WFOs and National Centers (1) T and q profiles: HWT, Alaska WFOs, HRD/OPC, HMT (2) Ozone profiles: HPC/OPC (3) Carbon Monoxide: Southern and Western Region WFOs SPoRT is actively evaluating differences between V5 and V6 profiles for selected cases and will continue to provide feedback to the AIRS team as V6 development efforts conclude.

  1. Three-Stage Production Cost Modeling Approach for Evaluating the Benefits of Intra-Hour Scheduling Between Balancing Authorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaan, Nader; Milligan, Michael; Hunsaker, Matt

    This paper introduces a production cost modeling approach for evaluating the benefits of intra-hour scheduling among Balancing Authorities (BAs). System operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA) real time (RT). In addition to contingency reserve, each BA will need to carry out 'up' and 'down' load following and regulation reserve capacity requirements in the DA and HA time frames. In the RT simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current RT operation with hourly schedules, a new constraint was introduced to force each BA netmore » exchange schedule deviation from HA schedules to be within North American Electric Reliability Corporation (NERC) area control error (ACE) limits. Case studies that investigate the benefits of moving from hourly exchange schedules between Western Electricity Coordinating Council (WECC) BAs into 10-minute exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.« less

  2. Note: A portable pulsed neutron source based on the smallest sealed-type plasma focus device.

    PubMed

    Niranjan, Ram; Rout, R K; Mishra, Prabhat; Srivastava, Rohit; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2011-02-01

    Development and operation of a portable and compact pulsed neutron source based on sealed-type plasma focus (PF) device are reported. The unit is the smallest sealed-type neutron producing PF device. The effective volume of the PF unit is 33 cm(3) only. A compact size single capacitor (4 μF) is used as the energy driver. A battery based power supply unit is used for charging the capacitor and triggering the spark gap. The PF unit is operated at 10 kV (200 J) and at a deuterium gas filling pressure of 8 mb. The device is operated over a time span of 200 days and the neutron emissions have been observed for 200 shots without changing the gas in between the shots. The maximum yield of this device is 7.8 × 10(4) neutrons/pulse. Beyond 200 shots the yield is below the threshold (1050 neutrons/pulse) of our (3)He detector. The neutron energy is evaluated using time of flight technique and the value is (2.49 ± 0.27) MeV. The measured neutron pulse width is (24 ± 5) ns. Multishot and long duration operations envisage the potentiality of such portable device for repetitive mode of operation.

  3. Effect of Irradiation on Tumor Microenvironment and Bone Marrow Cell Migration in a Preclinical Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Jonathan L.; Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan; Krueger, Sarah A.

    Purpose: To characterize the tumor microenvironment after standard radiation therapy (SRT) and pulsed radiation therapy (PRT) in Lewis lung carcinoma (LLC) allografts. Methods and Materials: Subcutaneous LLC tumors were established in C57BL/6 mice. Standard RT or PRT was given at 2 Gy/d for a total dose of 20 Gy using a 5 days on, 2 days off schedule to mimic clinical delivery. Radiation-induced tumor microenvironment changes were examined after treatment using flow cytometry and antibody-specific histopathology. Normal tissue effects were measured using noninvasive {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography after naïve animals were given whole-lung irradiation to 40 Gy in 4 weeks using the same 2-Gy/dmore » regimens. Results: Over the 2 weeks of therapy, PRT was more effective than SRT at reducing tumor growth rate (0.31 ± 0.02 mm{sup 3}/d and 0.55 ± 0.04 mm{sup 3}/d, respectively; P<.007). Histopathology showed a significant comparative reduction in the levels of Ki-67 (14.5% ± 3%), hypoxia (10% ± 3.5%), vascular endothelial growth factor (2.3% ± 1%), and stromal-derived factor-1α (2.5% ± 1.4%), as well as a concomitant decrease in CD45{sup +} bone marrow–derived cell (BMDC) migration (7.8% ± 2.2%) after PRT. The addition of AMD3100 also decreased CD45{sup +} BMDC migration in treated tumors (0.6% ± 0.1%). Higher vessel density was observed in treated tumors. No differences were observed in normal lung tissue after PRT or SRT. Conclusions: Pulsed RT–treated tumors exhibited slower growth and reduced hypoxia. Pulsed RT eliminated initiation of supportive mechanisms utilized by tumors in low oxygen microenvironments, including angiogenesis and recruitment of BMDCs.« less

  4. Investigation of small transverse electric CO/sub 2/ waveguide lasers for fuzing applications. Contractor report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochuli, U.; McGuire, D.

    1982-10-01

    The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.

  5. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    PubMed

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement.

    PubMed

    Concerto, Carmen; Infortuna, Carmenrita; Chusid, Eileen; Coira, Diego; Babayev, Jacqueline; Metwaly, Rowan; Naenifard, Hesam; Aguglia, Eugenio; Battaglia, Fortunato

    2017-10-01

    Energy drinks are thought to improve certain aspects of athletic and cognitive performances. Moreover, less is understood about physiological mechanisms that might underlie these effects. The aim of this study was to examine the influence of sugar-free energy drink (SFED) ingestion on corticomotor excitability and plasticity. Fourteen college students consumed a commercially available SFED or a "dummy" drink. By using Transcranial magnetic Stimulation (TMS) we investigated resting motor threshold (RMT), motor evoked potential (MEP) amplitude and cortical silent period (CSP). Paired-pulse stimulation was used to assess short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Sensorimotor integration was investigated with the short- and long-afferent inhibition paradigms (SAI and LAI). Cortical plasticity was studied with the paired associative stimulation (PAS) paradigm. In addition, we examined the effect of SFED on simple reaction time (RT), pre-movement facilitation and post-exercise facilitation (PEF). SFED consumption decreased ICF, shortened RT, increased pre-movement facilitation and PEF of the motor evoked potentials. These results demonstrate that SFED consumption induced a shorter RT that is paralleled by changes in cortical excitability at rest, prior and after a non-fatiguing muscle contraction. These acute changes in brain function might be of relevance in understanding the mechanisms underlying the enhancement of psychomotor performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An Investigation of Run-Time Operations in a Heterogeneous Desktop Grid Environment: The Texas Tech University Desktop Grid Case Study

    ERIC Educational Resources Information Center

    Perez, Jerry F.

    2013-01-01

    The goal of the dissertation study was to evaluate the existing DG scheduling algorithm. The evaluation was developed through previously explored simulated analyses of DGs performed by researchers in the field of DG scheduling optimization and to improve the current RT framework of the DG at TTU. The author analyzed the RT of an actual DG, thereby…

  8. Genetic and Epigenetic Biomarkers for Recurrent Prostate Cancer After Radiotherapy

    DTIC Science & Technology

    2013-05-01

    prostatectomy are urinary incontinence , erectile dysfunction, and typical post-operative complications. Radiation therapy (RT) shows several distinct...includes a low risk of urinary incontinence . Major disadvantage of external beam RT include a treatment course of 8-9 weeks. -50% of patients have some...this treatment include the risk of acute urinary retention. Currently, the level of PSA, clinical stage and the Gleason score are used to

  9. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    NASA Astrophysics Data System (ADS)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  10. Cavity-Dumped Communication Laser Design

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    2003-01-01

    Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.

  11. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  12. Using the Transient Response of WO₃ Nanoneedles under Pulsed UV Light in the Detection of NH₃ and NO₂.

    PubMed

    Gonzalez, Oriol; Welearegay, Tesfalem G; Vilanova, Xavier; Llobet, Eduard

    2018-04-26

    Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C). It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time). The technique is useful for detecting both oxidizing (NO₂) and reducing (NH₃) gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.

  13. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  14. A Prolonged Time Interval Between Trauma and Prophylactic Radiation Therapy Significantly Increases the Risk of Heterotopic Ossification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourad, Waleed F., E-mail: Waleed246@gmail.com; Department of Radiation Oncology, Beth Israel Medical Center, New York, NY; Packianathan, Satyaseelan

    2012-03-01

    Purpose: To ascertain whether the time from injury to prophylactic radiation therapy (RT) influences the rate of heterotopic ossification (HO) after operative treatment of displaced acetabular fractures. Methods and Materials: This is a single-institution, retrospective analysis of patients referred for RT for the prevention of HO. Between January 2000 and January 2009, 585 patients with displaced acetabular fractures were treated surgically followed by RT for HO prevention. We analyzed the effect of time from injury on prevention of HO by RT. In all patients, 700 cGy was prescribed in a single fraction and delivered within 72 hours postsurgery. The patientsmore » were stratified into five groups according to time interval (in days) from the date of their accident to the date of RT: Groups A {<=}3, B {<=}7, C {<=}14, D {<=}21, and E >21days. Results: Of the 585 patients with displaced acetabular fractures treated with RT, (18%) 106 patients developed HO within the irradiated field. The risk of HO after RT increased from 10% for RT delivered {<=}3 days to 92% for treatment delivered >21 days after the initial injury. Wilcoxon test showed a significant correlation between the risk of HO and the length of time from injury to RT (p < 0.0001). Chi-square test and multiple logistic regression analysis showed no significant association between all other factors and the risk of HO (race, gender, cause and type of fracture, surgical approach, or the use of indomethacin). Conclusions: Our data suggest that there is higher incidence and risk of HO if prophylactic RT is significantly delayed after a displaced acetabular fracture. Thus, RT should be administered as early as clinically possible after the trauma. Patients undergoing RT >3 weeks from their displaced acetabular fracture should be informed of the higher risk (>90%) of developing HO despite prophylaxis.« less

  15. On the Impact of Multi-GNSS Observations on Real-Time Precise Point Positioning Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ding, Wenwu; Teferle, Norman; Kaźmierski, Kamil; Laurichesse, Denis; Yuan, Yunbin

    2017-04-01

    Observations from multiple Global Navigation Satellite System (GNSS) can improve the performance of real-time (RT) GNSS meteorology, in particular of the Zenith Total Delay (ZTD) estimates. RT ZTD estimates in combination with derived precipitable water vapour estimates can be used for weather now-casting and the tracking of severe weather events. While a number of published literature has already highlighted this positive development, in this study we describe an operational RT system for extracting ZTD using a modified version of the PPP-wizard (with PPP denoting Precise Point Positioning). Multi-GNSS, including GPS, GLONASS and Galileo, observation streams are processed using a RT PPP strategy based on RT satellite orbit and clock products from the Centre National d'Etudes Spatiales (CNES). A continuous experiment for 30 days was conducted, in which the RT observation streams of 20 globally distributed stations were processed. The initialization time and accuracy of the RT troposphere products using single and/or multi-system observations were evaluated. The effect of RT PPP ambiguity resolution was also evaluated. The results revealed that the RT troposphere products based on single system observations can fulfill the requirements of the meteorological application in now-casting systems. We noted that the GPS-only solution is better than the GLONASS-only solution in both initialization and accuracy. While the ZTD performance can be improved by applying RT PPP ambiguity resolution, the inclusion of observations from multiple GNSS has a more profound effect. Specifically, we saw that the ambiguity resolution is more effective in improving the accuracy, whereas the initialization process can be better accelerated by multi-GNSS observations. Combining all systems, RT troposphere products with an average accuracy of about 8 mm in ZTD were achieved after an initialization process of approximately 9 minutes, which supports the application of multi-GNSS observations and ambiguity resolution for RT meteorological applications.

  16. SCAR Radiologic Technologist Survey: analysis of technologist workforce and staffing.

    PubMed

    Reiner, Bruce; Siegel, Eliot; Carrino, John A; McElveny, Ceela

    2002-09-01

    One of the greatest dilemmas facing medical imaging departments today is the worsening personnel crisis in the radiologic technologist (RT) workforce. As the volume and complexity of medical imaging studies continues to increase, an unprecedented imbalance exists between RT supply and demand. A number of etiologic factors have been postulated to contribute to this RT shortage including decreasing morale, perceived inadequacies in compensation, decreasing number of training programs, and limitations in the career ladder. Previous studies have cited improved technologist productivity as imaging departments successfully transition from film-based to filmless operation. This study was undertaken to address the impact of digital technologies (information systems, PACS, digital radiography) on technologist productivity, in an attempt to determine whether these technologies can be used to positively affect the existing RT workforce imbalance. A total of 112 facilities participated in this nationwide study, with representation of imaging providers that paralleled the demographic profile of the marketplace as a whole. Survey results indicate the existing RT staffing shortage is greatest within academic and rural-based hospitals and is most severe in the area of general radiography, which accounts for 65-70% of imaging department volumes. For general radiography alone, respondents report an average shortage of 2 RT full-time equivalents (FTE's) per institution, when comparing the number of budgeted RT FTE's versus the actual number of RT FTE's. Preliminary results indicate that at this time, RT staffing shortages are not affected by the presence or absence of digital information technologies. Additional research is planned through a five-year longitudinal data collection, to better delineate the complex relationship that exists between implementation of digital technologies and RT staffing.

  17. A DICOM-RT radiation oncology ePR with decision support utilizing a quantified knowledge base from historical data

    NASA Astrophysics Data System (ADS)

    Documet, Jorge R.; Liu, Brent; Le, Anh; Law, Maria

    2008-03-01

    During the last 2 years we have been working on developing a DICOM-RT (Radiation Therapy) ePR (Electronic Patient Record) with decision support that will allow physicists and radiation oncologists during their decision-making process. This ePR allows offline treatment dose calculations and plan evaluation, while at the same time it compares and quantifies treatment planning algorithms using DICOM-RT objects. The ePR framework permits the addition of visualization, processing, and analysis tools, which combined with the core functionality of reporting, importing and exporting of medical studies, creates a very powerful application that can improve the efficiency while planning cancer treatments. Usually a Radiation Oncology department will have disparate and complex data generated by the RT modalities as well as data scattered in RT Information/Management systems, Record & Verify systems, and Treatment Planning Systems (TPS) which can compromise the efficiency of the clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997 [1,2]. However, they are not broadly used yet by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our attempt is to show a proof-of-concept that a DICOM-RT ePR system can be developed as a foundation to perform medical imaging informatics research in developing decision-support tools and knowledge base for future data mining applications.

  18. Room-temperature ballistic transport in III-nitride heterostructures.

    PubMed

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  19. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    NASA Astrophysics Data System (ADS)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  20. Global operating theatre distribution and pulse oximetry supply: an estimation from reported data.

    PubMed

    Funk, Luke M; Weiser, Thomas G; Berry, William R; Lipsitz, Stuart R; Merry, Alan F; Enright, Angela C; Wilson, Iain H; Dziekan, Gerald; Gawande, Atul A

    2010-09-25

    Surgery is an essential part of health care, but resources to ensure the availability of surgical services are often inadequate. We estimated the global distribution of operating theatres and quantified the availability of pulse oximetry, which is an essential monitoring device during surgery and a potential measure of operating theatre resources. We calculated ratios of the number of operating theatres to hospital beds in seven geographical regions worldwide on the basis of profiles from 769 hospitals in 92 countries that participated in WHO's safe surgery saves lives initiative. We used hospital bed figures from 190 WHO member states to estimate the number of operating theatres per 100,000 people in 21 subregions throughout the world. To estimate availability of pulse oximetry, we sent surveys to anaesthesia providers in 72 countries selected to ensure a geographically and demographically diverse sample. A predictive regression model was used to estimate the pulse oximetry need for countries that did not provide data. The estimated number of operating theatres ranged from 1·0 (95% CI 0·9-1·2) per 100,000 people in west sub-Saharan Africa to 25·1 (20·9-30·1) per 100,000 in eastern Europe. High-income subregions all averaged more than 14 per 100,000 people, whereas all low-income subregions, representing 2·2 billion people, had fewer than two theatres per 100,000. Pulse oximetry data from 54 countries suggested that around 77,700 (63,195-95,533) theatres worldwide (19·2% [15·2-23·9]) were not equipped with pulse oximeters. Improvements in public-health strategies and monitoring are needed to reduce disparities for more than 2 billion people without adequate access to surgical care. WHO. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  2. Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz

    NASA Astrophysics Data System (ADS)

    Mason, Paul; Divoký, Martin; Butcher, Thomas; Pilař, Jan; Ertel, Klaus; Hanuš, Martin; De Vido, Mariastefania; Banerjee, Saumyabrata; Phillips, Jonathan; Smith, Jodie; Hollingham, Ian; Muresan, Mihai-George; Landowski, Brian; Suarez-Merchan, Jorge; Thomas, Adrian; Dominey, Mark; Benson, Luke; Lintern, Andrew; Costello, Billy; Tomlinson, Stephanie; Blake, Steve; Tyldesley, Mike; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Edwards, Chris; Mocek, Tomas; Collier, John

    2017-05-01

    In this paper we present details of the commissioning of DiPOLE100, a kW-class nanosecond pulsed diode pumped solid state laser (DPSSL), at the HiLASE Centre at Dolní Břežany in the Czech Republic. The laser system, built at the Central Laser Facility (CLF), was dismantled, packaged, shipped and reassembled at HiLASE over a 12 month period by a collaborative team from the CLF and HiLASE. First operation of the laser at the end of 2016 demonstrated amplification of 10 ns pulses at 10 Hz pulse repetition rate to an energy of 105 J at 1029.5 nm, representing the world's first kW average power, high-energy, nanosecond pulsed DPSSL. To date DiPOLE100 has been operated for over 2.5 hours at energies in excess of 100 J at 10 Hz, corresponding to nearly 105 shots, and has demonstrated long term energy stability of less than 1% RMS for continuous operation over 1 hour. This confirms the power scalability of multislab cryogenic gas-cooled amplifier technology and demonstrates its potential as a laser driver for next generation scientific, industrial, and medical applications.

  3. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.

  4. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  5. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  6. Low and High-Power Inductive Pulsed Plasma Thruster Development Testing at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Martin, Adam K.; Greve, Christine M.; Riley, Daniel P.

    2017-01-01

    The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.

  7. The Effect of a Pulsed Interference Signal on an Adaptive Array.

    DTIC Science & Technology

    1981-04-01

    eigenvectors exist.) Using a spectral decomp- osition formula [10,11], we may write e-kM in the form -kM -k(T- )-kpo 3 -kg i (e -k = e a : .iZ e eie i , (28...N 0 (No/T b) In addition, for this analysis we shall assume the interference power at the array output has the same effect on detector performance... Sensitive Adaptive Array," to appear in IEEE Trans. Antennas and Propagation. 7. R.T. Compton, Jr., "The Tripole Antenna - An Adaptive Array with Full

  8. Real-time PCR assay for the diagnosis of pleural tuberculosis

    PubMed Central

    Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola

    2017-01-01

    Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638

  9. Esophageal cancer management controversies: Radiation oncology point of view

    PubMed Central

    Tai, Patricia; Yu, Edward

    2014-01-01

    Esophageal cancer treatment has evolved from single modality to trimodality therapy. There are some controversies of the role, target volumes and dose of radiotherapy (RT) in the literature over decades. The present review focuses primarily on RT as part of the treatment modalities, and highlight on the RT volume and its dose in the management of esophageal cancer. The randomized adjuvant chemoradiation (CRT) trial, intergroup trial (INT 0116) enrolled 559 patients with resected adenocarcinoma of the stomach or gastroesophageal junction. They were randomly assigned to surgery plus postoperative CRT or surgery alone. Analyses show robust treatment benefit of adjuvant CRT in most subsets for postoperative CRT. The Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study (CROSS) used a lower RT dose of 41.4 Gray in 23 fractions with newer chemotherapeutic agents carboplatin and paclitaxel to achieve an excellent result. Target volume of external beam radiation therapy and its coverage have been in debate for years among radiation oncologists. Pre-operative and post-operative target volumes are designed to optimize for disease control. Esophageal brachytherapy is effective in the palliation of dysphagia, but should not be given concomitantly with chemotherapy or external beam RT. The role of brachytherapy in multimodality management requires further investigation. On-going studies of multidisciplinary treatment in locally advanced cancer include: ZTOG1201 trial (a phase II trial of neoadjuvant and adjuvant CRT) and QUINTETT (a phase III trial of neoadjuvant vs adjuvant therapy with quality of life analysis). These trials hopefully will shed more light on the future management of esophageal cancer. PMID:25132924

  10. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, J.T.

    1994-03-08

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.

  11. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, James T.

    1994-01-01

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.

  12. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  13. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at high pressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NO(x) emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8.

  14. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  15. Electric converters of electromagnetic strike machine with battery power

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  16. Plasma Switch for High-Power Active Pulse Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less

  17. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  18. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard

    2013-01-01

    Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.

  19. The shaped pulses control and operation on the SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao

    2018-04-01

    The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.

  20. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    NASA Astrophysics Data System (ADS)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  1. Kinetic processes determining attainable pulse repetition rate in pulsed metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Petrash, Gueorgii G.

    1998-06-01

    A review of the investigations of the main processes determining the attainable pulse repetition rate of elemental metal vapor pulsed gas discharge self-terminating lasers, such as copper vapor laser, gold vapor laser, lead vapor laser, is given. Kinetic processes during an excitation pulse and interpulse period are considered as well as experiments with lasers operating at high repetition rate.

  2. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  3. Transition from Research to Operations: Assessing Value of Experimental Forecast Products within the NWSFO Environment

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Wohlman, Richard; Bradshaw, Tom; Burks, Jason; Jedlovec, Gary; Goodman, Steve; Darden, Chris; Meyer, Paul

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NWS forecast operations and decision-making. To meet long-term program expectations, it is not sufficient simply to give forecasters sophisticated workstations or new forecast products without fully assessing the ways in which they will be utilized. Close communication must be established between the research and operational communities so that developers have a complete understanding of user needs. In turn, forecasters must obtain a more comprehensive knowledge of the modeling and sensing tools available to them. A major goal of the SPoRT Program is to develop metrics and conduct assessment studies with NWS forecasters to evaluate the impacts and benefits of ESE experimental products on forecast skill. At a glance the task seems relatively straightforward. However, performing assessment of experimental products in an operational environment is demanding. Given the tremendous time constraints placed on NWS forecasters, it is imperative that forecaster input be obtained in a concise unobtrusive manor. Great care must also be taken to ensure that forecasters understand their participation will eventually benefit them and WFO operations in general. Two requirements of the assessment plan developed under the SPoRT activity are that it 1) Can be implemented within the WFO environment; and 2) Provide tangible results for BOTH the research and operational communities. Supplemental numerical quantitative precipitation forecasts (QPF) were chosen as the first experimental SPoRT product to be evaluated during a Pilot Assessment Program conducted 1 May 2003 within the Huntsville AL National Weather Service Forecast Office. Forecast time periods were broken up into six- hour bins ranging from zero to twenty-four hours. Data were made available for display in AWIPS on an operational basis so they could be efficiently incorporated into the forecast process. The methodology used to assess the value of experimental QPFs compared to available operational products is best described as a three-tier approach involving both forecasters and research scientists. Tier-one is a web-based survey completed by duty forecasters on the aviation and public desks. The survey compiles information on how the experimental product was used in the forecast decision making process. Up to 6 responses per twenty-four hours can be compiled during a precipitation event. Tier-two consists of an event post mortem and experimental product assessment performed daily by the NASA/NWS Liaison. Tier-three is a detailed breakdown/analysis of specific events targeted by either the NWS SO0 or SPoRT team members. The task is performed by both NWS and NASA research scientists and may be conducted once every couple of months. The findings from the Pilot Assessment Program will be reported at the meeting.

  4. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  5. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. Hybrid insulation coordination and optimisation for 1 MV operation of pulsed electron accelerator KALI-30GW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthil, K.; Mitra, S.; Sandeep, S., E-mail: sentilk@barc.gov.in

    In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltagemore » pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)« less

  8. Widely tunable 11 GHz femtosecond fiber laser based on a nonmode-locked source [Widely tunable 11 GHz femtosecond fiber laser based on a non-modelocked source

    DOE PAGES

    Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...

    2013-08-19

    An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less

  9. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  10. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  11. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  12. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  13. 1030-nm diode-laser-based light source delivering pulses with nanojoule energies and picosecond duration adjustable by mode locking or pulse gating operation

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.

    2017-02-01

    A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.

  14. Extraction of pulse repetition intervals from sperm whale click trains for ocean acoustic data mining.

    PubMed

    Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel

    2013-02-01

    The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.

  15. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  16. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  17. Room-temperature operation of a Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Welford, D.; Moulton, P. F.

    1988-01-01

    A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.

  18. Short Diffusion Time Diffusion-Weighted Imaging With Oscillating Gradient Preparation as an Early Magnetic Resonance Imaging Biomarker for Radiation Therapy Response Monitoring in Glioblastoma: A Preclinical Feasibility Study.

    PubMed

    Bongers, Andre; Hau, Eric; Shen, Han

    2018-01-04

    To investigate a novel alternative diffusion-weighted imaging (DWI) approach using oscillating gradients preparation (OGSE) to obtain much shorter effective diffusion times (Δ eff ) for tumor response monitoring by apparent diffusion coefficient (ADC) mapping in a glioblastoma mouse model. Twenty-four BALB/c nude mice inoculated with U87 glioblastoma cells were randomized into a control group and an irradiation group, which underwent a 15-day fractioned radiation therapy (RT) course with 2 Gy/d. Therapy response was assessed by mapping of ADCs at 6 time points using an in-house implementation of a cos-OGSE DWI sequence with Δ eff  = 1.25 ms and compared with a standard pulsed gradient DWI protocol (PGSE) with typical clinical diffusion time Δ eff  = 18 ms. Longitudinal ADC changes in tumor and contralateral white matter (WM) were statistically assessed using repeated-measures analysis of variance and post hoc (Sidak) testing. On short Δ eff OGSE maps tumor ADC was generally 30%-50% higher than in surrounding WM. Areas correlated well with histology. Tumor identification was generally more difficult on PGSE maps owing to nonsignificant WM/tumor contrast. During RT, OGSE maps also showed significant tumor ADC increase (approximately 15%) in response to radiation, consistently seen after 14-Gy RT dose. The clinical reference (PGSE) showed lower sensitivity to radiation changes, and no significant response across the radiation group and time course could be detected. Our short Δ eff DWI method using OGSE better reflected histologically defined tumor areas and enabled more consistent and earlier detection of microstructural radiation changes than conventional methods. Oscillating gradients preparation offers significant potential as a robust microstructural RT response biomarker, potentially helping to shift important therapy decisions to earlier stages in the RT time course. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  20. Assessing Operational Total Lightning Visualization Products

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.

    2010-01-01

    In May 2003, NASA's Short-term Prediction Research and Transition (SPoRT) program successfully provided total lightning data from the North Alabama Lightning Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total lightning networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total lightning data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total lightning networks to streamline training and science sharing.

  1. Long-duration high-efficiency operation of a continuously pulsed copper laser utilizing copper bromide as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.

  2. Applications of the pulsed gas stripper technique at the GSI UNILAC

    NASA Astrophysics Data System (ADS)

    Scharrer, P.; Barth, W.; Bevcic, M.; Düllmann, Ch. E.; Gerhard, P.; Groening, L.; Horn, K. P.; Jäger, E.; Khuyagbaatar, J.; Krier, J.; Vormann, H.; Yakushev, A.

    2017-08-01

    In the frame of an upgrade program for the GSI UNILAC, preparing it for the use as an injector system for FAIR, a pulsed gas stripper cell was developed. It utilizes the required low duty cycle by applying a pulsed gas injection instead of a continuous gas inlet. The resulting lower gas consumption rate enables the use of low-Z gas targets over a wide range of stripper target thicknesses. The setup enables an increased flexibility for the accelerator by allowing the gas stripper to be used in time-sharing beam operation matching the capabilities of the GSI UNILAC like the acceleration of different ion beams in quasi-parallel operation. Measured charge state distributions of 238U, 50Ti, and CH3 beams on H2 and N2 gas highlight the benefits of the pulsed gas stripper cell for the accelerator operation and performance.

  3. Industrial Applications of Pulsed Power Technology

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witkowski, Peter T.; Charite Universitaetsmedizin, CCM, Institut fuer Virologie, Helmut Ruska Haus, Chariteplatz 1, 10117 Berlin; Schuenadel, Livia, E-mail: SchuenadelL@rki.de

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplementmore » conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.« less

  5. Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans

    PubMed Central

    Simavli, Huseyin; Que, Christian John; Akduman, Mustafa; Rizzo, Jennifer L.; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.

    2015-01-01

    Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal thickness (RT) measurements from 3-dimensional (3D) volume scans for primary open angle glaucoma (POAG). Design Cross-sectional study. Methods Setting Institutional Study population 156 patients (89 POAG and 67 normal subjects) Observation procedures One eye of each subject was included. SD-OCT peripapillary RT values from 3D volume scans were calculated for four quadrants of three different sized annuli. Peripapillary retinal nerve fiber layer (RNFL) thickness values were also determined. Main outcome measures Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Results The top five RT AUROCs for all glaucoma patients and for a subset of early glaucoma patients were for the inferior quadrant of outer circumpapillary annulus of circular grid (OCA) 1 (0.959, 0.939), inferior quadrant of OCA2 (0.945, 0.921), superior quadrant of OCA1 (0.890, 0.811), inferior quadrant of OCA3 (0.887, 0.854), and superior quadrant of OCA2 (0.879, 0.807). Smaller RT annuli OCA1 and OCA2 consistently showed better diagnostic performance than the larger RT annulus OCA3. For both RNFL and RT measurements, best AUROC values were found for inferior RT OCA1 and OCA2, followed by inferior and overall RNFL thickness. Conclusion Peripapillary RT measurements from 3D volume scans showed excellent diagnostic performance for detecting both glaucoma and early glaucoma patients. Peripapillary RT values have the same or better diagnostic capability compared to peripapillary RNFL thickness measurements, while also having fewer algorithm errors. PMID:25498354

  6. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Christopher H., E-mail: chchap@umich.edu; Nagesh, Vijaya; Sundgren, Pia C.

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results:more » In both structures, longitudinal diffusivity ({lambda}{sub Double-Vertical-Line }) decreased and perpendicular diffusivity ({lambda}{sub Up-Tack }) increased after RT, with early changes correlating to later changes (p < .05). The radiation dose correlated with an increase in cingulum {lambda}{sub Up-Tack} at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in {lambda}{sub Up-Tack} at 3 and 6 weeks (p < .05). The post-RT changes in verbal recall scores correlated linearly with the late changes in cingulum {lambda}{sub Double-Vertical-Line} (30 weeks, p < .02). Using receiver operating characteristic curves, early cingulum {lambda}{sub Double-Vertical-Line} changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.« less

  7. Super-radiant effects in electron oscillators with near-cutoff operating waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandurkin, I. V.; Savilov, A. V.; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod

    2015-06-15

    Super-radiant regimes in electron oscillators can be attractive for applications requiring powerful and relatively short pulses of microwave radiation, since the peak power of the super-radiant pulse can exceed the power of the operating electron beam. In this paper, possibilities for realization of the super-radiant regimes are studied in various schemes of electron oscillators based on excitation of near-cutoff operating waves (gyrotron and orotron)

  8. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  9. Simple method enabling pulse on command from high power, high frequency lasers

    NASA Astrophysics Data System (ADS)

    Baer, David J.; Marshall, Graham D.; Coutts, David W.; Mildren, Richard P.; Withford, Michael J.

    2006-09-01

    A method for addressing individual laser pulses in high repetition frequency systems using an intracavity optical chopper and novel electronic timing system is reported. This "pulse on command" capability is shown to enable free running and both subharmonic pulse rate and burst mode operation of a high power, high pulse frequency copper vapor laser while maintaining a fixed output pulse energy. We demonstrate that this technique can be used to improve feature finish when laser micromachining metal.

  10. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.

  11. Chirped Pulse Spectrometer Operating at 200 GHz

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin

    2018-01-01

    The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.

  12. Bridging the Gap Between Research and Operations in the National Weather Service: The Huntsville Model

    NASA Technical Reports Server (NTRS)

    Darden, C.; Carroll, B.; Lapenta, W.; Jedlovec, G.; Goodman, S.; Bradshaw, T.; Gordon, J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The National Weather Service Office (WFO) in Huntsville, Alabama (HUN) is slated to begin full-time operations in early 2003. With the opening of the Huntsville WFO, a unique opportunity has arisen for close and productive collaboration with scientists at NASA Marshall Space Flight Center (MSFC) and the University of Alabama Huntsville (UAH). As a part of the collaboration effort, NASA has developed the Short-term Prediction Research and Transition (SPoRT) Center. The mission of the SPoRT center is to incorporate NASA earth science technology and research into the NWS operational environment. Emphasis will be on improving mesoscale and short-term forecasting in the first 24 hours of the forecast period. As part of the collaboration effort, the NWS and NASA will develop an implementation and evaluation plan to streamline the integration of the latest technologies and techniques into the operational forecasting environment. The desire of WFO HUN, NASA, and UAH is to provide a model for future collaborative activities between research and operational communities across the country.

  13. Compact pulse transformer for 85 kV, 3.5 μs electron gun anode of compact X-ray cargo scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.; Sharma, D.K.; Dixit, K.

    Design of compact and reliable 85kV HV pulse transformer for electron gun anode pulsing is a major concern, when size and space are constraints. This paper describes design procedures and optimization of various parameters like HV insulation, step up ratio, rise time and flat top of Pulse transformer, operating with input from a 10 stage PFN of 50 ohm impedance and charged at 14kV. The transformer should deliver rated output voltage of negative polarity 85kV, 3 to 4μs pulse width, less than 2μs rise time and flat top within 10% across an electron gun load, equivalent to a parallel combinationmore » of 10kΩ and 200pF load at a PRF of 250 Hz. Since the Cargo Scanner has to operate on movable carrier, this transformer is designed to operate even in the inclined positions. This transformer has given voltage step up, rise time and flat top of 13.75, 1.5 μs and 4.5% respectively for a 10kΩ and 200pF load at 250Hz PRF and also demonstrated operation in 90{sup °} tilted transformer positions. An effort has been put to achieve maintenance free Pulse transformer by providing effective sealing in the transformer tank to stop breathing action. Also, special flexing walls of transformer tank accommodate for small changes in volume of oil due to temperature variations. (author)« less

  14. Hemin offers neuroprotection through inducing exogenous neuroglobin in focal cerebral hypoxic-ischemia in rats

    PubMed Central

    Song, Xue; Xu, Rui; Xie, Fei; Zhu, Haiyuan; Zhu, Ji; Wang, Xin

    2014-01-01

    Objective: To investigate the inducible effect of hemin on exogenous neuroglobin (Ngb) in focal cerebral hypoxic-ischemia in rats. Methods: 125 healthy SD rats were randomly divided into five groups: sham-operation control group, operation group, hemin treatment group, exogenous Ngb treatment group, and hemin and exogenous Ngb joint treatment group. Twenty-four hours after focal cerebral hypoxic-ischemia, Ngb expression was evaluated by immunocytochemistry, RT-PCR, and western blot analyses, while the brain water content and infarct volume were examined. Results: Immunocytochemistry, RT-PCR, and western blot analyses showed more pronounced Ngb expression in the hemin and exogenous Ngb joint operation group than in the hemin or exogenous Ngb individual treatment groups, thus producing significant differences in brain water content and infarct volume (p < 0.05). Conclusions: Hemin may be beneficial in protecting against focal cerebral hypoxic-ischemia through inducing the expression of exogenous Ngb. PMID:24966924

  15. Digital ultrasonics signal processing: Flaw data post processing use and description

    NASA Technical Reports Server (NTRS)

    Buel, V. E.

    1981-01-01

    A modular system composed of two sets of tasks which interprets the flaw data and allows compensation of the data due to transducer characteristics is described. The hardware configuration consists of two main units. A DEC LSI-11 processor running under the RT-11 sngle job, version 2C-02 operating system, controls the scanner hardware and the ultrasonic unit. A DEC PDP-11/45 processor also running under the RT-11, version 2C-02, operating system, stores, processes and displays the flaw data. The software developed the Ultrasonics Evaluation System, is divided into two catagories; transducer characterization and flaw classification. Each category is divided further into two functional tasks: a data acquisition and a postprocessor ask. The flaw characterization collects data, compresses its, and writes it to a disk file. The data is then processed by the flaw classification postprocessing task. The use and operation of a flaw data postprocessor is described.

  16. Intelligent monitoring of critical pathological events during anesthesia.

    PubMed

    Gohil, Bhupendra; Gholamhhosseini, Hamid; Harrison, Michael J; Lowe, Andrew; Al-Jumaily, Ahmed

    2007-01-01

    Expert algorithms in the field of intelligent patient monitoring have rapidly revolutionized patient care thereby improving patient safety. Patient monitoring during anesthesia requires cautious attention by anesthetists who are monitoring many modalities, diagnosing clinically critical events and performing patient management tasks simultaneously. The mishaps that occur during day-to-day anesthesia causing disastrous errors in anesthesia administration were classified and studied by Reason [1]. Human errors in anesthesia account for 82% of the preventable mishaps [2]. The aim of this paper is to develop a clinically useful diagnostic alarm system for detecting critical events during anesthesia administration. The development of an expert diagnostic alarm system called ;RT-SAAM' for detecting critical pathological events in the operating theatre is presented. This system provides decision support to the anesthetist by presenting the diagnostic results on an integrative, ergonomic display and thus enhancing patient safety. The performance of the system was validated through a series of offline and real-time testing in the operation theatre. When detecting absolute hypovolaemia (AHV), moderate level of agreement was observed between RT-SAAM and the human expert (anesthetist) during surgical procedures. RT-SAAM is a clinically useful diagnostic tool which can be easily modified for diagnosing additional critical pathological events like relative hypovolaemia, fall in cardiac output, sympathetic response and malignant hyperpyrexia during surgical procedures. RT-SAAM is currently being tested at the Auckland City Hospital with ethical approval from the local ethics committees.

  17. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    PubMed

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.

  18. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film.

    PubMed

    Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K

    2009-10-26

    A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.

  19. Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate.

    PubMed

    Papadopoulos, D N; Forget, S; Delaigue, M; Druon, F; Balembois, F; Georges, P

    2003-10-01

    We demonstrate the operation of an ultralow-repetition-rate, high-peak-power, picosecond diode-pumped Nd:YVO4 passively mode-locked laser oscillator. Repetition rates lower than 1 MHz were achieved with the use of a new design for a multiple-pass cavity and a semiconductor saturable absorber. Long-term stable operation at 1.2 MHz with a pulse duration of 16.3 ps and an average output power of 470 mW, corresponding to 24-kW peak-power pulses, is reported. These are to our knowledge the lowest-repetition-rate high-peak-power pulses ever generated directly from apicosecond laser resonator without cavity dumping.

  20. Investigation of the role of flocculation conditions in recuperative thickening on dewatering performance and biogas production.

    PubMed

    Cobbledick, Jeffrey; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2017-11-01

    There is considerable interest in recuperative thickening (RT), the recycling of partially digested solids in an anaerobic digester outlet stream back into the incoming feed, as a 'high-performance' process to increase biogas production, increase system capacity, and improve biosolids stabilization. While polymer flocculation is commonly used in full-scale RT operations, no studies have investigated the effect of flocculation conditions on RT process performance. Our goal was to investigate the effect of polymer type and dosage conditions on dewatering performance and biogas production in a lab-scale RT system. The type of polymer flocculant significantly affected dewatering performance. For example, the 440 LH polymer (low molecular weight (MW) polyacrylamide) demonstrated lower capillary suction time (CST) and filtrate total suspended solids (TSS) values than the C-6267 polymer (high MW polyacrylamide). An examination of the dewatering performance of RT digesters with different polymers found a strong correlation between CST and filtrate TSS. The type of polymer flocculant had no significant effect on biogas productivity or composition; the methane content was greater than 60% in good agreement with typical results. The optimization of the polymer flocculation conditions is a critical task for which the lab-scale RT system used in this work is ideally suited.

  1. A domestic porcine model for studying the effects of radiation on head and neck cancers.

    PubMed

    Arnold, Christoph R; Kloss, Frank; Singh, Sarvpreet; Vasiljevic, Danijela; Stigler, Robert; Auberger, Thomas; Wenzel, Volker; Klima, Günter; Lukas, Peter; Lepperdinger, Günter; Gassner, Robert

    2017-05-01

    Radiation therapy (RT) of the head and neck region is often accompanied by serious side effects. Research in this area is needed to improve treatment outcomes and ameliorate therapy tolerance. Laboratory rodents are barely matching today's clinical standards in RT research. Yet domestic swine (Sus scrofa domestica) have previously proved suitable for various advanced tests in clinical research and training. We therefore investigated whether S. scrofa domestica is also appropriate for irradiation of the mandible. A common scheme for irradiation treatment of S. scrofa domestica mandibles in a split-mouth design was acquired by applying computed tomography (CT) scanning under sedation. Basing on close anatomic resemblance, a standard treatment plan comprising 2 opposed irradiation fields could be accomplished. RT was carried out in a clinical environment with 2 × 9 Gy. The resulting operating procedure facilitated complication-free sedation, transport, positioning, CT scanning, and effective irradiation. Based on common standards applied for RT in humans, domestic pigs can be employed to progress RT clinical research. Due to their human-like anatomy, physiology, size, and weight, the swine model is expedient for advancing experimental RT of the head and neck area. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Experimental study of a quantum random-number generator based on two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  3. Status of the LIA-2. Double-pulse mode

    NASA Astrophysics Data System (ADS)

    Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.

    2016-12-01

    The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.

  4. A pulse-burst laser system for Thomson scattering on NSTX-U

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Diallo, A.; LeBlanc, B.

    2017-10-01

    A pulse-burst laser system has been built for Thomson scattering on NSTX-U, and is currently being integrated into the NSTX-U Thomson scattering diagnostic system. The laser will be operated in three distinct modes. The base mode is continuous 30 Hz rep rate, and is the standard operating mode of the laser. The base mode will be interrupted to produce a "slow burst" (specified 1 kHz rep rate for 50 ms) or a "fast burst" (specified 10 kHz rep rate for 5 ms). The combination of base mode→ interruption→ burst mode is new and has not been implemented on any previous pulse-burst laser system. Laser pulsing is halted for a set period (~ 1 minute) following a burst to allow the YAG rods to cool; this type of operation is called a heat-capacity laser. The laser is Nd:YAG operated at 1064 nm, q-switched to produce >= 1.5 J pulses with ~ 20 ns FWHM. It is flashlamp pumped, with dual-rod oscillator (9 mm) and dual-rod amplifier (12 mm). Variable pulsewidth drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction. The laser system has demonstrated compliance with all specifications, and is capable of exceeding design specifications by significant margins, e.g., higher rep rates for longer burst periods. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, the L-H transition, and various MHD modes.

  5. Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X

    DOE PAGES

    Holbe, H.; Pedersen, T. Sunn; Geiger, J.; ...

    2016-01-29

    The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effectsmore » on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. Furthermore, this will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed.« less

  6. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Thai, Hong Thi Cam; Le, Mai Quynh; Vuong, Cuong Duc; Parida, Manmohan; Minekawa, Harumi; Notomi, Tsugunori; Hasebe, Futoshi; Morita, Kouichi

    2004-01-01

    The development and evaluation of a one-step single-tube accelerated real-time quantitative reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assay is reported for rapid detection of the severe acute respiratory syndrome coronavirus (SARS-CoV) replicase gene. A total of 49 samples (15 throat washes, 13 throat swabs, and 21 combined throat and nasal swabs) collected from patients admitted to the Hanoi-French and Ninhbinh hospitals in Vietnam during the SARS epidemic were evaluated and compared to conventional RT-PCR. The RT-LAMP assay demonstrated 100-fold-greater sensitivity, with a detection limit of 0.01 PFU. The sensitivity and specificity of RT-LAMP assay for detecting viral RNA in clinical specimens with regard to RT-PCR were 100 and 87%, respectively. The specificity of the RT-LAMP assay was further validated by restriction analysis as well as nucleotide sequencing of the amplified product. The concentration of virus in most of the clinical samples was 0.1 PFU (0.1 to 102 PFU), as determined from the standard curve of SARS RT-LAMP and based on the time of positivity. The assay procedure is quite simple, wherein the amplification is carried out in a single tube under isothermal conditions at 63°C, and the result can be obtained in less than 1 h (as early as 11 min). Thus, the RT-LAMP assay reported here has the advantages of rapid amplification, simple operation, and easy detection and will be useful for rapid and reliable clinical diagnosis of SARS-CoV in developing countries. PMID:15131154

  7. 76 FR 81516 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... security; and provide information on the threat of an electromagnetic pulse attack and its associated... Operational Update. Electromagnetic Pulse (EMP) Threat--Lessons Learned and Areas of Vulnerability, and... and the potential threat of an electromagnetic pulse attack. Both will include lessons learned and...

  8. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  9. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less

  10. Characterization of pseudosingle bunch kick-and-cancel operational mode

    DOE PAGES

    Sun, C.; Robin, D. S.; Steier, C.; ...

    2015-12-18

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments andmore » drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.« less

  11. A Field-Tailored Reverse Transcription Loop-Mediated Isothermal Assay for High Sensitivity Detection of Plasmodium falciparum Infections

    PubMed Central

    Kemleu, Sylvie; Guelig, Dylan; Eboumbou Moukoko, Carole; Essangui, Estelle; Diesburg, Steven; Mouliom, Abas; Melingui, Bernard; Manga, Jeanne; Donkeu, Christiane; Epote, Annie; Texier, Gaëtan; LaBarre, Paul; Burton, Robert

    2016-01-01

    Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.25ng of total parasite RNA, and exhibited a detection limit of 0.08 parasites/ μL when tested directly on infected whole blood lysates, or ~0.0008 parasites/ μL when using RNA extracts. Assay positivity was observed as early as eight minutes from initiation of the RT-LAMP and in most cases the reaction was complete before twenty minutes. Clinical evaluation of the assay on 132 suspected malaria cases resulted in a positivity rate of 90% for RT-LAMP using extracted RNA, and 85% when using whole blood lysates. The positivity rates were 70% for P. falciparum-specific RDT, 83% for RT-PCR, and 74% for thick blood smear microscopy (Mean parasite density = 36,986 parasites/ μL). Concordance rates between the developed RT-LAMP and comparator tests were greater than 75%, the lowest being with light microscopy (78%, McNemar’s test: P = 0.0002), and the highest was with RT-PCR (87%, McNemar’s test: P = 0.0523). Compared to reference RT-PCR, assay sensitivity was 90% for RT-LAMP on whole blood, and 96% for RT-LAMP using corresponding RNA extracts. Electricity-free heaters were further developed and evaluated in comparison with a battery-operated isothermal amplification machine for use with the developed test in resource-limited settings. Taken together, the data highlight the benefits of targeting high abundant RNA transcripts in molecular diagnosis, as well as the potential usefulness of the developed RT-LAMP-assay in malaria diagnosis in low to high parasite density settings. PMID:27824866

  12. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Price, H. T.; Shaw, S. R.

    1987-04-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  13. Pulsed free jet expansion system for high-resolution fluorescence spectroscopy of capillary gas chromatographic effluents

    NASA Astrophysics Data System (ADS)

    Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin

    1986-05-01

    A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.

  14. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Technical Reports Server (NTRS)

    Price, H. T.; Shaw, S. R.

    1987-01-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  15. Random noise effects in pulse-mode digital multilayer neural networks.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  16. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing amore » He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.« less

  17. Experimental investigation of high power pulsed 2.8 μm Er3+-doped ZBLAN fiber lasers

    NASA Astrophysics Data System (ADS)

    Shen, Yanlong; Wang, Yishan; Huang, Ke; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Yu, Li; Yi, Aiping; Si, Jinhai

    2017-05-01

    We report on the recent progress on high power pulsed 2.8 μm Er3+-doped ZBLAN fiber laser through techniques of passively and actively Q-switching in our research group. In passively Q-switched operation, a diode-cladding-pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) was demonstrated. Stable pulse train was produced at a slope efficient of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ. The maximum peak power was calculated to be 21.9 W. In actively Q-switched operation, a diode-pumped actively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm with an optical chopper was reported. The maximum laser pulse energy of up to 130 μJ and a pulse width of 127.3 ns at a repetition rate of 10 kHz with an operating wavelength of 2.78 μm was obtained, yielding the maximum peak power of exceeding 1.1 kW.

  18. Quantitative contrast-enhanced ultrasonography for the differential diagnosis of endometrial hyperplasia and endometrial neoplasms

    PubMed Central

    Liu, Ying; Xu, Yi; Cheng, Wen; Liu, Xinghan

    2016-01-01

    The present study aimed to investigate the feasibility of applying contrast-enhanced ultrasonography (CEUS) imaging technology for distinguishing between benign and malignant endometrial lesions, and to screen markers that could be correlated with the pathological results. In this study, endometrial diseases were diagnosed by biopsy under hysteroscopy and CEUS examinations. The intensity and time parameters of the time-intensity curve (TIC) were analyzed. The mean arrival time (AT), time-to-peak (TTP), rise time (RT), washout half-time and clearance half-time of malignant lesions were shorter than those of benign lesions (P<0.05), whereas the average peak intensity (PI) and enhancement intensity (EI) of malignant lesions were higher than those of benign lesions (P<0.05). The receiver operating characteristic curve showed the following cut-off values: PI, 29.2 dB; EI, 21.35 dB; AT, 12.75 sec; TTP, 26.75 sec; RT, 13.2 sec; clearance half-time, 89.3 sec; and washout half-time, 75.45 sec. The lesions with PI, an EI higher than that of the cut-off and lesions with an AT, TTP, RT, half clearing time and washout half-time shorter than the cut-off were considered malignant. The TTP, RT and half clearing time were negatively correlated with microvessel density (MVD), i.e., MVD was higher when the TTP, RT and half clearing time were shorter. Overall, changes in the enhancement and clearing of lesions could be quantitatively analyzed by CEUS TIC and further discriminate benign from malignant lesions. In the present study, CEUS appeared to indirectly reflect blood vessel changes inside the lesions and provided a pre-operative non-invasive fast imaging method for the diagnosis of endometrial disease. PMID:27895728

  19. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  20. Ultimate Temperature of Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    2009-01-01

    An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of He-3, He-4, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of He-3 and He-4. Published data is used to extend the analysis to mixtures of He-3 and He-4. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the two-fluid properties of dilute 3He in superfluid He-4 appear to have no limit.

  1. Ultimate Temperature of Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    2009-01-01

    An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of 3He, 4He, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of 3He and 4He. Published data is used to extend the analysis to mixtures of 3He and 4He. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the ha-fluid properties of dilute 3He in superfluid 4He appear to have no limit.

  2. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less

  3. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  4. Development of a 2-micron Pulsed Direct Detection IPDA Lidar for CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Singh, U. N.

    2013-12-01

    NASA Langley is developing a 2-micron pulsed Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. The objective of this development is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable a first proof of principle demonstration of airborne direct detection CO2 measurements at 2-micron wavelength. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. The system is scheduled to fly on NASA UC12 or B200 research aircrafts before the end of 2013. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation.

  5. Quasi-multi-pulse voltage source converter design with two control degrees of freedom

    NASA Astrophysics Data System (ADS)

    Vural, A. M.; Bayindir, K. C.

    2015-05-01

    In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).

  6. Cavity detection and delineation research. Report 5: Electromagnetic (Radar) techniques applied to cavity detection

    NASA Astrophysics Data System (ADS)

    Ballard, R. F., Jr.

    1983-07-01

    This study evaluated four different radar systems to determine their effectiveness in locating subterranean cavities. Tests were conducted at three well-documented sites: Vicksburg, Miss.; Medford Cave, Fla. (near Ocala); and Manatee Springs, Fla. (near Chiefland). None of the radar systems was effective at the Vicksburg, Miss., site because of extremely high conductivities encountered in the overburden materials which were comprised primarily of silts (loess) and clays. The following radar systems were used in this study: (a) A pulsed system fabricated and operated by personnel from Texas A/M University; (b) A pulsed system commercially manufactured by GSSI operated by the owners, Technos, Inc.; (c) A pulsed system developed, fabricated, and operated by personnel from SwRI; and (d) A continuous wave system development, fabricated and operated by personnel from LLNL.

  7. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  8. Factors associated with cardiovascular target organ damage in children after renal transplantation.

    PubMed

    Borchert-Mörlins, Bianca; Thurn, Daniela; Schmidt, Bernhard M W; Büscher, Anja K; Oh, Jun; Kier, Tanja; Bauer, Elena; Baig, Sabrina; Kanzelmeyer, Nele; Kemper, Markus J; Büscher, Rainer; Melk, Anette

    2017-11-01

    Cardiovascular disease is the second-most common cause of death in pediatric renal transplant recipients. The aim of this study was to evaluate subclinical cardiovascular target organ damage defined as the presence of arterio- and atherosclerotic lesions and cardiac remodeling and to analyze contributing risk factors in a large cohort of children after renal transplantation (RT). A total of 109 children aged 13.1 ± 3.3 years who had undergone RT at one of three German transplant centers were enrolled in this study. Patients had been transplanted a mean of 5.5 (±4.0) years prior to being enrolled in the study. Anthropometric data, laboratory values and office- and 24-h ambulatory blood pressure monitoring (ABPM) were evaluated. Cardiovascular target organ damage was determined through non-invasive measurements of aortic pulse wave velocity (PWV), carotid intima-media thickness (IMT) and left ventricular mass (LVM). Elevated PWV or IMT values were detected in 22 and 58% of patients, respectively. Left ventricular hypertrophy was found in as many as 43% of patients. The prevalence of uncontrolled or untreated hypertension was 41%, of which 16% of cases were only detected by ABPM measurements. In the multivariable analysis, higher diastolic blood pressure, everolimus intake and lower estimated glomerular filtration rate were independently associated with high PWV. Higher systolic blood pressure and body mass index were associated with elevated LVM. Our results showed an alarming burden of cardiovascular subclinical organ damage in children after RT. Hypertension, obesity, immunosuppressive regimen and renal function emerged as independent risk factors of organ damage. Whereas the latter is not modifiable, the results of our study strongly indicate that the management of children after RT should focus on the control of blood pressure and weight.

  9. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji

    2007-01-01

    The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.

  10. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOEpatents

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  11. DIRECT COUPLED PROGRESSIVE STAGE PULSE COUNTER APPARATUS

    DOEpatents

    Kaufman, W.M.

    1962-08-14

    A progressive electrical pulse counter circuit was designed for the counting of a chain of input pulses of random width and/or frequency. The circuit employs an odd and even pulse input line alternately connected to a series of directly connected bistable counting stages. Each bistable stage has two d-c operative states which stage, when in its rnrtial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since only altennate stages are pulsed for each incoming pulse, only one stage will change its state for each input pulse thereby providing prog essive stage by stage counting. (AEC)

  12. Neoadjuvant Radiotherapy: A Risk Factor for Short-Term Wound Complications after Radical Resection for Rectal Cancer?

    PubMed

    Holubar, Stefan D; Brickman, Rachel K; Greaves, Spencer W; Ivatury, S Joga

    2016-08-01

    Neoadjuvant radiotherapy (RT) for rectal cancer may increase wound complications after oncologic proctectomy. We aimed to assess the relationship between neoadjuvant RT and 30-day wound complications after radical surgery for rectal cancer. We identified rectal cancer patients (International Classification of Diseases, revision-9 [ICD-9] code 154.1) who underwent radical resection, using NSQIP from 2005 to 2010. Patients were stratified into preoperative radiation vs no radiation groups. Our primary outcome was any wound complication. The association between preoperative RT and postoperative wound complication rate was assessed by univariate, multivariable, and propensity score analyses. Of 242,670 colorectal cases, 6,297 patients were included. Of these, 2,476 (39%) received RT within 90 days preoperatively. The RT group, compared with the no RT group, received more chemotherapy within 30 days preoperatively (15.0% vs 2.5%, p < 0.0001), and had less laparoscopic (18.9% vs 25.1%, p < 0.0001) or sphincter-preserving surgery (61.8% vs 67.1%, p < 0.0001). In the univariate analyses, there was no difference in wound complications (19.6% vs 18.7%, p = 0.42) between groups. Similarly, there was no difference in overall complications (29.6% vs 29.8%, p = 0.89), return to operating room (6.7% vs 6.7%, p = 0.96), or length of stay (8.4 vs 8.4 days, p = 0.72) between the RT and no RT groups, respectively. The mortality rate in the RT group was lower on univariate analysis (0.7% vs 1.4%, p = 0.008), but was not significantly different in the multivariable analyses. Multivariable and propensity score analyses were consistent with the lack of association between preoperative RT and postoperative wound complications. Neoadjuvant radiotherapy does not appear to be an independent risk factor for wound complications after radical surgery for rectal cancer. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  14. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion.

    PubMed

    Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan

    2015-08-01

    A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.

  15. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  16. Study of IEMP Effects on IC Operational Amplifier Circuits

    DTIC Science & Technology

    1975-12-10

    plasma focus to study their IEMP responses with and without superposition of TREE responses. The 30-kJ plasma focus device produced photons primarily in the 8- to 100-keV range with pulse widths typically in the range of 10 to 15 nsec. Pulses of electrons were also deposited on the external leads of the operational amplifiers to determine the characteristic responses. These units were operated in circuits with closed-loop gains ranging from 5 to 100. During direct irradiation of the operational amplifiers, it was found that the IEMP responses (caused

  17. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  18. GNSS in real-time: Demonstration experiment at Berlin Airport International

    NASA Astrophysics Data System (ADS)

    Wickert, Jens; Dick, Galina; Ge, Maorong; Heise, Stefan; Li, XingXing; Ming, Shangguan; Nischan, Thomas; Ramatschi, Markus; Schuh, Harald; Alberding, Jürgen; Weigmann, Uwe

    2013-04-01

    Real-time (RT) applications are in focus of recent GNSS research. International activities related to the RT data collection and distribution, as well as provision of specific RT data products (e.g., satellite orbits and clocks, station coordinates) are coordinated within the Real-Time Project of the International GNSS Service (IGS). Currently IGS provides real-time data from more than 100 globally distributed GNSS ground stations. This number, in parallel with the extension of various additional international real-time networks, is continuously increasing. In parallel to the rapid development of GNSS RT activities also innovative geophysical applications were pioneered by GNSS research groups and institutions, including GFZ. One prominent example is the use of GNSS components in early warning systems. GNSS measurements can be used there for the rapid detection and characterization of deformation fields, related to earthquakes, which induce Tsunamis. Such deformation data cannot be provided by seismometer measurements, but are important for the prediction of the tsunami wave propagation caused by earthquakes. The GNSS real-time group at GFZ is involved in several research projects related to geophysical RT GNSS applications, and also operates one of the RT analysis centers of the IGS. We introduce results of a real-time GNSS demonstration project, which was performed in 2012 at the new Berlin International Airport BER at Schönefeld, south-east of Berlin city center. The main goal of the project was the demonstration of the functionality of a complex RT-PPP server-client solution for dynamic applications which was developed within a joint research project of GFZ and the company Alberding GmbH. Compared to the standard PPP (clock & orbit) this solution uses additional information (ionosphere, uncalibrated phase delays UPD) to increase the positioning accuracy and to reduce the convergence time. The major challenges of the experiment were the stable operation of the entire server-client system, the implementation of a mainly for scientific purposes developed software to a potentially commercial positioning solution, the real-time GNSS data management, and the generation and usage of the correction data. We evaluate the server-client system functionality and PPP results of the experiment in view of the project goals and indicate problems to be focused in future work. In addition, the GNSS data from a temporary ground station at the air-field was used to derive vertically integrated water vapor (IWV) data to demonstrate the potential of real-time water vapor data to improve the weather forecast at the airport. The IWV data are compared with measurements from nearby stations of the permanent German GNSS network for atmosphere sounding and with a water vapor radiometer, operated at GFZ.

  19. MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie

    2017-06-01

    We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.

  20. Improved repetition rate mixed isotope CO2 TEA laser

    NASA Astrophysics Data System (ADS)

    Cohn, D. B.

    2014-09-01

    A compact CO2 TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the 12C16O2 isotope. With mixed 12C16O2 plus 13C16O2 isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  1. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  2. Review of the frequency stabilization of TEA CO2 laser oscillators

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1987-01-01

    Most applications of TEA CO2 lasers in heterodyne radar systems require that the transmitter has a high degree of frequency stability. This ensures good Doppler resolution and maximizes receiver sensitivity. However, the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their CW counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus, it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size.

  3. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.

    PubMed

    Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  4. Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelens, L.; Coomans, W.; Van der Sande, G.

    2010-12-15

    We characterize the operation of semiconductor microring lasers in an excitable regime. Our experiments reveal a statistical distribution of the characteristics of noise-triggered optical pulses that is not observed in other excitable systems. In particular, an inverse correlation exists between the pulse amplitude and duration. Numerical simulations and an interpretation in an asymptotic phase space confirm and explain these experimentally observed pulse characteristics.

  5. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  6. NRL Review 2005. Pioneering the Future

    DTIC Science & Technology

    2005-01-01

    pulse high- intensity lasers —the Table-Top Terawatt (T3) laser and the new Ti:Sapphire Femtosecond Laser (TFL)—to study intense laser -plasma...56 laser beams and is single- pulsed (4-ns pulse ). This facility provides intense radiation for studying inertial confinement fusion (ICF) target... ultrashort - pulse (40 fs), Ti:Sapphire Fem- tosecond Laser (TFL) system is now operational at 1 TW. These lasers comprise a

  7. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review.

    PubMed

    Wang, Tianlu; Mantini, Dante; Gillebert, Celine R

    2017-09-18

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback aids the modulation of neural functions by training self-regulation of brain activity through operant conditioning. This technique has been applied to treat several neurodevelopmental and neuropsychiatric disorders, but its effectiveness for stroke rehabilitation has not been examined yet. Here, we systematically review the effectiveness of rt-fMRI neurofeedback training in modulating motor and cognitive processes that are often impaired after stroke. Based on predefined search criteria, we selected and examined 33 rt-fMRI neurofeedback studies, including 651 healthy individuals and 15 stroke patients in total. The results of our systematic review suggest that rt-fMRI neurofeedback training can lead to a learned modulation of brain signals, with associated changes at both the neural and the behavioural level. However, more research is needed to establish how its use can be optimized in the context of stroke rehabilitation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Platform for intraoperative analysis of video streams

    NASA Astrophysics Data System (ADS)

    Clements, Logan; Galloway, Robert L., Jr.

    2004-05-01

    Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.

  9. Adaptive mass expulsion attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)

    2001-01-01

    An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.

  10. LN2-free Operation of the MEG Liquid Xenon Calorimeter by using a High-power Pulse Tube Cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruyama, T.; Kasami, K.; Nishiguchi, H.

    2006-04-27

    A high-power coaxial pulse tube cryocooler, originally developed in KEK and technology-transferred to Iwatani Industrial Gases Corp (IIGC), has been installed in a large liquid xenon calorimeter to evaluate liquid nitrogen-free (LN2-free) operation of the rare {mu}-particle decay experiment (MEG). Features of this pulse tube cryocooler include the cold-end heat exchanger, designed with sufficient surface area to ensure high-power cooling, and a cylindrical regenerator placed inside the pulse tube giving compact design and ease of fabrication. This production-level cryocooler provides a cooling power of {approx}200 W at 165 K, using a 6 kW Gifford-McMahon (GM)-type compressor. The paper describes themore » detailed configuration of the cryocooler, and the results of the continuous LN2-free operation of the large prototype liquid xenon calorimeter, which ran for more than 40 days without problems.« less

  11. Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm

    NASA Astrophysics Data System (ADS)

    Liu, Qiyao; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2017-09-01

    An Er3+-doped Lu1.5Y1.5Al5O12 (Er:LuYAG) solid-state laser with direct generation of optical vortex is reported. The vortex laser operation was realized through being pumped by an annular beam at 1532 nm, which was reformatted by a specially fabricated optical mirror. With two different laser output couplers of 10% and 20% transmissions, pure LG01 mode lasers with right-handedness at 1647.7 nm and 1619.5 nm were yielded from a simple two-mirror cavity, respectively, without any helicity control optical element. Furthermore, stable pulse trains at 1647.7 nm have been achieved via employing an acousto-optic Q-switch, and ∼0.66 mJ pulsed energy and ∼65 ns pulse duration were finally obtained at 1 kHz repetition rate, corresponding to a peak power of ∼10.2 kW. The generated pulse vortex maintained LG01 mode with well-determined right-handedness, as in the case of cw laser operation.

  12. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra.

    PubMed

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  13. Self-mode-locked AlGaInP-VECSEL

    NASA Astrophysics Data System (ADS)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  14. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (p<0.01). The ablation depth was correlated with both Vickers hardness and Ca content. Thus, a nanosecond pulsed laser operating at 5.85 μm proved an effective less-invasive caries treatment.

  15. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.

  16. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  17. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  18. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine

    PubMed Central

    2012-01-01

    Background Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. Methods rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. Results rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Conclusions Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media. PMID:22453050

  19. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine.

    PubMed

    Kahlert, Philipp; Parohl, Nina; Albert, Juliane; Schäfer, Lena; Reinhardt, Renate; Kaiser, Gernot M; McDougall, Ian; Decker, Brad; Plicht, Björn; Erbel, Raimund; Eggebrecht, Holger; Ladd, Mark E; Quick, Harald H

    2012-03-27

    Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.

  20. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  1. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  2. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  3. Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M.

    The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.

  4. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  5. Microwave-triggered laser switch

    DOEpatents

    Piltch, M.S.

    1982-05-19

    A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  6. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  7. Microwave-triggered laser switch

    DOEpatents

    Piltch, Martin S.

    1984-01-01

    A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  8. ELECTRICAL PULSE COUNTER APPARATUS

    DOEpatents

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  9. General ultrafast pulse measurement using the cross-correlation single-shot sonogram technique.

    PubMed

    Reid, Derryck T; Garduno-Mejia, Jesus

    2004-03-15

    The cross-correlation single-shot sonogram technique offers exact pulse measurement and real-time pulse monitoring via an intuitive time-frequency trace whose shape and orientation directly indicate the spectral chirp of an ultrashort laser pulse. We demonstrate an algorithm that solves a fundamental limitation of the cross-correlation sonogram method, namely, that the time-gating operation is implemented using a replica of the measured pulse rather than the ideal delta-function-like pulse. Using a modified principal-components generalized projections algorithm, we experimentally show accurate pulse retrieval of an asymmetric double pulse, a case that is prone to systematic error when one is using the original sonogram retrieval algorithm.

  10. Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca

    2014-01-01

    For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.

  11. Significant reduction in the incidence of C5 palsy after cervical laminoplasty using chilled irrigation water.

    PubMed

    Takenaka, S; Hosono, N; Mukai, Y; Tateishi, K; Fuji, T

    2016-01-01

    The aim of this study was to determine whether chilled irrigation saline decreases the incidence of clinical upper limb palsy (ULP; a reduction of one grade or more on manual muscle testing; MMT), based on the idea that ULP results from thermal damage to the nerve roots by heat generated by friction during bone drilling. Irrigation saline for drilling was used at room temperature (RT, 25.6°C) in open-door laminoplasty in 400 patients (RT group) and chilled to a mean temperature of 12.1°C during operations for 400 patients (low-temperature (LT) group). We assessed deltoid, biceps, and triceps brachii muscle strength by MMT. ULP occurring within two days post-operatively was categorised as early-onset palsy. The incidence of ULP (4.0% vs 9.5%, p = 0.003), especially early-onset palsy (1.0% vs 5.5%, p < 0.001), was significantly lower for the LT group than for the RT group. Multivariate analysis indicated that RT irrigation saline use, concomitant foraminotomy, and opened side were significant predictors for ULP. Using chilled irrigation saline during bone drilling significantly decreased the ULP incidence, particularly the early-onset type, and shortened the recovery period for ULP. Chilled irrigation saline can thus be recommended as a simple method for preventing ULP. Chilled irrigation during laminoplasty reduces C5 palsy. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. Physical and Technical Energy Problems: Testing of the Prototype for State Estimation of Large-Scale Power Systems / Lielo Energosistēmu Stāvokļa Novērtēšanas Prototipa Testēšana

    NASA Astrophysics Data System (ADS)

    Kochukov, O.; Briņķis, K.; Mutule, A.

    2013-08-01

    The paper describes the algorithm for distributed state estimation (SE) and is focused on its testing and validation. For this purpose, different events in the modeled power system of the 330-750 kV electrical ring Latvia - Lithuania - Belarus - Smolensk - Moscow - St. Petersburg - Estonia - Latvia were considered. The methods for testing the Inter-TSO SE prototype and dynamic network monitoring & modeling are based on comparison of the available SCADA data about real events with those of SE calculation. In total, four operational states were studied, including initial, accident and two post-accident operational states Rakstā tiek aprakstīti, testēti un novērtēti izkliedēta stāvokļa novērtēšanas algoritmi. Testēšanas nolūkos tika izmantoti dažādi 330-750 kV elektriskā loka Latvija - Lietuva - Baltkrievija - Smoļenska - Maskava - Pēterburga - Igaunija - Latvija modelēti scenāriji. Prototipa testēšanas metodoloģija balstīta uz pieejamo SCADA datu salīdzināšanu ar stāvokļa novērtēšanas prototipa aprēķina rezultātiem. Kopumā apskatīti sākotnējais, avārijas un divi pēcavārijas režīmi

  13. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  14. A high dynamic range pulse counting detection system for mass spectrometry.

    PubMed

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Evidence of dissipative solitons in Yb³⁺:CaYAlO₄.

    PubMed

    Tan, W D; Tang, D Y; Xu, C W; Zhang, J; Xu, X D; Li, D Z; Xu, J

    2011-09-12

    Operation of an end-pumped Yb³⁺:CaYAlO₄ laser operating in the positive dispersion regime is experimentally investigated. The laser emitted strongly chirped pulses with extremely steep spectral edges, resembling the characteristics of dissipative solitons observed in fiber lasers. The results show that dissipative soliton emission constitutes another operating regime for mode locked Yb³⁺-doped solid state lasers, which can be explored for the generation of stable large energy femtosecond pulses.

  16. Evidence for distinct human auditory cortex regions for sound location versus identity processing

    PubMed Central

    Ahveninen, Jyrki; Huang, Samantha; Nummenmaa, Aapo; Belliveau, John W.; Hung, An-Yi; Jääskeläinen, Iiro P.; Rauschecker, Josef P.; Rossi, Stephanie; Tiitinen, Hannu; Raij, Tommi

    2014-01-01

    Neurophysiological animal models suggest that anterior auditory cortex (AC) areas process sound-identity information, whereas posterior ACs specialize in sound location processing. In humans, inconsistent neuroimaging results and insufficient causal evidence have challenged the existence of such parallel AC organization. Here we transiently inhibit bilateral anterior or posterior AC areas using MRI-guided paired-pulse transcranial magnetic stimulation (TMS) while subjects listen to Reference/Probe sound pairs and perform either sound location or identity discrimination tasks. The targeting of TMS pulses, delivered 55–145 ms after Probes, is confirmed with individual-level cortical electric-field estimates. Our data show that TMS to posterior AC regions delays reaction times (RT) significantly more during sound location than identity discrimination, whereas TMS to anterior AC regions delays RTs significantly more during sound identity than location discrimination. This double dissociation provides direct causal support for parallel processing of sound identity features in anterior AC and sound location in posterior AC. PMID:24121634

  17. Performance Evaluation of a Firm Real-Time DataBase System

    DTIC Science & Technology

    1995-01-01

    after its deadline has passed. StarBase differs from previous real-time database work in that a) it relies on a real - time operating system which...StarBase, running on a real - time operating system kernel, RT-Mach. We discuss how performance was evaluated in StarBase using the StarBase workload

  18. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    NASA Astrophysics Data System (ADS)

    Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge

    2017-01-01

    In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimone, F., E-mail: f.maimone@gsi.de; Tinschert, K.; Endermann, M.

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsedmore » ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.« less

  20. The PIT MkV pulsed inductive thruster

    NASA Technical Reports Server (NTRS)

    Dailey, C. Lee; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.

  1. Development of the Long Pulse Negative Ion Source for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de

    2005-04-06

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source.During experiments on MANTIS three adverse effects of long pulse operation were found: The negative ionmore » current to the calorimeter is {approx_equal}50% of that obtained from short pulse operation Increasing the plasma grid (PG) temperature results in {<=}40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=}100%. The caesium 'consumption' is up to 1500 times that expected.Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified.« less

  2. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement.

    PubMed

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2015-02-01

    Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.

  3. Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1

    NASA Technical Reports Server (NTRS)

    Sinkiewicz, J. S.; Feldman, J.; Lory, C. B.

    1974-01-01

    Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented.

  4. Branch Detonation of a Pulse Detonation Engine With Flash Vaporized JP-8

    DTIC Science & Technology

    2006-12-01

    Mark F. Reeder (Member) date iii Abstract Pulse Detonation Engines ( PDE ) operating on liquid hydrocarbon fuels are... Detonation Transition FF – Fill Fraction FN – Flow Number NPT – National Pipe Thread OH – Hydroxyl PDE – Pulse Detonation Engine PF – Purge...Introduction Motivation Research on Pulsed Detonation Engines ( PDE ) has increased over the past ten years due to the potential for increased

  5. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  6. [Design of MC-III low frequency pulsed strong magnetic fields generator].

    PubMed

    Wen, Jun; Zhong, Lisheng; Xie, Hengkun; Qu, Xuemin; Ju, Hongbo; Yang, Jiqing; Wang, Sigang

    2002-12-01

    In this paper, We designed and accomplished a low frequency pulsed strong magnetic fields generator, which provides a pulsed magnetic field with the intensity range from 0.1-2.5 T and the adjusted time interval of pulse. This device is easy to operate and performs reliably. It can work steady for a long time and has been successful used in the experiments of biological effects of electromagnetics.

  7. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    NASA Astrophysics Data System (ADS)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  8. Simulation of dissipative-soliton-resonance generation in a passively mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Du, Wenxiong; Li, Heping; Liu, Cong; Shen, Shengnan; Zhang, Shangjian; Liu, Yong

    2017-10-01

    We present a numerical investigation of dissipative-soliton-resonance (DSR) generation in an all-normal-dispersion Ybdoped fiber laser mode-locked by a real saturable absorber (SA). In the simulation model, the SA includes both the saturable absorption and excited-state absorption (ESA) effects. The intra-cavity pulse evolution is numerically simulated with different transmission functions of SA. When omitting the ESA effect, the transmissivity of SA increases monotonically with the input pulse power. The noise-like pulse (NLP) operation in the cavity is obtained at high pump power, which is attributed to the spectral filtering effect. When the ESA effect is activated, higher instantaneous power part of pulse encounters larger loss induced by SA, causing that the pulse peak power is clamped at a certain fixed value. With increasing pump, the pulse starts to extend in the time domain while the pulse spectrum is considerably narrowed. In this case, the NLP operation state induced by the spectral filtering effect is avoided and the DSR is generated. Our simulation results indicate that the ESA effect in the SA plays a dominant role in generating the DSR pulses, which will be conducive to comprehending the mechanism of DSR generation in passively mode-locked fiber lasers.

  9. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  10. Experimental study of a valveless pulse detonation rocket engine using nontoxic hypergolic propellants

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.

  11. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    PubMed

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  12. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpinemore » was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.« less

  13. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J., E-mail: j.schmidt@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. Inmore » addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.« less

  14. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    NASA Astrophysics Data System (ADS)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  15. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  16. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  17. 978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Shujie; Xu, Lixin; Gu, Chun

    2018-01-01

    A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.

  18. Nanotwinning and structural phase transition in CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gupta, Vinay; Agarwal, Avinash; Kanjilal, Dinakar

    2012-10-01

    Nanotwin structures are observed in high-resolution transmission electron microscopy studies of cubic phase CdS quantum dots in powder form by chemical co-precipitation method. The deposition of thin films of nanocrystalline CdS is carried out on silicon, glass, and TEM grids keeping the substrates at room temperature (RT) and 200°C by pulsed laser ablation. These films are then subjected to thermal annealing at different temperatures. Glancing angle X-ray diffraction results confirm structural phase transitions after thermal annealing of films deposited at RT and 200°C. The variation of average particle size and ratio of intensities in Raman peaks I 2LO/ I 1LO with annealing temperature are studied. It is found that electron-phonon interaction is a function of temperature and particle size and is independent of the structure. Besides Raman modes LO, 2LO and 3LO of CdS at approximately 302, 603, and 903 cm-1 respectively, two extra Raman modes at approximately 390 and 690 cm-1 are studied for the first time. The green and orange emissions observed in photoluminescence are correlated with phase transition.

  19. Nanotwinning and structural phase transition in CdS quantum dots.

    PubMed

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gupta, Vinay; Agarwal, Avinash; Kanjilal, Dinakar

    2012-10-23

    Nanotwin structures are observed in high-resolution transmission electron microscopy studies of cubic phase CdS quantum dots in powder form by chemical co-precipitation method. The deposition of thin films of nanocrystalline CdS is carried out on silicon, glass, and TEM grids keeping the substrates at room temperature (RT) and 200°C by pulsed laser ablation. These films are then subjected to thermal annealing at different temperatures. Glancing angle X-ray diffraction results confirm structural phase transitions after thermal annealing of films deposited at RT and 200°C. The variation of average particle size and ratio of intensities in Raman peaks I2LO/I1LO with annealing temperature are studied. It is found that electron-phonon interaction is a function of temperature and particle size and is independent of the structure. Besides Raman modes LO, 2LO and 3LO of CdS at approximately 302, 603, and 903 cm-1 respectively, two extra Raman modes at approximately 390 and 690 cm-1 are studied for the first time. The green and orange emissions observed in photoluminescence are correlated with phase transition.

  20. Two-frequency timing of the pulsar B1937+21 in Kalyazin and Kashima in 1997 2002

    NASA Astrophysics Data System (ADS)

    Ilyasov, Yu. P.; Imae, M.; Hanado, Y.; Oreshko, V. V.; Potapov, V. A.; Rodin, A. E.; Sekido, M.

    2005-01-01

    We present the results from our timing of the millisecond pulsar B1937+21, performed jointly since 1997 on two radio telescopes: the RT-64 in Kalyazin (Russia) at a frequency of 0.6GHz and RT-34 in Kashima (Japan) at a frequency of 2.15 GHz. The rms value of the pulse time of arrival (TOA) residuals for the pulsar at the barycenter of the Solar system is 1.8 μs (the relative variation is ≈10-14 over the observing period). The TOA residuals are shown to be dominated by white phase noise, which allows this pulsar to be used as an independent time scale keeper. The upper limit for the gravitational background energy density Ωg h 2 at frequencies ≈6.5 × 10-9 Hz is estimated to be no higher than 10-6. Based on the long-term timing of the pulsar, we have improved its parameters and accurately determined the dispersion measure and its time variation over the period 1984 2002, which was, on average, -0.00114(3) pc cm-3 yr-1.

  1. Further characterization of photothermal breakdown products of uric acid stones following holmium:YAG laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Weintraub, Susan T.; Kumar, Neeru; Corbin, Nicole S.; Lesani, Omid; Teichman, Joel M. H.

    2000-06-01

    Previously we found that Ho:YAG laser (2120 nm) lithotripsy of uric acid stones produced cyanide, a known thermal breakdown product of uric acid. We now report that alloxan, another thermal breakdown product, is also likely produced. Uric acid stones (approximately 98% pure) of human origin were placed in distilled water and subjected to one of the following experimental treatments: unexposed control, exposed to Ho:YAG laser, Nd:YAG laser, or mechanically crushed. Samples were then processed for HPLC analysis with UV detection. Peaks were identified by comparison to authentic standards. All samples contained uric acid, with retention time (RT) about 6 min. All of the laser-exposed samples contained a peak that eluted at 2.5 min, identical to the RT of authentic alloxan. Ho:YAG laser irradiation, however, produced a larger presumed alloxan peak than did the Nd:YAG laser. The peak at 2.5 min, as well as unidentified later-eluting peaks, were present in the laser-exposed, but not the unexposed or mechanically crushed, samples. These results confirm the thermal nature of lithotripsy performed with long-pulse IR lasers.

  2. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  3. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  4. Expansion of the Real-time Sport-land Information System for NOAA / National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.

  5. Validation of the Pockit Dengue Virus Reagent Set for Rapid Detection of Dengue Virus in Human Serum on a Field-Deployable PCR System.

    PubMed

    Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison

    2018-05-01

    Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.

  6. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  7. Latching Solenoid-Operated Ball Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron

    1994-01-01

    Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.

  8. Comparison of Bilateral Axillo-Breast Approach Robotic Thyroidectomy with Open Thyroidectomy for Graves' Disease.

    PubMed

    Kwon, Hyungju; Yi, Jin Wook; Song, Ra-Yeong; Chai, Young Jun; Kim, Su-jin; Choi, June Young; Lee, Kyu Eun

    2016-03-01

    There is an ongoing debate about whether robotic thyroidectomy (RT) is appropriate for Graves' disease. The aim of this study was to compare the safety of bilateral axillo-breast approach (BABA) RT with that of open thyroidectomy (OT) in patients with Graves' disease. From January 2008 to June 2014, 189 (44 BABA RT and 145 OT) patients underwent total thyroidectomy for Graves' disease. Recurrence of Graves' disease, intraoperative blood loss, hospital stay, and complication rates including recurrent laryngeal nerve (RLN) palsy and hypoparathyroidism were analyzed between BABA RT and OT groups, after propensity score matching according to age, gender, body mass index, surgical indication, the extent of operation, excised thyroid weight, and follow-up period. No patient experienced recurrence of Graves' disease after median follow-up of 35.0 months. Intraoperative blood loss (151.8 ± 165.4 mL vs. 134.5 ± 75.4 mL; p = 0.534) and hospital stay (3.4 ± 0.7 day vs. 3.3 ± 0.7 day; p = 0.564) were not different between BABA RT and OT groups. Complication rates including transient RLN palsy (11.4 vs. 11.4%; p = 1.000), transient hypoparathyroidism (18.2 vs. 20.5%; p = 0.787), permanent RLN palsy (0 vs. 2.3%; p = 0.315), and permanent hypoparathyroidism (2.3 vs. 2.3%; p = 1.000) were also comparable between groups. BABA RT for Graves' disease showed comparable surgical completeness and complications to conventional OT. BABA RT can be recommended as an alternative surgical option for patients with Graves' disease who are concerned about cosmesis.

  9. AWIPS II Application Development, a SPoRT Perspective

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.

    2014-01-01

    The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.

  10. Visibility of solid and liquid fiducial markers used for image-guided radiation therapy on optical coherence tomography: an esophageal phantom study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J. A.; de Bruin, Daniel M.; Faber, Dirk J.; Hulshof, Maarten C. C. M.; van Leeuwen, Ton G.; van Herk, Marcel B.; de Boer, Johannes F.

    2017-03-01

    Radiation therapy (RT) is used in operable and inoperable esophageal cancer patients. Endoscopic ultrasound-guided fiducial marker placement allows improved translation of the disease extent on endoscopy to computed tomography (CT) images used for RT planning and enables image-guided RT. However, microscopic tumor extent at the time of RT planning is unknown. Endoscopic optical coherence tomography (OCT) is a high-resolution (10-30µm) imaging modality with the potential for accurately determining the longitudinal disease extent. Visibility of fiducial markers on OCT is crucial for integrating OCT findings with the RT planning CT. We investigated the visibility on OCT (NinePoint Medical, Inc.) of 13 commercially available solid (Visicoil, Gold Anchor, Flexicoil, Polymark, and QLRAD) and liquid (BioXmark, Lipiodol, and Hydrogel) fiducial markers of different diameter. We designed and manufactured a set of dedicated Silicone-based esophageal phantoms to perform imaging in a controlled environment. The esophageal phantoms consist of several layers with different TiO2 concentrations to simulate the scattering properties of a typical healthy human esophagus. Markers were placed at various depths (0.5, 1.1, 2.0, and 3.0mm). OCT imaging allowed detection of all fiducial markers and phantom layers. The signal to background ratio was 6-fold higher for the solid fiducial markers than the liquid fiducial markers, yet OCT was capable of visualizing all 13 fiducial markers at all investigated depths. We conclude that RT fiducial markers can be visualized with OCT. This allows integration of OCT findings with CT for image-guided RT.

  11. Treatment of esophageal cancer with radiation therapy -a pan-Chinese survey of radiation oncologists.

    PubMed

    Zhang, Yun; Liu, Jing; Zhang, Wencheng; Deng, Weiye; Yue, Jinbo

    2017-05-23

    Lots of controversies were found about the treatment in relation to radiation therapy (RT) for esophageal squamous cell carcinoma (ESCC). We designed a questionnaire of these controversies to do a pan-Chinese survey of radiation oncologists (ROs). For operable ESCC, 53% ROs chose surgery plus postoperative chemoradiotherapy (CRT), while 40% chose preoperative CRT plus surgery. For target volume of postoperative RT, most ROs (92%) would delineate tumor bed plus involved lymph nodes region before surgery. For definitive RT, most ROs (81%) would give patients higher RT dose to 60-65Gy. For radiation target volume, most ROs would give patients prophylactic irradiation of the bilateral superclavicular-lymph nodes region for cervical ESCC (93%), and the left gastric lymph nodes region for lower thoracic ESCC (72%). For the treatment of mediastinal lymph nodes, 72% ROs preferred elective nodal irradiation, while 28% did the involved nodal irradiation. For concurrent chemotherapy regimen, PF (5-Fu + cisplatin) and TP (cisplatin + paclitaxel) were used widely (49% and 46%, respectively). During simulation, four-dimensional computer tomography (4D CT) was not widely used (48%), even for cervical or lower thoracic ESCC (52%). For daily RT delivery, only 66% ROs would perform imaging guidance RT daily. In summary, more controversies existed in the treatment of ESCC with RT in China, including treatment strategy, radiation dose and target contour. Future goals include standardization of treatment strategy, radiation dose, and target contour, and application of 4D CT and daily imaging guidance, and pursuit of randomized trials in Chinese population.

  12. Methylation polymorphism influences practice effects in children during attention tasks1

    PubMed Central

    Voelker, Pascale; Sheese, Brad E.; Rothbart, Mary K.; Posner, Michael I.

    2017-01-01

    Epigenetic mechanisms mediate the influence of experience on gene expression. Methylation is a principal method for inducing epigenetic effects on DNA. In this paper, we examine alleles of the methylenetetrahydrofolate reductase (MTHFR) gene that vary enzyme activity, altering the availability of the methyl donor and thus changing the efficiency of methylation. We hypothesized that alleles of the MTHFR gene would influence behavior in an attention related task in conjunction with genes known to influence attention. We found that 7-year-old children homozygous for the C allele of MTHFR in interaction with the catechol O-methyltransferase (COMT) gene showed greater improvement in overall reaction time (RT) and in conflict resolution with practice on the Attention Network Test (ANT). This finding indicates that methylation may operate on or through genes that influence executive network operation. However, MTHFR T allele carriers showed faster overall RT and conflict resolution. Some children showed an initial improvement in ANT RT followed by a decline in performance, and we found that alleles of the dopamine beta-hydroxylase (DBH) gene were related to this performance decline. These results suggest a genetic dissociation between improvement while learning a skill and reduction in performance with continued practice. PMID:27050482

  13. Application work risk of manual material handling operators using different lifting methods

    NASA Astrophysics Data System (ADS)

    Anizar; Matondang, AR; Sibarani, JA

    2018-02-01

    This study observed the activity of lifting and moving crates containing bottles at a pallet station in a carbonated drink factory. The activity of moving crates, each weighing 15 kg, is performed by four operators using different methods. An operator manually moves 250 crates daily and often takes rest during working. This study aims to find the most efficient method, that is using the least energy, to move crates. The workload is assessed using the method of Cardiovascular Strain Load (CVL) and energy expenditure. Operators’ arterial pulse is measured for 1 minute right before they start working and after they finish working; this is done to obtain work arterial pulse and rest arterial pulse. The way operators lift crates is analyzed using biomechanics. It is found that fatigue is experienced by all operators, with the exception of the 3rd operator who has a %CVL number below 30%. He positions the pallet to be parallel to the conveyor, and then stand in between during the lifting process. He only rotates his body to move the crate from the conveyor onto the pallet, requiring only little energy. This is one of the reasons why the %CVL number is lower than the other operators.

  14. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  15. a Thermoacoustically-Driven Pulse Tube Cryocryocooler Operating around 300HZ

    NASA Astrophysics Data System (ADS)

    Yu, G. Y.; Zhu, S. L.; Dai, W.; Luo, E. C.

    2008-03-01

    High frequency operation of the thermoacoustic cryocooler system, i.e. pulse tube cryocooler driven by thermoacoustic engine, leads to reduced size, which is quite attractive to small-scale cryogenic applications. In this work, a no-load coldhead temperature of 77.8 K is achieved on a 292 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic engine with 3.92 MPa helium gas and 1750 W heat input. To improve thermal efficiency, a high frequency thermoacoustic-Stirling heat engine is also built to drive the same pulse tube cryocooler, and a no-load temperature of 109 K was obtained with 4.38 MPa helium gas, 292 Hz working frequency and 400W heating power. Ideas such as tapered resonators, acoustic amplifier tubes and simple thin tubes without reservoir are used to effectively suppress harmonic modes, amplify the acoustic pressure wave available to the pulse tube cryocooler and provide desired acoustic impedance for the pulse tube cryocooler, respectively. Comparison of systems with different thermoacoustic engines is made. Numerical simulations based on the linear thermoacoustic theory have also been done for comparison with experimental results, which shows reasonable agreement.

  16. kW picosecond thin-disk regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas

    2018-02-01

    TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.

  17. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats.

    PubMed

    Alazzawi, Mohammed Mahmood Jawad; Husein, Adam; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi; Azlina, Ahmad; Salzihan, M S

    2018-04-16

    Quality bone regeneration, which leads to the improvement of bone remodeling, is essential for orthodontic treatment. In order to improve bone regeneration and increase the amount of tooth movement, different techniques have been implemented. The object of this study is to compare the effects of low-level laser therapy (LLLT), low-intensity pulsed ultrasound (LIPUS), and their combination on bone remodeling during orthodontic tooth movement. Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2. The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest. These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.

  18. Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media

    NASA Astrophysics Data System (ADS)

    Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen

    2018-06-01

    A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.

  19. Assessing Applications of GPM and IMERG Passive Microwave Rain Rates in Modeling and Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Le Roy, A.; Smith, M. R.; Case, J.

    2016-12-01

    In support of NASA's recently launched GPM `core' satellite, the NASA-SPoRT project is leveraging experience in research-to-operations transitions and training to provide feedback on the operational utility of GPM products. Thus far, SPoRT has focused on evaluating the Level 2 GPROF passive microwave and IMERG rain rate estimates. Formal evaluations with end-users have occurred, as well as internal evaluations of the datasets. One set of end users for these products is National Weather Service Forecast Offices (WFOs) and National Weather Service River Forecast Centers (RFCs), comprising forecasters and hydrologists. SPoRT has hosted a series of formal assessments to determine uses and utility of these datasets for NWS operations at specific offices. Forecasters primarily have used Level 2 swath rain rates to observe rainfall in otherwise data-void regions and to confirm model QPF for their nowcasting or short-term forecasting. Hydrologists have been evaluating both the Level 2 rain rates and the IMERG rain rates, including rain rate accumulations derived from IMERG; hydrologists have used these data to supplement gauge data for post-event analysis as well as for longer-term forecasting. Results from specific evaluations will be presented. Another evaluation of the GPM passive microwave rain rates has been in using the data within other products that are currently transitioned to end-users, rather than as stand-alone observations. For example, IMERG Early data is being used as a forcing mechanism in the NASA Land Information System (LIS) for real-time soil moisture product over eastern Africa. IMERG is providing valuable precipitation information to LIS in an otherwise data-void region. Results and caveats will briefly be discussed. A third application of GPM data is using the IMERG Late and Final products for model verification in remote regions where high-quality gridded precipitation fields are not readily available. These datasets can now be used to verify NWP model forecasts over Eastern Africa using the SPoRT-MET scripts verification package, a wrapper around the NCAR Model Evaluation Toolkit (MET) verification software.

  20. On the Development of Multi-Hazard Early Warning Networks: Practical experiences from North and Central America.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Hodgkinson, Kathleen; Braun, John; Meertens, Charles; Mattioli, Glen; Phillips, David; Blume, Fredrick; Berglund, Henry; Fox, Otina; Feaux, Karl

    2015-04-01

    The GAGE facility, managed by UNAVCO, maintains and operates about 1300 GNSS stations distributed across North and Central America as part of the EarthScope Plate Boundary Observatory (PBO) and the Continuously Operating Caribbean GPS Observational Network (COCONet). UNAVCO has upgraded about 450 stations in these networks to real-time and high-rate (RT-GNSS) and included surface meteorological instruments. The majority of these streaming stations are part of the PBO but also include approximately 50 RT-GNSS stations in the Caribbean and Central American region as part of the COCONet and TLALOCNet projects. Based on community input UNAVCO has been exploring ways to increase the capability and utility of these resources to improve our understanding in diverse areas of geophysics including seismic, volcanic, magmatic and tsunami deformation sources, extreme weather events such as hurricanes and storms, and space weather. The RT-GNSS networks also have the potential to profoundly transform our ability to rapidly characterize geophysical events, provide early warning, as well as improve hazard mitigation and response. Specific applications currently under development with university, commercial, non-profit and government collaboration on national and international scales include earthquake and tsunami early warning systems and near real-time tropospheric modeling of hurricanes and precipitable water vapor estimate assimilation. Using tsunami early warning as an example, an RT-GNSS network can provide multiple inputs in an operational system starting with rapid assessment of earthquake sources and associated deformation which informs the initial modeled tsunami. The networks can then can also provide direct measurements of the tsunami wave heights and propagation by tracking the associated ionospheric disturbance from several 100's of km away as the waves approaches the shoreline. These GNSS based constraints can refine the tsunami and inundation models and potentially mitigate hazards. Other scientific and operational applications for high-rate GPS include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. Our operational system has multiple communities that use and depend on a Pan-Pacific real-time open data set. The ability to merge existing data sets and user communities, seismic and tide gauge observations, with GNSS and Met data products has proven complicated because of issues related to meta-data, appropriate data formats, data quality assessment in real-time and specific issues related to using these products in operational forecasting. Additional issues related to data access across national borders and cognizant government sanctioned "early warning" agencies, some committed to specific technologies, methodologies, internal structure and further constrained by data policies make a truly operational system an on-going work in progress. We present a short history of evolving a very large and expensive RT-GNSS network originally designed to answer specific long term scientific questions about structure and evolution of North American plate boundaries into a much needed national hazard system while continuing to serve our core community in long term scientific studies. Out primary focus in this presentation is an analysis of our current goals and impediments to achieving these broader objectives.

  1. An environmental-level, real-time, pulsed photon dosemeter.

    PubMed

    Olsher, R H; Frymire, A; Gregoire, T

    2005-01-01

    Radiation sources producing short pulses of photon radiation are widespread. Such sources include electron linear accelerators and field emission impulse generators. It is often desirable to measure leakage and skyshine radiation for these sources in real time and at environmental levels as low as 0.02 microSv per pulse. This note provides an overview of the design and performance of a commercial, real-time, pulsed photon dosemeter (PPD) capable of single-pulse dose measurements over the range from 0.02 to 20 microSv. The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of pulses over a 3 s period. A pulse repetition rate of up to 300 Hz is accommodated.

  2. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.

  3. 2-micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U.; Petros, M.

    2012-12-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar is being developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. Our objective is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable an airborne capability to perform a first proof of principle demonstration of airborne direct detection CO2 measurements. The 2-micron transmitter provides 100mJ at 10Hz with double pulse format specifically designed for DIAL/IPDA instrument. The compact, rugged, highly reliable transceiver is based on unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. A 16-inch diameter telescope has been designed and being manufactured for the direct detection lidar. The detector is an InGaAs Positive-Intrinsic-Negative (PIN) photodiode manufactured by Hamamatsu Corporation. The performance of the detector is characterized at various operating temperatures and bias voltages for spectral response, NEP, response time, dynamic range, and linearity. A collinear lidar structure is designed to be integrated to NASA UC12 or B200 research aircrafts. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation. The first engineering flight is scheduled at the end of next year.

  4. Reconfigurable wavefront sensor for ultrashort pulses.

    PubMed

    Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger

    2012-04-01

    A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

  5. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  6. Birefringent Fiber Devices and Lasers

    NASA Astrophysics Data System (ADS)

    Theimer, James Prentice

    1995-01-01

    This thesis presents the results of numerical simulations of mode-locked figure eight lasers and their components: fiber amplifiers and nonlinear optical loop mirrors (NOLMs). The computations were designed to study pulse evolution in optical amplifiers and NOLMs with periodic repetition of these elements. Since fiber laser systems also include birefringent fiber, the effects of fiber birefringence was incorporated into the simulations. My studies of pulse amplification in non-birefringent amplifiers show pulse breakup when their energies exceed 4.5 fundamental soliton energies. In birefringent fibers pulse breakup is also found, but the two orthogonally polarized pulses propagate together. I find that their behavior is related to the properties of a vector soliton. I found that vector waves have close to unity transmission through a birefringent NOLM, but the pulse shape is distorted. This shape distortion reduces subsequent transmissions through the NOLM. The energy required for peak transmission of the pulse is predicted by the theory based on vector solitons. The same theory also predicted the low intensity transmission. The performance of the NOLM with birefringent fiber could not be improved by altering the polarization state of the pulse from linear polarization; the polarization controller introduced pulse distortion that resulted in excessive loss. I found an instability in the steady-state operation of the figure eight laser, which is due to pulse reshaping during propagation in the amplifier section. To remove this instability I introduced the concept of dispersion balancing; by increasing the dispersion in the amplifier section, the pulse can propagate nearly as a fundamental soliton in both the amplifier and the NOLM sections of the laser. This eliminated a major source of dispersive wave shedding and allowed the laser operation to become independent of the amplifier length. Sidebands were found on the pulse spectrum and their maxima corresponded well with the periodic resonance model.

  7. Standardization of Rocket Engine Pulse Time Parameters

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs, and allow accounting for thruster pulse length when modeling plume contamination and erosion effects.

  8. Applications of Earth Remote Sensing in Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Bell, Jordan R.; Schultz, Lori A.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2013-01-01

    NASA's Short-­-term Predic1on Research and Transi1on (SPoRT) Center supports the transi1on of unique NASA and NOAA research activities to the operational weather forecasing community. Our primary partners are NOAA's National Weather Service, their Weather Forecast Offices (WFOs), and National Centers. These organizations predict natural hazards and also assist in the disaster assessment process, benefiting from remotely sensed data. In 2013, SPoRT continued to transition high resolution satellite imagery, derived products, and value-­-added analysis to WFO partners and NASA's Applied Sciences Program.

  9. Scheduling Operative Surgical Services to Recover CHAMPUS Surgical Procedures at Blanchfield Army Community Hospital, Fort Campbell, Kentucky

    DTIC Science & Technology

    1993-08-01

    use since World War II. The facility’s medical service region encompasses the entire state of Tennessee and the twelve southwestern counties of... 8545 RT MODIFIED RADICAL MASTECTOMY 10 34:40 3:28 4576 SIGMOIDECTOMY 6 25:00 4:10 4610 COLOSTOMY CLOSURE 6 26:25 4:24 5732 CYSTOLITHOLAPAXY, BLADDER BX...2:59 3859 LIGATION/STRIPPING OF VARICOSE VEINS 21 45:50 2:10 5310 BILATERAL INGUINAL HERNIA REPAIR 13 29:30 2:16 8545 RT MODIFIED RADICAL MASTECTOMY

  10. The LANL P14 temperature control electronics for the waveshaping filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahman, N.S.

    1993-12-17

    The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.

  11. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    PubMed

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and the operator dose by 69%. High-output pulsed fluoroscopy with a grid-switched tube and extra filtering improves the image quality and significantly reduces both the operator dose and patient dose.

  12. Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF{sub 4}/O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Sang-Heon, E-mail: ssongs@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu

    2014-03-15

    In plasma etching for microelectronics fabrication, the quality of the process is in large part determined by the ability to control the ion energy distribution (IED) onto the wafer. To achieve this control, dual frequency capacitively coupled plasmas (DF-CCPs) have been developed with the goal of separately controlling the magnitude of the fluxes of ions and radicals with the high frequency (HF) and the shape of the IED with the low frequency (LF). In steady state operation, plasma properties are determined by a real time balance between electron sources and losses. As such, for a given geometry, pressure, and frequencymore » of operation, the latitude for controlling the IED may be limited. Pulsed power is one technique being investigated to provide additional degrees of freedom to control the IED. In one configuration of a DF-CCP, the HF power is applied to the upper electrode and LF power is applied to the lower electrode which is serially connected to a blocking capacitor (BC) which generates a self dc-bias. In the steady state, the value of the dc-bias is, in fact, constant. During pulsed operation, however, there may be time modulation of the dc-bias which provides an additional means to control the IED. In this paper, IEDs to the wafer in pulsed DF-CCPs sustained in Ar/CF{sub 4}/O{sub 2} are discussed with results from a two-dimensional plasma hydrodynamics model. The IED can be manipulated depending on whether the LF or HF power is pulsed. The dynamic range of the control can be tuned by the dc-bias generated on the substrate, whose time variation depends on the size of the BC during pulsed operation. It was found that high energy ions can be preferentially produced when pulsing the HF power and low energy ions are preferentially produced when pulsing the LF power. A smaller BC value which allows the bias to follow the change in charged particle fluxes produces a larger dynamic range with which to control IEDs.« less

  13. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  14. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  15. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the photocathode, however, at higher rates the limitations of the discrimination/counting system will cause the observed count rate to be non-linear with respect to the true count rate. Depending on the pulse height distribution and the discriminator level, the overlapping of pulses (pulse pile-up) can cause count loss or even an additional apparent count gain as the signal levels increase. Characterization of the system, including the pulse height distribution, the signal to noise ratio, and the effect of the discriminator threshold level, is critical in maximizing the linear operating region of the system, thus greatly increasing the useful dynamic range of the system.

  16. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  17. Control System for the LLNL Kicker Pulse Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Cook, E G

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  18. Kilohertz Cr:forsterite regenerative amplifier.

    PubMed

    Evans, J M; Petri Evi, V; Alfano, R R; Fu, Q

    1998-11-01

    We report on a tunable regenerative amplifier that is operational in the near-infrared spectral region from 1230 to 1280 nm based on the vibronic laser material Cr:forsterite. Utilizing the technique of chirped-pulse amplification, we generated pulses as short as 150 fs at 1255 nm at a repetition rate of 1 kHz. Pulse amplification of more than 5 x 10(5) times was observed, with recorded output pulse energies of 34 muJ . Implementation of a second-harmonic generator yielded 110-fs-duration pulses of 7-muJ energy at 625 nm.

  19. Ablation of film stacks in solar cell fabrication processes

    DOEpatents

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  20. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.

  1. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  2. Influence of temperature on the CuIn1-xGaxSe2films deposited by picosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sima, Cornelia; Toma, Ovidiu

    2017-12-01

    The goal of this study is to investigate the influence of the deposition temperature on the CuIn1-xGaxSe2 (CIGS-copper indium gallium diselenide) film characteristics deposited by picosecond laser ablation method using a Nd:YVO4 laser (8 ps, 0.2 W, 50 kHz, 532 nm; 5.7 mJ/cm2; 36 × 107 pulses). The films were deposited starting from a CuIn0.7Ga0.3Se2 target, in vacuum at 3 × 10-5 Torr for 2 h, at room temperature (RT) and 100/200/300/400 °C substrate temperature; as substrate, optical glass was used. Structure, film morphology, composition and optical properties were investigated by X ray diffraction, scanning electron microscopy (energy dispersive X ray spectroscopy), spectroscopic ellipsometry and optical spectrophotometry. CIGS crystalline films have the dominant peak corresponding to (112) direction more pronounced starting with 200 °C deposition temperature. The thickness gradually decreased with temperature increasing, being 1.44 μm at RT and 0.72 μm at 400 °C; atomic composition in the case of In, Ga, Se increased after annealing, while in the case of Cu it decreased comparing with RT; refractive indices exhibited a short decreasing tendency by increasing the deposition temperature, while the optical band gap values for CuIn0.7Ga0.3Se2 laser ablated thin films increased.

  3. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  4. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochems, P.; Kirk, A. T.; Bunert, E.

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less

  5. Experimental gas-fired pulse-combustion studies

    NASA Technical Reports Server (NTRS)

    Blomquist, C. A.

    1982-01-01

    Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.

  6. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Relatedmore » work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.« less

  7. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  8. Characterization of chemical contaminants and their spectral properties from an atmospheric pressure ns-pulsed microdischarge in neon

    DOE PAGES

    Sillerud, Colin H.; Schwindt, Peter D. D.; Moorman, Mathew; ...

    2017-03-01

    Portable applications of microdischarges will mandate operation in the presence of contaminant species. This paper examines the temporal evolution of microdischarge optical and ultraviolet emissions during pulsed operation by experimental methods. By varying the pulse length of a microdischarge initiated in a 4-­hole silicon microcavity array operating in a 655 Torr ambient primarily composed of Ne, we were able to measure the emission growth rates for different contaminant species native to the discharge environment as a function of pulse length. It was found that emission from hydrogen and oxygen impurities demonstrated similar rates of change, while emissions from molecular andmore » atomic nitrogen, measured at 337.1 and 120 nm’s respectively, exhibited the lowest rate of change. We conclude that it is likely that O 2 undergoes the same resonant energy transfer process between rare gas excimers that has been shown for H 2. Further, efficient resonant processes were found to be favored during ignition and extinction phases of the pulse, while emission at the 337.1 nm line from N 2 was favored during the intermediate stage of the plasma. In addition to experimental results, a zero-­dimensional analysis is also presented to further understand the nature of the microdischarge.« less

  9. Characteristics of a velvet cathode under high repetition rate pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xun Tao; Zhang Jiande; Yang Hanwu

    2009-10-15

    As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a {approx}300 kV, {approx}6 ns, {approx}100 {omega}, and 1-300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibriummore » pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.« less

  10. Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Guoying

    2007-09-01

    A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.

  11. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  12. Double-Pulsed 2-micron Laser Transmitter for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong

    2002-01-01

    A high energy double-pulsed Ho:Tm:YLF 2-micron laser amplifier has been demonstrated. 600 mJ per pulse pair under Q-switch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.

  13. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  14. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    PubMed

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  15. Rapid detection of potyviruses from crude plant extracts.

    PubMed

    Silva, Gonçalo; Oyekanmi, Joshua; Nkere, Chukwuemeka K; Bömer, Moritz; Kumar, P Lava; Seal, Susan E

    2018-04-01

    Potyviruses (genus Potyvirus; family Potyviridae) are widely distributed and represent one of the most economically important genera of plant viruses. Therefore, their accurate detection is a key factor in developing efficient control strategies. However, this can sometimes be problematic particularly in plant species containing high amounts of polysaccharides and polyphenols such as yam (Dioscorea spp.). Here, we report the development of a reliable, rapid and cost-effective detection method for the two most important potyviruses infecting yam based on reverse transcription-recombinase polymerase amplification (RT-RPA). The developed method, named 'Direct RT-RPA', detects each target virus directly from plant leaf extracts prepared with a simple and inexpensive extraction method avoiding laborious extraction of high-quality RNA. Direct RT-RPA enables the detection of virus-positive samples in under 30 min at a single low operation temperature (37 °C) without the need for any expensive instrumentation. The Direct RT-RPA tests constitute robust, accurate, sensitive and quick methods for detection of potyviruses from recalcitrant plant species. The minimal sample preparation requirements and the possibility of storing RPA reagents without cold chain storage, allow Direct RT-RPA to be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories and seed certification facilities worldwide. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, Miriam; Stancari, Giulio; Valishev, Alexander

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine developmentmore » MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.« less

  17. An overview of DREV's activities on pulsed CO2 laser transmitters: Frequency stability and lifetime aspects

    NASA Technical Reports Server (NTRS)

    Cruickshank, James; Pace, Paul; Mathieu, Pierre

    1987-01-01

    After introducing the desired features in a transmitter for laser radar applications, the output characteristics of several configurations of frequency-stable TEA-CO2 lasers are reviewed. Based on work carried out at the Defence Research Establishment Valcartier (DREV), output pulses are examined from short cavity lasers, CW-TEA hybrid lasers, and amplifiers for low power pulses. It is concluded that the technique of injecting a low-power laser beam into a TEA laser resonator with Gaussian reflectivity mirrors should be investigated because it appears well adapted to producing high energy, single mode, low chirp pulses. Finally, a brief report on tests carried out on catalysts composed of stannic oxide and noble metals demonstrates the potential of these catalysts, operating at close to room temperature, to provide complete closed-cycle laser operation.

  18. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  19. Single flux pulses affecting the ensemble of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  20. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  1. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  2. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less

  3. Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Bjorklund, R. A.

    1973-01-01

    The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.

  4. Experimental Demonstration and Circuitry for a Very Compact Coil-Only Pulse Echo EMAT

    PubMed Central

    Rueter, Dirk

    2017-01-01

    This experimental study demonstrates for the first time a solid-state circuitry and design for a simple compact copper coil (without an additional bulky permanent magnet or bulky electromagnet) as a contactless electromagnetic acoustic transducer (EMAT) for pulse echo operation at MHz frequencies. A pulsed ultrasound emission into a metallic test object is electromagnetically excited by an intense MHz burst at up to 500 A through the 0.15 mm filaments of the transducer. Immediately thereafter, a smoother and quasi “DC-like” current of 100 A is applied for about 1 ms and allows an echo detection. The ultrasonic pulse echo operation for a simple, compact, non-contacting copper coil is new. Application scenarios for compact transducer techniques include very narrow and hostile environments, in which, e.g., quickly moving metal parts must be tested with only one, non-contacting ultrasound shot. The small transducer coil can be operated remotely with a cable connection, separate from the much bulkier supply circuitry. Several options for more technical and fundamental progress are discussed. PMID:28441722

  5. Primary Total Knee Replacement: Is Suction a Portal of Infection?

    PubMed Central

    Budnar, Vijaya M; Amirfeyz, Rouin; Ng, Michael; Bannister, Gordon C; Blom, Ashley W

    2009-01-01

    INTRODUCTION Pulsed lavage during a total knee replacement usually leaves a pool of fluid on the surgical drapes. It is common practice to suck away this fluid using the same suction device used intra-operatively. This could be a cause of direct wound contamination. We hypothesised that bacteria contaminate fluid that collects around the foot in total knee replacement surgery and that suction equipment could be a portal of contamination. We also hypothesised that bacterial count in the fluid is lower if chlorhexidine, rather than saline, is used in the pulsed lavage. PATIENTS AND METHODS Forty patients undergoing primary total knee replacement were divided into two groups. The first group had pulsed lavage with normal saline and the second with 0.05% chlorhexidine. RESULTS At the end of the operation, 20 ml of fluid, pooled on the surgical drapes was aspirated and cultured for bacterial growth. None of the fluid samples showed bacterial growth. CONCLUSIONS Suction device used peri-operatively during knee replacement is unlikely to be a cause of wound contamination. Pulsed lavage with normal saline is as effective as lavage with chlorhexidine. PMID:19335972

  6. Highly flexible pulse programmer for NMR applications

    NASA Technical Reports Server (NTRS)

    Dart, J.; Burum, D. P.; Rhim, W. K.

    1980-01-01

    A pulse generator for NMR application is described. Eighteen output channels are provided to allow use in single and double resonance experiments. Complex pulse sequences may be generated by loading instructions into a 256-word by 16-bit program memory. Features of the pulse generator include programmable time delays from 0.5 micros to 1000 s, branching and looping instructions, and the ability to be loaded and operated either manually or from a PDP-11/10 computer.

  7. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  8. Chinese-English Automation and Computer Technology Dictionary. Volume I.

    DTIC Science & Technology

    1979-12-01

    erjiguan dian- I-i ,f. transistored bridge 22 qiao bandaoti fangdaqi ’p ) semiconductor amplifier 23 bandaoti jiguangqi ’- ., semiconductor laser 24...semidefinite operator 21 banduchu maichong ’t: v half-read pulse 22 banduishu biaodu t L, N hIs semilogarithmic scale 23 banfanshu seminorm (math.) 24...semilinear 16 banxie maichong ’k half-write pulse ; 17 write half- pulse banxieru maichong ’p , half-write pulse 18 banxu kongjJan ’V ;’ J partially ordered

  9. Pulsed writing of solid state holograms.

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.; Quick, C. R.

    1973-01-01

    The pulsed writing of volume holograms in lithium niobate is reported, both with 200-nsec and 20-nsec duration pulses. This information is of particular interest in high capacity information storage applications since it indicates that writing times at least as short as 20-nsec are readily possible. A series of pulses was used in each case, and the diffraction efficiency was monitored using a He-Ne laser operating at 6328 A and aligned to its corresponding Bragg angle.

  10. Effects of urban microcellular environments on ray-tracing-based coverage predictions.

    PubMed

    Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing

    2016-09-01

    The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model.

  11. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  12. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  13. Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder

    2017-02-01

    A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.

  14. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  15. Development of large-aperture electro-optical switch for high power laser at CAEP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing

    2015-02-01

    Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.

  16. Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution?

    PubMed Central

    Monnet, Xavier; Lamia, Bouchra; Teboul, Jean-Louis

    2005-01-01

    The pulse oximetry plethysmographic signal resembles the peripheral arterial pressure waveform, and the degree of respiratory variation in the pulse oximetry wave is close to the degree of respiratory arterial pulse pressure variation. Thus, it is tempting to speculate that pulse oximetry can be used to assess preload responsiveness in mechanically ventilated patients. In this commentary we briefly review the complex meaning of the pulse oximetry plethysmographic signal and highlight the advantages, limitations and pitfalls of the pulse oximetry method. Future studies including volume challenge must be performed to test whether the pulse oximetry waveform can really serve as a nonivasive tool for the guidance of fluid therapy in patients receiving mechanical ventilation in intensive care units and in operating rooms. PMID:16277729

  17. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  18. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  19. Dual sub-picosecond and sub-nanosecond laser system

    NASA Astrophysics Data System (ADS)

    Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi

    2003-11-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  20. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

Top