Optimized capping layers for EUV multilayers
Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA
2004-08-24
A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.
The effect of number of nano structural coating containing Ti and Ru created by electro deposition
NASA Astrophysics Data System (ADS)
Ardi, Simin; Asl, Shahin Khamene; Hoseini, Mirghasem; Pouladvand, Iman
2018-01-01
TiO2 and RuO2 have many applications in the field of photocataliysis, environmental protection, high charge storage capacity devices and etc. Electro deposition offers advantages such as rigid control of film thickness, uniformity and deposition rate. Electro deposition of RuO2-TiO2 coatings on Ti substrates was performed via hydrolysis by electro generated based of TiCl4 and RuCl3 salts dissolved in mixed methyl alcohol-water solvent in presence of hydrogen peroxide for one, three and six layer. The obtained coatings have been heated in electric furnace at 500 ˚C. Results show that coating with six layers on Ti substrate is the useful coating
PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability
NASA Astrophysics Data System (ADS)
Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei
2018-02-01
As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.
NASA Astrophysics Data System (ADS)
Yang, Jingbo; Mi, Hongwei; Luo, Shan; Li, Yongliang; Zhang, Peixin; Deng, Libo; Sun, Lingna; Ren, Xiangzhong
2017-11-01
Flexible Li-O2 batteries have attracted worldwide research interests and been considered to be potential alternatives for the next-generation flexible devices. Nitrogen-doped carbon nanofibers (N-CNFs) prepared by electrospinning are used as flexible substrate and an amorphous TiO2 layer is coated by atomic layer deposition (ALD) and then decorated with Ru nanoparticles. The Ru/N-CNFs@TiO2 composite is directly used as a free-standing electrode for Li-O2 batteries and the electrode delivers a high specific capacity, improved round-trip efficiency and good cycling ability. The superior electrochemical performance can be attributed to the amorphous TiO2 protecting layer and superior catalytic activity of Ru nanoparticles. Based on density functional theory (DFT) calculations from first principles, the carbon electrode after coating with TiO2 is more stable during discharge/charge process. The analysis of Li2O2 on three different interfaces (Li2O2/N-CNFs, Li2O2/TiO2, and Li2O2/Ru) indicates that the electron transport capacity was higher on Ru and TiO2 compared with N-CNFs, therefore, Li2O2 could be formed and decomposed more easily on the Ru/N-CNFs@TiO2 cathode. This work paves a way to develop the free-standing cathode materials for the future development of high-performance flexible energy storage systems.
New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes
NASA Astrophysics Data System (ADS)
Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.
2017-06-01
This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.
Nagashima, Takumi; Ozawa, Hiroaki; Suzuki, Takashi; Nakabayashi, Takuya; Kanaizuka, Katsuhiko; Haga, Masa-Aki
2016-01-26
Photoresponsive molecular memory films were fabricated by a layer-by-layer (LbL) assembling of two dinuclear Ru complexes with tetrapodal phosphonate anchors, containing either 2,3,5,6-tetra(2-pyridyl)pyrazine or 1,2,4,5-tetra(2-pyridyl)benzene as a bridging ligand (Ru-NP and Ru-CP, respectively), using zirconium phosphonate to link the layers. Various types of multilayer homo- and heterostructures were constructed. In the multilayer heterofilms such as ITO||(Ru-NP)m |(Ru-CP)n , the difference in redox potentials between Ru-NP and Ru-CP layers was approximately 0.7 V, which induced a potential gradient determined by the sequence of the layers. In the ITO||(Ru-NP)m |(Ru-CP)n multilayer heterofilms, the direct electron transfer (ET) from the outer Ru-CP layers to the ITO were observed to be blocked for m>2, and charge trapping in the outer Ru-CP layers became evident from the appearance of an intervalence charge transfer (IVCT) band at 1140 nm from the formation of the mixed-valent state of Ru-CP units, resulting from the reductive ET mediation of the inner Ru-NP layers. Therefore, the charging/discharging ("1"and "0") states in the outer Ru-CP layers could be addressed and interconverted by applying potential pulses between -0.5 and +0.7 V. The two states could be read out by the direction of the photocurrent (anodic or cathodic). The molecular heterolayer films thus represent a typical example of a photoresponsive memory device; that is, the writing process may be achieved by the applied potential (-0.5 or +0.7 V), while the readout process is achieved by measuring the direction of the photocurrent (anodic or cathodic). Sequence-sensitive multilayer heterofilms, using redox-active complexes as building blocks, thus demonstrate great potential for the design of molecular functional devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.
Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2010-11-15
A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Goyal, Amit; Kroeger, Donald M.; Paranthaman, Mariappan; Lee, Dominic F.; Feenstra, Roeland; Norton, David P.
2002-01-01
A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
NASA Astrophysics Data System (ADS)
Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon
2014-07-01
Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.
Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study
NASA Astrophysics Data System (ADS)
Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.
2008-05-01
A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.
NASA Astrophysics Data System (ADS)
Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku
2009-04-01
Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.
NASA Astrophysics Data System (ADS)
Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.
2017-10-01
The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.
NASA Astrophysics Data System (ADS)
Norga, G. J.; Fè, Laura; Wouters, D. J.; Maes, H. E.
2000-03-01
We present a promising method for obtaining Pb(Zr, Ti)O3(PZT) layers with excellent endurance and pulse-switching properties on RuO2 electrodes using the sol-gel method. As the substrate temperature during reactive sputtering of the RuO2 bottom electrode layer is reduced, the (111) PZT texture component becomes more pronounced, an effect attributed to the change from columnar to granular RuO2 film morphology. Reducing the residual PZT (100) and (101) texture components was found to be a necessary condition for obtaining optimal pulse switching and endurance properties of the layers. Highly (111)-oriented PZT layers, obtained on RuO2 grown at 150 °C exhibit a net switched charge of >60 μC/cm2 during pulse measurement and <10% degradation after 1011 fatigue cycles.
X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system
NASA Astrophysics Data System (ADS)
Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling
2006-03-01
A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.
Precursor dependent nucleation and growth of ruthenium films during chemical vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Wen; Ekerdt, John G., E-mail: ekerdt@utexas.edu
2016-07-15
Nucleation and film growth characteristics are reported during chemical vapor deposition of Ru on SiO{sub 2} using triruthenium dodecacarbonyl [Ru{sub 3}(CO){sub 12}] and ruthenium bis(di-t-butylacetamidinate) dicarbonyl [Ru({sup t}Bu-Me-amd){sub 2}(CO){sub 2}]. Films grown from Ru{sub 3}(CO){sub 12} follow the three dimensional (3D) Volmer–Weber growth mode. In contrast, films grown from Ru({sup t}Bu-Me-amd){sub 2}(CO){sub 2} follow the pseudo-layer-by-layer growth mode with two dimensional wetting layer islands forming before 3D particle growth is observed on the islands. A relationship between free isolated hydroxyl [(Si-OH){sub i}] group density and Ru nucleation density is found for Ru{sub 3}(CO){sub 12} and is associated with (Si-OH){sub i}more » acting as the reaction sites for activation of Ru{sub 3}(CO){sub 12} and in turn generating an adjustable adatom concentration. Carbon monoxide and ammonia addition to the gas phase during film growth from Ru({sup t}Bu-Me-amd){sub 2}(CO){sub 2} lead to smoother films by inducing surface reconstructions during the 3D phase of pseudo-layer-by-layer growth; these gases also lead to films with lower resistivity and lower crystalline character.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamil, Elynor L.; Morgan, Harry W.T.; Hayward, Michael A., E-mail: michael.hayward@chem.ox.ac.uk
The B-cation deficient perovskite phases Ba{sub 6}Nb{sub 4}RuO{sub 18} and LaBa{sub 4}Nb{sub 3}RuO{sub 15} were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on themore » basis of the difference between d{sup 0} and non-d{sup 0} transition metal cations. - Graphical abstract: The ruthenium-containing B-cation deficient perovskite phases, Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}, adopt 5-layer and 4-layer structures respectively, rather than the 6-layer and 5-layer cation-deficient structures adopted by the analogous titanium-containing phases Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}. Display Omitted - Highlights: • B-cation deficient perovskite containing paramagnetic cations. • B-cation deficient structure determined by neutron powder diffraction. • Low ‘solubility’ of BaRuO{sub 3} in Ba{sub 5}Nb{sub 4}O{sub 15} leads to novel structure.« less
NASA Astrophysics Data System (ADS)
Jia, Chuanyi; Zhong, Wenhui; Deng, Mingsen; Jiang, Jun
2018-03-01
Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.
NASA Astrophysics Data System (ADS)
Ko, Dong-Su; Lee, Woo-Jin; Sul, Soohwan; Jung, Changhoon; Yun, Dong-Jin; Kim, Hee-Goo; Son, Won-Joon; Chung, Jae Gwan; Jung, Doh Won; Kim, Se Yun; Kim, Jeongmin; Lee, Wooyoung; Kwak, Chan; Shin, Jai Kwang; Kim, Jung-Hwa; Roh, Jong Wook
2018-04-01
The structural, electrical, and optical properties of monolayer ruthenium oxide (RuO2) nanosheets (NSs) fabricated by chemical exfoliation of a layered three-dimensional form of K-intercalated RuO2 are studied systematically via experimental and computational methods. Monolayer RuO2 NS is identified as having a distorted h-MX2 structure. This is the first observation of a RuO2 NS structure that is unlike the t-MX2 structure of the RuO2 layers in the parent material and does not have hexagonal symmetry. The distorted h-MX2 RuO2 NSs are shown to have optical transparency superior to that of graphene, thereby predicting the feasibility of applying RuO2 NSs to flexible transparent electrodes. In addition, it is demonstrated that the semiconducting band structures of RuO2 NSs can be manipulated to be semi-metallic by adjusting the crystal structure, which is related to band-gap engineering. This finding indicates that RuO2 NSs can be used in a variety of applications, such as flexible transparent electrodes, atomic-layer devices, and optoelectronic devices.
Raman and electronic transport characterization of few- and single-layer-thick α-RuCl3
NASA Astrophysics Data System (ADS)
Zhou, Boyi; Henriksen, Erik
The layered magnetic semiconductor α-RuCl3, having a honeycomb lattice of spin-1/2 moments, has been identified as a potential candidate material to realize the Kitaev quantum spin liquid. In particular, bulk RuCl3 crystals have been studied and found to be on the cusp of manifesting QSL behavior. As the QSL is primarily a two-dimensional phenomenon, and since the layers of RuCl3 are weakly coupled, we propose to create and study a 2D spin-1/2 honeycomb system by isolating single sheets. Here we report the exfoliation of RuCl3 down to few- and single-layer-thick samples, which we characterize by Raman spectroscopy and atomic force microscopy at room temperature. We will also report our progress on measurements of basic electronic transport properties in the 2D RuCl3 system by controlling the chemical potential via gating in a field-effect configuration.
Yu, Yingchang; Lu, Chao; Zhang, Meining
2015-08-04
Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaker, A.; Szkutnik, P. D.; Pointet, J.
2016-08-28
In this paper, TiO{sub 2} layers grown on RuO{sub 2} by atomic layer deposition (ALD) using tetrakis (dimethyla-mino) titanium (TDMAT) and either oxygen plasma or H{sub 2}O as oxygen source were analyzed using X-ray diffraction (XRD), Raman spectroscopy, and depth-resolved X-ray Photoelectron spectroscopy (XPS). The main objective is to investigate the surface chemical reactions mechanisms and their influence on the TiO{sub 2} film properties. The experimental results using XRD show that ALD deposition using H{sub 2}O leads to anatase TiO{sub 2} whereas a rutile TiO{sub 2} is obtained when oxygen-plasma is used as oxygen source. Depth-resolved XPS analysis allows tomore » determine the reaction mechanisms at the RuO{sub 2} substrate surface after growth of thin TiO{sub 2} layers. Indeed, the XPS analysis shows that when H{sub 2}O assisted ALD process is used, intermediate Ti{sub 2}O{sub 3} layer is obtained and RuO{sub 2} is reduced into Ru as evidenced by high resolution transmission electron microscopy. In this case, there is no possibility to re-oxidize the Ru surface into RuO{sub 2} due to the weak oxidation character of H{sub 2}O and an anatase TiO{sub 2} layer is therefore grown on Ti{sub 2}O{sub 3}. In contrast, when oxygen plasma is used in the ALD process, its strong oxidation character leads to the re-oxidation of the partially reduced RuO{sub 2} following the first Ti deposition step. Consequently, the RuO{sub 2} surface is regenerated, allowing the growth of rutile TiO{sub 2}. A surface chemical reaction scheme is proposed that well accounts for the observed experimental results.« less
Lateral interactions in (NO+O) coadsorbate layers on Ru(001): fundamental and overtone modes
NASA Astrophysics Data System (ADS)
Jakob, P.
1999-06-01
A systematic investigation of various (NO+O) coadsorbate layers on Ru(001) is presented. By using infrared absorption spectroscopy, fundamental and overtone bands were studied in a wide temperature range to extract dynamical information on lifetime broadening (low-temperature limit) and dephasing behavior (thermal broadening and line shifts). The layers studied were (1) 3NO-(2×2)/Ru(001), (2) (2NO+O)(2×2)/Ru(001) and (3) (NO+2O)(2×2)/Ru(001). It is found that replacing hollow-site NO by oxygen atoms causes characteristic frequency shifts of νRu-NO and νN-O of linearly bond on-top NO which is present for all three layers. In agreement with earlier results on CO/Ru(001) and with theoretical prediction, the νN-O″ overtone band displays rapid broadening with increasing temperature (about four times faster than the respective localized νN-O fundamental band) while the temperature-dependent line shift and the 0 K linewidth is twice as high as observed for νN-O. An unusually large bandwidth close to 100 cm -1 is found for the νN-O mode of the row-like (NO+O)(2×1)/Ru(001) overlayer.
Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.
Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong
2012-09-26
Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.
MoRu/Be multilayers for extreme ultraviolet applications
Bajt, Sasa C.; Wall, Mark A.
2001-01-01
High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-06-29
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-10-05
An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.
Investigations of direct methanol fuel cell (DMFC) fading mechanisms
NASA Astrophysics Data System (ADS)
Sarma, Loka Subramanyam; Chen, Ching-Hsiang; Wang, Guo-Rung; Hsueh, Kan-Lin; Huang, Chiou-Ping; Sheu, Hwo-Shuenn; Liu, Ding-Goa; Lee, Jyh-Fu; Hwang, Bing-Joe
In this report, we present the microscopic investigations on various fading mechanisms of a direct methanol fuel cell (DMFC). High energy X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic analysis were applied to a membrane-electrode-assembly (MEA) before and after fuel cell operation to figure out the various factors causing its fading. High energy XRD analysis of the fresh and faded MEA revealed that the agglomeration of the catalyst particles in the cathode layer of the faded MEA was more significant than in the anode layer of the faded MEA. The XAS analysis demonstrated that the alloying extent of Pt (J Pt) and Ru (J Ru) in the anode catalyst was increased and decreased, respectively, from the fresh to the faded MEA, indicating that the Ru environment in the anode catalyst was significantly changed after the fuel cell operation. Based on the X-ray absorption edge jump measurements at the Ru K-edge on the anode catalyst of the fresh and the faded MEA it was found that Ru was dissolved from the Pt-Ru catalyst after the fuel cell operation. Both the Ru K-edge XAS and EDX analysis on the cathode catalyst layer of the faded MEA confirms the presence of Ru environment in the cathode catalyst due to the Ru crossover from the anode to the cathode side. The changes in the membrane and the gas diffusion layer (GDL) after the fuel cell operation were observed from the Raman spectroscopy analysis.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Devi, Pooja; Shivling, V. D.
2017-08-01
Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.
NASA Astrophysics Data System (ADS)
Altarawneh, Rakan M.; Pickup, Peter G.
2017-10-01
Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.
NASA Astrophysics Data System (ADS)
Din Yati, M. S.; Nazree Derman, Mohd; Isa, M. C.; Y Ahmad, M.; Yusoff, N. H. N.; Muhammad, M. M.; Nain, H.
2014-06-01
The potential of aluminium alloys as anode materials in cathodic protection system has been explored and a significant improvement has been achieved. However, for marine application, it is quite difficult to maintain continuous activation process due to passivation behavior of aluminum alloys. Therefore, to choose the best activation mechanism for aluminium alloy in marine environment, it has to be considered from various points such as alloy composition and surface treatment. This paper report the effect of metallic ruthenium oxide (RuO2) deposition on the surface of as-cast Al-Zn-Mg-Sn alloy and to study the effect of its presence on the electrochemical behavior using direct current (DC) electrochemical polarization and current capacity measurement. The morphology and topography of corroded surface were studied by the aid of scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) respectively. Results from this study showed that the presence of intermetallic compound (Mg2Sn) and also mixed metal oxide compound (Al2O3 and RuO2) on the alloy surface has been very useful in improving electrochemical reaction and charge transfer activities in chloride containing solution. This study also showed that RuO2 catalytic coating applied on the surface of Al-Zn-Mg-Sn alloy has slightly increased the corrosion current density compared to Al-Zn-Mg-Sn without RuO2. The corrosion morphology and topography of corroded surface of Al-Zn-Mg-Sn alloy deposited with RuO2 was found more uniform corrosion attack with the formation of porous and fibrous mud-like crack on outer layer. Based on surface morphology and 3D topographic studies, these features were believed to facilitate ionic species adsorption and diffusion through corrosion product layer at solution-alloy interface. Deposited RuO2 films also was found to increase of current efficiency by more than 10%.
Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Kawasaki, M.; Tokura, Y.
2001-08-01
Oxide superlattices composed of antiferromagnetic insulator layers of CaMnO3 (10 unit cells) and paramagnetic metal layers of CaRuO3 (N unit cells) were fabricated on LaAlO3 substrates by pulsed-laser deposition. All the superlattices show ferromagnetic transitions at an almost identical temperature (TC˜95 K) and negative magnetoresistance below TC. Each magnetization and magnetoconductance of the whole superlattice at 5 K is constant and independent of CaRuO3 layer thickness when normalized by the number of the interfaces between CaMnO3 and CaRuO3. These results indicate that the ferromagnetism shows up only at the interface and is responsible for the magnetoresistance.
Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si
Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo
2015-01-01
Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099
Electronic screening in stacked graphene flakes revealed by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Feng, Xiaofeng; Salmeron, Miquel
2013-02-01
Electronic doping and screening effects in stacked graphene flakes on Ru and Cu substrates have been observed using scanning tunneling microscopy (STM). The screening affects the apparent STM height of each flake in successive layers reflecting the density of states near the Fermi level and thus the doping level. It is revealed in this way that the strong doping of the first graphene layer on Ru(0001) is attenuated in the second one, and almost eliminated in the third and fourth layers. Similar effect is also observed in graphene flakes on Cu(111). In contrast, the strong doping effect is suppressed immediately by a water layer intercalated between the graphene and Ru.
Hur, Su Gil; Park, Dae Hoon; Hwang, Seong-Ju; Kim, Seung Joo; Lee, J H; Lee, Sang Young
2005-11-24
We have investigated the effect of alkaline earth metal substitution on the crystal structure and physical properties of magnetic superconductors RuSr(1.9)A(0.1)GdCu(2)O(8) (A = Ca, Sr, and Ba) in order to probe an interaction between the magnetic coupling of the RuO(2) layer and the superconductivity of the CuO(2) layer. X-ray diffraction and X-ray absorption spectroscopic analyses demonstrate that the isovalent substitution of Sr ions with Ca or Ba ions makes it possible to tune the interlayer distance between the CuO(2) and the RuO(2) layers. From the measurements of electrical resistance and magnetic susceptibility, it was found that, in contrast to negligible change of magnetization, both of the alkaline earth metal substitutions lead to a notable depression of zero-resistance temperature T(c) (DeltaT(c) approximately 17-19 K). On the basis of the absence of a systematic correlation between the T(c) and the interlayer distance/magnetization, we have concluded that the internal magnetic field of the RuO(2) layer has insignificant influence on the superconducting property of the CuO(2) layer in the ruthenocuprate.
Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).
Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F
2015-02-07
We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O(2-) ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O(2-) (plateau) while Fe seems to retain its 3+ state.
NASA Astrophysics Data System (ADS)
Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki
2018-05-01
Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.
NASA Astrophysics Data System (ADS)
Schaefer, Michael; Schlaf, Rudy
2015-08-01
Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.
NASA Astrophysics Data System (ADS)
Liu, Qianlang
Graphene has attracted great interest in many fields due to its outstanding electronic and chemical properties. Among them, its surface inertness and high thermal stability makes graphene a promising candidate as a protective material for transition metal surfaces. Recent studies show, however, that small molecules, such as O2, CO and H2O, intercalate between a graphene film and a metal substrate at particular temperatures. The intercalation of O2 between graphene and Ru(0001) is studied with 3 keV helium ion scattering and low energy electron diffraction. It is shown that O2 intercalates between the graphene and the Ru(0001) substrate at a temperature of 650 K and does not adsorb onto the graphene surface. Nevertheless, the graphene layer efficiently avoids both intercalation and adsorption of oxygen at room temperature. It is also found that the intercalated oxygen thermally desorbs from the surface after it is heated to 800 K. Such a desorption is not, however, observed for oxygen dissociatively adsorbed on a bare Ru(0001) surface until 1200 K. It is thus inferred that the oxygen intercalated between graphene and Ru(0001) is in a molecular form. In addition, part of the graphene overlayer is etched by a chemical reaction during the thermal desorption of oxygen. The role of the defects on the graphene layer is also studied. Defects are introduced by 50 eV Ar+ sputtering, which creates single vacancies with a quick sputtering or larger open areas of substrate following a prolonged sputtering. It is found that oxygen molecularly adsorbs at single carbon vacancies even at room temperature, which does not occur on a complete graphene layer. Following post-annealing to 600 K, it is observed that such adsorbed oxygen diffuses to become intercalated between graphene and Ru(0001). Oxygen dissociatively adsorbs in the large open areas of exposed substrate by forming strong oxygen-metal bonds. It is also found that the presence of defects facilitates the intercalation of oxygen and improves the etching efficiency of the graphene during the desorption of oxygen.
Wang, Yixuan; Mi, Yunjie; Redmon, Natalie; Holiday, Jessica
2009-01-01
The fundamental assumption of the bi-functional mechanism for PtSn alloy to catalyze ethanol electro-oxidation reaction (EER) is that Sn facilitates water dissociation and EER occurs over Pt site of the PtSn alloy. To clarify this assumption and achieve a good understanding about the EER, H2O adsorption and dissociation over bimetallic clusters PtM (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) are systematically investigated in the present work. To discuss a variety of effects, PtnM (n=2, and 3; M=Pt, Sn and Ru), one-layer Pt6M (M=Pt, Sn and Ru), and two-layer (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters are used to model the PtM bimetallic catalysts. Water exhibits atop adsorption on Pt and Ru sites of the optimized clusters PtnM (n=2, and 3; M=Pt and Ru), yet bridge adsorption on Sn sites of Pt2Sn as well as distorted tetrahedral Pt3Sn. However, in the cases of one-layer Pt6M and two-layer Pt9M cluster models water preferentially binds to all of investigated central atom M of surface layer in atop configuration with the dipole moment of water almost parallel to the cluster surface. Water adsorption on the Sn site of PtnSn (n=2 and 3) is weaker than those on the Pt site of Ptn (n=3 and 4) and the Ru site of PtnRu (n=2 and 3), while water adsorptions on the central Sn atom of Pt6Sn and Pt9Sn are enhanced so significantly that they are even stronger than those on the central Pt and Ru atoms of PtnM (n=6 and 9; M=Pt and Ru). For all of the three cluster models, energy barrier (Ea) for the dissociation of adsorbed water over Sn is lower than over Ru and Pt atoms (e.g., Ea: 0.78 vs 0.96 and 1.07 eV for Pt9M), which also remains as external electric fields were added. It is interesting to note that the dissociation energy on Sn site is also the lowest (Ediss: 0.44 vs 0.61 and 0.67eV). The results show that from both kinetic and thermodynamic viewpoints Sn is more active to water decomposition than pure Pt and the PtRu alloy, which well supports the assumption of the bi-functional mechanism that Sn site accelerates the dissociation of H2O. The extended investigation for water behavior on the (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters indicate that the kinetic activity for water dissociation increases in the sequence of Cu < Pd < Rh < Pt < Ru < Sn < Re. PMID:20336187
Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-06-01
Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy-carbon core-shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10-30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2-6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.
NASA Astrophysics Data System (ADS)
Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-06-01
Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.
Growth and sacrificial oxidation of transition metal nanolayers
NASA Astrophysics Data System (ADS)
Tsarfati, Tim; Zoethout, Erwin; van de Kruijs, Robbert; Bijkerk, Fred
2009-04-01
Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e - donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
NASA Astrophysics Data System (ADS)
Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun
2015-12-01
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
Giant magnetoresistive structures based on CrO{sub 2} with epitaxial RuO{sub 2} as the spacer layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, G.X.; Gupta, A.; Sims, H.
2005-05-15
Epitaxial ruthenium dioxide (RuO{sub 2})/chromium dioxide(CrO{sub 2}) thin film heterostructures have been grown on (100)-TiO{sub 2} substrates by chemical vapor deposition. Both current-in-plane (CIP) and current-perpendicular-to-plane (CPP) giant magnetoresistive stacks were fabricated with either Co or another epitaxial CrO{sub 2} layer as the top electrode. The Cr{sub 2}O{sub 3} barrier, which forms naturally on CrO{sub 2} surfaces, is no longer present after the RuO{sub 2} deposition, resulting in a highly conductive interface that has a resistance at least four orders of magnitude lower. However, only very limited magnetoresistance (MR) was observed. Such low MR is due to the appearance ofmore » a chemically and magnetically disordered layer at the CrO{sub 2} and RuO{sub 2} interfaces when Cr{sub 2}O{sub 3} is transformed into rutile structures during its intermixing with RuO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Jiao, Guohua; Liu, Bo; Li, Qiran
2015-08-01
Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.
NASA Astrophysics Data System (ADS)
Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong
2015-12-01
We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Shim, Tae-Hun
We investigated the Ru spacer-thickness effect on the anti-ferro-magnetic coupling strength (J{sub ex}) of a [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer fabricated with Co{sub 2}Fe{sub 6}B{sub 2}/MgO based perpendicular-magnetic-tunneling-junction spin-valves on 12-in. TiN electrode wafers. J{sub ex} peaked at a certain Ru spacer-thickness: specifically, a J{sub ex} of 0.78 erg/cm{sup 2} at 0.6 nm, satisfying the J{sub ex} criteria for realizing the mass production of terra-bit-level perpendicular-spin-transfer-torque magnetic-random-access-memory. Otherwise, J{sub ex} rapidly degraded when the Ru spacer-thickness was less than or higher than 0.6 nm. As a result, the allowable Ru thickness variation should be controlled less than 0.12 nm to satisfy the J{sub ex} criteria. However,more » the Ru spacer-thickness did not influence the tunneling-magneto-resistance (TMR) and resistance-area (RA) of the perpendicular-magnetic-tunneling-junction (p-MTJ) spin-valves since the Ru spacer in the synthetic-anti-ferro-magnetic layer mainly affects the anti-ferro-magnetic coupling efficiency rather than the crystalline linearity of the Co{sub 2}Fe{sub 6}B{sub 2} free layer/MgO tunneling barrier/Co{sub 2}Fe{sub 6}B{sub 2} pinned layer, although Co{sub 2}Fe{sub 6}B{sub 2}/MgO based p-MTJ spin-valves ex-situ annealed at 275 °C achieved a TMR of ∼70% at a RA of ∼20 Ω μm{sup 2}.« less
Tuning electronic properties by oxidation-reduction reactions at graphene-ruthenium interface
Kandyba, Viktor; Al-Mahboob, Abdullah; Giampietri, Alessio; ...
2018-06-06
Mass production of graphene is associated with the growth on catalysts used also in other chemical reactions. In this study, we exploit the oxidation-reduction to tailor the properties of single layer graphene domains with incorporated bi-layer patches on ruthenium. Using photoelectron spectromicroscopy techniques, we find that oxygen, intercalating under single layer and making it p-doped by the formation of Ru-O x, does not intercalate under the bilayer patches with n-doped upper layer, but decorates them under single layer surrounding creating lateral p-n junctions with chemical potential difference of 1.2 eV. O-reduction by thermal treatment in vacuum results in C-vacancy defectsmore » enhancing electronic coupling of remained graphene to Ru, whereas in H 2, vacancy formation is suppressed. Also, for the domains below 15–25 μm size, after O-reduction in H 2, graphene/Ru coupling is restored, while wrinkle pattern produced by O-intercalation is irreversible and can trap reaction products between the wrinkles and Ru surface step edges. In fact, in certain regions of bigger domains, the products, containing H 2O and/or its fragments, remain at the interface, making graphene decoupled and undoped.« less
Kim, Jun Woo; Kim, Byungwoo; Park, Suk Won; Kim, Woong; Shim, Joon Hyung
2014-10-31
It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.
Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh
2014-06-01
A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Li, Rongwu; Pan, Qiuli; Li, Guoxia; Zhao, Weijuan; Liu, Zhiguo
2009-01-01
The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Junling; Elam, Jeffrey W.
Thermal atomic layer deposition (ALD) of noble metals is frequently performed using molecular oxygen as the nonmetal precursor to effect a combustion-type chemistry at relatively high temperatures of 300 °C. Bis(ethylcyclopentadienyl)ruthenium (Ru(EtCp)2) is one of the common used metal precursors for Ru ALD. Using Ru(EtCp)2 and oxygen as reactants, Ru ALD was acheived at near 300 °C. Here, we demonstrate that Ru ALD can proceed at as low as 150 °C by using successive exposures to oxygen and hydrogen as the co-reactants. In situ quartz crystal microbalance (QCM) and quadrupole mass spectroscopy (QMS) measurements both suggest that this ABC-type ALDmore » occurs through dissociative chemisorption, combustion, and reduction for the Ru(EtCp)2, oxygen and hydrogen steps, respectively, in a similar manner to processes using ozone and hydrogen as co-reactants reported previously. Moreover, we believe this molecular O2 and H2 based ABC-type ALD could be exploited for the ALD of other noble metals to decrease the deposition temperature and reduce oxygen impurities.« less
NASA Astrophysics Data System (ADS)
Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung
2015-09-01
Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.
Magnetism and electronic structure at the interface of a metal CaRuO3 and Mott insulator CaMnO3.
NASA Astrophysics Data System (ADS)
Boris, Alexander; Freeland, John; Kavich, Jerald; Lee, Ho Nyung; Yordanov, Petar; Khaliullin, Giniyat; Keimer, Bernhard; Chakhalian, Jak
2007-03-01
Recent advances in fabrication of ultra-thin complex oxide heterostructures have opened new opportunities to investigate possible novel quantum states at the correlated interfaces. With this aim we fabricated ultra-thin superlattices of CaMnO3(CMO)/CaRuO3(CRO) with the thickness of CRO layers from 1 to 12 unit cells by laser MBE. Electronic properties of CRO/CMO were investigated by soft x-ray spectroscopies at the L-edges of Mn and Ru. SQUID and optical reflectivity revealed a ferromagnetic thickness-independent transition at Tc 100K and CRO thickness-dependent negative magnetoresistance. This behavior is in marked contrast to the individual layers. At the interface we found a clear sign of net magnetic moment on Mn, which saturates only at magnetic field of 5T. Unlike CMO, similar measurements at the Ru L3-edge showed no detectable magnetism in the field up to 5T. Comparison with Ru references confirmed Ru(IV) oxidation state. These findings are in the sharp contrast with previously suggested models involving Ru(IV-V) valency exchange and thus reveal intricate nature of the interface between a metal and Mott insulator.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
NASA Astrophysics Data System (ADS)
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-12-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.
Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V
2016-06-08
Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.
Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers
NASA Astrophysics Data System (ADS)
Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish
2008-03-01
The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.
Lonsdale, W; Maurya, D K; Wajrak, M; Alameh, K
2017-03-01
The effect of contact layer on the pH sensing performance of a sputtered RuO 2 thin film pH sensor is investigated. The response of pH sensors employing RuO 2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time. Copyright © 2016 Elsevier B.V. All rights reserved.
Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki
2016-05-15
We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.
2014-07-14
In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less
Nanoscale structural and electronic characterization of α-RuCl3 layered compound
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei
The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.
Santiago, Mitk’El B.; Vélez, Meredith M.; Borrero, Solmarie; Díaz, Agustín; Casillas, Craig A.; Hofmann, Cristina; Guadalupe, Ana R.; Colón, Jorge L.
2007-01-01
We present a carbon paste electrode (CPE) modified using the electron mediator bis(1,10-phenanthroline-5,6-dione) (2,2′-bipyridine)ruthenium(II) ([Ru(phend)2bpy]2+) exchanged into the inorganic layered material zirconium phosphate (ZrP). X-Ray powder diffraction showed that the interlayer distance of ZrP increases upon [Ru(phend)2bpy]2+ intercalation from 10.3 Å to 14.2 Å. The UV-vis and IR spectroscopies results showed the characteristic peaks expected for [Ru(phend)2bpy]2+. The UV-vis spectrophotometric results indicate that the [Ru(phend)2bpy]2+ concentration inside the ZrP layers increased as a function of the loading level. The exchanged [Ru(phend)2bpy]2+ exhibited luminescence even at low concentration. Modified CPEs were constructed and analyzed using cyclic voltammetry. The intercalated mediator remained electroactive within the layers (E°′ = −38.5 mV vs. Ag/AgCl, 3.5 M NaCl) and electrocatalysis of NADH oxidation was observed. The kinetics of the modified CPE shows a Michaelis –Menten behavior. This CPE was used for the oxidation of NADH in the presence of Bakers’ yeast alcohol dehydrogenase. A calibration plot for ethanol is presented. PMID:18516242
Reducing adhesion energy of micro-relay electrodes by ion beam synthesized oxide nanolayers
Saha, Bivas; Peschot, Alexis; Osoba, Benjamin; ...
2017-03-09
Reduction in the adhesion energy of contacting metal electrode surfaces in nano-electro-mechanical switches is crucial for operation with low hysteresis voltage. We demonstrate that by forming thin layers of metal-oxides on metals such as Ru and W, the adhesion energy can be reduced by up to a factor of ten. We employ a low-energy ion-beam synthesis technique and subsequent thermal annealing to form very thin layers (~2 nm) of metal-oxides (such as RuO 2 and WO x) on Ru and W metal surfaces and quantify the adhesion energy using an atomic force microscope with microspherical tips.
NASA Astrophysics Data System (ADS)
Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.
2017-09-01
Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-01-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface. PMID:27941761
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3.
Ziatdinov, M; Banerjee, A; Maksov, A; Berlijn, T; Zhou, W; Cao, H B; Yan, J-Q; Bridges, C A; Mandrus, D G; Nagler, S E; Baddorf, A P; Kalinin, S V
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl 3 . Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl 3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl 3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl 3
Ziatdinov, Maxim A.; Banerjee, Arnab; Maksov, Artem B.; ...
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, -RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of -RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at themore » nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of 0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual -RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.« less
Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer
NASA Astrophysics Data System (ADS)
Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng
2018-03-01
Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Inhye; Park, Jingyu; Jeon, Heeyoung
In this study, the effects of a thin Ru interlayer on the thermal and morphological stability of NiSi have been investigated. Ru and Ni thin films were deposited sequentially to form a Ni/Ru/Si bilayered structure, without breaking the vacuum, by remote plasma atomic layer deposition (RPALD) on a p-type Si wafer. After annealing at various temperatures, the thermal stabilities of the Ni/Ru/Si and Ni/Si structures were investigated by various analysis techniques. The results showed that the sheet resistance of the Ni/Ru/Si sample was consistently lower compared to the Ni/Si sample over the entire temperature range. Although both samples exhibited themore » formation of NiSi{sub 2} phases at an annealing temperature of 800 °C, as seen with glancing angle x-ray diffraction, the peaks of the Ni/Ru/Si sample were observed to have much weaker intensities than those obtained for the Ni/Si sample. Moreover, the NiSi film with a Ru interlayer exhibited a better interface and improved surface morphologies compared to the NiSi film without a Ru interlayer. These results show that the phase transformation of NiSi to NiSi{sub 2} was retarded and that the smooth NiSi/Si interface was retained due to the activation energy increment for NiSi{sub 2} nucleation that is caused by adding a Ru interlayer. Hence, it can be said that the Ru interlayer deposited by RPALD can be used to control the phase transformation and physical properties of nickel silicide phases.« less
Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation
NASA Astrophysics Data System (ADS)
Miller, Benjamin Kyle
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
Amir, Fatima Z.; Pham, V. H.; Mullinax, D. W.; ...
2016-06-07
Ruthenium oxide (RuO 2) nanomaterials exist as excellent materials for electrochemical capacitors. However, they tend to suffer from low mechanical flexibility when cast into films, which makes them unsuitable for flexible device applications. Herein, we report an environmentally friendly and solution-processable approach to fabricate RuO 2-based composite electrodes for flexible solid state supercapacitors. The composites were produced by anchoring RuO 2 nanoparticles onto holey reduced graphene oxide (HRGO) via a sol-gel method, followed by the electrophoretic deposition (EPD) of the material into thin films. The uniform anchoring of ultra-small RuO 2 nanoparticles on the two-dimensional HRGO sheets resulted in HRGO-RuOmore » 2 hybrid sheets with excellent mechanical flexibility of HRGO. EPD induced a layer-by-layer assembly mechanism for the HRGO-RuO 2 hybrid sheets, which resulted in a binder-free, flexible electrode. The obtained HRGO-RuO 2 flexible supercapacitors exhibited excellent electrochemical capacitive performance in a PVA-H 2SO 4 gel electrolyte with a specific capacitance of 418 F g -1 and superior cycling stability of 88.5% capacitance retention after 10,000 cycles. Additionally, these supercapacitors exhibited high rate performance with capacitance retention of 85% by increasing the current density from 1.0 to 20.0 Ag -1, and excellent mechanical flexibility with only 4.9% decay in the performance when bent 180°.« less
NASA Astrophysics Data System (ADS)
Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya
2018-06-01
We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.
Intrinsic Josephson effects in the magnetic superconductor RuSr2GdCu2O8.
Nachtrab, T; Koelle, D; Kleiner, R; Bernhard, C; Lin, C T
2004-03-19
We have measured interlayer current transport in small-sized RuSr2GdCu2O8 single crystals. We find a clear intrinsic Josephson effect showing that the material acts as a natural superconductor-insulator-ferromagnet-insulator-superconductor superlattice. Thus far, we detected no unconventional behavior due to the magnetism of the RuO2 layers.
Dell'Angela, M.; Anniyev, T.; Beye, M.; ...
2015-03-01
Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W
2015-03-01
Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
Iancu, Cristina V.; Ding, H. Jane; Morris, Dylan M.; Dias, D. Prabha; Gonzales, Arlene D.; Martino, Anthony; Jensen, Grant J.
2007-01-01
Carboxysomes are organelle-like polyhedral bodies found in cyanobacteria and many chemoautotrophic bacteria that are thought to facilitate carbon fixation. Carboxysomes are bounded by a proteinaceous outer shell and filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the first enzyme in the CO2 fixation pathway, but exactly how they enhance carbon fixation is unclear. Here we report the three-dimensional structure of purified carboxysomes from Synechococcus species strain WH8102 as revealed by electron cryotomography. We found that while the sizes of individual carboxysomes in this organism varied from 114 to 137 nm, surprisingly, all were approximately icosahedral. There were on average ∼250 RuBisCOs per carboxysome, organized into 3-4 concentric layers. Some models of carboxysome function depend on specific contacts between individual RuBisCOs and the shell, but no evidence of such contacts was found: no systematic patterns of connecting densities or RuBisCO positions against the shell's presumed hexagonal lattice could be discerned, and simulations showed that packing forces alone could account for the layered organization of RuBisCOs. PMID:17669419
CeRuPO: A rare example of a ferromagnetic Kondo lattice
NASA Astrophysics Data System (ADS)
Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.
2007-09-01
We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.
Jayachandran Nair, C V; Ahamad, Sayeed; Khan, Washim; Anjum, Varisha; Mathur, Rajani
2017-12-01
Quantitative standardization of plant-based products is challenging albeit essential to maintain their quality. This study aims to develop and validate high-performance thin-layer chromatography (HPTLC) method for the simultaneous determination of rutin (Ru), quercetin (Qu), and gallic acid (Ga) from Psidium guajava Linn. (PG) and Aegle marmelos (L.) Correa. (AM) and correlate with antioxidant activity. The stock solution (1 mg/mL) of standard Ru, Qu, and Ga in methanol: Water (1:1) was serially diluted and spotted (5 μL) on slica gel 60 F 254 thin-layer chromatography plates. Toluene: Ethyl acetate: Formic acid: Methanol (3:4:0.8:0.7, v/v/v) was selected as mobile phase for analysis at 254 nm. Hydroalcoholic (1:1) extracts of leaves of PG and AM were fractionated and similarly analyzed. Antioxidant activity was also determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The developed method was robust and resolved Ru, Qu, and Ga at R f 0.08 ± 0.02, 0.76 ± 0.01, and 0.63 ± 0.02, respectively. The intra-day, interday precision, and interanalyst were <2% relative standard deviation. The limit of detection and limit of quantification for Ru, Qu, and Ga were 4.51, 4.2, 5.27, and 13.67, 12.73, 15.98 ng/spot, respectively. Antioxidant activity (Log 50% inhibition) of PG and AM was 4.947 ± 0.322 and 6.498 ± 0.295, respectively. The developed HPTLC method was rapid, accurate, precise, reproducible, and specific for the simultaneous estimation of Ru, Qu, and Ga. HPTLC method for simultaneous determination and quantification of Rutin, Quercetin and Gallic acid, is reported for quality control of herbal drugs. Abbreviations Used: A: Aqueous fraction; AM: Aegle marmelos L. Correa; B: Butanol fraction; C: Chloroform fraction; EA: Ethyl acetate fraction; Ga: Gallic acid; H: Hexane fraction; HA: Hydroalcoholic extract; HPTLC: High-performance thin-layer chromatography; PG: Psidium guajava ; Qu: Quercetin; Ru: Rutin.
Control of Low-Field Hysteresis Loop Shift of Spin Valves
NASA Astrophysics Data System (ADS)
Chernyshova, T. A.; Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Maksimova, I. K.; Pavlova, A. Yu.; Blagodatkov, D. V.; Ustinov, V. V.
2017-12-01
Spin valves that comprise synthetic antiferromagnet as a component of pinned layer and an exchange-coupled ferromagnet/Ru/ferromagnet structure in the free layer have been prepared by magnetron sputtering. Microobjects have been formed from spin valves by optical and electron-beam lithography. It has been shown that the shift of the low-field magnetoresistance hysteresis loop decreases as the thicknes of the Ru spacer in the free layer of spin valve increases. The almost hysteresis-free odd-field dependences of the magnetoresistance were obtained for micron-sized samples; in this case, the sensitivity is 0.2%/Oe.
Lyu, Yingchun; Hu, Enyuan; Xiao, Dongdong; ...
2017-10-20
Li 2Ru 0.5Mn 0.5O 3, a high capacity lithium rich layered cathode material for lithium-ion batteries, was subject to comprehen-sive diagnostic studies including in situ/ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), pair distribu-tion function (PDF) and high resolution scanning transmission electron microscopy (STEM) analysis, to understand the cor-relations between transition metal chemistry, structure and lithium storage electrochemical behavior. Ru-Ru dimers have been identified in the as-prepared sample and found to be preserved upon prolonged cycling. Presence of these dimers, which are likely caused by the delocalized nature of 4d electrons, is found to favor the stabilization of themore » structure in a lay-ered phase. The in situ XAS results confirm the participation of oxygen redox into the charge compensation at high charge voltage, and the great flexibility of the covalent bond between Ru and O may provide great reversibility of the global struc-ture despite of the significant local distortion around Ru. In contrast, the local distortion around Mn occurs at low discharge voltage and is accompanied by a “layered to 1T” phase transformation, which is found to be detrimental to the cycle per-formances. It is clear that the changes of local structure around individual transition metal cations respond separately and differently to lithium intercalation/deintercalation. Here, cations with the capability to tolerate the lattice distortion will benefit for maintaining the integrality of the crystal structure and therefore is able to enhance the long-term cycling performance of the electrode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Yingchun; Hu, Enyuan; Xiao, Dongdong
Li 2Ru 0.5Mn 0.5O 3, a high capacity lithium rich layered cathode material for lithium-ion batteries, was subject to comprehen-sive diagnostic studies including in situ/ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), pair distribu-tion function (PDF) and high resolution scanning transmission electron microscopy (STEM) analysis, to understand the cor-relations between transition metal chemistry, structure and lithium storage electrochemical behavior. Ru-Ru dimers have been identified in the as-prepared sample and found to be preserved upon prolonged cycling. Presence of these dimers, which are likely caused by the delocalized nature of 4d electrons, is found to favor the stabilization of themore » structure in a lay-ered phase. The in situ XAS results confirm the participation of oxygen redox into the charge compensation at high charge voltage, and the great flexibility of the covalent bond between Ru and O may provide great reversibility of the global struc-ture despite of the significant local distortion around Ru. In contrast, the local distortion around Mn occurs at low discharge voltage and is accompanied by a “layered to 1T” phase transformation, which is found to be detrimental to the cycle per-formances. It is clear that the changes of local structure around individual transition metal cations respond separately and differently to lithium intercalation/deintercalation. Here, cations with the capability to tolerate the lattice distortion will benefit for maintaining the integrality of the crystal structure and therefore is able to enhance the long-term cycling performance of the electrode materials.« less
Effect of ultra-thin liner materials on copper nucleation/wetting and copper grain growth
NASA Astrophysics Data System (ADS)
Mueller, Justin E.
One of the key challenges facing future integrated circuit copper (Cu) interconnect manufacturing is to achieve uniform coverage of PVD Cu seed layer at minimum thickness on a liner and barrier. We have therefore characterized the nucleation and wetting of PVD Cu on various liner surfaces by monitoring in-situ the film's electrical conductance during the initial stages of deposition (0 to 25 nm). Our results showed that the Cu wetting is sensitive to the Cu/liner interfacial properties, while the nucleation depends on the liner microstructure. It was found that a ruthenium (Ru) liner has a good Cu wetting characteristic and allows at the onset nearly layer by layer Cu growth. Because of good wetting, Cu growth is not significantly affected by Ru liner grain size. Tantalum (Ta), however, exhibits poor Cu wetting, which results in an initial stage of three dimensional island growth of Cu. In this case, Cu island coalescing occurs sooner, at a smaller Cu film thickness, when the nucleation site density is increased with a smaller grain size Ta liner. To optimize the seed layer's conductance and step coverage, a liner with combined properties of Ta (for adhesion and barrier formation) and Ru (for wetting and grain growth) may be desired. A hybrid magnetron target has been developed for depositing TaRu liner films at various compositions. The microstructure of the compound liners and their effects on the overgrown Cu seed layer over a wide range of TaRu composition is presented. It was found that below 80% Ru concentration, TaRu films are amorphous. An amorphous liner results in poor Cu nucleation as compared with a crystalline Ta or Ru liner. A comparison of the microstructure of thin Cu films deposited on bcc alpha-Ta and tetragonal beta-Ta surfaces has been carried out. Cu resistivity is lower by 10-15%, accompanied by larger Cu grain size, in as-deposited Cu films of various thickness' (30-120 nm) on beta-Ta as compared to those deposited on alpha-Ta. This is due to the presence of an epitaxial relationship between Cu (111) and beta-Ta (002) planes. After annealing, the difference was only seen in films thinner than 60 nm. Results were confirmed when Cu film resistance was measured in-situ during deposition on each phase of Ta liner. Serpentine interconnect line structures of various line widths and aspect ratios were fabricated using either alpha- or beta-Ta liners, and subjected to a similar heat treatment. Results showed a similar ˜10% lower resistivity in the thinnest interconnects (˜40 nm) when a beta-Ta liner was used.
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Lamb, J. L.; Williams, R. M.; Khanna, S. K.
1985-01-01
Hard protective coatings in the W-Re-B and Mo-Ru-B alloy systems have been deposited by magnetron sputtering onto soda-lime glass and heat-treated AISI 52100 steel substrates. X-ray diffraction has confirmed the amorphous nature of the as-deposited coatings, and their crystallization temperatures were determined by differential thermal analysis to be 1000 and 790 C for W-Re-B and Mo-Ru-B coatings, respectively. Both coatings exhibit high microhardness; Mo-Ru-B, in addition, has excellent corrosion resistance by comparison with pure Mo at high anodic potentials. Attention is given to the influence of internal stresses on the protective properties of the coatings deposited under different conditions.
Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung
2018-01-01
The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.
Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol
2018-01-01
The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport Properties of Metallic Ruthenates: A DFT +DMFT Investigation
NASA Astrophysics Data System (ADS)
Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel
2016-06-01
We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr2RuO4 , Sr3 Ru2 O7 , SrRuO3 , and CaRuO3 , within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr2 RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.
Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state
Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...
2015-12-10
We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr; Saito, Masayuki
2016-05-15
The ruthenium (Ru) thin films were grown by atomic layer deposition (ALD) using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and H{sub 2} as a reactant at a substrate temperature of 250 °C. Deposition was possible using H{sub 2} molecules without a plasma by increasing the chamber pressure to above 10 Torr. Specifically, high-quality Ru films with a low resistivity of ∼40 μΩ cm and few amount of oxygen (∼1.2 at. %) were obtained under a chamber pressure of 300 Torr though the oxygen was contained in the precursor. Under the optimized conditions, self-limited film growth with regard to the precursormore » and reactant pulsing times was confirmed under elevated chamber pressures. The ALD-Ru process proposed in this study showed one of the highest growth rates of 0.12 nm/cycle on a thermally grown SiO{sub 2} substrate, as well as a very low number of incubation cycles (approximately 12 cycles). Cross-sectional view transmission electron microscopy showed that no interfacial oxide had formed during the deposition of the ALD-Ru films on a W surface using H{sub 2} molecules, whereas ∼7 nm thick interfacial oxide was formed when O{sub 2} molecules were used as a reactant. The step coverage of the ALD-Ru film onto very small-sized trenches (aspect ratio: ∼4.5 and the top opening size of 25 nm) and holes (aspect ratio: ∼40 and top opening size of 40 nm) was excellent (∼100%).« less
Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung
2016-11-09
Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.
Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation
NASA Astrophysics Data System (ADS)
Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.
2015-10-01
A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.
Magnetic and Crystal Structure of α-RuCl3
NASA Astrophysics Data System (ADS)
Sears, Jennifer
The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).
Effects of nanoscale coatings on reliability of MEMS ohmic contact switches
NASA Astrophysics Data System (ADS)
Tremper, Amber Leigh
This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, In-Sung; Jung, Yong Chan; Seong, Sejong
2015-01-15
The charge trapping properties of metal-HfO{sub 2}-Ge capacitor as a nonvolatile memory have been investigated with (NH{sub 4}){sub 2}S-treated Ge substrate and atomic-layer-deposited HfO{sub 2} layer. The interfacial layer generated by (NH{sub 4}){sub 2}S-treated Ge substrate reveals a trace of -S- bonding, very sharp interface edges, and smooth surface morphology. The Ru-HfO{sub 2}-Ge capacitor with (NH{sub 4}){sub 2}S-treated Ge substrate shows an enhanced interface state with little frequency dispersion, a lower leakage current, and very reliable properties with the enhanced endurance and retention than Ru-HfO{sub 2}-Ge capacitor with cyclic-cleaned Ge substrate.
Predicting Hidden bulk phases in Sr3Ru2O7 from surface phases
NASA Astrophysics Data System (ADS)
Rivero, Pablo; Chen, Chen; Jin, Roying; Meunier, Vincent; Plummer, E. W.; Shelton, William
Double-layered Sr3Ru2O7 has received phenomenal attention as it exhibits an overabundance of exotic phases when perturbed. Recently it has been shown that the surface of this material displays significantly different properties than in the bulk due to the surface induced tilt of the RuO6 octahedra. Here we report detailed first principles calculations of the surface structure, and the structure property relationship. Tilt of the octahedra drive the surface into a much less conducting state than in the bulk due in part to the different electronic properties of the two Ru atoms in the first RuO2 layer of the bilayer. The broken symmetry at the surface causes a tilt and enhanced rotation of the octahedra only present in the first (surface) bilayer. Theoretically the surface is ferromagnetically ordered but the stability with respect to the antiferromagnetic phase is small ( = 11 meV). We have calculated the bulk properties under uniaxial pressure, which induces a tilt and drives the bulk into an antiferromagnetic-insulating state. Support of this project came from DoE contract No. DE-SCOO12432 and the Louisiana Board of Regents. V. M. acknowledges support from New York State under NYSTAR program C080117.
Transport Properties of Metallic Ruthenates: A DFT + DMFT Investigation
Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel
2016-06-20
We present a systematical theoretical study on the transport properties of an archetypal family of Hund’s metals, Sr 2RuO 4, Sr 3Ru2O 7, SrRuO 3, and CaRuO 3, within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund’s metals fall into the scenario of “resilient quasiparticles.” We explain why the single layered compound Sr 2RuO 4 has amore » relative weak correlation with respect to its siblings, which corroborates its good metallicity.« less
Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films
Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...
2015-06-30
Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less
NASA Astrophysics Data System (ADS)
Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.
2016-10-01
Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics.
Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.
2016-01-01
Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics. PMID:27782151
NASA Astrophysics Data System (ADS)
Gifford, Kenneth Douglas
Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.
Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen
2015-03-01
The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.
Growth of strontium ruthenate films by hybrid molecular beam epitaxy
Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; ...
2017-09-01
We report on the growth of epitaxial Sr 2RuO 4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO 4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr 2RuO 4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electronmore » microscopy. In conclusion, the method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.« less
Transverse thermoelectric effect in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}|SrRuO{sub 3} superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiomi, Y.; Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Aoba-ku, Sendai 980-8577; Handa, Y.
2015-06-08
Transverse thermoelectric effects in response to an out-of-plane heat current have been studied in an external magnetic field for ferromagnetic superlattices consisting of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} layers. The superlattices were fabricated on SrTiO{sub 3} substrates by pulsed laser deposition. We found that the sign of the transverse thermoelectric voltage for the superlattices is opposite to that for La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} single layers at 200 K, implying an important role of spin Seebeck effects inside the superlattices. At 10 K, the magnetothermoelectric curves shift from the zero field due to an antiferromagnetic coupling between layersmore » in the superlattices.« less
Satish, Rohit; Lim, Kipil; Bucher, Nicolas; ...
2017-06-23
Lithium rich layered materials are an interesting class of materials which exploit both anionic and cationic redox reactions to store energy upwards of 250 mA h g –1. This paper aims to understand the nature of the redox reactions taking place in these compounds. Li 2RuO 3 was used as the base compound, which is then compared with compounds generated by partially substituting Ru with Ti and Fe respectively. Electrochemical tests indicate that Fe substitution in the sample leads to an improvement in capacity, cycle life and reduction of potential decay. To elucidate the reason for this improvement in operandomore » diffraction experiments were carried out, highlighting the formation of a secondary de-lithiated phase. The distortion of the pristine structure eventually induces frontier orbital reorganization leading to the oxygen redox reaction resulting in extra capacity. Local changes at Fe and Ru ions are recorded using in operando X-ray absorption spectroscopy (XAS). It was noted that while Ru undergoes a reversible redox reaction, Fe undergoes a significant irreversible change in its coordination environment during cycling. In conclusion, the changes in the coordination environment of oxygen and formation of O 2 n– type species were probed in situ using soft X-rays.« less
Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001)
NASA Astrophysics Data System (ADS)
Liu, Feng; Sturm, J. M.; Lee, Chris J.; Bijkerk, Fred
2016-04-01
The extreme ultraviolet (EUV, λ = 13.5 nm) induced dissociation of water layers on Ru(0001) was investigated. We irradiated amorphous and crystalline water layers on a Ru crystal with EUV light, and measured the surface coverage of remaining water and oxygen as a function of radiation dose by temperature programmed desorption (TPD). The main reaction products are OH and H with a fraction of oxygen from fully dissociated water. TPD spectra from a series of exposures reveal that EUV promotes formation of the partially dissociated water overlayer on Ru. Furthermore, loss of water due to desorption and dissociation is also observed. The water loss cross sections for amorphous and crystalline water are measured at 9 ± 2 × 10- 19 cm2 and 5 ± 1 × 10- 19 cm2, respectively. Comparison between the two cross sections suggests that crystalline water is more stable against EUV induced desorption/dissociation. The dissociation products can oxidize the Ru surface. For this early stage of oxidation, we measured a smaller (compared to water loss) cross section at 2 × 10- 20 cm2, which is 2 orders of magnitude smaller than the photon absorption cross section (at 92 eV) of gas phase water. The secondary electron (SE) contributions to the cross sections are also estimated. From our estimation, SE only forms a small part (20-25%) of the observed photon cross section.
Strain dependence of antiferromagnetic interface coupling in La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices
Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; ...
2015-04-06
We have investigated the magnetic response of La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg 1/3Nb 2/3O 3-0.28PbTiO 3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La 0.7Sr 0.3MnO 3(22 angstrom)/SrRuO 3(55 angstrom)] 15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic ordermore » in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO 3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.« less
NASA Astrophysics Data System (ADS)
Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.
Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.
Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum
2013-08-07
An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.
Coupled Electronic and Magnetic Phase Transition in the Infinite-Layer Phase LaSrNiRuO4.
Patino, Midori Amano; Zeng, Dihao; Bower, Ryan; McGrady, John E; Hayward, Michael A
2016-09-06
Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.
Demonstration of Ru as the 4th ferromagnetic element at room temperature.
Quarterman, P; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E; Young, Ian A; Voyles, Paul M; Wang, Jian-Ping
2018-05-25
Development of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering. X-ray diffraction and electron microscopy confirm the epitaxial mechanism to obtain tetragonal phase Ru. We observed a saturation magnetization of 148 and 160 emu cm -3 at room temperature and 10 K, respectively. Control samples ensure the ferromagnetism we report on is from tetragonal Ru and not from magnetic contamination. The effect of thickness on the magnetic properties is also studied, and it is observed that increasing thickness results in strain relaxation, and thus diluting the magnetization. Anomalous Hall measurements are used to confirm its ferromagnetic behavior.
High antiferromagnetic transition temperature of a honeycomb compound SrRu 2O 6
Tian, Wei; Svoboda, Chris; Ochi, M.; ...
2015-09-14
We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu 2O 6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu 2O 6 crystallizes into the hexagonal lead antimonate (PbSb 2O 6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr 2+ ions. SrRu 2O 6 is found to order at T N = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μ B/Ru at room temperature and is along the crystallographic c axis in the G-type magneticmore » structure. We perform density functional calculations with constrained random-phase approximation (RPA) to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t 2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed T N .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaya, Takashi; Bell, A.T.; Weng-Sieh, Zara
1994-09-01
Titania-supported Ru catalysts have been characterized by TEM, {sup 1}H NMR, and H{sub 2} chemisorption to determine the metal particle size, the fraction of the metal surface available for H{sub 2} chemisorption, and the H{sub 2} adsorption capacity of the catalyst, as functions of the reduction temperature. TEM micrographs show that as the reduction temperature rises from 573 to 773K, the average particle size of Ru remains the same but the surface of the particles is covered to an increasing extent by an amorphous layer of titania. Quantitative estimates of the fraction of the Ru particle surface available for H{submore » 2} chemisorption were obtained by {sup 1}H NMR. The NMR spectra also show that a fraction of the adsorbed H{sub 2} spills over onto the support and that as a consequence measurements of total H{sub 2} chemisorption overestimate the number of Ru sites available for H{sub 2} adsorption. The implications of these results for the correct calculation of Ru dispersion and the determination of turnover frequencies for reactions carried out over Ru/TiO{sub 2} are discussed. 16 refs., 5 figs., 1 tab.« less
Orbital Ordering Transition in La_4Ru_2O_10 probed by O K-edge X-ray Absorption
NASA Astrophysics Data System (ADS)
Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Khalifah, P.; Mandrus, D.; Cava, R. J.
2004-03-01
The layered ruthenate compound La_4Ru_2O_10 undergoes a first order monoclinic-to-triclinic structural phase transition at 160 K. An accompanying loss of the Ru local moment gives evidence for a full orbital ordering transition in which the Ru d_yz orbitals become completely unoccupied in the low temperature phase.(P. Khalifah et al.), Science 297, 2237 (2002). Via hybridization of Ru t_2g and O 2p orbitals this temperature-dependent Ru orbital ordering can be indirectly probed using polarized O K-edge x-ray absorption spectroscopy (XAS). O 1s core-level energy shifts allow O site-specific separation of Ru t_2g hybridizations. Identification of O sites is accomplished using polarized XAS angular dependence as well as by O 2p valence PDOS obtained from site-selective soft x-ray emission. Distinct XAS energy and intensity changes are observed upon cooling through the phase transition and are rationalized within the framework of the complete orbital ordering scenario. Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).
Ruthenium films by digital chemical vapor deposition: Selectivity, nanostructure, and work function
NASA Astrophysics Data System (ADS)
Dey, Sandwip K.; Goswami, Jaydeb; Gu, Diefeng; de Waard, Henk; Marcus, Steve; Werkhoven, Chris
2004-03-01
Ruthenium electrodes were selectively deposited on photoresist-patterned HfO2 surface [deposited on a SiOx/Si wafer by atomic layer deposition (ALD)] by a manufacturable, digital chemical vapor deposition (DCVD) technique. DCVD of Ru was carried out at 280-320 °C using an alternate delivery of Bis (2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)Ru (dissolved in tetrahydrofuran) and oxygen. The as-deposited Ru films were polycrystalline, dense, and conducting (resistivity ˜20.6 μΩ cm). However, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and high-resolution electron microscopy results indicate the presence of an amorphous RuOx at the Ru grain boundaries and at the DCVD-Ru/ALD-HfO2 interface. The estimated work function of DCVD-Ru on ALD-HfO2 was ˜5.1 eV. Moreover, the equivalent oxide thickness, hysteresis in capacitance-voltage, and leakage current density at -2 V of the HfO2/SiOx dielectric, after forming gas (95% N2+5% H2) annealing at 450 °C for 30 min, were 1.4 nm, 20 mV, and 7.4×10-7 A cm-2, respectively.
AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion
NASA Astrophysics Data System (ADS)
Han, Z.; Fang, J. Y.; Xie, S. H.; Deng, J. G.; Liu, Y. X.; Dai, H. X.
2018-05-01
Three-dimensionally ordered mesoporous Mn2O3 (meso-Mn2O3) and its supported Au, Ru, and AuRu alloy (0.49 wt% Au/meso-Mn2O3, 0.48 wt% Ru/meso-Mn2O3, and 0.97 wt% AuRu/meso-Mn2O3 (Au/Ru molar ratio = 0.98)) nanocatalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected reduction methods, respectively. Physicochemical properties of the samples were characterized by means of numerous techniques, and their catalytic activities were evaluated for the combustion of methane. It is found that among all of the samples, 0.48 wt% Ru/meso-Mn 2O3 and 0.97 wt% AuRu/meso-Mn2O3 performed the best (the reaction temperature (T90% ) at 90% methane conversion was 530-540°C), but the latter showed a better thermal stability than the former. The partial deactivation of 0.97 wt% AuRu/meso-Mn2O3 due to H2O or CO2 introduction was reversible. It is concluded that the good catalytic activity and thermal stability of 0.97 wt% AuRu/meso-Mn2O3 was associated with the high dispersion of AuRu alloy NPs (2-5 nm) on the surface of meso-Mn2O3 and good low-temperature reducibility.
Anisotropic electrical conduction in ferromagnetic-antiferromagnetic-ferromagnetic oxide trilayers
NASA Astrophysics Data System (ADS)
Padhan, P.; Prellier, W.
2007-07-01
An antiferromagnetic layer of an insulator PrMnO3 , CaMnO3 , or Pr0.5Ca0.5MnO3 has been sandwiched between two layers of ferromagnetic SrRuO3 on (001)-oriented SrTiO3 and LaAlO3 substrates using the pulsed laser deposition technique. Magnetotransport measurements reveal a change of anisotropy in the case of trilayers having a Pr0.5Ca0.5MnO3 or a CaMnO3 spacer layer as compared to that of 20unit cells thick film of SrRuO3 , while in the case of PrMnO3 spacer layer, the change of anisotropy is negligible. In addition, two switching magnetic fields are observed with the trilayer made of PrMnO3 spacer layer in the field-dependent anisotropic magnetoresistance. The results are discussed using the concept of spin-orbit coupling and spin mixing conduction process at the interfaces.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Sun, Congli; Lv, Yang; Schliep, Karl B.; Zhao, Zhengyang; Chen, Jun-Yang; Voyles, Paul M.; Wang, Jian-Ping
2018-04-01
Magnetic materials that possess large bulk perpendicular magnetic anisotropy (PMA) are essential for the development of magnetic tunnel junctions (MTJs) used in future spintronic memory and logic devices. The addition of an antiferromagnetic layer to these MTJs was recently predicted to facilitate ultrafast magnetization switching. Here, we report a demonstration of a bulk perpendicular synthetic antiferromagnetic (PSAFM) structure comprised of a (001) textured Fe -Pd /Ru /Fe -Pd trilayer with a face-centered-cubic (fcc) phase Ru spacer. The L1 0 Fe -Pd PSAFM structure shows a large bulk PMA (Ku˜10.2 Merg /cm3 ) and strong antiferromagnetic coupling (-JIEC˜2.60 erg /cm2 ). Full perpendicular magnetic tunnel junctions (PMTJs) with a L1 0 Fe -Pd PSAFM layer are then fabricated. Tunneling magnetoresistance ratios of up to approximately 25% (approximately 60%) are observed at room temperature (5 K) after postannealing at 350 °C . Exhibiting high thermal stabilities and large Ku , the bulk PMTJs with an L1 0 Fe -Pd PSAFM layer could pave a way for next-generation ultrahigh-density and ultralow-energy spintronic applications.
NASA Astrophysics Data System (ADS)
Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.
2014-09-01
SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.
Numerical study of the Kitaev-Heisenberg chain
NASA Astrophysics Data System (ADS)
Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
2018-05-01
We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j =1/2 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.
NASA Astrophysics Data System (ADS)
Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru
2016-09-01
Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.
Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Claeson, T.
2001-05-01
Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T<300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.
NASA Astrophysics Data System (ADS)
Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.
2018-04-01
We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.
NASA Astrophysics Data System (ADS)
El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.
Mattioli, Giuseppe; Larciprete, Rosanna; Alippi, Paola; Bonapasta, Aldo Amore; Filippone, Francesco; Lacovig, Paolo; Lizzit, Silvano; Paoletti, Anna Maria; Pennesi, Giovanna; Ronci, Fabio; Zanotti, Gloria; Colonna, Stefano
2017-11-16
We have investigated the formation and the properties of ultrathin films of ruthenium phthalocyanine (RuPc) 2 vacuum deposited on graphite by scanning tunneling microscopy and synchrotron photoemission spectroscopy measurements, interpreted in close conjunction with ab initio simulations. Thanks to its unique dimeric structure connected by a direct Ru-Ru bond, (RuPc) 2 can be found in two stable rotameric forms separated by a low-energy barrier. Such isomerism leads to a peculiar organization of the molecules in flat, horizontal layers on the graphite surface, characterized by a chessboard-like alternation of the two rotamers. Moreover, the molecules are vertically connected to form π-stacked columnar pillars of akin rotamers, compatible with the high conductivity measured in (RuPc) 2 powders. Such features yield an unprecedented supramolecular assembly of phthalocyanine films, which could open interesting perspectives toward the realization of new architectures of organic electronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence of superconductivity on the border of quasi-2D ferromagnetism in Ca2RuO4 at high pressure.
Alireza, Patricia Lebre; Nakamura, Fumihiko; Goh, Swee Kuan; Maeno, Yoshiteru; Nakatsuji, Satoru; Ko, Yuen Ting Chris; Sutherland, Michael; Julian, Stephen; Lonzarich, Gilbert George
2010-02-10
The layered perovskite Ca(2)RuO(4) is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ∼ 80 kbar with a maximum Curie temperature of 28 K. Above ∼ 90 and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ∼ 0.4 K in applied magnetic fields of up to ∼ 10 mT. This indicates that our specimens of Ca(2)RuO(4) are weakly superconducting on the border of a quasi-2D ferromagnetic state.
Biaxially textured composite substrates
Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.
2005-04-26
An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.
NASA Astrophysics Data System (ADS)
Kubota, Yumi; Tanaka, Hidekazu; Ono, Toshio; Narumi, Yasuo; Kindo, Koichi
2015-03-01
The layered compound α -RuCl3 is composed of a honeycomb lattice of magnetic Ru3 + ions with the 4 d5 electronic state. We have investigated the magnetic properties of α -RuCl3 via magnetization and specific heat measurements using single crystals. It was observed that α -RuCl3 undergoes a structural phase transition at Tt≃150 K accompanied by fairly large hysteresis. This structural phase transition is expected to be similar to that observed in closely related CrCl3. The magnetizations and magnetic susceptibilities are strongly anisotropic, which mainly arise from the anisotropic g factors, i.e., ga b≃2.5 and gc≃0.4 for magnetic fields parallel and perpendicular to the a b plane, respectively. These g factors and the obtained entropy indicate that the effective spin of Ru3 + is one-half, which results from the low-spin state. Specific heat data show that magnetic ordering occurs in four steps at zero magnetic field. The successive magnetic phase transitions should be ascribed to the competition among exchange interactions. The magnetic phase diagram for H ∥a b is obtained. We discuss the strongly anisotropic g factors in α -RuCl3 and deduce that the exchange interaction is strongly XY-like. α -RuCl3 is magnetically described as a three-dimensionally coupled XY-like frustrated magnet on a honeycomb lattice.
NASA Astrophysics Data System (ADS)
Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri
2015-04-01
An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr00800j
NASA Astrophysics Data System (ADS)
Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won
2018-04-01
A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.
Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C
2007-07-01
Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.
Study of catalysis for solid oxide fuel cells and direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Jiang, Xirong
Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
NASA Astrophysics Data System (ADS)
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-Ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g-1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g-1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-18
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
NASA Astrophysics Data System (ADS)
Dawber, Matthew
2013-03-01
In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413
NASA Astrophysics Data System (ADS)
Deng, Yun-Liang; Xu, Dang-Dang; Pang, Dai-Wen; Tang, Hong-Wu
2017-02-01
A three-layer core-shell nanostructure consisting of a silver core, a silica spacer, and a fluorescent dye RuBpy-doped outer silica layer was fabricated, and the optimal metal-enhanced fluorescence (MEF) distance was explored through adjusting the thickness of the silica spacer. The results show that the optimal distance is ˜10.4 nm with the maximum fluorescence enhancement factor 2.12. Then a new target-triggered MEF ‘turn-on’ strategy based on the optimized composite nanoparticles was successfully constructed for quantitative detection of prostate specific antigen (PSA), by using RuBpy as the energy donor and BHQ-2 as the acceptor. The hybridization of the complementary DNA of PSA-aptamer immobilized on the surface of the MEF nanoparticles with PSA-aptamer modified with BHQ-2, brought BHQ-2 in close proximity to RuBpy-doped silica shell and resulted in the decrease of fluorescence. In the presence of target PSA molecules, the BHQ-PSA aptamer is dissociated from the surface of the nanoparticles with the fluorescence switched on. Therefore, the assay of PSA was achieved by measuring the varying fluorescence intensity. The results show that PSA can be detected in the range of 1-100 ng ml-1 with a detection limit of 0.20 ng ml-1 (6.1 pM), which is 6.7-fold increase of that using hollow RuBpy-doped silica nanoparticles. Moreover, satisfactory results were obtained when PSA was detected in 1% serum.
Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices
NASA Astrophysics Data System (ADS)
Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin
2015-03-01
We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''
NASA Astrophysics Data System (ADS)
Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji
2017-07-01
This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.
Maza, William A.; Padilla, Roberto; Morris, Amanda J.
2015-06-04
In this study, a method is described here by which to dope ruthenium(II) bis(2,2'-bipyridine) (2,2'-bipyridyl-5,5'-dicarboxylic acid), RuDCBPY, into a UiO-67 metal–organic framework (MOF) derivative in which 2,2'-bipyridyl-5,5'-dicarboxylic acid, UiO-67-DCBPY, is used in place of 4,4'-biphenyldicarboxylic acid. Emission lifetime measurements of the RuDCBPY triplet metal-to-ligand charge transfer, 3MLCT, excited state as a function of RuDCBPY doping concentration in UiO-67-DCBPY are discussed in light of previous results for RuDCBPY-UiO-67 doped powders in which quenching of the 3MLCT was said to be due to dipole–dipole homogeneous resonance energy transfer, RET. The bulk distribution of RuDCBPY centers within MOF crystallites are also estimated withmore » the use of confocal fluorescence microscopy. In the present case, it is assumed that the rate of RET between RuDCBPY centers has an r –6 separation distance dependence characteristic of Förster RET. The results suggest (1) the dimensionality in which RET occurs is dependent on the RuDCBPY concentration ranging from one-dimensional at very low concentrations up to three-dimensional at high concentration, (2) the occupancy of RuDCBPY within UiO-67-DCBPY is not uniform throughout the crystallites such that RuDCBPY densely populates the outer layers of the MOF at low concentrations, and (3) the average separation distance between RuDCBPY centers is ~21 Å.« less
NASA Astrophysics Data System (ADS)
Lu, Lu; Xu, Hongfeng; Zhao, Hong; Sun, Xin; Dong, Yiming; Ren, Ruiming
2013-11-01
The dynamic response performance of a proton exchange membrane fuel cell (PEMFC) significantly affects its durability and reliability. Thus, the improvement of the dynamic performance of PEMFC has become the key for prolonging the PEMFC life in fuel cell vehicle applications. In this study, RuO2·xH2O is prepared by sol-gel method, and then sprayed onto catalyst layers to promote PEMFC dynamic response performance. The prepared RuO2·xH2O is characterized by TEM, which shows that the average particle size of RuO2·xH2O is 8 nm and that the particulates are uniformly distributed. A 10-cell stack is assembled using membrane electrode assembly (MEA) with and without RuO2·xH2O. This stack is studied under various loading cycles and operating conditions, including different air stoichiometries, relative humidities, and loading degrees. Results show that the steady-state performance of the MEA with RuO2·xH2O is better than that in the MEA without RuO2·xH2O with a decreasing relative humidity from 80% to 20%. A slower and more unstable dynamic response of the MEA without RuO2·xH2O is observed as air stoichiometry and relative humidity decrease as well as the loading increase. Thus, RuO2·xH2O improves the dynamic response performance, indicating that RuO2·xH2O can buffer the voltage undershoot, improve the stability, and prolong the lifetime of the PEMFC stack.
NASA Astrophysics Data System (ADS)
Kotegawa, Hisashi; Takeda, Keiki; Kuwata, Yoshiki; Hayashi, Junichi; Tou, Hideki; Sugawara, Hitoshi; Sakurai, Takahiro; Ohta, Hitoshi; Harima, Hisatomo
2018-05-01
A single crystal of RuAs obtained with the Bi-flux method shows obvious successive metal-insulator transitions at TMI 1˜255 K and TMI 2˜195 K. The x-ray diffraction measurement reveals the formation of a superlattice of 3 ×3 ×3 of the original unit cell below TMI 2, accompanied by a change of the crystal system from the orthorhombic structure to the monoclinic one. Simple dimerization of the Ru ions is not seen in the ground state. The multiple As sites observed in the nuclear quadrupole resonance spectrum also demonstrate the formation of the superlattice in the ground state, which is clarified to be nonmagnetic. The divergence in 1 /T1 at TMI 1 shows that a symmetry lowering by the metal-insulator transition is accompanied by strong critical fluctuations of some degrees of freedom. Using the structural parameters in the insulating state, the first-principles calculation reproduces successfully the reasonable size of nuclear quadrupole frequencies νQ for the multiple As sites, ensuring the high validity of the structural parameters. The calculation also gives a remarkable suppression in the density of states near the Fermi level, although the gap opening is insufficient. A coupled modulation of the calculated Ru d -electron numbers and the crystal structure proposes the formation of a charge density wave in RuAs. Some lacking factors remain, but it is shown that a lifting of degeneracy protected by the nonsymmorphic symmetry through the superlattice formation is a key ingredient for the metal-insulator transition in RuAs.
Computational design of active, self-reinforcing gels.
Yashin, Victor V; Kuksenok, Olga; Balazs, Anna C
2010-05-20
Many living organisms have evolved a protective mechanism that allows them to reversibly alter their stiffness in response to mechanical contact. Using theoretical modeling, we design a mechanoresponsive polymer gel that exhibits a similar self-reinforcing behavior. We focus on cross-linked gels that contain Ru(terpy)(2) units, where both terpyridine ligands are grafted to the chains. The Ru(terpy)(2) complex forms additional, chemoresponsive cross-links that break and re-form in response to a repeated oxidation and reduction of the Ru. In our model, the periodic redox variations of the anchored metal ion are generated by the Belousov-Zhabotinsky (BZ) reaction. Our computer simulations reveal that compression of the BZ gel leads to a stiffening of the sample due to an increase in the cross-link density. These findings provide guidelines for designing biomimetic, active coatings that send out a signal when the system is impacted and use this signaling process to initiate the self-protecting behavior.
Low-temperature crystal and magnetic structure of α – RuCl 3
Cao, Huibo B.; Yan, Jiaqiang; Bridges, Craig A.; ...
2016-04-19
Here, single crystals of the Kitaev spin-liquid candidate α – RuCl 3 have been studied to determine the low-temperature bulk properties, the structure, and the magnetic ground state. Refinements of x-ray diffraction data show that the low-temperature crystal structure is described by space group C2/m with a nearly perfect honeycomb lattice exhibiting less than 0.2% in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at T N = 7 K. The magnetic order below this temperature exhibits a propagation vector of k=(0,1,1/3), which coincides with a three-layer stacking of the C2/m unit cells. Magnetic transitions at highermore » temperatures up to 14 K can be introduced by deformations of the crystal that result in regions in the crystal with a two-layer stacking sequence. The best-fit symmetry-allowed magnetic structure of the as-grown crystals shows that the spins lie in the ac plane, with a zigzag configuration in each honeycomb layer. The three-layer repeat out-of-plane structure can be refined as a 120° spiral order or a collinear structure with a spin direction of 35° away from the a axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) μB per Ru 3+ ion.« less
NASA Astrophysics Data System (ADS)
Sasaki, T.; Itai, Y.; Iwasawa, Y.
1997-11-01
For the purpose of utilizing ESDIAD as a real-time probe for surface processes, we have developed an instrument which can measure ESDIAD images and time of flight (TOF) spectra of desorbing ions in temperature-programmed surface processes. TOF measurements are carried out to identify the mass and to determine the kinetic energy distribution of the desorbed ions. This temperature-programmed (TP-) ESDIAD/TOF system was used to observe coadsorption layers of methylamine and CO on Ru(001) which have been previously studied by our group using LEED, TPD and HREELS, also drawing upon a comparison of findings with the coadsorption system of CO and ammonia. ESDIAD images acquired for temperature-programmed surface processes in real time were found to provide new insight into the dynamic behaviour of the coadsorption layers. As to the pure adsorption of ammonia and methylamine, the second and the first (chemisorbed) layers can be easily discriminated in their different ESD detection efficiency due to the difference in neutralization rate. The intensity change of H + ions with temperature shows the process of the decomposition of methylamine to be dependent on CO coverage. The intensity of O + originating from CO changes due to the change of CO adsorption site in the reaction process. The angular distribution of H + ions which correspond to CH2NH…Ru species appears at 250-300 K in the presence of high CO pre-coverage.
Thomas, S.; Kuiper, B.; Hu, J.; ...
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less
Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.
Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufay, T.; Guiffard, B.; Seveno, R.
Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beammore » displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.« less
Zhang, Jian; Fu, Yi; Lakowicz, Joseph R
2007-02-08
Labeled silica beads with an average diameter of 100 nm were synthesized by incorporating with 20-600 μM Ru(bpy)(3) (2+) complexes. Silver shells were deposited on the beads layer-by-layer with the shell thickness of 5-50 nm. The emission band became narrower and the intensity was enhanced depending on the shell thickness. Self-quenching of the probe was observed at high concentration. Poisson statistics were employed to analyze self-quenching of the fluorophores. The estimated quenching distance was extended from 6 to 16 nm with shell growth from 0 to 50 nm. Moreover, the silver shells were also labeled with Rhodamine 6G. Fluorescence enhancement and reduced lifetime were also observed for silver-silica shell containing R6G. We found that by adjustment of probe concentration and silver shell thickness, a Ru(bpy)(3) (2+)-labeled particle could be 600 times brighter than an isolated Ru(bpy)(3) (2+) molecule. We expect labeled metal core-shell structures can become useful probes for high sensitivity and/or single particle assay.
Visualizing ferromagnetic domains in undoped and Fe-doped Sr4Ru3O10
NASA Astrophysics Data System (ADS)
Sass, Paul; Wu, Weida; Mao, Zhiqiang; Li, Peigang
Transition-metal oxides have proven to be a great source of interesting phenomena and new quantum phases of matter with high potential for developing exciting technologies. A remarkable sub-class of these materials with layer dependent properties is the ruthenium perovskites of the Ruddlesden-Popper series, specifically Srn + 1RunO3 n + 1 , exhibiting a range of behavior from ferromagnetism and metamagnetic quantum criticality to p-wave superconductivity. The triple layered oxide Sr4Ru3O10 exhibits coexistence of ferro- (TC < 105 K) and meta- (TM < 50 K) magnetism with strong anisotropy. Despite many studies on bulk magnetic properties of this material, the microscopic nature of the magnetic phase is still unclear. What is lacking is the real space imaging of magnetic domains. To this end, we report our variable temperature magnetic force microscopy studies on floating-zone grown undoped and Fe-doped Sr4Ru3O10 single crystals. Various stripe and branch-like domain patterns were observed below This work is supported by DOE BES under award DE-SC0008147.
Effect of bottom electrode on dielectric property of sputtered-(Ba,Sr)TiO{sub 3} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Shinichi; Yamada, Tomoaki; Takahashi, Kenji
2009-03-15
(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) films were deposited on (111)Pt/TiO{sub 2}/SiO{sub 2}/Al{sub 2}O{sub 3} substrates by rf sputtering. By inserting a thin layer of SrRuO{sub 3} in between BST film and (111)Pt electrode, the BST films grew fully (111)-oriented without any other orientations. In addition, it enables us to reduce the growth temperature of BST films while keeping the dielectric constant and tunability as high as those of BST films directly deposited on Pt at higher temperatures. The dielectric loss of the films on SrRuO{sub 3}-top substrates was comparable to that on Pt-top substrates for the same level of dielectricmore » constant. The results suggest that the SrRuO{sub 3} thin layer on (111)Pt electrode is an effective approach to growing highly crystalline BST films with (111) orientation at lower deposition temperatures.« less
El-Shahawi, M S; Al-Jahdali, M S; Bashammakh, A S; Al-Sibaai, A A; Nassef, H M
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru(3+), Rh(3+), Pd(2+), Ni(2+) and Cu(2+) were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M(2+)/M(3+) and M(3+)/M(4+) (M=Ru(3+), Rh(3+)) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Magnetic Excitations in α-RuCl3
NASA Astrophysics Data System (ADS)
Nagler, Stephen; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Knolle, Johannes; Moessner, Roderich; Tennant, Alan
2015-03-01
The layered material α-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3+ ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. Here we discuss new time-of-flight inelastic neutron scattering data on α-RuCl3. A high energy excitation near 200 meV is identified as a transition from the single ion J=1/2 ground state to the J=3/2 excited state, yielding a direct measurement of the spin orbit coupling energy. Higher resolution measurements reveal two collective modes at much lower energy scales. The results are compared with the theoretical expectations for excitations in the Heisenberg - Kitaev model on a honeycomb lattice, and show that Kitaev interactions are important. Research at SNS supported by the DOE BES Scientific User Facilities Division.
Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure
NASA Astrophysics Data System (ADS)
Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.
2004-05-01
The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.
Adsorption and electron-induced polymerization of methyl methacrylate on Ru(101xAF0)
NASA Astrophysics Data System (ADS)
Hedhili, M. N.; Yakshinskiy, B. V.; Wasielewski, R.; Ciszewski, A.; Madey, T. E.
2008-05-01
The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(101¯0) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(101¯0) surface. The reaction products observed upon heating include H2, CO, CO2, and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170K. Electron irradiation of physisorbed MMA at 140K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on Mo /Si multilayer mirrors used in extreme ultraviolet lithography.
Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.
Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang
2016-12-14
The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.
NASA Astrophysics Data System (ADS)
Samardak, Alexander; Kolesnikov, Alexander; Stebliy, Maksim; Chebotkevich, Ludmila; Sadovnikov, Alexandr; Nikitov, Sergei; Talapatra, Abhishek; Mohanty, Jyoti; Ognev, Alexey
2018-05-01
An enhancement of the spin-orbit effects arising on an interface between a ferromagnet (FM) and a heavy metal (HM) is possible through the strong breaking of the structural inversion symmetry in the layered films. Here, we show that an introduction of an ultrathin W interlayer between Co and Ru in Ru/Co/Ru films enables to preserve perpendicular magnetic anisotropy (PMA) and simultaneously induce a large interfacial Dzyaloshinskii-Moriya interaction (iDMI). The study of the spin-wave propagation in the Damon-Eshbach geometry by Brillouin light scattering spectroscopy reveals the drastic increase in the iDMI value with the increase in W thickness (tW). The maximum iDMI of -3.1 erg/cm2 is observed for tW = 0.24 nm, which is 10 times larger than for the quasi-symmetrical Ru/Co/Ru films. We demonstrate the evidence of the spontaneous field-driven nucleation of isolated skyrmions supported by micromagnetic simulations. Magnetic force microscopy measurements reveal the existence of sub-100-nm skyrmions in the zero magnetic field. The ability to simultaneously control the strength of PMA and iDMI in quasi-symmetrical HM/FM/HM trilayer systems through the interface engineered inversion asymmetry at the nanoscale excites new fundamental and practical interest in ultrathin ferromagnets, which are a potential host for stable magnetic skyrmions.
NASA Astrophysics Data System (ADS)
Bjelkevig, Cameron; Mi, Zhou; Xiao, Jie; Dowben, P. A.; Wang, Lu; Mei, Wai-Ning; Kelber, Jeffry A.
2010-08-01
A significant BN-to-graphene charge donation is evident in the electronic structure of a graphene/h-BN(0001) heterojunction grown by chemical vapor deposition and atomic layer deposition directly on Ru(0001), consistent with density functional theory. This filling of the lowest unoccupied state near the Brillouin zone center has been characterized by combined photoemission/k vector resolved inverse photoemission spectroscopies, and Raman and scanning tunneling microscopy/spectroscopy. The unoccupied σ*(Γ1 +) band dispersion yields an effective mass of 0.05 me for graphene in the graphene/h-BN(0001) heterostructure, in spite of strong perturbations to the graphene conduction band edge placement.
NASA Astrophysics Data System (ADS)
Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete
2012-09-01
The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x i / d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x i / d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i / d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
NASA Astrophysics Data System (ADS)
He, Tao
2002-09-01
Perovskite-based ruthenates have been receiving considerable attention both because of their interesting and variable magnetic properties, and because of the discovery of exotic superconductivity in the layered ruthenate Sr 2RuO4. Another perovskite, SrRuO3, is the only known oxide ferromagnet with a 4d transition metal, and magnetism is easily suppressed by Ca doping. The suppression of ferromagnetic interactions in SrxCa1-xRuO3 has frequently been attributed to the orthorhombic structural distortion, either through the crossover to classical antiferromagnetic interactions, or, alternatively, to a nearly ferromagnetic metal. This study reports the comparison of the magnetic properties of Srx(Na0.5La0.5)1-xRuO 3 to SrxCa1-xRuO3, showing that there is a much faster suppression of ferromagnetic interactions in the former case. Neither orthorhombic distortion nor cation size disorder can explain the observed difference. Instead, the difference may be attributed to charge disorder on the A-site, which greatly affects the local environment of Ru atoms and leads to the faster suppression of the long-range ferromagnetic state. The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. This study also shows that paramagnetic CaRuO 3 can be made ferromagnetic by very small amounts of partial substitution of Ru by various transition metals. The results are consistent with the recent proposal that CaRuO3 is not a classical antiferromagnet, but rather is poised at a critical point between ferromagnetic and paramagnetic ground states. Ti, Fe, Mn and Ni doping result in ferromagnetic behavior. The second part of this thesis is on the superconductivity of MgB 2 and MgCNi3. Since the discovery of superconductivity in MgB2 in January 2001, detailed information on its properties has been rapidly accumulated. The reported properties, the very simple structure, and the commercial availability of this material make MgB2 a favorite candidate for large scale and electronic applications. In thin film fabrication, the reactivity of MgB2 with substrate materials or insulating or metallic layers in multi-layer circuits is an important factor. In this work the reactivity of MgB2 with powdered forms of common substrate and electronic materials is studied. Some oxides and nitrides prove to be potentially good substrates for making thin films, while others, including some commonly used substrates like Al2O3, SrTiO 3, and SiO2, have serious chemical compatibility problems. In the latter case, caution should be taken when fabricating thin films. This thesis also describes the discovery of superconductivity at 8 K in the perovskite structure compound MgCNi3. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have Tcs up to 16K. The itinerant electrons in both LnNi2B2C and MgCNi3 are based on partial filling of Ni d-states, which generally leads to ferromagnetism, as is the case in metallic Ni. The very high relative proportion of Ni in MgCNi3 is especially suggestive of the possible importance of magnetic interactions in the superconductivity, and, further, the lower Tc of the three-dimensional compound is contrary to conventional ideas.
Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)
2014-01-01
A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.
Tuning Magnetic Order in Transition Metal Oxide Thin Films
NASA Astrophysics Data System (ADS)
Grutter, Alexander John
In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4+ in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru 4+. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO 3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.
Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L.; Lee, C.-M.
2015-05-07
We herein explore the possibility of obtaining tunable tilted magnetic anisotropy in ordered-CoPt (5 nm)/NiFe(t{sub NiFe}) bilayers through modifying their exchange spring behavior by inserting Pt and Ru-spacers. The tuning process of tilt angle magnetization of NiFe-layer was systematically investigated by varying the Pt or Ru thickness (t{sub Pt} or t{sub Ru}) from 0 to 8 nm at different thicknesses of NiFe (t{sub NiFe} = 1.5, 4.0, and 6.0 nm). Polar magneto-optic Kerr effect (p-MOKE) studies reveal that the bilayers grown in absence of spacers exhibit almost a rectangular hysteresis loop. With the insertion of Pt-spacer, the loop becomes more and more tilted as t{submore » Pt} increases; whereas, in the case of Ru-spacer, the nature of the loops is not simply changing in one direction. The estimated SQR{sub ⊥} (= θ{sub r}/θ{sub s}) values from the p-MOKE loops are found to monotonically decrease with increasing t{sub Pt} when t{sub Pt} ≦ 4 nm. In contrast, in the case of Ru-spacer, an oscillatory behavior for the SQR{sub ⊥} values is apparent when t{sub Ru} ≦ 4 nm. As a result, an oscillatory tilted angle of NiFe spin configuration was obtained in the case of Ru-spacer; while a decoupling effect was prominent for the Pt-spacer. The results of present study reveal that the insertion of Pt and Ru-spacers as an appropriate means for realizing tunable tilted magnetic anisotropy in the CoPt/NiFe exchange springs.« less
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-01-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g−1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g−1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes. PMID:27088834
NASA Astrophysics Data System (ADS)
Shanthi Latha, K.; Rajagopal Reddy, V.
2017-07-01
The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.
Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.
Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam
2008-12-15
We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
First-principles modeling of titanate/ruthenate superlattices
NASA Astrophysics Data System (ADS)
Junquera, Javier
2013-03-01
The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
NASA Astrophysics Data System (ADS)
He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2012-11-01
We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.
Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando
2009-02-28
The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type. Preliminary studies in CO and H(2) oxidation were made in a DRIFTS flow reactor with on-line MS, and their activities and selectivities were compared against skeletal Ru and Cu controls, Ru/Al(2)O(3), and Au/Fe(2)O(3). All samples were active in CO oxidation above approximately 50 degrees C, showing light-off temperatures in the range 60-70 degrees C. Ru(22)Cu(7) and Ru(17)Cu(12.5) also showed good selectivities (vs. H(2) oxidation), attributed tentatively to Ru-modified Cu surfaces of varying thickness. These compositions are promising candidates to test in a (PROX) fuel processor to supply purified (CO-free) H(2) to a PEM fuel cell.
Stacking fault density and bond orientational order of fcc ruthenium nanoparticles
NASA Astrophysics Data System (ADS)
Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2017-12-01
We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Ariel; Strickler, Alaina; Higgins, Drew
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; ...
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan
2009-02-01
Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng
2018-05-01
In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.
Barrier layer for a MCrAlY basecoat superalloy combination
Sabol, Stephen M.; Goedjen, John G.; Vance, Steven J.
2001-01-01
A turbine component contains a substrate (22) such as a superalloy, a basecoat (24) of the type MCrAlY, and a continuous barrier layer (28) between the substrate and basecoat, where the barrier layer (28) is made of an alloy of (Re, Ta, Ru, Os)X, where X can be Ni, Co or their mixture, where the barrier layer is at least 2 micrometers thick and substantially prevents materials from both the basecoat and substrate from migrating through it.
Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates
NASA Astrophysics Data System (ADS)
Karpus, John Francis
In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.
Falginella, Luigi; Cipriani, Guido; Monte, Corinne; Gregori, Roberto; Testolin, Raffaele; Velasco, Riccardo; Troggio, Michela; Tartarini, Stefano
2015-06-19
Russeting is a disorder developed by apple fruits that consists of cuticle cracking followed by the replacement of the epidermis by a corky layer that protects the fruit surface from water loss and pathogens. Although influenced by many environmental conditions and orchard management practices, russeting is under genetic control. The difficulty in classifying offspring and consequent variable segregation ratios have led several authors to conclude that more than one genetic determinant could be involved, although some evidence favours a major gene (Ru). In this study we report the mapping of a major genetic russeting determinant on linkage group 12 of apple as inferred from the phenotypic observation in a segregating progeny derived from 'Renetta Grigia di Torriana', the construction of a 20 K Illumina SNP chip based genetic map, and QTL analysis. Recombination analysis in two mapping populations restricted the region of interest to approximately 400 Kb. Of the 58 genes predicted from the Golden Delicious sequence, a putative ABCG family transporter has been identified. Within a small set of russeted cultivars tested with markers of the region, only six showed the same haplotype of 'Renetta Grigia di Torriana'. A major determinant (Ru_RGT) for russeting development putatively involved in cuticle organization is proposed as a candidate for controlling the trait. SNP and SSR markers tightly co-segregating with the Ru_RGT locus may assist the breeder selection. The observed segregations and the analysis of the 'Renetta Grigia di Torriana' haplotypic region in a panel of russeted and non-russeted cultivars may suggest the presence of other determinants for russeting in apple.
Comparison between semiconducting and oxide layers as a reflection layer in spin-valve films
NASA Astrophysics Data System (ADS)
Dinia, A.; Schmerber, G.; Ulhaq, C.
2003-07-01
It is well established that appropriate oxide capping is effective in forming nano-oxide layers (NOL) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. However, the beneficial effect of a NOL is strongly dependent on its process of formation. Therefore, we are interested to use a nano-semiconducting layer (NSL) for specular reflection instead of oxide layers because its achievement is easier since no specific growth conditions are needed. Moreover, we intend to compare the efficiency of the electronic confinement inside the spin valve induced either by NSL or NOLs for structures with the same stack. We have prepared hard-soft spin valve structures by sputtering on glass substrates with the following stacking sequence: Fe6 nm/Cu3 nm/CoFe1.8 nmRu0.8 nmCoFe3 nmCu2 nmRu2 nm. The reflecting layers have been inserted in the middle of the Fe soft layer and on the top of the spin valve. The GMR effect is enhanced by 60% and 75% respectively for the NSL and the NOL. This shows that the NOL is more efficient in term of electronic confinement. To understand the origin of the difference between the NOL and NSL magnetization measurements as well as transmission electron microscopy are presented.
NASA Astrophysics Data System (ADS)
Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya
2017-06-01
For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
2012-11-07
microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer...CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss
Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.
Lonsdale, W; Wajrak, M; Alameh, K
2018-04-01
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Daesung; Herpers, Anja; Menke, Tobias; Heidelmann, Markus; Houben, Lothar; Dittmann, Regina; Mayer, Joachim
2014-06-01
Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.
2015-04-28
We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less
Feng, Xue; Poplawsky, Alan R; Karasev, Alexander V
2014-11-01
The I gene is a single, dominant gene conferring temperature-sensitive resistance to all known strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris). However, the closely related Bean common mosaic necrosis virus (BCMNV) induces whole plant necrosis in I-bearing genotypes of common bean, and the presence of additional, recessive genes is required to prevent this severe whole plant necrotic reaction caused by BCMNV. Almost all known BCMNV isolates have so far been classified as having pathotype VI based on their interactions with the five BCMV resistance genes, and all have a distinct serotype A. Here, we describe a new isolate of BCMV, RU1M, capable of inducing whole plant necrosis in the presence of the I gene, that appears to belong to pathotype VII and exhibits B-serotype. Unlike other isolates of BCMV, RU1M was able to induce severe whole plant necrosis below 30°C in bean cultivar Jubila that carries the I gene and a protective recessive gene bc-1. The whole genome of RU1M was cloned and sequenced and determined to be 9,953 nucleotides long excluding poly(A), coding for a single polyprotein of 3,186 amino acids. Most of the genome was found almost identical (>98%) to the BCMV isolate RU1-OR (also pathotype VII) that did not induce necrotic symptoms in 'Jubila'. Inspection of the nucleotide sequences for BCMV isolates RU1-OR, RU1M, and US10 (all pathotype VII) and three closely related sequences of BCMV isolates RU1P, RU1D, and RU1W (all pathotype VI) revealed that RU1M is a product of recombination between RU1-OR and a yet unknown potyvirus. A 0.8-kb fragment of an unknown origin in the RU1M genome may have led to its ability to induce necrosis regardless of temperature in beans carrying the I gene. This is the first report of a BCMV isolate inducing temperature-insensitive necrosis in an I gene containing bean genotype.
Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures
NASA Astrophysics Data System (ADS)
Badali, Yosef; Nikravan, Afsoun; Altındal, Şemsettin; Uslu, İbrahim
2018-03-01
The aim of this study is to improve the electrical property of Ag/n-Si metal-semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current-voltage (I-V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal-polymer-semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance-voltage (C-V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states (D it /N ss) and interlayer. Both the values of series resistance (R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms (N D), Fermi energy (E F ), thickness of the depletion region (W D), barrier height (Φ B0 ) and R s were determined from the C -2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm-3, 9.61 × 10-5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm-3, 27.4 × 10-4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time (τ), dipole and surface polarizations.
Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures
NASA Astrophysics Data System (ADS)
Badali, Yosef; Nikravan, Afsoun; Altındal, Şemsettin; Uslu, İbrahim
2018-07-01
The aim of this study is to improve the electrical property of Ag/n-Si metal-semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current-voltage ( I-V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal-polymer-semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance-voltage ( C-V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states ( D it /N ss) and interlayer. Both the values of series resistance ( R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms ( N D), Fermi energy ( E F ), thickness of the depletion region ( W D), barrier height ( Φ B0 ) and R s were determined from the C - 2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm-3, 9.61 × 10-5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm-3, 27.4 × 10-4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time ( τ), dipole and surface polarizations.
Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7
Li, Guorong; Li, Qing; Pan, Minghu; Hu, Biao; Chen, Chen; Teng, Jing; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.
2013-01-01
Chemical doping in materials is known to give rise to emergent phenomena. These phenomena are extremely difficult to predict a priori, because electron-electron interactions are entangled with local environment of assembled atoms. Scanning tunneling microscopy and low energy electron diffraction are combined to investigate how the local electronic structure is correlated with lattice distortion on the surface of Sr3(Ru1−xMnx)2O7, which has double-layer building blocks formed by (Ru/Mn)O6 octahedra with rotational distortion. The presence of doping-dependent tilt distortion of (Ru/Mn)O6 octahedra at the surface results in a C2v broken symmetry in contrast with the bulk C4v counterpart. It also enables us to observe two Mn sites associated with the octahedral rotation in the bulk through the “chirality” of local electronic density of states surrounding Mn, which is randomly distributed. These results serve as fingerprint of chemical doping on the atomic scale. PMID:24108411
Understanding the pseudocapacitance of RuO2 from joint density functional theory
NASA Astrophysics Data System (ADS)
Zhan, Cheng; Jiang, De-en
2016-11-01
Pseudocapacitors have been experimentally studied for many years in electric energy storage. However, first principles understanding of the pseudocapacitive behavior is still not satisfactory due to the complexity involved in modeling electrochemistry. In this paper, we applied joint density functional theory (JDFT) to simulate the pseudocapacitive behavior of RuO2, a prototypical material, in a model electrolyte. We obtained from JDFT a capacitive curve which showed a redox peak position comparable to that in the experimental cyclic voltammetry (CV) curve. We found that the experimental turning point from double-layer to pseudocapacitive charge storage at low scan rates could be explained by the hydrogen adsorption at low coverage. As the electrode voltage becomes more negative, H coverage increases and causes the surface-structure change, leading to bended -OH bonds at the on-top oxygen atoms and large capacitance. This H coverage-dependent capacitance can explain the high pseudocapacitance of hydrous RuO2. Our work here provides a first principles understanding of the pseudocapacitance for RuO2 in particular and for transition-metal oxides in general.
Buckling Structured Stretchable Pseudocapacitor Yarn.
Lee, Duck Weon; Lee, Jung Han; Min, Nam Ki; Jin, Joon-Hyung
2017-09-20
Cable-type stretchable electrochemical pseudocapacitors based on multi-walled carbon nanotube (MWCNT) sheets and two different metal oxide nanopowders (NP), i.e., MnO 2 and RuO 2 are developed using a newly-devised dry painting method to mechanically fix the NP to the elastic rubber-based MWCNT electrode substrate, resulting in a porous buckling structured pseudocapacitor yarn. Highly stretchable stylene-ethylene/butylene-stylene (SEBS) is used as the supporting elastomeric core for wrapping with the MWCNT sheets and the electroactive NP. The dry painting can successfully deposit NP on the soft SEBS surface, which is normally an unfavorable substrate for coating alien materials. The resulting yarn-type pseudocapacitor, composed of eight-layered MWCNT sheets, three-layered RuO 2 , and two-layered MnO 2 , showing a diameter of approximately 400 μm with a porous buckling structure, records a specific capacitance of 25 F g -1 . After being stretched by 200% in strain with no sacrifice of the porous buckling structure, the cable-type stretchable electrochemical pseudocapacitor yarn retains its electrical capacity, and is potentially applicable to energy storage devices for wearable electronics.
Thermal stability of spin valves based on a synthetic antiferromagnet and Fe50Mn50 alloy
NASA Astrophysics Data System (ADS)
Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Chernyshova, T. A.; Blagodatkov, D. V.; Kamenskii, I. Yu.; Ustinov, V. V.
2015-11-01
Magnetron sputtering was used to prepare spin valves with the Ta/Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Ru/Co90Fe10/Fe50Mn50/Ta composition. Changes in the functional characteristics of the spin valves were studied in a temperature range of-180 to +160°C. The maximum temperature at which the functional characteristics of spin valve remain unchanged was shown to depend on the relationship of thicknesses of Co90Fe10 layers separated by the Ru interlayer.
B11 NMR in the layered diborides OsB2 and RuB2
NASA Astrophysics Data System (ADS)
Suh, B. J.; Zong, X.; Singh, Y.; Niazi, A.; Johnston, D. C.
2007-10-01
B11 nuclear magnetic resonance (NMR) measurements have been performed on B11 enriched OsB2 and RuB2 polycrystalline powder samples in an external field of 4.7T and in the temperature range, 4.2K
Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism.
Terada, Kei-ichi; Nakamura, Hisao; Kanaizuka, Katsuhiko; Haga, Masa-aki; Asai, Yoshihiro; Ishida, Takao
2012-03-27
We studied electron transport of Ru complex multilayer films, whose structure resembles redox-active complex films known in the literature to have long-range electron transport abilities. Hydrogen bond formation in terms of pH control was used to induce spontaneous growth of a Ru complex multilayer. We made a cross-check between electrochemical measurements and I-V measurements using PEDOT:PSS to eliminate the risk of pinhole contributions to the mechanism and have found small β values of 0.012-0.021 Å(-1). Our Ru complex layers exhibit long-range electron transport but with low conductance. On the basis of the results of our theoretical-experimental collaboration, we propose a modified tunneling mechanism named the "stepping-stone mechanism", where the alignment of site potentials forms a narrow band around E(F), making resonant tunneling possible. Our observations may support Tuccito et al.'s proposed mechanism. © 2012 American Chemical Society
[TLC-SERS study on evodiamine in evodia rutaecarpa].
Zhang, Jin-zhi; Wang, Yuan; Chen, Hui; Shao, Hui-bo
2007-05-01
A new method for analyzing the ingredients of evodiamine (EV), rutaecarpine (RU), hydroxyevodiamine (HYD), evodiamide (ED), dihydrorutaecarpine (DRU) and 14-formyldihydrorutaecarpine (FDRU) in evodia rutaecarpa using high performance thin layer chromatography (TLC) and surface enhanced Raman spectroscopy (SERS) technique is reported. The character of this method is that standard samples are not needed. The results show that the characteristic spectral bands of EV, RU, HYD, and ED can be obtained from the TLC spot with microgramme of sample. The spectral band at 1562 cm(-1) was obtained with great enhancement. Molecule absorbed in surface silver sol by nr electrons in ring. The spectral bands of EV, RU, HYD and ED are obviously different due to their differences in structure. The TLC and SERS techniques standard samples are a convenient and speedy method to analyze chemical ingredients with high sensitivity for the study of the Chinese traditional medicine.
Yang, Chen; Zhao, Zong-Yan
2017-11-08
In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information for understanding the role and effects of a noble metal dioxide as a transition layer between a noble metal co-catalyst and a TiO 2 photocatalyst.
Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
Ozoliņš, Vidvuds; Zhou, Fei; Asta, Mark
2013-05-21
Electrochemical supercapacitors (ECs) have important applications in areas wherethe need for fast charging rates and high energy density intersect, including in hybrid and electric vehicles, consumer electronics, solar cell based devices, and other technologies. In contrast to carbon-based supercapacitors, where energy is stored in the electrochemical double-layer at the electrode/electrolyte interface, ECs involve reversible faradaic ion intercalation into the electrode material. However, this intercalation does not lead to phase change. As a result, ECs can be charged and discharged for thousands of cycles without loss of capacity. ECs based on hydrous ruthenia, RuO2·xH2O, exhibit some of the highest specific capacitances attained in real devices. Although RuO2 is too expensive for widespread practical use, chemists have long used it as a model material for investigating the fundamental mechanisms of electrochemical supercapacitance and heterogeneous catalysis. In this Account, we discuss progress in first-principles density-functional theory (DFT) based studies of the electronic structure, thermodynamics, and kinetics of hydrous and anhydrous RuO2. We find that DFT correctly reproduces the metallic character of the RuO2 band structure. In addition, electron-proton double-insertion into bulk RuO2 leads to the formation of a polar covalent O-H bond with a fractional increase of the Ru charge in delocalized d-band states by only 0.3 electrons. This is in slight conflict with the common assumption of a Ru valence change from Ru(4+) to Ru(3+). Using the prototype electrostatic ground state (PEGS) search method, we predict a crystalline RuOOH compound with a formation energy of only 0.15 eV per proton. The calculated voltage for the onset of bulk proton insertion in the dilute limit is only 0.1 V with respect to the reversible hydrogen electrode (RHE), in reasonable agreement with the 0.4 V threshold for a large diffusion-limited contribution measured experimentally. DFT calculations also predict that proton diffusion in RuO2 is hindered by a migration barrier of 0.8 eV, qualitatively explaining the observed strong charging rate-dependence of the diffusion-limited contribution. We found that reversible adsorption of up to 1.5 protons per Ru on the (110) surface contributes to the measured capacitive current at higher voltages. PEGS-derived models of the crystal structure of hydrated ruthenia show that incorporation of water in Ru vacancies or in bulk crystals is energetically much more costly than segregation of water molecules between slabs of crystalline RuO2. These results lend support to the so-called "water at grain boundaries" model for the structure of hydrous RuO2·xH2O. This occurs where metallic nanocrystals of RuO2 are separated by grain boundary regions filled with water molecules. Chemists have attributed the superior charge storage properties of hydrous ruthenia to the resulting composite structure. This facilitates fast electronic transport through the metallic RuO2 nanocrystals and fast protonic transport through the regions of structural water at grain boundaries.
Frustrated magnetism in the double perovskite L a2LiOs O6 : A comparison with L a2LiRu O6
NASA Astrophysics Data System (ADS)
Thompson, C. M.; Marjerrison, C. A.; Sharma, A. Z.; Wiebe, C. R.; Maharaj, D. D.; Sala, G.; Flacau, R.; Hallas, A. M.; Cai, Y.; Gaulin, B. D.; Luke, G. M.; Greedan, J. E.
2016-01-01
The frustrated double perovskite L a2LiOs O6 , based on O s5 +(5 d3,t23 ) is studied using magnetization, elastic neutron scattering, heat capacity, and muon spin relaxation (μSR) techniques and compared with isostructural (P 21/n ) L a2LiRu O6 ,R u5 +(4 d3,t23 ) . While previous studies of L a2LiOs O6 showed a broad susceptibility maximum (χmax) near 40 K, heat capacity data indicate a sharp peak at 30 K, similar to L a2LiRu O6 with χmax˜30 K and a heat capacity peak at 24 K. Significant differences between the two materials are seen in powder neutron diffraction where the magnetic structure is described by k =(1 /2 1 /2 0 ) for L a2LiOs O6 , while L a2LiRu O6 has been reported with k =(000 ) , structure for face centered lattices. For the k =(1 /2 1 /2 0 ) structure, one has antiferromagnetic layers stacked antiferromagnetically, while for k =(0 0 0 ) structure, ferromagnetic layers are stacked antiferromagnetically. In spite of these differences, both can be considered as type I fcc antiferromagnetic structures. For L a2LiOs O6 , the magnetic structure is best described in terms of linear combinations of basis vectors belonging to irreducible representations Γ2 and Γ4. The combinations Γ2- Γ4 and Γ2+Γ4 could not be distinguished from refinement of the data. In all cases, the O s5 + moments lie in the y z plane with the largest component along y . The total moment is 1.81(4) μB. For L a2LiRu O6 , the R u5 + moments are reported to lie in the x z plane. In addition, while neutron diffraction, μSR and NMR data indicate a unique TN=24 K for L a2LiRu O6 , the situation for L a2LiOs O6 is more complex, with heat capacity, neutron diffraction, and μSR indicating two ordering events at 30 and 37 K, similar to the cases of cubic B a2YRu O6 and monoclinic S r2YRu O6 .
Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik
2014-01-01
This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325
Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors
NASA Astrophysics Data System (ADS)
Johnson, Kelsea R.; Arevalo Rodriguez, Paul; Brewer, Christopher R.; Brannaka, Joseph A.; Shi, Zhiwei; Yang, Jing; Salazar, Bryan; McElwee-White, Lisa; Walker, Amy V.
2017-02-01
Chemical vapor deposition (CVD) is an attractive technique for the metallization of organic thin films because it is selective and the thickness of the deposited film can easily be controlled. However, thermal CVD processes often require high temperatures which are generally incompatible with organic films. In this paper, we perform proof-of-concept studies of photochemical CVD to metallize organic thin films. In this method, a precursor undergoes photolytic decomposition to generate thermally labile intermediates prior to adsorption on the sample. Three readily available Ru precursors, CpRu(CO)2Me, (η3-allyl)Ru(CO)3Br, and (COT)Ru(CO)3, were employed to investigate the role of precursor quantum yield, ligand chemistry, and the Ru oxidation state on the deposition. To investigate the role of the substrate chemistry on deposition, carboxylic acid-, hydroxyl-, and methyl-terminated self-assembled monolayers were used. The data indicate that moderate quantum yields for ligand loss (φ ≥ 0.4) are required for ruthenium deposition, and the deposition is wavelength dependent. Second, anionic polyhapto ligands such as cyclopentadienyl and allyl are more difficult to remove than carbonyls, halides, and alkyls. Third, in contrast to the atomic layer deposition, acid-base reactions between the precursor and the substrate are more effective for deposition than nucleophilic reactions. Finally, the data suggest that selective deposition can be achieved on organic thin films by judicious choice of precursor and functional groups present on the substrate. These studies thus provide guidelines for the rational design of new precursors specifically for selective photochemical CVD on organic substrates.
Active Materials for Photonic Systems (AMPS)
1998-04-13
titanium isopropoxide were used as metalorganic precursors. The PZT films grown on the (101) oriented Ru02 electrode layers are highly (001) oriented...fabrication it was noted mat adhesion loss occurred at the platinum/ titanium interface. This loss occurred during stripping of the photoresist layer used to...reveal that the titanium was present as titanium dioxide rather than as the original metal. This indicated that oxygen had diffused through the platinum
Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus
2016-01-01
Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857
Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures
NASA Astrophysics Data System (ADS)
Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji
2017-03-01
Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satish, Rohit; Lim, Kipil; Bucher, Nicolas
Lithium rich layered materials are an interesting class of materials which exploit both anionic and cationic redox reactions to store energy upwards of 250 mA h g –1. This paper aims to understand the nature of the redox reactions taking place in these compounds. Li 2RuO 3 was used as the base compound, which is then compared with compounds generated by partially substituting Ru with Ti and Fe respectively. Electrochemical tests indicate that Fe substitution in the sample leads to an improvement in capacity, cycle life and reduction of potential decay. To elucidate the reason for this improvement in operandomore » diffraction experiments were carried out, highlighting the formation of a secondary de-lithiated phase. The distortion of the pristine structure eventually induces frontier orbital reorganization leading to the oxygen redox reaction resulting in extra capacity. Local changes at Fe and Ru ions are recorded using in operando X-ray absorption spectroscopy (XAS). It was noted that while Ru undergoes a reversible redox reaction, Fe undergoes a significant irreversible change in its coordination environment during cycling. In conclusion, the changes in the coordination environment of oxygen and formation of O 2 n– type species were probed in situ using soft X-rays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
Electrochemiluminescent DNA sensor based on controlled Zn-mediated grafting of diazonium precursors.
Torréns, Mabel; Ortiz, Mayreli; Bejarano-Nosas, Diego; O'Sullivan, Ciara K
2015-07-01
Controlled Zn-mediated grafting of a thin layer of a diazonium salt was used to functionalise a carbon electrode with ruthenium(II)-tris-bipyridine (Ru)-labelled DNA for use as a capture probe in an electrochemiluminescent genosensor. A secondary reporter probe was labelled with a ferrocene (Fc) molecule, and in the presence of the single-stranded DNA target a genocomplex formed, where the Fc-label effectively quenched the electrochemiluminescence of the signal emitted from the Ru-label. The spacing of the labels for maximum sensitivity and minimum detection limit was optimised, and the signal reproducibility and stability of the method was established.
NASA Astrophysics Data System (ADS)
Nishidate, Kazume; Tanibayashi, Satoru; Yoshimoto, Noriyuki; Hasegawa, Masayuki
2018-03-01
First-principles calculations based on density functional theory are used to explore the electronic-structure modulations in graphene on Ru(0001) by Au intercalation. We first use a lattice-matched model to demonstrate that a substantial band gap is induced in graphene by sufficiently strong A-B sublattice symmetry breaking. This band gap opening occurs even in the absence of hybridization between graphene π states and Au states, and a strong sublattice asymmetry is established for a small separation (d ) between the graphene and Au layer, typically, d <3.0 Å , which can actually be achieved for a low Au coverage. In realistic situations, which are mimicked using lattice-mismatched models, graphene π states near the Dirac point easily hybridize with nearby (in energy) Au states even for a van der Waals distance, d ˜3.4 Å , and this hybridization usually dictates a band gap opening in graphene. In that case, the top parts of the intact Dirac cones survive the hybridization and are isolated to form midgap states within the hybridization gap, denying that the band gap is induced by sublattice symmetry breaking. This feature of a band gap opening is similar to that found for the so-called "first" graphene layer on silicon carbide (SiC) and the predicted band gap and doping level are in good agreement with the experiments for graphene/Au/Ru(0001).
Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation.
Sun, Ke; Pang, Xiaolu; Shen, Shaohua; Qian, Xueqiang; Cheung, Justin S; Wang, Deli
2013-05-08
We present a study of a transition metal oxide composite modified n-Si photoanode for efficient and stable water oxidation. This sputter-coated composite functions as a protective coating to prevent Si from photodecomposition, a Schottky heterojunction, a hole conducting layer for efficient charge separation and transportation, and an electrocatalyst to reduce the reaction overpotential. The formation of mixed-valence oxides composed of Ni and Ru effectively modifies the optical, electrical, and catalytic properties of the coating material, as well as the interfaces with Si. The successful application of this oxide composite on nanotextured Si demonstrates improved conversion efficiency due to enhanced catalytic activity, minimized reflection, and increased surface reaction sites. Although the coated nanotextured Si shows a noticeable degradation from 500 cycles of operation, the oxide composite provides a simple method to enable unstable photoanode materials for solar fuel conversion.
DEEP, SHALLOW AND EYE LENS DOSES FROM 106Ru/106Rh-A COMPARSION.
Kumar, Munish; Bakshi, A K; Rakesh, R B; Ratna, P; Kulkarni, M S; Datta, D
2017-11-01
106Ru/106Rh is unique amongst other commonly used beta sources such as 147Pm, 85Kr, 204Tl, 32P, natU and 90Sr/90Y in the sense that it is capable of simultaneously delivering shallow/skin, eye lens and deep/whole body doses (WBDs) and they differ from each other substantially. In view of this, the investigation of various quantities defined for individual monitoring is possible and this makes 106Ru/106Rh beta source, a classical example in radiation protection and dosimetry. This led us to estimate skin, eye lens and WBDs for 106Ru/106Rh beta source. Optically stimulated luminescence based ultra-thin α-Al2O3:C disc dosimeters were used in the present study. Typical values (relative) of the eye lens and whole body/deep doses with respective to the skin dose (100%) were experimentally measured as ~66 ± 4.6% and 17 ± 3.9%, respectively. The study shows that 106Ru/106Rh beta source is capable of delivering even WBD which is not the case with other beta sources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High Dispersion Line Profile Studies of TW HYA and Other Pre-Main Sequence Stars
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey L.
1984-07-01
We propose to extend our study of line profiles in T Tauri stars by obtaining a 16 hour SWP-HI spectrum of TW Hya and 6-8 hour LWP-HI spectra of TW Hya, AK Sco, CoD -35 10525 and CoD -33 10685. High dispersion spectra of pre-main sequence (PMS) stars provide unique information on line widths, shifts, and asymmetries, as well as evidence for mass outflow, circumstellar absorption, and diagnostics for the temperature structure of the outer atmosphere layers of these complex yet incredibly important objects. We have previously obtained and studied line profiles in RU Lupi and the prototype star T Tau. RU Lupi has line profiles that are dominated by the wind expansion, for example the MgII and FeII multiplet UV1 profiles are unique in that they have a classical P Cygni shape, whereas T Tau has more symmetric emission profiles indicative of a chromosphere and hotter layers not dominated by expansion. TW Hya is different from these two previously studied stars in that it may be the brightest known example of a post-T Tauri star, and hence less active and older than the other PMS stars. We intend to compare its line profiles with those of RU Lupi and T Tauri in order to understand the differences in the non-thermal mass motions, wind expansion, and thermal structures of these three very different T Tau stars. The requested LWPHI spectra are to obtain MgII and FeII multiplet UV1. profiles of 4 different T Tauri objects so as to infer the expansion and thermal structure in their chromospheric layers.
Amatore, Christian; Chovin, Arnaud; Garrigue, Patrick; Servant, Laurent; Sojic, Neso; Szunerits, Sabine; Thouin, Laurent
2004-12-15
Dynamic concentration profiles within the diffusion layer of an electrode were imaged in situ using fluorescence detection through a multichannel imaging fiber. In this work, a coherent optical fiber bundle is positioned orthogonal to the surface of an electrode and is used to report spatial and temporal micrometric changes in the fluorescence intensity of an initial fluorescent species. The fluorescence signal is directly related to the local concentration of a redox fluorescent reagent, which is electrochemically modulated by the electrode. Fluorescence images are collected through the optical fiber bundle during the oxidation of tris(2,2'-bipyridine)ruthenium(II) to ruthenium(III) at a diffusion-limited rate and allow the concentration profiles of Ru(II) reagent to be monitored in situ as a function of time. Tris(2,2'-bipyridine)ruthenium(II) is excited at 485 nm and emits fluorescence at 605 nm, whereas the Ru(III) oxidation state is not fluorescent. Our experiments emphasize the influence of two parameters on the micrometer spatial resolution: the numerical aperture of optical fibers within the bundle and the Ru(II) bulk concentration. The extent of the volume probed by each individual fiber of the bundle is discussed qualitatively in terms of a primary inner-filter effect and refractive index gradient. Experimentally measured fluorescence intensity profiles were found to be in very good agreement with concentration profiles predicted upon considering planar diffusion and thus validate the concept of this new application of imaging fibers. The originality of this remote approach is to provide a global view of the entire diffusion layer at a given time through one single image and to allow the time expansion of the diffusion layer to be followed quantitatively in real time.
Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells
NASA Astrophysics Data System (ADS)
Zanoni, Kassio P. S.; Amaral, Ronaldo C.; Murakami Iha, Neyde Y.; Abreu, Felipe D.; de Carvalho, Idalina M. M.
2018-06-01
A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2 = 2,2‧‑bipyridyl‑4,4‧‑dicarboxylic acid, mbpy‑anth = 4‑[N‑(2‑anthryl)carbamoyl]‑4‧‑methyl‑2,2‧‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.
Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...
2016-03-24
Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less
Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells.
Zanoni, Kassio P S; Amaral, Ronaldo C; Murakami Iha, Neyde Y; Abreu, Felipe D; de Carvalho, Idalina M M
2018-06-05
A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH 2 )(NCS) 2 (mbpy‑anth)] (dcbH 2 =2,2'‑bipyridyl‑4,4'‑dicarboxylic acid, mbpy‑anth=4‑[N‑(2‑anthryl)carbamoyl]‑4'‑methyl‑2,2'‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1 LC Anth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO 2 compact layers beneath the TiO 2 mesoporous film to prevent meso‑TiO 2 /dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO 2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%. Copyright © 2018 Elsevier B.V. All rights reserved.
Study of composite thin films for applications in high density data storage
NASA Astrophysics Data System (ADS)
Yuan, Hua
Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors---oxide volume fraction and sputtering pressure. The latter affects grain size and grain segregation through surface-diffusion modification and the self-shadowing effect. The composite Ru + oxide interlayers were found to have various microstructures under various sputtering conditions. Four characteristic microstructure zones can be identified as a function of oxide volume fraction and sputtering pressure---"percolated" (A), "maze" (T), "granular" (B) and "embedded" (C), based on which, a new structural zone model (SZM) is established for composite thin films. The granular microstructure of zone B is of particular interest for recording media application. The grain size of interlayers is a strong function of pressure, oxide species and oxide volume fraction. Magnetic layers grown on top of these interlayers were found to be significantly affected by the interlayer microstructure. One-to-one grain epitaxial growth is very difficult to achieve when the grain size is too small. As a result, the magnetic properties of smaller grain size magnetic layers deteriorate due to poor growth. This presents a huge challenge to high areal density magnetic recording media. A novel approach of Ar-ion etched Ru seedlayer, which can improve epitaxy between interlayer and magnetic layer is proposed. This method produces interlayer thin films of: (1) smaller grain size and higher nucleation density due to both a rougher seedlayer surface and an oxide addition in the interlayer; (2) good (00.2) texture due to the growth on top of the low pressure deposited Ru seedlayer; (3) dome-shape grain morphology due to the high pressure deposition. Therefore, a significant Ru grain size reduction with enhanced granular morphology and improved grain-to-grain epitaxy with the magnetic layer was achieved. High resolution transmission electron microscopy (TEM) techniques, such as, electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), energy-dispersive X-ray spectroscopy (EDS) and mapping, and high angle annular dark field (HAADF) imaging have been utilized to investigate elemental distribution and grain morphology in composite magnetic thin films of different grain sizes. An oxygen-rich grain shell of about 0.5 ˜ 1 nm thickness is often observed for most media with different grain sizes. Reducing the grain size increases surface to volume ratio. With more surface area, smaller grains are more vulnerable to oxidization, resulting in even greater influence of the oxide on the magnetic properties of the grains.
Magnetic Phase Diagram of α-RuCl3
NASA Astrophysics Data System (ADS)
Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey
The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.
Directed Assembly of Molecules on Graphene/Ru(0001)
NASA Astrophysics Data System (ADS)
Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.
2012-02-01
Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.
On the Origin of Charge Order in RuCl3
NASA Astrophysics Data System (ADS)
Berlijn, Tom
RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes
Hu, E.; Lyu, Y.; Xin, H.; ...
2016-09-26
Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compoundmore » Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.« less
Clean induced feature CD shift of EUV mask
NASA Astrophysics Data System (ADS)
Nesládek, Pavel; Schedel, Thorsten; Bender, Markus
2016-05-01
EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.
Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin
2015-02-15
A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.
Defect-mediated, thermally-activated encapsulation of metals at the surface of graphite
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung; ...
2017-11-04
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
NASA Astrophysics Data System (ADS)
Hayashi, K.; Umeo, K.; Takeuchi, T.; Kawabata, J.; Muro, Y.; Takabatake, T.
2017-12-01
We have measured the strain, magnetization, and specific heat of the antiferromagnetic (AFM) Kondo semiconductors Ce T2A l10 (T =Ru and Os) under uniaxial pressures applied along the orthorhombic axes. We found a linear dependence of TN on the b -axis parameter for both compounds under uniaxial pressure P ∥b and hydrostatic pressure. This relation indicates that the distance between the Ce-T layers along the b axis is the key structural parameter determining TN. Furthermore, the pressure dependence of the spin-flop transition field indicates that Ce-Ce interchain interactions stabilize the AFM state with the ordered moments pointing to the c axis.
Exchange stiffness in thin film Co alloys
NASA Astrophysics Data System (ADS)
Eyrich, C.; Huttema, W.; Arora, M.; Montoya, E.; Rashidi, F.; Burrowes, C.; Kardasz, B.; Girt, E.; Heinrich, B.; Mryasov, O. N.; From, M.; Karis, O.
2012-04-01
The exchange stiffness (Aex) is one of the key parameters controlling magnetization reversal in magnetic materials. We used a method based on the spin spiral formation in two ferromagnetic films antiferromagnetically coupled across a non-magnetic spacer layer and Brillouin scattering to measure Aex for a series of Co1-δXδ (X = Cr, Ni, Ru, Pd, Pt) thin film alloys. The results show that Aex of Co alloys does not necessarily scale with Ms; Aex approximately decreases at the rate of 1.1%, 1.5%, 2.1%, 3.5%, and 5.6%, while Ms decreases at the rate of 1.1%, 0.5%, 1.1%, 3.7%, and 2.5% per addition of 1 at % of Pt, Ni, Pd, Cr, and Ru, respectively.
Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers
NASA Astrophysics Data System (ADS)
Morrill-Winter, C.; Squire, D. T.; Klewicki, J. C.; Hutchins, N.; Schultz, M. P.; Marusic, I.
2017-05-01
Multicomponent turbulence measurements in rough-wall boundary layers are presented and compared to smooth-wall data over a large friction Reynolds number range (δ+). The rough-wall experiments used the same continuous sandpaper sheet as in the study of Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196]. To the authors' knowledge, the present measurements are unique in that they cover nearly an order of magnitude in Reynolds number (δ+≃2800 -17 400 ), while spanning the transitionally to fully rough regimes (equivalent sand-grain-roughness range, ks+≃37 -98 ), and in doing so also maintain very good spatial resolution. Distinct from previous studies, the inner-normalized wall-normal velocity variances, w2¯, exhibit clear dependencies on both ks+ and δ+ well into the wake region of the boundary layer, and only for fully rough flows does the outer portion of the profile agree with that in a comparable δ+ smooth-wall flow. Consistent with the mean dynamical constraints, the inner-normalized Reynolds shear stress profiles in the rough-wall flows are qualitatively similar to their smooth-wall counterparts. Quantitatively, however, at matched Reynolds numbers the peaks in the rough-wall Reynolds shear stress profiles are uniformly located at greater inner-normalized wall-normal positions. The Reynolds stress correlation coefficient, Ru w, is also greater in rough-wall flows at a matched Reynolds number. As in smooth-wall flows, Ru w decreases with Reynolds number, but at different rates depending on the roughness condition. Despite the clear variations in the Ru w profiles with roughness, inertial layer u , w cospectra evidence invariance with ks+ when normalized with the distance from the wall. Comparison of the normalized contributions to the Reynolds stress from the second quadrant (Q2) and fourth quadrant (Q4) exhibit noticeable differences between the smooth- and rough-wall flows. The overall time fraction spent in each quadrant is, however, shown to be nearly fixed for all of the flow conditions investigated. The data indicate that at fixed δ+ both Q2 and Q4 events exhibit a sensitivity to ks+. The present results are discussed relative to the combined influences of roughness and Reynolds number on the scaling behaviors of boundary layers.
research focused on developing and understanding the atomic layer deposition of atomically thin Pt-group metal systems, such as Ru, Pt, and Pd. Her first postdoctoral research at the Colorado School of Mines NREL where her main area of research is synthesizing and testing novel host materials for H2 storage
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
Silica nanoparticles with a substrate switchable luminescence
NASA Astrophysics Data System (ADS)
Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.
2011-04-01
Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
Growth and Stability of Titanium Dioxide Nanoclusters on Graphene/Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Ryan T.; Novotny, Zbynek; Netzer, Falko P.
Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO2 in visible light. To better understand the interactions of TiO2 with graphene we have investigated the growth of TiO2 nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O2 background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer. The saturation nanocluster density decreased as the substrate temperature was increased from 300 to 650 K, while deposition at 700 K resulted in the significant etching of themore » Gr layer. We have also prepared nanoclusters with Ti2O3 stoichiometry using lower O2 pressures at 650 K. Thermal stability of the TiO2 nanoclusters prepared at 300 K was evaluated with AES and STM. No change in oxidation state for the TiO2 nanoclusters or etching of the Gr layer was observed up to ~900 K. Annealing studies characterized using STM revealed that cluster ripening proceeds via a Smoluchowski mechanism below 800 K and that Ostwald ripening dominates above 800 K. At even higher temperatures, the nanoclusters undergo reduction to TiOx (x ≈ 1 - 1.5) which is accompanied by oxidation and etching of the Gr. Our studies demonstrate that highly thermally stable TiOx nanoclusters of controlled composition and morphology can be prepared on Gr supports.« less
In-depth study of the H - T phase diagram of Sr 4 Ru 3 O 10 by magnetization experiments
Weickert, F.; Civale, L.; Maiorov, B.; ...
2017-09-28
Here, we present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H-T phase diagram with special focus on the temperature range 50 K ≤T≤TC. We find that the critical field Hc1(T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a criticalmore » endpoint at (1 T; 80 K). We also conclude from the temperature dependence of the ratio Hc1Hc2(T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.« less
Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3
NASA Astrophysics Data System (ADS)
Tsirlin, Alexander
Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.
Chen, Dan; Li, Yuexia; Liao, Shijun; ...
2015-08-03
Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less
In-depth study of the H - T phase diagram of Sr4Ru3O10 by magnetization experiments
NASA Astrophysics Data System (ADS)
Weickert, F.; Civale, L.; Maiorov, B.; Jaime, M.; Salamon, M. B.; Carleschi, E.; Strydom, A. M.; Fittipaldi, R.; Granata, V.; Vecchione, A.
2018-05-01
We present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H - T phase diagram with special focus on the temperature range 50 K ≤ T ≤TC . We find that the critical field Hc1 (T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a critical endpoint at (1 T; 80 K). We conclude from the temperature dependence of the ratio Hc 1/Hc 2 (T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.
Berardinelli, Paolo; Russo, Valentina; Bernabò, Nicola; Di Giacinto, Oriana; Mattioli, Mauro; Barboni, Barbara
2014-01-01
Background The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. Aim This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. Material and Methods Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. Results and Conclusions VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy. PMID:24756033
The near field of coaxial jets: A numerical study
NASA Astrophysics Data System (ADS)
Balarac, Guillaume; Métais, Olivier
2005-06-01
The near-field behavior of coaxial jets is studied through direct numerical simulation (DNS) with a particular focus on the influence of the inner shear layer steepness characterized by its momentum thickness θ01 thus mimicking the variation in the lip thickness of a real jet nozzle. We investigate the two distinct jet regimes ru>ruc for which a recirculation bubble is present near the jet inlet and ru
NASA Astrophysics Data System (ADS)
Augé, Thierry; Joubert, Marc; Bailly, Laurent
2012-02-01
With the aims to bring new information about the typology and mineral potential of mafic-ultramafic complexes of the Hoggar, detailed petrological and chemical characterisation were performed on serpentinite bands and layered intrusions. The serpentinite bands locally contain pods, layers and disseminations of chromite showing all the characteristics (mode of occurrence, composition, nature and composition of silicate inclusions, etc.) of an "ophiolite" chromite. Some chromite concentrations in the serpentinite bands also contain inclusions of platinum-group minerals (described for the first time in the Hoggar) such as ruarsite (RuAsS), an Os, Ru, Ir alloy, and complex Os, Ir, Ru sulfarsenides and arsenides. The serpentinite probably corresponds to remnants of oceanic lithosphere—more specifically from the upper part of the mantle sequence, generally where chromitite pods are most abundant, and the basal part of the cumulate series with stratiform chromite concentrations—and marks suture zones; the rest of the oceanic crust has not been preserved. Considering the typology of the serpentinites bands, their potential for precious- and base-metals is suspected to be low. Of the two layered mafic-ultramafic intrusions that were studied, the In Tedeini intrusion has a wehrlite core intruded by olivine gabbronorite and surrounded by an olivine gabbro aureole; three orthocumulate units, containing disseminated magmatic base-metal sulphides and with a plagioclase composition varying around An 58.1 and An 63.3, that could have been derived from a single magma. The East Laouni intrusion has a basal unit of olivine gabbronorite with specific silicate oxide intergrowths, and an upper unit of more differentiated gabbro, both units containing disseminated magmatic Ni-Cu sulphides indicative of early sulphide immiscibility; the mineral composition of these two cumulate units indicates that they also could have been derived from a single magmatic episode. The characteristic of the two intrusions appears very favourable for the presence of a significant Ni-Cu-(PGE) sulphide mineralisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliynyk, Anton O.; Stoyko, Stanislav S.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca
Through arc-melting reactions of the elements and annealing at 800 °C, the ternary rare-earth germanides RE{sub 3}Ru{sub 2}Ge{sub 3} and RE{sub 3}Ir{sub 2}Ge{sub 3} have been prepared for most of the smaller RE components (RE=Y, Gd–Tm, Lu). In the iridium-containing reactions, the new phases RE{sub 2}IrGe{sub 2} were also generally formed as by-products. Powder X-ray diffraction revealed orthorhombic Hf{sub 3}Ni{sub 2}Si{sub 3}-type structures (space group Cmcm, Z=4) for RE{sub 3}M{sub 2}Ge{sub 3} (M=Ru, Ir) and monoclinic Sc{sub 2}CoSi{sub 2}-type structures (space group C2/m, Z=4) for RE{sub 2}IrGe{sub 2}. Full crystal structures were determined by single-crystal X-ray diffraction for all membersmore » of RE{sub 3}Ru{sub 2}Ge{sub 3} (a=4.2477(6) Å, b=10.7672(16) Å, c=13.894(2) Å for RE=Y; a=4.2610(3)–4.2045(8) Å, b=10.9103(8)–10.561(2) Å, c=14.0263(10)–13.639(3) Å in the progression of RE from Gd to Lu) and for Tb{sub 3}Ir{sub 2}Ge{sub 3} (a=4.2937(3) Å, b=10.4868(7) Å, c=14.2373(10) Å). Both structures can be described in terms of CrB- and ThCr{sub 2}Si{sub 2}-type slabs built from Ge-centred trigonal prisms. However, band structure calculations on Y{sub 3}Ru{sub 2}Ge{sub 3} support an alternative description for RE{sub 3}M{sub 2}Ge{sub 3} based on [M{sub 2}Ge{sub 3}] layers built from linked MGe{sub 4} tetrahedra, which emphasizes the strong M–Ge covalent bonds present. The temperature dependence of the electrical resistivity of RE{sub 3}Ru{sub 2}Ge{sub 3} generally indicates metallic behaviour but with low-temperature transitions visible for some members (RE=Gd, Tb, Dy) that are probably associated with magnetic ordering of the RE atoms. Anomalously, Y{sub 3}Ru{sub 2}Ge{sub 3} exhibits semiconductor-like behaviour of uncertain origin. Magnetic measurements on Dy{sub 3}Ru{sub 2}Ge{sub 3} reveal antiferromagnetic ordering at 3 K and several unusual field-dependent transitions suggestive of complex spin reorientation processes. - Graphical abstract: RE{sub 3}M{sub 2}Ge{sub 3} (M=Ru, Ir) adopts the Hf{sub 3}Ni{sub 2}Si{sub 3}-type structure containing slabs built up from Ge-centred trigonal prisms. - Highlights: • Crystal structures of RE{sub 3}Ru{sub 2}Ge{sub 3} (RE=Y, Gd–Tm, Lu) and Tb{sub 3}Ir{sub 2}Ge{sub 3} were determined. • Strong M–Ge covalent bonds were confirmed by band structure calculations. • Most RE{sub 3}Ru{sub 2}Ge{sub 3} members except Y{sub 3}Ru{sub 2}Ge{sub 3} exhibit metallic behaviour. • Dy{sub 3}Ru{sub 2}Ge{sub 3} displays unusual field-dependent magnetic transitions.« less
Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...
2015-04-27
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO 2/TiO 2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO 3H 2) 2bpy) 2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH 2)] 4+ ([RuaII-RubII-OH 2] 4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO 2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al 2O 3 or TiO 2 overlayers. Illumination of the resulting fluorine-dopedmore » tin oxide (FTO)|SnO 2/TiO 2|-[Ru a II-Ru b II-OH 2] 4+(Al 2O 3 or TiO 2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H 2 and O 2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO 2/TiO 2 core/shell compared with nanoITO/TiO 2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm 2 with 445-nm, ~90-mW/cm 2 illumination in a phosphate buffer at pH 7.« less
Grinter, David C.; Senanayake, Sanjaya D.; Flege, Jan Ingo
2016-11-15
Ceria is an important material for chemical conversion processes in catalysis. Its intrinsic properties as a reducible oxide can be exploited to achieve catalytic selectivity and activity. However, numerous phenomenological characteristics of ceria remain unknown and its active nature is ever slowly being unraveled. Well defined models of ceria (111) are an important way to systematically study these properties and take advantage of new in situ methods that require pristine materials that allow for the interrogation of the most fundamental traits of this material. The ceria-Ru(0001) model is now the most well studied model surface with numerous aspects of itsmore » preparation, atomic structure and reactivity studied by several groups. The preparation of CeO x structures oriented with a (111) surface termination can be achieved through molecular beam deposition, facilitating the growth of well-defined nanostructures, microparticles, and films on the Ru(0001) surface. The growth mechanism exploits the epitaxial relationship between CeOx and Ru to form a carpet mode of well oriented layers of Osingle bondCesingle bondO. These models can be studied to unravel the atomic structure and the oxidation state (Ce 4+ and Ce 3+), as prepared and under redox conditions (reduction/oxidation) or with reaction using reactants (e.g., H 2, methanol). Here, we present a discussion of these most recent observations pertaining to the growth mode, arrangement of atoms on the surface, characteristic chemical state, and redox chemistry of the CeO x-Ru surface. As a result, with insights from these studies we propose new strategies to further unravel the chemistry of ceria.« less
Lu, Wei; Kuwabara, Junpei; Kanbara, Takaki
2013-07-25
Polycondensation of 1-(2-pyrimidinyl)pyrrole with 2,7-dibromo-9,9-dioctylfluorene via Ru-catalyzed direct arylation gives the corresponding conjugated polymer with a molecular weight of 19 800 in 86% yield. The introduction of directing group, 2-pyrimidinyl substituent, into the pyrrole monomer induces ortho-metalation and provides the site-selective direct arylation polycondensation at the α-position of pyrrole unit without the protection of β-position. The removal of 2-pyrimidinyl substituent on the pyrrole unit proceeds efficiently and results in the enhancement of coplanarity along the main chain of the polymer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
NASA Astrophysics Data System (ADS)
Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin
2017-07-01
Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.
Effect of capping layer on interlayer coupling in synthetic spin valves
NASA Astrophysics Data System (ADS)
Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan
2005-01-01
The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.
Thin Film Catalyst Layers for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.
2000-01-01
One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.
Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface
NASA Astrophysics Data System (ADS)
Chanana, Anuja; Mahapatra, Santanu
2016-01-01
A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Michael I.; Cole, Marcus L.; Ellis, Benjamin G.
The construction of a series of compounds {Ru(dppe)Cp*} 2(μ-C 2x) (Ru*-C2x-Ru*, x = 4–8, 11)) is described. A direct reaction between RuCl(dppe)Cp* and Me 3Si(Ctriple bond; length of mdashC) 4SiMe 3 afforded Ru*-C8-Ru* in 89% yield. The Pd(0)/Cu(I)-catalysed coupling of Ru{Ctriple bond; length of mdashCCtriple bond; length of mdashCAu(PPh 3)}(dppe)Cp*Ru*-C4-Au (2 equiv.) with diiodoethyne gave Ru*-C10-Ru* (64%), or of 1 equiv. with I(Ctriple bond; length of mdashC) 3I gave Ru*-C14-Ru* (36%); similarly, Ru{(Ctriple bond; length of mdashC) 4Au(PPh 3)}(dppe)Cp*Ru*-C8-Au and I(Ctriple bond; length of mdashC) 3I gave Ru*-C22-Ru* (12%). Desilylation (TBAF) of Ru{(Ctriple bond; length of mdashC)xSiMe 3}(dppe)Cp*Ru*-C2x-Si (x =more » 3, 4) followed by oxidative coupling [Cu(OAc) 2/py] gave Ru*-C12-Ru* (82%) and Ru*-C16-Ru* (58%), respectively. Similar oxidative coupling of Ru(Ctriple bond; length of mdashCCtriple bond; length of mdashCH)(dppe)Cp* was a second route to Ru*-C8-Ru* (82%). Appropriate precursors are already known, or obtained by coupling of Ru*-C2x-Si (x = 2, 4) with AuCl(PPh 3)/NaOMe [Ru*-C4-Au, 95%; Ru*-C8-Au, 74%] or from Pd(0)/Cu(I) catalysed coupling of Ru*-C2x-Au (x = 2, 3) with I(Ctriple bond; length of mdashC) 2SiMe 3 (Ru*-C8-Si, 64%; Ru*-C10-Si, 2%). Reactions between Ru*-C2x-Ru* (x = 3, 4) and Fe 2(CO) 9 gave {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]} 2Fe(C 3-Ru*) 2 and {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]}{μ 3-C(Ctriple bond; length of mdashC) 2[Ru(dppe)Cp*]} Fe(C 3-Ru*)(C 5-Ru*), respectively. The redox properties of the series of complexes with 2x = 2–16 were measured and showed a diminution of the separation of the first two oxidation potentials, ΔE = E 2 - E 1, with increasing carbon chain length. The X-ray-determined molecular structures of Ru*-C8-Si, Ru*-C8-Ru*, Ru*-C14-Ru* (two C 6H 6 solvates), {Ru(PPh 3) 2Cp} 2{μ-(Ctriple bond; length of mdashC) 4}·4CHCl 3Ru-C 8-Ru·4CHCl 3 and of Fe(C 3-Ru*) 2 and Fe(C 3-Ru*)(C 5-Ru*) are reported.« less
NASA Astrophysics Data System (ADS)
Touzani, Rachid St.; Fokwa, Boniface P. T.
2014-03-01
The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Walkup, Daniel; Derry, Philip; Scaffidi, Thomas; Rak, Melinda; Vig, Sean; Kogar, Anshul; Zeljkovic, Ilija; Husain, Ali; Santos, Luiz H.; Wang, Yuxuan; Damascelli, Andrea; Maeno, Yoshiteru; Abbamonte, Peter; Fradkin, Eduardo; Madhavan, Vidya
2017-08-01
The single-layered ruthenate Sr2RuO4 is presented as a potential spin-triplet superconductor with an order parameter that may break time-reversal invariance and host half-quantized vortices with Majorana zero modes. Although the actual nature of the superconducting state is still a matter of controversy, it is believed to condense from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunnelling spectroscopy (FT-STS) and momentum-resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr2RuO4. Our high-resolution FT-STS data show signatures of the β-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr2RuO4 is that of a `correlated metal' where correlations are strengthened by the quasi-1D nature of the bands. In addition, kinks at energies of approximately 10 meV, 38 meV and 70 meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi-1D bands could provide important information for understanding the superconducting state.
Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dral, A. P.; Nijland, M.; Koster, G.
An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexiblemore » substrate was accomplished via acid etching.« less
NASA Astrophysics Data System (ADS)
Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.
2017-12-01
Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.
NASA Astrophysics Data System (ADS)
Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.
2017-01-01
Perpendicularly magnetized microparticles offer the ability to locally apply high torques on soft matter under an applied magnetic field. These particles are engineered to have a zero remanence magnetic configuration via synthetic antiferromagnetic coupling using a Ru coupling interlayer. The flexibility offered by the top down thin film fabrication process in a CoFeB/Pt perpendicular thin film is demonstrated by using the Pt interlayer thicknesses in a Pt/Ru/Pt antiferromagnetic coupling multilayer to tune the applied magnetic field value of the easy axis spin-flip transition to saturation and hence the field value at which the magnetic particles are magnetically activated via a distinct transition to saturation. The importance of a Ta buffer layer on the magnetic behavior of the stack is shown. While Au capping layers are desirable for biotechnology applications, we demonstrate that they can drastically change the nucleation and propagation of domains in the film, thereby altering the reversal behavior of the thin film. The effect of Au underlayers on a multilayer thin film composed of repeated motifs of a synthetic antiferromagnetic building block is also investigated.
NASA Astrophysics Data System (ADS)
Prichard, H. M.; Barnes, Stephen J.; Dale, C. W.; Godel, B.; Fisher, P. C.; Nowell, G. M.
2017-11-01
Chromitite from the Harold's Grave locality in the mantle section of the Shetland ophiolite complex is extremely enriched in Ru, Os and Ir, at μg/g concentrations. High-resolution X-ray computed tomography on micro-cores from these chromitites was used to determine the location, size, distribution and morphology of the platinum-group minerals (PGM). There are five generations of PGM in these chromitites. Small (average 5 μm in equivalent sphere diameter, ESD) euhedral laurites, often with Os-Ir alloys, are totally enclosed in the chromite and are likely to have formed first by direct crystallisation from the magma as the chromite crystallised. Also within the chromitite there are clusters of larger (50 μm ESD) aligned elongate crystals of Pt-, Rh-, Ir-, Os- and Ru-bearing PGM that have different orientations in different chromite crystals. These may have formed either by exsolution, or by preferential nucleation of PGMs in boundary layers around particular growing chromite grains. Thirdly there is a generation of large (100 μm ESD) composite Os-Ir-Ru-rich PGM that are all interstitial to the chromite grains and sometimes form in clusters. It is proposed that Os, Ir and Ru in this generation were concentrated in base metal sulfide droplets that were then re-dissolved into a later sulfide-undersaturated magma, leaving PGM interstitial to the chromite grains. Fourthly there is a group of almost spherical large (80 μm ESD) laurites, hosting minor Os-Ir-Ru-rich PGM that form on the edge or enclosed in chromite grains occurring in a sheet crosscutting a chromitite layer. These may be hosted in an annealed late syn- or post magmatic fracture. Finally a few of the PGM have been deformed in localised shear zones through the chromitites. The vast majority of the PGM - including small PGM enclosed within chromite, larger interstitial PGM and elongate aligned PGM - have Os isotope compositions that give Re-depletion model ages approximately equal to the age of the ophiolite at ∼492 Ma. A number of other PGM - not confined to a single textural group - fall to more or less radiogenic values, with four PGM giving anomalously unradiogenic Os corresponding to an older age of ∼1050 Ma. The 187Os/188Os isotopic ratios for PGM from Cliff and Quoys, from the same ophiolite section, are somewhat more radiogenic than those at Harold's Grave. This may be due to a distinct mantle source history or possibly the assimilation of radiogenic crustal Os.
Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films
NASA Astrophysics Data System (ADS)
Peethala, Brown Cornelius
Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices (<32 nm) for Cu interconnects is the extendibility of TaN/Ta/Cu-seed to sustain the diffusion barrier performance without forming voids and meeting the requirements of low resistivity. These are very challenging requirements for the Ta/TaN bilayer at a thickness of < 5 nm. Hence, ruthenium (Ru) and cobalt (Co), among these, are being considered for replacing Ta/TaN as barrier materials for Cu interconnects in future technology devices. Both are very attractive for reasons such as the capability of direct electroplating of Cu, lower resistivity and for a single layer (vs. a bilayer of Ta/TaN) to act as a barrier. During patterning, they need to be planarized using conventional chemical mechanical polishing (CMP) to achieve a planar surface. However, CMP of these new barrier materials requires novel slurry compositions that provide adequate selectivity towards Cu and dielectric films, and minimize galvanic corrosion. Apart from the application as a barrier, Ru also has been proposed as a lower electrode material in metal-insulator-metal capacitors where high (> 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (< 1 nm/min) Ru RRs are desired. A Ru removal rate of ˜60 nm/min was achieved with a colloidal silica-based slurry at pH 9 using potassium periodate (KIO4) as the oxidizer. At this pH, toxic RuO4 does not form eliminating a major challenge in Ru CMP. This removal rate was obtained by increasing the solubility of KIO4 by adding potassium hydroxide (KOH). It was also determined that increased the ionic strength is not responsible for the observed increase in Ru removal rate. Benzotirazole (BTA) and ascorbic acid were added to the slurry to reduce the open circuit potential (Eoc) difference between Cu and Ru to ˜20 mV from about 550 mV in the absence of additives. A removal mechanism with KIO4 as the oxidizing agent is proposed based on the formation of several ruthenium oxides, some of which formed residues on the polishing pad below a pH of ˜7. Next, a colloidal silica-based slurry with hydrogen peroxide (H 2O2) as the oxidizer (1 wt%), and arginine (0.5 wt%) as the complexing agent was developed to polish Co at pH 10. The Eoc between Cu and Co at the above conditions was reduced to ˜20 mV compared to ˜250 mV in the absence of additives, suggestive of reduced galvanic corrosion during the Co polishing. The slurry also has the advantages of good post-polish surface quality at pH 10, and no dissolution rate. BTA at a concentration of 5mM in this slurry inhibited Cu dissolution rates and yielded a Cu/Co RR ratio of ˜0.8:1 while the open potential difference between Cu and Co was further reduced to ˜10 mV. The role of H2O2, complexing agent (arginine), silica abrasives, and Co removal mechanism during polishing is discussed. Also, during the barrier CMP, a part of the underlying low-k (SiCOH) material has to be polished to remove any modified surface film. Black Diamond (BD) is a SiCOH type material with a dielectric constant of ˜2.9 and here, polishing of BD was investigated in order to understand the polishing behavior of SiCOH-based materials using the barrier slurries. The slurries that were developed for polishing Co and Ru in this work and Ta/TaN (earlier) were investigated for polishing the Black Diamond (BD) films. Here, it was found that ionic salts play a major role in enhancing the BD RRs to ˜65 nm/min compared to no removal rates in the absence of additives. A removal mechanism in the presence of ionic salts is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Hiroki; Kitanaka, Yuuki; Inoue, Ryotaro
We investigate the mechanism of a switchable diode behavior observed in ferroelectric SrRuO{sub 3}/BiFeO{sub 3} (BFO)/SrRuO{sub 3} capacitors. We experimentally demonstrate that the switchable diode effect observed in the capacitors is induced by the polarization reversal in the BFO film. The conductivity in an Ohmic region in different oxidation states provides direct evidence that electron hole acts as the majority carrier, delivering p-type conduction. Density functional theory (DFT) calculations show that the p-type conduction arises from an unoccupied gap state of Fe{sup 4+} in an FeO{sub 5} pyramid which is derived from Bi vacancy. Our experimental and DFT study leadsmore » to the conclusion that the switchable diode effect originates from an asymmetric band bending in the top and bottom depletion layers modulated by ferroelectric polarization and oxygen vacancies.« less
Ali, Akram; Potaskalov, Vadim A.
2017-01-01
In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octahedral coordination environment defined by two N atoms of the chelating 2,2′-bipyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzoquinone ligands. In the crystal, the complex molecules are linked by intermolecular C—H⋯O hydrogen bonds and π–π stacking interactions between the 2,2′-bipyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane. PMID:28316832
Analysis of scattering lengths in Co/Cu/Co and Co/Cu/Co/Cu spin-valves using a Ru barrier
NASA Astrophysics Data System (ADS)
Strijkers, G. J.; Willekens, M. M. H.; Swagten, H. J. M.; de Jonge, W. J. M.
1996-10-01
We use uncoupled Co/Cu/Co and Co/Cu/Co/Cu spin-valve structures with a Ru barrier shifted through the top Co and Cu layer, respectively, to measure the longest of the electron mean free paths in Co and Cu as originally suggested by Parkin. From semiclassical transport calculations and careful analysis of the magnetoresistance data we conclude that the exponential behavior of ΔG is uniquely related to the longest of the Co and Cu mean free paths under the condition of effective spin-dependent filtering at the interfaces or in the bulk of the Co. In this regime we have compared λlong in Co and Cu with bulk conductivities (~λshort+λlong), yielding no strong evidence for bulk spin-dependent scattering in Co.
First-Principles Correlated Approach to the Normal State of Strontium Ruthenate
Acharya, S.; Laad, M. S.; Dey, Dibyendu; Maitra, T.; Taraphder, A.
2017-01-01
The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr2RuO4. This mandates a detailed revisit of the normal state and, in particular, the T-dependent incoherence-coherence crossover. Using a modern first-principles correlated view, we study this issue in the actual structure of Sr2RuO4 and present a unified and quantitative description of a range of unusual physical responses in the normal state. Armed with these, we propose that a new and important element, that of dominant multi-orbital charge fluctuations in a Hund’s metal, may be a primary pair glue for unconventional superconductivity. Thereby we establish a connection between the normal state responses and superconductivity in this system. PMID:28220879
Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2
NASA Astrophysics Data System (ADS)
Yamagami, Hiroshi
2011-01-01
In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.
Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru
NASA Astrophysics Data System (ADS)
Bai, Lei
2018-03-01
Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.
Boubekeur-Lecaque, Leïla; Coe, Benjamin J; Harris, James A; Helliwell, Madeleine; Asselberghs, Inge; Clays, Koen; Foerier, Stijn; Verbiest, Thierry
2011-12-19
Nine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions. The energies of the intense visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions correlate to some extent with the ligand reduction potentials. (1)H NMR spectroscopy also provides insights into the relative electron-withdrawing strengths of the new ligands. Single crystal X-ray structures have been determined for two of the proligand salts and one complex salt, [Ru(II)(NH(3))(5)(4-C(16)H(33)PhQ(+))]Cl(3)·3.25H(2)O (PhQ(+) = N-phenyl-4,4'-bipyridinium), showing centrosymmetric packing structures in each case. The PF(6)(-) analogue of the latter complex has been used to deposit reproducibly high-quality, multilayered Langmuir-Blodgett (LB) thin films. These films show a strong second harmonic generation (SHG) response from a 1064 nm laser; their MLCT absorbance increases linearly with the number of layers (N) and I(2ω)/I(ω)(2) (I(2ω) = intensity at 532 nm; I(ω) = intensity at 1064 nm) scales quadratically with N, consistent with homogeneous deposition. LB films on indium tin oxide (ITO)-coated glass show electrochemically induced switching of the SHG response, with a decrease in activity of about 50% on Ru(II) → Ru(III) oxidation. This effect is reversible, but reproducible over only a few cycles before the signal from the Ru(II) species diminishes. This work extrapolates our original solution studies (Coe, B. J. et al. Angew. Chem., Int. Ed.1999, 38, 366) to the first demonstration of redox-switching of NLO activity in a molecular material. © 2011 American Chemical Society
Transport properties of correlated metals: A dynamical mean field theory perspective
NASA Astrophysics Data System (ADS)
Deng, Xiaoyu
Strongly correlated metals, including many transition metal oxides, are characterized by unconventional transport properties with anomalous temperature dependence. For example, in many systems Fermi liquid behavior holds only below an extremely low temperature while at high temperature these bad metals have large resistivity which exceeds the Mott-Ioffe-Regel (MIR) limit. Material specific calculation of these anomalous transport properties is an outstanding challenge. Recent advances enabled us to study the transport and optical properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA +DMFT method. In V2O3, the prototypical Mott system, our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called ''hidden Fermi liquid'' [1, 2, 3] behavior, in both the computed and measured optical response of V2O3. This paradigm explains the optics and transport in other materials such as NdNiO3 film and CaRuO3. In the ruthenates family, we carried out a systematical theoretical study on the transport properties of four metallic members, Sr2RuO4, Sr3Ru2O7, SrRuO3 and CaRuO3, which generally encapsulates the gradually structure evolution from two-dimension to three dimension. With a unified computational scheme, we are able to obtain the electronic structure and transport properties of all these materials. The computed effective mass enhancement, resistivity and optical conductivity are good agreement with experimental measurements, which indicates that electron-electron scattering dominates the transport of ruthenates. We explain why the single layered compound Sr2RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. Comparing our results with experimental data, benchmarks the capability as well as the limitations of existing methodologies for describing transport properties of realistic correlated materials. Supported by NSF DMR-1308141.
Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun
2016-12-01
For epitaxial films, a critical thickness (t c) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO 3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO 3/SrRuO 3/SrTiO 3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO 3 film was resolved into a strained layer with an extremely low piezoelectric coefficientmore » of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.« less
Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film
Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young
2016-01-01
For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103
NASA Astrophysics Data System (ADS)
Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.
2009-08-01
In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.
Advanced double layer capacitors
NASA Technical Reports Server (NTRS)
Sarangapani, S.; Lessner, P.; Forchione, J.; Griffith, A.; Laconti, A. B.
1989-01-01
Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration.
Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S
2001-07-02
Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2.514(2) A for 4 and 5, respectively). These structural features and magnetic and ESR data revealed the electronic configurations of sigma(2)pi(2)delta(2)delta(2)pi(2) and sigma(2)pi(2)delta(2)delta(2)pi(1) for Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+), respectively, in which the former is diamagnetic and the latter is paramagnetic with S = (1)/(2) ground state. Compound 5 forms a one-dimensional chain with alternating arrangement of a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) unit and a free benzo-15-crown-5-ether molecule by intermolecular hydrogen bonds (O(H(2)O).O(crown-ether) = 2.91-3.04 A). The cyclic voltammetry in DMF affords characteristic metal-origin voltammograms; two reversible and two quasi-reversible redox waves were observed. The feature of cyclic voltammograms for the Ru(3+)(mu-OR)(2)Ru(3+) species (2, 3, and 6) and the Ru(3.5+)(mu-OR)(2)Ru(3.5+) species (4 and 7) are similar to each other, indicating that both species are electrochemically stable. The isolation of the pyrazine-trans-coordinated species, [Ph(4)P][Ru(Cl(4)Cat)(2)(L)(2)] (L = pyrazine (8), 2,5-dimethylpyrazine (9)), revealed the selective isolation of 6 from pyrazine-containing solution. UV-vis spectral variation by ethanolysis for 9 demonstrated the selective conversion from the pyrazine-trans-coordinated species to the Ru(3+)(mu-OEt)(2)Ru(3+) species without an oxidation to the Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species. This result suggests the presence of equilibrium between [Ru(Cl(4)Cat)(2)(L)(2)](-) and Ru(3+)(mu-OEt)(2)Ru(3+) species in the synthetic condition for 6.
Irradiation treatment for the protection and conservation of cultural heritage artefacts in Croatia
NASA Astrophysics Data System (ADS)
Katušin-Ražem, Branka; Ražem, Dušan; Braun, Mario
2009-07-01
The application of irradiation treatment for the protection of cultural heritage artefacts in Croatia was made possible by the development of radiation processing procedures at the Radiation Chemistry and Dosimetry Laboratory of the Ruđer Bo\\vsković Institute. After the upgrading of the 60Co gamma irradiation source in the panoramic irradiation facility in 1983 it became possible to perform both research and pilot plant-scale irradiations for sterilization, pasteurization and decontamination of various materials, including medical supplies, pharmaceuticals, cosmetics and foods, but also for disinfestation of cultural heritage artefects. The demand for irradiation treatment of cultural heritage objects has particularly increased as the increasing number of these objects, especially polychromic wooden sculptures, were requiring salvation, restauration and conservation as a consequence of direct and indirect damages inflicted to them during the war in Croatia, 1991-1995. The irradiation facility at the Ruđer Bo\\vsković Institute is briefly described and an account of its fifteen years' activities in the irradiation treatment of cultural heritage objects is given. Some case studies performed in cooperation with the Croatian Conservation Institute and other interested parties are presented, as well as some cases of protective and curative treatments for disinfestation and decontamination. International cooperations and activities are also mentioned.
Prospects of zero Schottky barrier height in a graphene-inserted MoS{sub 2}-metal interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanana, Anuja; Mahapatra, Santanu
2016-01-07
A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS{sub 2}-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS{sub 2} and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS{sub 2}. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, densitymore » functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS{sub 2} through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS{sub 2}-metal interface, the projected dispersion of MoS{sub 2} remains preserved in any MoS{sub 2}-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS{sub 2}-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.« less
Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A
2016-05-01
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.
Antiparallel pinned NiO spin valve sensor for GMR head application (invited)
NASA Astrophysics Data System (ADS)
Pinarbasi, M.; Metin, S.; Gill, H.; Parker, M.; Gurney, B.; Carey, M.; Tsang, C.
2000-05-01
NiO antiferromagnetic material possesses certain advantages for spin valve applications and has attracted considerable attention. Some of the key advantages are its insulating properties, very high corrosion resistance, less sensitivity to composition, and its low reset temperature. This material, however, has a low blocking temperature which prevents its application to simple spin valve designs. The use of this material in spin valve structures required significant improvements in thermal stability, blocking temperature, and the spin valve design. In the present study, the blocking temperature and the blocking temperature distribution of the NiO films have been improved by depositing the films reactively using ion beam sputtering. A number of improvements in the processing method and deposition system had to be made to allow full NiO spin valve deposition for mass production. Another critical part was the use of antiparallel pinned design in place of the simple design to improve the thermal stability of the NiO spin valves as read elements at disk drive temperatures. The selection of the ferromagnetic pinned layers and the Ru spacer thickness in AP-pinned spin valves has significant impact on the behavior of the devices. These spin valves are all bottom type, NiO/PL1/Ru/PL2/Cu/Co/NiFe/Ta, where the metallic portion of the spin valve is deposited on top of the NiO AF layer. The PL1 and PL2 are ferromagnetic layers comprising NiFe and Co layers. Read elements have been made using these spin valves that delivered areal densities of 12 Gbit/in. These topics and other improvements which resulted in successful use of NiO spin valves as GMR heads in hard disk drives will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Störmer, M., E-mail: michael.stoermer@hzg.de; Gabrisch, H.; Horstmann, C.
2016-05-15
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity atmore » higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.« less
Mehdi, B Layla; Rutkowska, Iwona A; Kulesza, Pawel J; Cox, James A
2013-06-01
Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh 2 PMo 11 ), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH 3 ) 3 SiOCH 3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH 3 ) 3 SiOCH 3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh 2 PMo 11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.
AuRu/AC as an effective catalyst for hydrogenation reactions
Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; ...
2015-03-23
AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Au core–Ru shell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity,more » the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less
Magnetization measurements of Sr2RuO4-Ru eutectic microplates using dc-SQUIDs
NASA Astrophysics Data System (ADS)
Nago, Y.; Sakuma, D.; Ishiguro, R.; Kashiwaya, S.; Nomura, S.; Kono, K.; Maeno, Y.; Takayanagi, H.
2018-03-01
We report magnetization measurements of Sr2RuO4-Ru eutectic microplates using micro-dc-SQUIDs. Sr2RuO4 is considered as a chiral p-wave superconductor and hence Sr2RuO4-Ru eutectic becomes in an unstable state with a superconducting phase frustration between a chiral p-wave state of Sr2RuO4 and a s-wave state of Ru. To compensate the frustration, a single quantum vortex is spontaneously formed at the center of the Ru inclusion at sufficiently low temperatures. However, such a spontaneous vortex state has not been experimentally observed yet. In this study, we prepared a micro-dc-SQUID and a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion at the center of the microplate. We performed magnetization measurements down below the superconducting transition temperature of the Ru inclusion to investigate the spontaneous Ru-center vortex state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinter, David C.; Senanayake, Sanjaya D.; Flege, Jan Ingo
Ceria is an important material for chemical conversion processes in catalysis. Its intrinsic properties as a reducible oxide can be exploited to achieve catalytic selectivity and activity. However, numerous phenomenological characteristics of ceria remain unknown and its active nature is ever slowly being unraveled. Well defined models of ceria (111) are an important way to systematically study these properties and take advantage of new in situ methods that require pristine materials that allow for the interrogation of the most fundamental traits of this material. The ceria-Ru(0001) model is now the most well studied model surface with numerous aspects of itsmore » preparation, atomic structure and reactivity studied by several groups. The preparation of CeO x structures oriented with a (111) surface termination can be achieved through molecular beam deposition, facilitating the growth of well-defined nanostructures, microparticles, and films on the Ru(0001) surface. The growth mechanism exploits the epitaxial relationship between CeOx and Ru to form a carpet mode of well oriented layers of Osingle bondCesingle bondO. These models can be studied to unravel the atomic structure and the oxidation state (Ce 4+ and Ce 3+), as prepared and under redox conditions (reduction/oxidation) or with reaction using reactants (e.g., H 2, methanol). Here, we present a discussion of these most recent observations pertaining to the growth mode, arrangement of atoms on the surface, characteristic chemical state, and redox chemistry of the CeO x-Ru surface. As a result, with insights from these studies we propose new strategies to further unravel the chemistry of ceria.« less
Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts
Manbeck, Gerald F.; Fujita, Etsuko; Brewer, Karen J.
2017-06-01
Supramolecular mixed metal complexes combining the trimetallic chromophore [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 6+ (Ru 3) with [Rh(bpy)Cl 2] + or [RhCl 2] + catalytic fragments to form [{(bpy) 2Ru(dpp)} 2Ru(dpp)RhCl 2(bpy)](PF 6) 7 (Ru 3Rh) or [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 2RhCl 2(PF 6) 13 (Ru 3RhRu 3) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) catalyze the photochemical reduction of protons to H 2. This first example of a heptametallic Ru,Rh photocatalyst produces over 300 turnovers of H 2 upon photolysis of a solution of acetonitrile, water, triflic acid, and N,N-dimethylaniline as an electron donor. Conversely, the tetrametallic Ru 3Rh produces only 40more » turnovers of H 2 due to differences in the excited state properties and nature of the catalysts upon reduction as ascertained from electrochemical data, transient absorption spectroscopy, and flash-quench experiments. And while the lowest unoccupied molecular orbital of Ru 3Rh is localized on a bridging ligand, it is Rh-centered in Ru 3RhRu 3 facilitating electron collection at Rh in the excited state and reductively quenched state. The Ru → Rh charge separated state of Ru 3RhRu 3 is endergonic with respect to the emissive Ru → dpp 3MLCT excited and cannot be formed by static electron transfer quenching of the 3MLCT state. Instead, a mechanism of subnanosecond charge separation from high lying states is proposed. Multiple reductions of Ru 3 and Ru 3Rh using sodium amalgam were carried out to compare UV–vis absorption spectra of reduced species and to evaluate the stability of highly reduced complexes. Furthermore, the Ru 3 and Ru 3Rh can be reduced by 10 and 13 electrons, respectively, to final states with all bridging ligands doubly reduced and all bpy ligands singly reduced.« less
Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.
Yang, Ying; McElwee-White, Lisa
2004-08-07
The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.
Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel
2011-01-01
Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444
NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers
NASA Astrophysics Data System (ADS)
Kakekhani, Arvin; Ismail-Beigi, Sohrab
2013-03-01
NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.
Role of interface layers on Tunneling Magnetoresistance
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.
2002-03-01
Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.
Effect of Ru thickness on spin pumping in Ru/Py bilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet
2015-05-07
We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumpingmore » from Py into Ru.« less
A universal approach to the synthesis of nanodendrites of noble metals.
Feng, Yan; Ma, Xiaohong; Han, Lin; Peng, Zhijian; Yang, Jun
2014-06-07
Nanomaterials usually exhibit structure-dependent catalytic activity, selectivity, and stability. Herein, we report a universal approach for the synthesis of noble metal nanoparticles with a dendritic structure, which is based on the reduction of metal acetylacetonate precursors in oleylamine at a temperature of 160 °C. In this strategy, the metal acetylacetonate precursors are reduced into metal atoms by oleylamine and grow into metal nanoparticles, while oleylamine is simultaneously converted into oleylamide to protect the nanoparticles. The competition between particle aggregation and oleylamide passivation is essential to the formation of a large number of particle aggregates, which eventually grow into nanodendrites via Ostwald ripening process. In particular, in comparison with commercial PtRu/C catalysts, the alloy PtRuOs nanodendrites exhibited superior catalytic activity toward methanol oxidation.
Advanced Double Layer Capacitor
1989-07-01
Membrane and Electrode Assemblies The Nafion electrolyte was introduced into the electrode by two different methods: 1) mixing of the Nafion solution with... electroosmotic transport of water, allows some liquid electrolyte to permeate into the structure, which causes partial flooding. On the basis of these...solution of Nafion 117) was mixed with the RuO x powder. The solvent was then allowed to evaporate and the resulting composite powder was crushed and
c-Axis oriented epitaxial Ba 0.25Sr 0.75TiO 3 films display Curie-Weiss behavior
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Claeson, T.
2002-02-01
Thin films of ferroelectrics have inferior dielectric properties, including microwave losses, compared to bulk material and generally do not display a proper Curie-Weiss behavior. This study shows that the film properties can be improved considerably, with a Curie-Weiss behavior, by choosing lattice matched electrodes and proper stoichiometry. A 700 nm thick Ba 0.25Sr 0.75TiO 3 layer was inserted, by laser ablation, between two epitaxial metallic oxide (200 nm) SrRuO 3 electrodes. Because of compressive stress in the plane of the substrate, the c-axis of the unit cell in the Ba 0.25Sr 0.75TiO 3 layer was normal to the substrate plane. Grains were of the order of 100-200 nm (with small misorientation angles in a× b plane) as determined by X-rays and AFM. The positions of pronounced maxima in the temperature dependence of the permittivity depended on external bias voltage applied between the SrRuO 3 electrodes to the dielectric film. The measured ε( T) curves agreed well with existing theoretical models at temperatures below and above the ferroelectric phase transition point. At T≈200 K, ε/ ε0 for the Ba 0.25Sr 0.75TiO 3 layer was suppressed up to 85% (from 4400 down to 560) when ±2.5 V bias voltage was applied to the metallic oxide electrodes. Well saturated polarization-vs.-voltage hysteresis loops were measured for the Ba 0.25Sr 0.75TiO 3 layer in the temperature interval 4.2-200 K. Because of depolarization effects, the polarization of the Ba 0.25Sr 0.75TiO 3 layer was suppressed at positive voltage applied between the electrodes, as compared with a negative one.
The magnetic ground state and relationship to Kitaev physics in α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab
The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.
Catalytic self-propulsion of supramolecular capsules powered by polyoxometalate cargos.
del Mercato, Loretta L; Carraro, Mauro; Zizzari, Alessandra; Bianco, Monica; Miglietta, Ruggero; Arima, Valentina; Viola, Ilenia; Nobile, Concetta; Sorarù, Antonio; Vilona, Debora; Gigli, Giuseppe; Bonchio, Marcella; Rinaldi, Rosaria
2014-08-25
Multicompartment, spherical microcontainers were engineered through a layer-by-layer polyelectrolyte deposition around a fluorescent core while integrating a ruthenium polyoxometalate (Ru4POM), as molecular motor, vis-à-vis its oxygenic, propeller effect, fuelled upon H2O2 decomposition. The resulting chemomechanical system, with average speeds of up to 25 μm s(-1), is amenable for integration into a microfluidic set-up for mixing and displacement of liquids, whereby the propulsion force and the resulting velocity regime can be modulated upon H2O2-controlled addition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared spectra of RuTPP, RuCOTPP, and Ru(CO)2TPP isolated in solid argon.
Krim, Lahouari; Sorgues, Sébastien; Soep, Benoit; Shafizadeh, Niloufar
2005-09-22
Infrared spectra of unstable species such as CO-free ruthenium tetraphenylporphyrin RuTPP and RuCOTPP (species with vacant coordination sites) isolated in solid argon at 8 K have been recorded. Selective deposition conditions allow the isolation of either RuTPP and RuCOTPP or RuCOTPP and Ru(CO)2TPP. This depends on the preparation conditions of the sample. A specific Ru-CO bending mode has been characterized at 590.1 cm(-1) for Ru(CO)2TPP. The behavior of each vibrational mode of RuTPP, RuCOTPP, and Ru(CO)2TPP has been analyzed. Modes such as gamma8 at 721.3 cm(-1) (out-of-plane stretching mode gamma(Cbeta-H)sym) and nu41 at 1342.8 cm(-1) (nuCalpha-N coupled with deltaCalpha-Cm) reflect the charge transfer in the porphyrin. Indeed, the addition of one or two CO ligands to RuTPP reduces the charge transfer between the metal center and the porphyrin, which appears as an increase in the frequency of the nu41 mode and in a decrease in that of the gamma8 mode.
Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity
Hien, Nguyen Thi Bich; Kim, Hyo Young; Jeon, Mina; Lee, Jin Hee; Ridwan, Muhammad; Tamarany, Rizcky; Yoon, Chang Won
2015-01-01
For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.
Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)
NASA Astrophysics Data System (ADS)
Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.
Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.
Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming
2013-11-19
This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.
Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio
2004-01-01
Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).
Heffernan, Shane M; Kilduff, Liam P; Erskine, Robert M; Day, Stephen H; Stebbings, Georgina K; Cook, Christian J; Raleigh, Stuart M; Bennett, Mark A; Wang, Guan; Collins, Malcolm; Pitsiladis, Yannis P; Williams, Alun G
2017-11-14
Two common single nucleotide polymorphisms within the COL5A1 gene (SNPs; rs12722 C/T and rs3196378 C/A) have previously been associated with tendon and ligament pathologies. Given the high incidence of tendon and ligament injuries in elite rugby athletes, we hypothesised that both SNPs would be associated with career success. In 1105 participants (RugbyGene project), comprising 460 elite rugby union (RU), 88 elite rugby league athletes and 565 non-athlete controls, DNA was collected and genotyped for the COL5A1 rs12722 and rs3196378 variants using real-time PCR. For rs12722, the injury-protective CC genotype and C allele were more common in all athletes (21% and 47%, respectively) and RU athletes (22% and 48%) than in controls (16% and 41%, P ≤ 0.01). For rs3196378, the CC genotype and C allele were overrepresented in all athletes (23% and 48%) and RU athletes (24% and 49%) compared with controls (16% and 41%, P ≤ 0.02). The CC genotype in particular was overrepresented in the back and centres (24%) compared with controls, with more than twice the odds (OR = 2.25, P = 0.006) of possessing the injury-protective CC genotype. Furthermore, when considering both SNPs simultaneously, the CC-CC SNP-SNP combination and C-C inferred allele combination were higher in all the athlete groups (≥18% and ≥43%) compared with controls (13% and 40%; P = 0.01). However, no genotype differences were identified for either SNP when RU playing positions were compared directly with each other. It appears that the C alleles, CC genotypes and resulting combinations of both rs12722 and rs3196378 are beneficial for rugby athletes to achieve elite status and carriage of these variants may impart an inherited resistance against soft tissue injury, despite exposure to the high-risk environment of elite rugby. These data have implications for the management of inter-individual differences in injury risk amongst elite athletes.
NASA Astrophysics Data System (ADS)
Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-09-01
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g
Mott, Keith A.; Jensen, Richard G.; O'Leary, James W.; Berry, Joseph A.
1984-01-01
The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity. PMID:16663982
Mott, K A; Jensen, R G; O'leary, J W; Berry, J A
1984-12-01
The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity.
Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.
Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R
2015-04-28
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.
Simonov, Alexandr N; Morris, Graham P; Mashkina, Elena A; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E; Gavaghan, David J; Bond, Alan M
2014-08-19
Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc(0/+)) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH3)6](3+) and [Fe(CN)6](3-) in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E(0)), heterogeneous electron transfer rate constant at E(0) (k(0)), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi-reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc(0/+) and [Ru(NH3)6](3+/2+) processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E(0), Ru, and CDL being quantified and a lower limit of k(0) being reported; e.g., k(0) ≥ 9 cm s(-1) for the Fc(0/+) process.
Jude, Hershel; Rein, Francisca N; White, Peter S; Dattelbaum, Dana M; Rocha, Reginaldo C
2008-09-01
The heterobridged dinuclear complex cis,cis-[(bpy) 2Ru(mu-OCH 3)(mu-pyz)Ru(bpy) 2] (2+) ( 1; bpy = 2,2'-bipyridine; pyz = pyrazolate) was synthesized and isolated as a hexafluorophosphate salt. Its molecular structure was fully characterized by X-ray crystallography, (1)H NMR spectroscopy, and ESI mass spectrometry. The compound 1.(PF 6) 2 (C 44H 38F 12N 10OP 2Ru 2) crystallizes in the monoclinic space group P2 1/ c with a = 13.3312(4) A, b = 22.5379(6) A, c = 17.2818(4) A, beta = 99.497(2) degrees , V = 5121.3(2) A (3), and Z = 4. The meso diastereoisomeric form was exclusively found in the crystal structure, although the NMR spectra clearly demonstrated the presence of two stereoisomers in solution (rac and meso forms at approximately 1:1 ratio). The electronic properties of the complex in acetonitrile were investigated by cyclic voltammetry and UV-vis and NIR-IR spectroelectrochemistries. The stepwise oxidation of the Ru (II)-Ru (II) complex into the mixed-valent Ru (II)-Ru (III) and fully oxidized Ru (III)-Ru (III) states is fully reversible on the time scale of the in situ (spectro)electrochemical measurements. The mixed-valent species displays strong electronic coupling, as evidenced by the large splitting between the redox potentials for the Ru(III)/Ru(II) couples (Delta E 1/2 = 0.62 V; K c = 3 x 10 (10)) and the appearance of an intervalence transfer (IT) band at 1490 nm that is intense, narrow, and independent of solvent. Whereas this salient band in the NIR region originates primarily from highest-energy of the three IT transitions predicted for Ru(II)-Ru(III) systems, a weaker absorption band corresponding to the lowest-energy IT transition was clearly evidenced in the IR region ( approximately 3200 cm (-1)). The observation of totally coalesced vibrational peaks in the 1400-1650 cm (-1) range for a set of five bpy spectator vibrations in Ru (II)-Ru (III) relative to Ru (II)-Ru (II) and Ru (III)-Ru (III) provided evidence for rapid electron transfer and valence averaging on the picosecond time scale. Other than a relatively short Ru...Ru distance (3.72 A for the crystalline Ru (II)-Ru (II) complex), the extensive communication between metal centers is attributed mostly to the pi-donor ability of the bridging ligands (pyz, OMe) combined with the pi-acceptor ability of the peripheral (bpy) ligands.
NASA Astrophysics Data System (ADS)
Sato, H.; Ishikawa, A.; Ferrière, L.; Morgan, J. V.; Gulick, S. P. S.
2017-12-01
The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, formed 66 My ago, was drilled by IODP-ICDP 364 expedition in April-May, 2016. A continuous core was successfully recovered from the peak ring from depth between 505.7 and 1334.7 mbsf. In order to determine the distribution and abundance of the projectile component in the Chicxulub peak-ring rocks, we determined highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and Os isotope ratio (187Os/188Os) in five samples of Unit 1G from a 75 cm-thick transitional layer between the impactites and early Paleogene rocks (616.59-617.34 mbsf interval). HSE concentrations and 187Os/188Os ratios show systematic variations across the transitional layer. The upper part (616.59-616.63 mbsf) is characterized by about one order of magnitude higher Os, Ir, and Ru contents compared to the average continental crust abundances, but much lower than for the typical Ir-enriched Cretaceous-Paleogene boundary sites (e.g., Gubbio and Caravaca). Relatively flat CI chondrite-normalized HSE patterns are observed in the upper part of the layer. Meanwhile, the HSE concentrations in the lower part of the transitional layer (617.315-617.34 mbsf) are almost equivalent to those of upper continental crust showing pronounced step CI chondrite-normalized HSE patterns (low Ir, and high Pt and Pd). 187Os/188Os and Re/Os ratios in the transitional layer gradually decrease from 0.33 to 0.25 and 35.45 to 1.14, respectively, from bottom to top. These results suggest that the projectile component, with chondritic composition, is enriched in the uppermost part of the transitional layer just below carbonate rocks that are early Paleogene in age, but could be distributed over a thicker interval than for the typical Ir-enriched sites. Further detailed studies of HSE and Os isotope compositions through the stratigraphic sequence will reveal the distribution and dilution effect of the projectile component.
Cardon, Zoe G.; Mott, Keith A.
1989-01-01
The binding of ribulose 1,5-bisphosphate (RuBP) to inactive (noncarbamylated) sites of the enzyme RuBP carboxylase in vivo was investigated in Spinacia oleracea and Helianthus annuus. The concentrations of RuBP and inactive sites were determined in leaf tissue as a function of time after a change to darkness. RuBP concentrations fell rapidly after the change to darkness and were approximately equal to the concentration of inactive sites after 60 s. Variations in the concentration of inactive sites, which were induced by differences in the light intensity before the light-dark transition, correlated with the concentration of RuBP between 60 and 120 s after the change to darkness. These data are discussed as evidence that RuBP binds to inactive sites of RuBP carboxylase in vivo. After the concentration of RuBP fell below that of inactive sites (at times longer than 60 s of darkness), the decline in RuBP was logarithmic with time. This would be expected if the dissociation of RuBP from inactive sites controlled the decline in RuBP concentration. These data were used to estimate the rate constant for dissociation of RuBP from inactive sites in vivo. PMID:16666692
NASA Astrophysics Data System (ADS)
Jung, Dasom; Lee, Sunwoo; Na, Kyungsu
2017-10-01
The effects of preparation method for RuO2 supported zeolite catalysts on the catalytic consequences during the aerobic oxidation of benzyl alcohol to benzaldehyde were investigated. Three preparation methods, i.e., (i) simultaneous crystallization of the zeolite framework in the presence of RuCl3 (Ru(SC)/NaY), (ii) post ion-exchange with RuCl3 on the zeolite framework (Ru(IE)/NaY), and (iii) post support of preformed Ru metal nanoparticles on the zeolite surface (Ru(PS)/NaY), were used to construct three different RuO2 supported NaY zeolite catalysts. The catalyst performance was investigated as functions of the reaction time and temperature, in correlation with the structural changes of the catalysts, as analyzed by X-ray diffraction (XRD). The results revealed that the catalytic consequences were dramatically affected by the preparation methods. Although similar conversion was achieved with all three catalysts, the turnover frequency (TOF) differed. The Ru(PS)/NaY catalyst exhibited the highest TOF (33-48 h-1), whereas the other catalysts produced much lower TOFs (9-12 h-1). The Ru(PS)/NaY catalyst also had the highest activation energy (Ea) of 48.39 kJ mol-1, whereas the Ru(SC)/NaY and Ru(IE)/NaY catalysts had Ea values of 18.58 and 24.11 kJ mol-1, respectively. Notably, the Ru(PS)/NaY catalyst yielded a significantly higher pre-exponential factor of 5.22 × 105 h-1, which is about 5 orders of magnitude larger than that of the Ru(SC)/NaY catalyst (7.15 × 100 h-1). This suggests that collision between benzyl alcohol and molecular oxygen was very intensive on the Ru(PS)/NaY catalyst, which explains the higher TOF of the Ru(PS)/NaY catalyst relative to the others in spite of the higher Ea value of the former. In terms of recyclability, the pristine crystallinity of the zeolite framework was maintained in the Ru(SC)/NaY catalyst and the RuO2 phase exhibited an insignificant loss of the initial activity up to three catalytic cycles, whereas Ru(PS)/NaY showed slight loss of activity and Ru(IE)/NaY showed a significant loss of activity due to the disappearance of the RuO2 phase.
NASA Astrophysics Data System (ADS)
Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.
2018-05-01
The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
R-U policy frontiers for health data de-identification
Heatherly, Raymond; Ding, Xiaofeng; Li, Jiuyong; Malin, Bradley A
2015-01-01
Objective The Health Insurance Portability and Accountability Act Privacy Rule enables healthcare organizations to share de-identified data via two routes. They can either 1) show re-identification risk is small (e.g., via a formal model, such as k-anonymity) with respect to an anticipated recipient or 2) apply a rule-based policy (i.e., Safe Harbor) that enumerates attributes to be altered (e.g., dates to years). The latter is often invoked because it is interpretable, but it fails to tailor protections to the capabilities of the recipient. The paper shows rule-based policies can be mapped to a utility (U) and re-identification risk (R) space, which can be searched for a collection, or frontier, of policies that systematically trade off between these goals. Methods We extend an algorithm to efficiently compose an R-U frontier using a lattice of policy options. Risk is proportional to the number of patients to which a record corresponds, while utility is proportional to similarity of the original and de-identified distribution. We allow our method to search 20 000 rule-based policies (out of 2700) and compare the resulting frontier with k-anonymous solutions and Safe Harbor using the demographics of 10 U.S. states. Results The results demonstrate the rule-based frontier 1) consists, on average, of 5000 policies, 2% of which enable better utility with less risk than Safe Harbor and 2) the policies cover a broader spectrum of utility and risk than k-anonymity frontiers. Conclusions R-U frontiers of de-identification policies can be discovered efficiently, allowing healthcare organizations to tailor protections to anticipated needs and trustworthiness of recipients. PMID:25911674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jie; Cullen, David A.; Forest, Robert V.
2015-01-15
The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less
Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu
2016-07-15
Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less
NASA Astrophysics Data System (ADS)
Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan
2017-04-01
Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.
Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung
2014-11-22
Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less
Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes
NASA Astrophysics Data System (ADS)
Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu
2015-03-01
Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.
Long-Range Intramolecular Electronic Communication in a Trinuclear Ruthenium Tropolonate Complex.
Yoshida, Jun; Kuwahara, Kyohei; Suzuki, Kota; Yuge, Hidetaka
2017-02-20
Dinuclear and trinuclear ruthenium complexes, [Ru(trop) 2 (C 2 trop)Ru(dppe)Cp] [2b; trop = tropolonato, C 2 trop = ethynyltropolonato, dppe = 1,2-bis(diphenylphosphino)ethane] and [Ru(trop){(C 2 trop)Ru(dppe)Cp} 2 ] (3), were synthesized, and their electronic and electrochemical properties were investigated in comparison with our previously reported complex [Ru(acac) 2 (C 2 trop)Ru(dppe)Cp] (2a). The electron-donating Ru II (dppe)Cp unit and electron-accepting Ru III O 6 unit are connected by C 2 trop in these complexes. 2a incorporates acetylacetonate as an ancillary ligand, while 2b and 3 incorporate tropolonate as an ancillary ligand. Every complex, 2a, 2b, and 3, exhibits similar UV-vis-near-IR (NIR) absorption spectra, demonstrating the lack of explicit intramolecular electronic communication between the units at least in the neutral state. The weak NIR absorption in 2a further diminished upon electrochemical oxidation, indicating almost no electronic communication between the units. In contrast, 2b and 3 exhibit broad NIR absorptions upon oxidation. Additionally, 3 exhibits four stepwise redox couples in the electrochemical study, which are formally attributed to [Ru II (trop) 3 ] - /[Ru III (trop) 3 ], two [Ru II (dppe)Cp]/[Ru III (dppe)Cp] + , and [Ru III (trop) 3 ]/[Ru IV (trop) 3 ] + couples. Clear separation of the redox couples attributed to the two terminal [Ru(dppe)Cp] units demonstrates the thermodynamic stability of the intermediate oxidation states with respect to disproportionation. Further electrochemical studies using an electrolyte including perfluorinated weakly coordinating anions and density functional theory/time-dependent density functional theory calculations confirmed the effect of ancillary ligands, acetylacetonate and tropolonate. In the case of 2a, electronic delocalization over the whole complex, especially over the [Ru(acac) 2 (trop)] unit, appears to be small. In contrast, the electronic communication between [Ru(dppe)Cp] and [Ru(trop) 3 ] units in 3 seems to be enhanced upon oxidation, resulting in the long-range intramolecular electronic communication.
Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru
An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.
Oscillations in exchange coupling across a nonmagnetic metallic layer
NASA Astrophysics Data System (ADS)
Edwards, D. M.; Mathon, J.
1991-02-01
The exchange coupling between two strong itinerant ferromagnets separated by N atomic planes of a nonmagnetic metal is calculated using a Hubbard-type model. It is shown that for certain positions of the Fermi level the variation of the exchange coupling with N exhibits oscillations of long period. The amplitude of the oscillations falls of as 1/ N2 and agrees in order of magnitude with the exchange coupling observed by Parkin et al. in Co/Ru and Fe/Cr multilayers. Further agreement is the finding that antiparallel alignment of the ferromagnetic layers is favoured for small N. The relationship between the coupling found here and one of RKKY type is discussed.
EUVL mask patterning with blanks from commercial suppliers
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Nagpal, Rajesh; Shu, Emily Y.; Li, Chaoyang; Qu, Ping; Chen, Frederick T.
2004-12-01
Extreme Ultraviolet Lithography (EUVL) reflective mask blank development includes low thermal expansion material fabrication, mask substrate finishing, reflective multi-layer (ML) and capping layer deposition, buffer (optional)/absorber stack deposition, EUV specific metrology, and ML defect inspection. In the past, we have obtained blanks deposited with various layer stacks from several vendors. Some of them are not commercial suppliers. As a result, the blank and patterned mask qualities are difficult to maintain and improve. In this paper we will present the evaluation results of the EUVL mask pattering processes with the complete EUVL mask blanks supplied by the commercial blank supplier. The EUVL mask blanks used in this study consist of either quartz or ULE substrates which is a type of low thermal expansion material (LTEM), 40 pairs of molybdenum/silicon (Mo/Si) ML layer, thin ruthenium (Ru) capping layer, tantalum boron nitride (TaBN) absorber, and chrome (Cr) backside coating. No buffer layer is used. Our study includes the EUVL mask blank characterization, patterned EUVL mask characterization, and the final patterned EUVL mask flatness evaluation.
Conductive buffer layers and overlayers for the thermal stability of coated conductors
NASA Astrophysics Data System (ADS)
Cantoni, C.; Aytug, T.; Verebelyi, D. T.; Paranthaman, M.; Specht, E. D.; Norton, D. P.; Christen, D. K.
2001-03-01
We analyze fundamental issues related to the thermal and electrical stability of a coated conductor during its operation. We address the role of conductive buffer layers in the stability of Ni-based coated conductors, and the effect of a metallic cap layer on the electrical properties of Ni alloy-based superconducting tapes. For the first case we report on the fabrication of a fully conductive RABiTS architecture formed of bilayers of conductive oxides SrRuO3 and LaNiO3 on textured Ni tapes. For the second case we discuss measurements of current-voltage relations on Ag/YBa2Cu3O7-d and Cu/Ag/ YBa2Cu3O7-d prototype multilayers on insulating substrates. Limitations on the overall tape structure and properties that are posed by the stability requirement are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Fontes, M.B.; Lopes, A.M.L.
2014-03-01
Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{submore » C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.« less
Development of a physical and electronic model for RuO 2 nanorod rectenna devices
NASA Astrophysics Data System (ADS)
Dao, Justin
Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.
Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography
NASA Astrophysics Data System (ADS)
Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.
2006-12-01
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.
Sheng, Tian; Lin, Wen-Feng; Hardacre, Christopher; Hu, P
2014-07-14
In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using the first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations, are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.
Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal
2014-12-28
Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2005-05-30
A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.
Heterobimetallic Nitrido Complexes of Group 8 Metalloporphyrins.
Cheung, Wai-Man; Chiu, Wai-Hang; de Vere-Tucker, Matthew; Sung, Herman H-Y; Williams, Ian D; Leung, Wa-Hung
2017-05-15
Heterobimetallic nitrido porphyrin complexes with the [(L)(por)M-N-M'(L OEt )Cl 2 ] formula {por 2- = 5,10,15,20-tetraphenylporphyrin (TPP 2- ) or 5,10,15,20-tetra(p-tolyl)porphyrin (TTP 2- ) dianion; L OEt - = [Co(η 5 -C 5 H 5 ){P(O)(OEt) 2 } 3 ] - ; M = Fe, Ru, or Os; M' = Ru or Os; L = H 2 O or pyridine} have been synthesized, and their electrochemistry has been studied. Treatment of trans-[Fe(TPP)(py) 2 ] (py = pyridine) with Ru(VI) nitride [Ru(L OEt )(N)Cl 2 ] (1) afforded Fe/Ru μ-nitrido complex [(py)(TPP)Fe(μ-N)Ru(L OEt )Cl 2 ] (2). Similarly, Fe/Os analogue [(py)(TPP)Fe(μ-N)Os(L OEt )Cl 2 ] (3) was obtained from trans-[Fe(TPP)(py) 2 ] and [Os(L OEt )(N)Cl 2 ]. However, no reaction was found between trans-[Fe(TPP)(py) 2 ] and [Re(L OEt )(N)Cl(PPh 3 )]. Treatment of trans-[M(TPP)(CO)(EtOH)] with 1 afforded μ-nitrido complexes [(H 2 O)(TPP)M(μ-N)Ru(L OEt )Cl 2 ] [M = Ru (4a) or Os (5)]. TTP analogue [(H 2 O)(TTP)Ru(μ-N)Ru(L OEt )Cl 2 ] (4b) was prepared similarly from trans-[Ru(TTP)(CO)(EtOH)] and 1. Reaction of [(H 2 O)(por)M(μ-N)M(L OEt )Cl 2 ] with pyridine gave adducts [(py)(por)M(μ-N)Ru(L OEt )Cl 2 ] [por = TTP, and M = Ru (6); por = TPP, and M = Os (7)]. The diamagnetism and short (por)M-N(nitride) distances in 2 [Fe-N, 1.683(3) Å] and 4b [Ru-N, 1.743(3) Å] are indicative of the M IV ═N═M' IV bonding description. The cyclic voltammograms of the Fe/Ru (2) and Ru/Ru (4b) complexes in CH 2 Cl 2 displayed oxidation couples at approximately +0.29 and +0.35 V versus Fc +/0 (Fc = ferrocene) that are tentatively ascribed to the oxidation of the {L OEt Ru} and {Ru(TTP)} moieties, respectively, whereas the Fe/Os (3) and Os/Ru (5) complexes exhibited Os-centered oxidation at approximately -0.06 and +0.05 V versus Fc +/0 , respectively. The crystal structures of 2 and 4b have been determined.
Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-10-07
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.
Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate.
Xu, Ji-Ping; Zhang, Rong-Jun; Chen, Zhi-Hui; Wang, Zi-Yi; Zhang, Fan; Yu, Xiang; Jiang, An-Quan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao
2014-01-01
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.
Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.
Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha
2012-10-01
The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p-cym)Ru(phen)Cl][PF(6)] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes.
Hwang, Bing Joe; Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Wang, Guo-Rung; Tang, Mau-Tsu; Liu, Din-Goa; Lee, Jyh-Fu
2006-04-06
The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is greater than that of the alloying extent of Pt (JPt). The XAS results support the Pt-rich core and Ru-rich shell structure with a considerable amount of segregation in the Pt region and with less segregation in the Ru region for the obtained Pt-Ru/C NPs.
Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs
NASA Astrophysics Data System (ADS)
Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki
2017-11-01
We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist,
Intermediate phases in some rare earth-ruthenium systems
NASA Technical Reports Server (NTRS)
Sharifrazi, P.; Raman, A.; Mohanty, R. C.
1984-01-01
The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.
Pharmacological profile of the aerial parts of Rubus ulmifolius Schott.
Ali, Niaz; Shaoib, Mohammad; Shah, Syed Wadood Ali; Shah, Ismail; Shuaib, Muhammad
2017-01-19
As aerial parts of Rubus ulmifolius contains phytochemicals like flavonoids and tannins. And whereas flavonoids and tannins have antioxidant and antipyretic activity, hence, current work is carried out to screen crude methanolic extract of aerial parts of Rubus ulmifolius (Ru.Cr) and crude flavonoids rich extract of Rubus ulmifolius (Ru.F) for possible antioxidant and antipyretic activity. Ru.Cr and Ru.F are also tested for brine shrimps lethality bioassay. Ru.F is tested for the first time for possible antioxidant and antipyretic activity. Preliminary phytochemical screening of Ru.Cr and Ru.F was performed as it provides rapid finger printing for targeting a pharmacological activity. Acute toxicity and Brine shrimps' cytotoxicity studies of Ru.Cr and Ru.F were performed to determine its safe dose range. Antioxidant and antipyretic studies were also performed as per reported procedures. Ru.Cr tested positive for presence of tannins, alkaloids, flavonoids and steroids. Ru.Cr is safe up to 6 g/kg following oral doses for acute toxicity study. Ru.Cr is safe up to 75 μg/kg (p.o), LC 50 for Ru.Cr and Ru.F are 16.7 ± 1.4 μg/ml 10.6 ± 1.8 μg/ml, respectively (n = 3). Both Ru.Cr and Ru.F demonstrated comparable antioxidant activity using vitamin C as standard (p ≤ 0.05). In test dose of 300 mg of Ru.Cr, rectal temperature was reduced by 74% (p ≤ 0.05) on 4 th hour of the administration. More, Ru.F produced 72% reduction in pyrexia (p ≤ 0.05) on 4 th hour of administration of paracetamol in Westar rats. The current work confirms that aerial parts of Rubus ulmifolius contain flavonoids that are safe up to 6 g/kg (p.o). Crude methanolic extract and flavonoids rich fraction of Rubus ulmifolius have significant antioxidant and antipyretic activity. Further work is required to isolate the pharmacologically active substances for relatively safe and effective antipyretics and antioxidants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Prasenjit; Fagan, Paul J.; Marshall, William J.
2009-07-20
A ruthenium hydride with a bulky substituted Cp ligand, (CpiPr4)Ru(CO)2H (CpiPr4 = C5(i-C3H7)4H) was prepared from the reaction of Ru3(CO)12 with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (CpiPr4)Ru(CO)2H was determined by x-ray crystallography. The ruthenium hydride complex (C5Bz5)Ru(CO)2H (Bz = CH2Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO)2]2, was produced from the reaction of 1,2,3-trimethylindene with Ru3(CO)12, and protonation of this dimer with HOTf gives {[(1,2,3-trimethylindenyl)Ru(CO)2]2(μ H)}+OTf –. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh)3, PCy3, PMe3, P(p C6H4F)3] were prepared by reaction of Cp(CO)2RuH with added L. Protonation of (CpiPr4)Ru(CO)2H, Cp*Ru(CO)2H or CpRu(CO)[P(OPh)3]H by HOTf 80more » °C led to equilibria with the cationic dihydrogen complexes, but H2 was released at higher temperatures. Protonation of CpRu[P(OPh)3]2H with HOTf gave an observable dihydrogen complex, {CpRu[P(OPh)3]2(η2 H2)}+OTf – that was converted at -20 °C to the dihydride complex {CpRu[P(OPh)3]2(H)2}+OTf –. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H2 (750 psi) at 110 °C. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less
Che, Chi-Ming; Zhang, Jun-Long; Zhang, Rui; Huang, Jie-Sheng; Lai, Tat-Shing; Tsui, Wai-Man; Zhou, Xiang-Ge; Zhou, Zhong-Yuan; Zhu, Nianyong; Chang, Chi Kwong
2005-11-18
beta-Halogenated dioxoruthenium(VI) porphyrin complexes [Ru(VI)(F(28)-tpp)O(2)] [F(28)-tpp=2,3,7,8,12,13, 17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(VI)(beta-Br(8)-tmp)O(2)] [beta-Br(8)-tmp=2,3,7,8,12,13,17,18-octabromo-5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-)] were prepared from reactions of [Ru(II)(por)(CO)] [por=porphyrinato(2-)] with m-chloroperoxybenzoic acid in CH(2)Cl(2). Reactions of [Ru(VI)(por)O(2)] with excess PPh(3) in CH(2)Cl(2) gave [Ru(II)(F(20)-tpp)(PPh(3))(2)] [F(20)-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(II)(F(28)-tpp)(PPh(3))(2)]. The structures of [Ru(II)(por)(CO)(H(2)O)] and [Ru(II)(por)(PPh(3))(2)] (por=F(20)-tpp, F(28)-tpp) were determined by X-ray crystallography, revealing the effect of beta-fluorination of the porphyrin ligand on the coordination of axial ligands to ruthenium atom. The X-ray crystal structure of [Ru(VI)(F(20)-tpp)O(2)] shows a Ru=O bond length of 1.718(3) A. Electrochemical reduction of [Ru(VI)(por)O(2)] (Ru(VI) to Ru(V)) is irreversible or quasi-reversible, with the E(p,c)(Ru(VI/V)) spanning -0.31 to -1.15 V versus Cp(2)Fe(+/0). Kinetic studies were performed for the reactions of various [Ru(VI)(por)O(2)], including [Ru(VI)(F(28)-tpp)O(2)] and [Ru(VI)(beta-Br(8)-tmp)O(2)], with para-substituted styrenes p-X-C(6)H(4)CH=CH(2) (X=H, F, Cl, Me, MeO), cis- and trans-beta-methylstyrene, cyclohexene, norbornene, ethylbenzene, cumene, 9,10-dihydroanthracene, xanthene, and fluorene. The second-order rate constants (k(2)) obtained for the hydrocarbon oxidations by [Ru(VI)(F(28)-tpp)O(2)] are up to 28-fold larger than by [Ru(VI)(F(20)-tpp)O(2)]. Dual-parameter Hammett correlation implies that the styrene oxidation by [Ru(VI)(F(28)-tpp)O(2)] should involve rate-limiting generation of a benzylic radical intermediate, and the spin delocalization effect is more important than the polar effect. The k(2) values for the oxidation of styrene and ethylbenzene by [Ru(VI)(por)O(2)] increase with E(p,c)(Ru(VI/V)), and there is a linear correlation between log k(2) and E(p,c)(Ru(VI/V)). The small slope (approximately 2 V(-1)) of the log k(2) versus E(p,c)(Ru(VI/V)) plot suggests that the extent of charge transfer is small in the rate-determining step of the hydrocarbon oxidations. The rate constants correlate well with the C-H bond dissociation energies, in favor of a hydrogen-atom abstraction mechanism.
NASA Astrophysics Data System (ADS)
Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei
2017-09-01
Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.
Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems
NASA Astrophysics Data System (ADS)
Kleykamp, H.
1989-09-01
The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.
Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys
NASA Astrophysics Data System (ADS)
Farías, D.; Minniti, M.; Miranda, R.
2017-05-01
The reactivity of a Pd monolayer epitaxially grown on Ru(0001) toward O2 has been investigated by molecular beam techniques. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range of 40-450 meV and for sample temperatures of 100 K and 300 K, and compared to the corresponding values measured on the clean Ru(0001) and Pd(111) surfaces. In contrast to the high reactivity shown by Ru(0001) at 100 K, the Pd/Ru(0001) system exhibits a monotonic decrease in the sticking probability of O2 as a function of normal incident energy. At room temperature, the system was found to be inert. Thermal desorption measurements show that O2 is adsorbed molecularly at 100 K. A completely different behaviour has been measured for the Pd0.95Ru0.05/Ru(0001) surface alloy. On this surface, the O2 sticking probability increases with incident energy and resembles the one observed on the clean Ru(0001) surface, even at 300 K. Thermal desorption measurements point to dissociative adsorption of O2 in this system. Both the charge transfer from the Pd to the Ru substrate and the compressive strain on the Pd monolayer contribute to decrease in the reactivity of the Pd/Ru(0001) system well below those of both Ru(0001) and Pd(111).
Choi, Sunhee; Ryu, DaWeon; DellaRocca, Joseph G; Wolf, Matthew W; Bogart, Justin A
2011-07-18
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A.J.; Macha, J.; Wenzel, M.
1980-01-01
Hydroxyacetyl(/sup 103/Ru)ruthenocene and its o-glucuronide were prepared in vitro by incubation of acetyl(/sup 103/Ru)ruthenocene with rat-liver homogenate, NADPH, and UDP-glucuronate. The factors affecting hydroxylation and glucuronidation in vitro were optimized for acetylruthenocene. Hydroxyacetyl(/sup 103/Ru)ruthenocene glucuronide showed no affinity for the adrenal glands, but after iv administration of hydroxyacetyl(/sup 103/Ru)ruthenocene there was a distinct accumulation of Ru-103 in adrenals, similar to that found after administration of acetyl(/sup 103/Ru)ruthenocene.
NASA Technical Reports Server (NTRS)
Jovanovic, S.; Reed, G. W., Jr.
1973-01-01
Two types of highland terrain appear to be present at the Apollo 16 landing site. The Plains Formation called Cayley is ubiquitous and blankets even those regions that were presumably a part of the mountainous Descartes Formation. The second type of terrain is that associated with the ejectae from North and South Ray craters. The stratigraphy sampled by the ejectae underlays the Cayley layer as characterized above and may permit a redefinition of Descartes Formation as that which underlays the smooth Plains deposits. These conclusions are based on the concentrations and chemical coherence between elements such as Cl-F-P2O5 and Ru-Os. The primitive lunar crust may be characterized by the type of feldspathic rocks which are enriched in trace elements, such as Cl, Br, U, Te, Ru, and Os, as found in 'rusty' rock 66095 and in 61016; other feldspathic rocks are depleted and may be of secondary origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weickert, F.; Civale, L.; Maiorov, B.
Here, we present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H-T phase diagram with special focus on the temperature range 50 K ≤T≤TC. We find that the critical field Hc1(T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a criticalmore » endpoint at (1 T; 80 K). We also conclude from the temperature dependence of the ratio Hc1Hc2(T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.« less
Peng, Zhikun; Liu, Xu; Li, Shuaihui; Li, Zhongjun; Li, Baojun; Liu, Zhongyi; Liu, Shouchang
2017-01-01
ZrO2 heterophase structure nanocrystals (HSNCs) were synthesized with tunable ratios of monoclinic ZrO2 (m-ZrO2) to tetragonal ZrO2 (t-ZrO2). The phase mole ratio of m-ZrO2 versus t-ZrO2 in ZrO2 HSNCs was tuned from 40% to 100%. The concentration of the surface hydroxyl groups on m-ZrO2 is higher than that on t-ZrO2. ZrO2 HSNCs have different surface hydroxyl groups on two crystalline phases. This creates more intimate synergistic effects than their single-phase counterparts. The ZrO2 HSNCs were used as effective supports to fabricate heterophase-structured Ru/ZrO2 catalysts for benzene-selective hydrogenation. The excellent catalytic performance including high activity and selectivity is attributed to the heterogeneous strong/weak hydrophilic interface and water layer formed at the m-ZrO2/t-ZrO2 catalyst junction. PMID:28057914
Ceria nanoclusters on graphene/Ru(0001): A new model catalyst system
Novotny, Z.; Netzer, F. P.; Dohnalek, Z.
2016-03-22
In this study, the growth of ceria nanoclusters on single-layer graphene on Ru(0001) has been examined, with a view towards fabricating a stable system for model catalysis studies. The surface morphology and cluster distribution as a function of oxide coverage and substrate temperature has been monitored by scanning tunneling microscopy (STM), whereas the chemical composition of the cluster deposits has been determined by Auger electron spectroscopy (AES). The ceria nanoparticles are of the CeO 2(111)-type and are anchored at the intrinsic defects of the graphene surface, resulting in a variation of the cluster densities across the macroscopic sample surface. Themore » ceria clusters on graphene display a remarkable stability against reduction in ultrahigh vacuum up to 900 K, but some sintering of clusters is observed for temperatures > 450 K. The evolution of the cluster size distribution suggests that the sintering proceeds via a Smoluchowski ripening mechanism, i.e. diffusion and aggregation of entire clusters.« less
Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers
Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.
2014-01-01
The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516
Kobayashi, Katsuaki; Ohtsu, Hideki; Nozaki, Koichi; Kitagawa, Susumu; Tanaka, Koji
2016-03-07
An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.
Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H
2008-03-01
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Minfeng, E-mail: m.f.lv@ciac.jl.cn; Deng, Xiaolong; Waerenborgh, João C.
2014-03-15
Sr{sub x}La{sub 2−x}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (x=1, 1.5) oxides with K{sub 2}NiF{sub 4}-type structure were prepared by solid state reaction and characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, magnetic and electrical resistivity measurements. The SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} phase was obtained for the first time with a negligible amount of impurities. The octahedral Cu/RuO{sub 6} units are more elongated in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} than in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} indicating a greater extent of static Jahn–Teller distortion. XPS suggests that mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, whilemore » Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}. Both samples show spin-glass behavior, which can be explained by competition between ferromagnetic and antiferromagnetic superexchange interactions. The negative Weiss temperature estimated for SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, −318 K, is significantly lower than −11.5 K deduced for Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} which may be related to the higher static Jahn–Teller distortion in the former oxide. -- Graphical abstract: SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} with K{sub 2}NiF{sub 4}-type structure show a larger static Jahn–Teller distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}, which may be related to stronger antiferromagnetic superexchange interactions. Highlights: • SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} (I) larger Jahn–Teller (J–T) distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (II). • Octahedral Cu/RuO{sub 6} units are more elongated in I than in II. • Mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in I, while Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in II. • Negative Weiss temperature of I significantly lower, consistent with higher J–T distortion.« less
Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya; Wada, Keisuke; Yamakata, Akira; Ishitani, Osamu; Maeda, Kazuhiko
2016-04-20
A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date. The results of photocatalytic reactions, emission decay measurements, and time-resolved infrared spectroscopy indicated that Ag nanoparticles on C3N4 collected electrons having lifetimes of several milliseconds from the conduction band of C3N4, which were transferred to the excited state of RuRu', thereby promoting photocatalytic CO2 reduction driven by two-step photoexcitation of C3N4 and RuRu'. This study also revealed that the RuRu'/Ag/C3N4 hybrid photocatalyst worked efficiently in water containing a proper electron donor, despite the intrinsic hydrophobic nature of C3N4 and low solubility of CO2 in an aqueous environment.
Anderson, Nickolas H.; Boncella, James M.; Tondreau, Aaron M.
2017-08-15
The coordination of tBuPONOP ( tBuPONOP=2,6-bis(ditert-butylphosphinito)pyridine) to different ruthenium starting materials, to generate ( tBuPONOP)RuCl 2, was investigated in this paper. The resultant ( tBuPONOP)RuCl 2 reactivity with three different silanes was then investigated and contrasted dramatically with the reactivity of ( iPrPONOP)RuCl 2(DMSO) ( iPrPONOP=2,6-bis(diisopropylphosphinito)pyridine) with the same silanes. The 16-electron species ( tBuPONOP)Ru(H)Cl was produced from the reaction of triethylsilane with ( tBuPONOP)RuCl 2. Reactions of ( tBuPONOP)RuCl 2 with both phenylsilane or diphenylsilane afforded the 16-electron hydrido-silyl species ( tBuPONOP)Ru(H)(PhSiCl 2) and ( tBuPONOP)Ru(H)(Ph 2SiCl), respectively. Reactions of all three of these complexes with silver triflate affordedmore » the simple salt metathesis products of ( tBuPONOP)Ru(H)(OTf), ( tBuPONOP)Ru(H)(PhSiCl(OTf)), and ( tBuPONOP)Ru(H)(Ph 2Si(OTf)). Formic acid dehydrogenation was performed in the presence of triethylamine (TEA), and each species proved competent for gas-pressure generation of CO 2 and H 2. Finally, the hydride species ( tBuPONOP)Ru(H)Cl, ( tBuPONOP)Ru(H)(OTf), and ( tBuPONOP)Ru(H)(PhSiCl 2) exhibited faster catalytic activity than the other compounds tested.« less
Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong
2015-12-01
This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ng, Ho-Yuen; Cheung, Wai-Man; Kwan Huang, Enrique; Wong, Kang-Long; Sung, Herman H-Y; Williams, Ian D; Leung, Wa-Hung
2015-11-14
Ruthenium thio- and seleno-nitrosyl complexes containing chelating sulfur and oxygen ligands have been synthesised and their de-chalcogenation reactions have been studied. The reaction of mer-[Ru(N)Cl3(AsPh3)2] with elemental sulfur and selenium in tetrahydrofuran at reflux afforded the chalcogenonitrosyl complexes mer-[Ru(NX)Cl3(AsPh3)2] [X = S (1), Se (2)]. Treatment of 1 with KN(R2PS)2 afforded trans-[Ru(NS)Cl{N(R2PS)2}2] [R = Ph (3), Pr(i) (4), Bu(t) (5)]. Alternatively, the thionitrosyl complex 5 was obtained from [Bu(n)4N][Ru(N)Cl4] and KN(Bu(t)2PS)2, presumably via sulfur atom transfer from [N(Bu(t)2PS)2](-) to the nitride. Reactions of 1 and 2 with NaLOEt (LOEt(-) = [Co(η(5)-C5H5){P(O)(LOEt)2}3](-)) gave [Ru(NX)LOEtCl2] (X = S (8), Se (9)). Treatment of [Bu(n)4N][Ru(N)Cl4] with KN(R2PS)2 produced Ru(IV)-Ru(IV)μ-nitrido complexes [Ru2(μ-N){N(R2PS)2}4Cl] [R = Ph (6), Pr(i) (7)]. Reactions of 3 and 9 with PPh3 afforded 6 and [Ru(NPPh3)LOEtCl2], respectively. The desulfurisation of 5 with [Ni(cod)2] (cod = 1,5-cyclooctadiene) gave the mixed valance Ru(III)-Ru(IV)μ-nitrido complex [Ru2(μ-N){N(Bu(t)2PS)2}4] (10) that was oxidised by [Cp2Fe](PF6) to give the Ru(IV)-Ru(IV) complex [Ru2(μ-N){N(Bu(t)2PS)2}4](PF6) ([10]PF6). The crystal structures of 1, 2, 3, 7, 9 and 10 have been determined.
Multiple Pathways for Benzyl Alcohol Oxidation by Ru V =O 3+ and Ru IV =O 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Amit; Hull, Jonathan F.; Norris, Michael R.
2011-02-21
Significant rate enhancements are found for benzyl alcohol oxidation by the RuV=O3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to RuIV=O2+ and for the RuIV=O2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).
Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Amit; Hull, Jonathan F.; Norris, Michael R.
2011-01-20
Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).
Atomistic Modeling of RuAl and (RuNi) Al Alloys
NASA Technical Reports Server (NTRS)
Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.
Micrometer FX/DLX: A Pedagogic Compiler
1992-03-01
delimited by double-quotes L E Literal = Integer-Numeral U Boolean-literal U String-literal E::= L ’I (lambda (1*) EB) (Eo E*) (let ((I E)*) EB) (letrec...except VAL, ATEMP, and RETADR) are saved in this activation frame. Arguments to the procedure are evaluated and placed in registers ARGO, ARGi , etc. By...ENV) "ENV") ((ru FP) "FP11) ((u ru SP) ’Isp") Us u ARGO) "ARGO") ru ARGI ) *"ARG1**) ((ru ARG2) "LRG2") ((ru ARG3) "ARG3") Us~ ru ARG4) "ARG4’) ((x ru
Ru-core/Cu-shell bimetallic nanoparticles with controlled size formed in one-pot synthesis.
Helgadottir, I; Freychet, G; Arquillière, P; Maret, M; Gergaud, P; Haumesser, P H; Santini, C C
2014-12-21
Suspensions of bimetallic nanoparticles (NPs) of Ru and Cu have been synthesized by simultaneous decomposition of two organometallic compounds in an ionic liquid. These suspensions have been characterized by Anomalous Small-Angle X-ray Scattering (ASAXS) at energies slightly below the Ru K-edge. It is found that the NPs adopt a Ru-core, a Cu-shell structure, with a constant Ru core diameter of 1.9 nm for all Ru : Cu compositions, while the Cu shell thickness increases with Cu content up to 0.9 nm. The formation of RuCuNPs thus proceeds through rapid decomposition of the Ru precursor into RuNPs of constant size followed by the reaction of the Cu precursor and agglomeration as a Cu shell. Thus, the different decomposition kinetics of precursors make possible the elaboration of core-shell NPs composed of two metals without chemical affinity.
Ferromagnetism and Ru-Ru distance in SrRuO3 thin film grown on SrTiO3 (111) substrate
2014-01-01
Epitaxial SrRuO3 thin films were grown on both (100) and (111) SrTiO3 substrates with atomically flat surfaces that are required to grow high-quality films of materials under debate. The following notable differences were observed in the (111)-oriented SrRuO3 films: (1) slightly different growth mode, (2) approximately 10 K higher ferromagnetic transition temperature, and (3) better conducting behavior with higher relative resistivity ratio, than (100)c-oriented SrRuO3 films. Together with the reported results on SrRuO3 thin films grown on (110) SrTiO3 substrate, the different physical properties were discussed newly in terms of the Ru-Ru nearest neighbor distance instead of the famous tolerance factor. PACS 75.70.Ak; 75.60.Ej; 81.15.Fg PMID:24393495
NASA Astrophysics Data System (ADS)
Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.
Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.
Electronically highly cubic conditions for Ru in α -RuCl3
NASA Astrophysics Data System (ADS)
Agrestini, S.; Kuo, C.-Y.; Ko, K.-T.; Hu, Z.; Kasinathan, D.; Vasili, H. B.; Herrero-Martin, J.; Valvidares, S. M.; Pellegrin, E.; Jang, L.-Y.; Henschel, A.; Schmidt, M.; Tanaka, A.; Tjeng, L. H.
2017-10-01
We studied the local Ru 4 d electronic structure of α -RuCl3 by means of polarization-dependent x-ray absorption spectroscopy at the Ru L2 ,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4 d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2 g orbitals is -12 ±10 meV, i.e., negligible as compared to the Ru 4 d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff=1/2 ground state. We have thus shown that as far as the Ru 4 d local properties are concerned, α -RuCl3 is an ideal candidate for the realization of Kitaev physics.
Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes
Rudd, Jennifer A.; Brennaman, M. Kyle; Michaux, Katherine E.; ...
2016-03-09
The complexes [Ru(qpy)LL']2+ (qpy = 2,2':6',2'':6'',2''-quaterpyridine), with 1: L = acetonitrile, L'= chloride; 2: L = L'= acetonitrile; and 3: L = L'= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping 1A1 → 1MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected RuIII/II redox couples. In 0.1 M trifluoroacetic acid (TFA), 1more » and 2 undergo aquation to give [RuII(qpy)(OH2)2]2+, as evidenced by the appearance of waves for the couples [RuIII(qpy)(OH2)2]3+/[RuII(qpy)(OH2)2]2+, [RuIV(qpy)(O)(OH2)]2+/[RuIII(qpy)(OH2)2]3+, and [RuVI(qpy)(O)2]2+/[RuIV(qpy)(O)(OH2)]2+ in cyclic voltammograms.« less
Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L
2007-05-30
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.
2013-05-01
Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+,more » [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.« less
Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang
2008-03-19
Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the disappearance of the NIR band. One-electron oxidation of the Ru2.5(L*-)Ru2.5 species produces a metal-centered spin for which the alternatives RuIII(L0)Ru(II) or Ru(III)(L*-)Ru(III) can be formulated. The absence of NIR bands as common for mixed-valent species with intervalence charge transfer (IVCT) absorption favors the second alternative. The second one-electron oxidation is likely to produce a dication with Ru(III)(L0)Ru(III) formulation. The usefulness and limitations of the increasingly popular structure/oxidation state correlations for complexes with noninnocent ligands is being discussed.
Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Z. H.; Huang, L.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn
2015-08-07
MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magneticmore » NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R.M.; Ghosh, P.; Fagan, P.J.
2009-07-20
A ruthenium hydride with a bulky tetra-substituted Cp ligand, (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H (Cp{sup iPr{sub 4}} = C{sub 5}(i-C{sub 3}H{sub 7}){sub 4}H) was prepared from the reaction of Ru{sub 3}(CO){sub 12} with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H was determined by X-ray crystallography. The ruthenium hydride complex (C{sub 5}Bz{sub 5})Ru(CO){sub 2}H (Bz = CH{sub 2}Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}, was produced from the reaction of 1,2,3-trimethylindene with Ru{sub 3}(CO){sub 12}, and protonation of this dimer with HOTf gives {l_brace}[(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}-({mu}-H){r_brace}{sup +}OTf{sup -}. A series of ruthenium hydride complexes CpRu(CO)(L)H [Lmore » = P(OPh){sub 3}, PCy{sub 3}, PMe{sub 3}, P(p-C{sub 6}H{sub 4}F){sub 3}] were prepared by reaction of Cp(CO){sub 2}RuH with added L. Protonation of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H, Cp*Ru(CO){sub 2}H, or CpRu(CO)[P-(OPh){sub 3}]H by HOTf at -80 C led to equilibria with the cationic dihydrogen complexes, but H{sub 2} was released at higher temperatures. Protonation of CpRu[P(OPh){sub 3}]{sub 2}H with HOTf gave an observable dihydrogen complex, {l_brace}CpRu[P-(OPh){sub 3}]{sub 2}({eta}{sup 2}-H{sub 2}){r_brace}+OTf{sup -} that was converted at -20 C to the dihydride complex {l_brace}CpRu[P(OPh){sub 3}]{sub 2}(H){sub 2}{r_brace}{sup +}OTf{sup -}. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H{sub 2} (750 psi) at 110 C.« less
Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction
NASA Astrophysics Data System (ADS)
Bonnefille, Eric; Novio, Fernando; Gutmann, Torsten; Poteau, Romuald; Lecante, Pierre; Jumas, Jean-Claude; Philippot, Karine; Chaudret, Bruno
2014-07-01
Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity.Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00791c
Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Amit; Hull, Jonathan F.; Norris, Michael R.
2011-01-20
Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway involving concerted hydride proton transfer (HPT).
Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.
Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong
2014-07-01
Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.
Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei
2018-06-15
Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO 2 , which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO 2 -decorated electrocatalysts originate from the SiO 2 coating, since Ru atoms are partially ionized during SiO 2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO 2 . The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.
Well-Defined Heterobimetallic Reactivity at Unsupported Ruthenium-Indium Bonds.
Riddlestone, Ian M; Rajabi, Nasir A; Macgregor, Stuart A; Mahon, Mary F; Whittlesey, Michael K
2018-02-01
The hydride complex [Ru(IPr) 2 (CO)H][BAr F 4 ], 1, reacts with InMe 3 with loss of CH 4 to form [Ru(IPr) 2 (CO)(InMe)(Me)][BAr F 4 ], 4, featuring an unsupported Ru-In bond with unsaturated Ru and In centres. 4 reacts with H 2 to give [Ru(IPr) 2 (CO)(η 2 -H 2 )(InMe)(H)][BAr F 4 ], 5, while CO induces formation of the indyl complex [Ru(IPr) 2 (CO) 3 (InMe 2 )][BAr F 4 ], 7. These observations highlight the ability of Me to shuttle between Ru and In centres and are supported by DFT calculations on the mechanism of formation of 4 and its reactions with H 2 and CO. An analysis of Ru-In bonding in these species is also presented. Reaction of 1 with GaMe 3 also involves CH 4 loss but, in contrast to its In congener, sees IPr transfer from Ru to Ga to give a gallyl complex featuring an η 6 interaction of one aryl substituent with Ru. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei
2018-06-01
Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.
Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun
2012-07-01
A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Côrte-Real, Leonor; Teixeira, Ricardo G; Gírio, Patrícia; Comsa, Elisabeta; Moreno, Alexis; Nasr, Rachad; Baubichon-Cortay, Hélène; Avecilla, Fernando; Marques, Fernanda; Robalo, M Paula; Mendes, Paulo; Ramalho, João P Prates; Garcia, M Helena; Falson, Pierre; Valente, Andreia
2018-04-16
New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η 5 -MeCp)(PPh 3 )(4,4'-R-2,2'-bpy)] + (Ru1, R = H; Ru2, R = CH 3 ; and Ru3, R = CH 2 OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P2 1 / c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P2 1 / n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.
Graphene-silicon layered structures on single-crystalline Ir(111) thin films
Que, Yande D.; Tao, Jing; Zhang, Yong; ...
2015-01-20
Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less
NASA Astrophysics Data System (ADS)
Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.
2016-12-01
We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.
Riddlestone, Ian M; Rajabi, Nasir A; Lowe, John P; Mahon, Mary F; Macgregor, Stuart A; Whittlesey, Michael K
2016-09-07
Reaction of [Ru(IPr)2(CO)H]BAr(F)4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BAr(F)4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η(2)-H2)(H)2ZnEt]BAr(F)4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BAr(F)4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented.
Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.
Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S; Day, Craig S; Jensen, Vidar R; Fogg, Deryn E
2018-06-06
The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl 2 (L)(═CHC 6 H 4 - o-O i Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O i Pr); the Piers catalyst PII, [RuCl 2 (L)(═CHPCy 3 )]OTf; the third-generation Grubbs catalyst GIII, RuCl 2 (L)(py) 2 (═CHPh); and dianiline catalyst DA, RuCl 2 (L)( o-dianiline)(═CHPh), in all of which L = H 2 IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl 2 (H 2 IMes)(κ 2 -C 3 H 6 ), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl 2 (H 2 IMes)(═CH 2 ), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl 2 (H 2 IMes)L n (═CH 2 ) (L n = py n' ; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl 2 (H 2 IMes)L n . A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.
Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowker, Richard H.; Smith, Mica C.; Pease, Melissa
2011-07-01
Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.
Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions
NASA Astrophysics Data System (ADS)
Anwar, M. S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y.
2017-06-01
Single crystals of the Sr2RuO4 -Ru eutectic system are known to exhibit enhanced superconductivity at 3 K in addition to the bulk superconductivity of Sr2RuO4 at 1.5 K. The 1.5 K phase is believed to be a spin-triplet, chiral p -wave state with a multicomponent order parameter, giving rise to chiral domain structure. In contrast, the 3 K phase is attributable to enhanced superconductivity of Sr2RuO4 in the strained interface region between Ru inclusion of a few to tens of micrometers in size and the surrounding Sr2RuO4 . We investigate the dynamic behavior of a topological junction, where a superconductor is surrounded by another superconductor. Specifically, we fabricated Nb/Ru/Sr2RuO4 topological superconducting junctions, in which the difference in phase winding between the s -wave superconductivity in Ru microislands induced from Nb and the superconductivity of Sr2RuO4 mainly governs the junction behavior. Comparative results of the asymmetry, hysteresis, and noise in junctions with different sizes, shapes, and configurations of Ru inclusions are explained by the chiral domain-wall motion in these topological junctions. Furthermore, a striking difference between the 1.5 and 3 K phases is clearly revealed: the large noise in the 1.5 K phase sharply disappears in the 3 K phase. These results confirm the multicomponent order-parameter superconductivity of the bulk Sr2RuO4 , consistent with the chiral p -wave state, and the proposed nonchiral single-component superconductivity of the 3 K phase.
NASA Astrophysics Data System (ADS)
Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.
2017-08-01
Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.
A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qingfang; Key Laboratory of Advanced Energy Materials Chemistry; Wang, Zhiqiang
2016-02-15
Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molarmore » ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.« less
Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki
2015-10-14
Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.
Whittington, Christi L; Wojtas, Lukasz; Gao, Wen-Yang; Ma, Shengqian; Larsen, Randy W
2015-03-28
It has now been demonstrated that Ru(ii)tris(2,2'-bipyridine) (RuBpy) can be utilized to template the formation of new metal organic framework (MOF) materials containing crystallographically resolved RuBpy clusters with unique photophysical properties. Two such materials, RWLC-1 and RWLC-2, have now been reported from our laboratory and are composed of RuBpy encapsulated in MOFs composed of Zn(ii) ions and 1,3,5-tris(4-carboxyphenyl)benzene ligands (C. L. Whittington, L. Wojtas and R. W. Larsen, Inorg. Chem., 2014, 53, 160-166). Here, a third RuBpy templated photoactive MOF is described (RWLC-3) that is derived from the reaction between Zn(ii) ions and 1,4-dicarboxybenzene in the presence of RuBpy. Single Crystal X-ray diffraction studies determined the position of RuBpy cations within the crystal lattice. The RWLC-3 structure is described as a 2-fold interpenetrated pillared honeycomb network (bnb) containing crystallographically resolved RuBpy clusters. The two bnb networks are weakly interconnected. The encapsulated RuBpy exhibits two emission decay lifetimes (τ-fast = 120 ns, τ-slow = 453 ns) and a bathochromic shift in the steady state emission spectrum relative to RuBpy in ethanol.
Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Xiang, Jing; Wong, Tsz-Wing; Lam, Wing-Hong; Wong, Wing-Tak; Peng, Shie-Ming; Lau, Tai-Chu
2008-07-07
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macatangay, A.; Jackman, D.C.; Merkert, J.W.
1996-11-06
The physical and photophysical properties of a series of monometallic, [Ru(bpy){sub 2}(dmb)]{sup 2+}, [Ru(bpy){sub 2}(BPY)]{sup 2+}, [Ru(bpy)(Obpy)]{sup 2+} and [Ru(bpy){sub 2}(Obpy)] {sup 2+}, and bimetallic, [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+} and [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+}, complexes are examined, where bpy is 2,2{prime}-bipyridine, dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine, BPY is 1,2-bis(4-methyl-2,2{prime}-bipyridin-4{prime}-yl)ethane, and Obpy is 1,2-bis(2,2{prime}-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nmn region, intraligand {pi}{yields}{pi}* transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at {minus}1.3 Vmore » and ending at {approximately}{minus}1.9 V, and emission from a {sup 3}MLCT state having energy maxima between 598 and 610 nm. The Ru{sup III}/Ru{sup II} oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy){sub 2}(BPY)]{sup 2+}, the Ru{sup III}/Ru{sup II} potential for [Ru-(bpy){sub 2}(Obpy)]{sup 2+} increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+}, the Ru{sup III}/Ru{sup II} potential for [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+} increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26.« less
Saito, Yohtaro; Ashida, Hiroki; Sakiyama, Tomoko; de Marsac, Nicole Tandeau; Danchin, Antoine; Sekowska, Agnieszka; Yokota, Akiho
2009-05-08
The sequences classified as genes for various ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO)-like proteins (RLPs) are widely distributed among bacteria, archaea, and eukaryota. In the phylogenic tree constructed with these sequences, RuBisCOs and RLPs are grouped into four separate clades, forms I-IV. In RuBisCO enzymes encoded by form I, II, and III sequences, 19 conserved amino acid residues are essential for CO(2) fixation; however, 1-11 of these 19 residues are substituted with other amino acids in form IV RLPs. Among form IV RLPs, the only enzymatic activity detected to date is a 2,3-diketo-5-methylthiopentyl 1-phosphate (DK-MTP-1-P) enolase reaction catalyzed by Bacillus subtilis, Microcystis aeruginosa, and Geobacillus kaustophilus form IV RLPs. RLPs from Rhodospirillum rubrum, Rhodopseudomonas palustris, Chlorobium tepidum, and Bordetella bronchiseptica were inactive in the enolase reaction. DK-MTP-1-P enolase activity of B. subtilis RLP required Mg(2+) for catalysis and, like RuBisCO, was stimulated by CO(2). Four residues that are essential for the enolization reaction of RuBisCO, Lys(175), Lys(201), Asp(203), and Glu(204), were conserved in RLPs and were essential for DK-MTP-1-P enolase catalysis. Lys(123), the residue conserved in DK-MTP-1-P enolases, was also essential for B. subtilis RLP enolase activity. Similarities between the active site structures of RuBisCO and B. subtilis RLP were examined by analyzing the effects of structural analogs of RuBP on DK-MTP-1-P enolase activity. A transition state analog for the RuBP carboxylation of RuBisCO was a competitive inhibitor in the DK-MTP-1-P enolase reaction with a K(i) value of 103 mum. RuBP and d-phosphoglyceric acid, the substrate and product, respectively, of RuBisCO, were weaker competitive inhibitors. These results suggest that the amino acid residues utilized in the B. subtilis RLP enolase reaction are the same as those utilized in the RuBisCO RuBP enolization reaction.
Noda, Kyoko; Ohuchi, Yuko; Hashimoto, Akira; Fujiki, Masayuki; Itoh, Sumitaka; Iwatsuki, Satoshi; Noda, Toshiaki; Suzuki, Takayoshi; Kashiwabara, Kazuo; Takagi, Hideo D
2006-02-06
Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, I.J.; Hrbek, J.
1991-05-01
We studied adsorbed Ru{sub 3}(CO){sub 12} and Mo (CO){sub 6} overlayers on Ru(001) and Au/Ru surfaces by infrared reflection--absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). We characterized the C--O stretching mode of both metal carbonyls (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo (CO){sub 6} at 608 cm{sup {minus}1} with an unusually narrow FWHM of 1 cm{sup {minus}1}. Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. We discuss annealing experiments of Ru{sub 3}(CO){sub 12}/Ru(001), the interaction of Ru{sub 3}(CO){sub 12} overlayers with electronsmore » of up to 100-eV energy, and the interaction of Mo (CO){sub 6} overlayers with 300-nm photons.« less
Skakun, Ye; Qaim, S M
2008-05-01
Excitation functions were determined by the stacked-foil and induced radioactivity measurement technique for the reactions (100)Ru(alpha,n)(103)Pd, (101)Ru(alpha,2n)(103)Pd, (101)Ru((3)He,n)(103)Pd, and (102)Ru((3)He,2n)(103)Pd, producing the therapeutic radionuclide (103)Pd, and for the reactions (101)Ru((3)He,x)(101 m)Rh(Cum) and (102)Ru((3)He,x)(101 m)Rh(Cum), producing the medically interesting radionuclide (101 m)Rh. Data were also measured for the reactions (101)Ru((3)He,pn+d)(102 m,g)Rh, (102)Ru((3)He,p2n+dn+t)(102 m,g)Rh, (101)Ru((3)He,x)(101 g)Rh(Cum), (102)Ru((3)He,x)(101 g)Rh(Cum), (101)Ru((3)He,3n)(101)Pd, (102)Ru((3)He,4n)(101)Pd, (101)Ru((3)He,4n)(100)Pd, and (101)Ru((3)He,p3n+d2n+tn)(100)Rh, producing other palladium and rhodium isotopes/isomers. The energy ranges covered were up to 25 MeV for alpha-particles and up to 34 MeV for (3)He ions. The radioactivity of the radionuclide (103)Pd induced in thin metallic foils of the enriched ruthenium isotopes was measured by high-resolution X-ray spectrometry and the radioactivities of other radionuclides by gamma-ray spectrometry. The integral thick target yields of the radionuclide (103)Pd calculated from the excitation functions of the first four of the above-named reactions amount to 960, 1050, 50, and 725 kBq/microAh, respectively, at the maximum investigated energies of the incident particles. The integral thick target yields of the radionuclide (101 m)Rh amount to 16.1 and 2.9 MBq/microAh for (101)Ru and (102)Ru targets, respectively, at 34 MeV energy of incident (3)He ions. The integral yields of the other observed radionuclides were also deduced from the excitation functions of the above-mentioned respective nuclear reactions. The excitation functions and integral yields of some rare reaction products were also determined. The experimental excitation functions of some reactions are compared with the predictions of nuclear model calculations. In general, good agreement was obtained.
Formation mechanism of the protective layer in a blast furnace hearth
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng
2015-10-01
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles
NASA Astrophysics Data System (ADS)
Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej
2009-03-01
Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.
Variable noninnocence of substituted azobis(phenylcyanamido)diruthenium complexes.
Choudhuri, Mohommad M R; Behzad, Mahdi; Al-Noaimi, Mousa; Yap, Glenn P A; Kaim, Wolfgang; Sarkar, Biprajit; Crutchley, Robert J
2015-02-16
The synthetic chemistry of substituted 4,4'-azobis(phenylcyanamide) ligands was investigated, and the complexes [{Ru(tpy)(bpy)}2(μ-L)][PF6]2, where L = 2,2':5,5'-tetramethyl-4,4'-azobis(phenylcyanamido) (Me4adpc(2-)), 2,2'-dimethyl-4,4'-azobis(phenylcyanamido) (Me2adpc(2-)), unsubstituted (adpc(2-)), 3,3'-dichloro-4,4'-azobis(phenylcyanamido) (Cl2adpc(2-)), and 2,2':5,5'-tetrachloro-4,4'-azobis(phenylcyanamido) (Cl4adpc(2-)), were prepared and characterized by cyclic voltammetry and vis-near-IR (NIR) and IR spectroelectrochemistry. The room temperature electron paramagnetic resonance spectrum of [{Ru(tpy)(bpy)}2(μ-Me4adpc)](3+) showed an organic radical signal and is consistent with an oxidation-state description [Ru(II), Me4adpc(•-), Ru(II)](3+), while that of [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) at 10 K showed a low-symmetry Ru(III) signal, which is consistent with the description [Ru(III), Cl2adpc(2-), Ru(II)](3+). IR spectroelectrochemistry data suggest that [{Ru(tpy)(bpy)}2(μ-adpc)](3+) is delocalized and [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) and [{Ru(tpy)(bpy)}2(μ-Cl4adpc)](3+) are valence-trapped mixed-valence systems. A NIR absorption band that is unique to all [{Ru(tpy)(bpy)}2(μ-L)](3+) complexes is observed; however, its energy and intensity vary depending on the nature of the bridging ligand and, hence, the complexes' oxidation-state description.
Russian Anti-Americanism: Origins and Implications
2008-09-01
a growing pool of crime , inadequate social protection, and emptiness.29 So what does this mean? While Russians do not necessarily want to become... crime and corruption. Subconsciously driven by a strong Soviet upbringing, Putin has arguably transformed himself into a Russian post-Soviet tsar. He is...of Russia, Official Portal,17 February 2008, http://kremlin.ru/eng/text/ speeches /2008/02/14/1011_type82915_160266.shtml (accessed 12 March 2008
Kobayashi, Atsushi; Suzuki, Yui; Ohba, Tadashi; Ogawa, Tomohiro; Matsumoto, Takeshi; Noro, Shin-ichiro; Chang, Ho-Chol; Kato, Masako
2015-03-16
A series of flexible porous coordination polymers (PCPs) RE-Co, composed of a Co(III)-metalloligand [Co(dcbpy)3](3-) (Co; H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and lanthanide cations (RE(3+) = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+)), was systematically synthesized. X-ray crystallographic analysis revealed that the six carboxylates at the top of each coordination octahedron of Co(III)-metalloligand were commonly bound to RE(3+) cations to form a rock-salt-type porous coordination framework. When RE-Co contains a smaller and heavier RE(3+) cation than Nd(3+), the RE-Co crystallized in the cubic Fm-3m space group, whereas the other three RE-Co with larger RE(3+) crystallized in the lower symmetrical orthorhombic Fddd space group, owing to the asymmetric 10-coordinated bicapped square antiprism structure of the larger RE(3+) cation. Powder X-ray diffraction and vapor-adsorption isotherm measurements revealed that all synthesized RE-Co PCPs show reversible amorphous-crystalline transitions, triggered by water-vapor-adsorption/desorption. This transition behavior strongly depends on the kind of RE(3+); the transition of orthorhombic RE-Co was hardly observed under exposure to CH3OH vapor, but the RE-Co with smaller cations such as Gd(3+) showed the transition under exposure to CH3OH vapors. Further tuning of vapor-adsorption property was examined by doping of Ru(II)-metalloligands, [Ru(dcbpy)3](4-), [Ru(dcbpy)2Cl2](4-), [Ru(dcbpy)(tpy)Cl](-), and [Ru(dcbpy)(dctpy)](3-) (abbreviated as RuA, RuB, RuC, and RuD, respectively; tpy = 2,2':6',2″-terpyridine, H2dctpy = 4,4″-dicarboxy-2,2':6',2″-terpyridine), into the Co(III)-metalloligand site of Gd-Co to form the Ru(II)-doped PCP RuX@Gd-Co (X = A, B, C, or D). Three Ru(II)-metalloligands, RuA, RuB, and RuD dopants, were found to be uniformly incorporated into the Gd-Co framework by replacing the original Co(III)-metalloligand, whereas the doping of RuC failed probably because of the less number of coordination sites. In addition, we found that the RuA doping into the Gd-Co PCP had a large effect on vapor-adsorption due to the electrostatic interaction originating from the negatively charged RuA sites in the framework and the charge-compensating Li(+) cations in the porous channel.
An overview on the identification of MAIT cell antigens.
Kjer-Nielsen, Lars; Corbett, Alexandra J; Chen, Zhenjun; Liu, Ligong; Mak, Jeffrey Y W; Godfrey, Dale I; Rossjohn, Jamie; Fairlie, David P; McCluskey, James; Eckle, Sidonia B G
2018-04-14
Mucosal Associated Invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and chemistry, we discovered MAIT cell ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin (6-FP) generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T cell receptors, and here we recount this discovery. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhang, Biaobiao; Li, Fei; Zhang, Rong; Ma, Chengbing; Chen, Lin; Sun, Licheng
2016-06-30
A Ru(III)-O-Ru(IV)-O-Ru(III) type trinuclear species was crystallographically characterized in water oxidation by Ru(bda)(pic)2 (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; pic = 4-picoline) under neutral conditions. The formation of a ruthenium trimer due to the reaction of Ru(IV)[double bond, length as m-dash]O with Ru(II)-OH2 was fully confirmed by chemical, electrochemical and photochemical methods. Since the oxidation of the trimer was proposed to lead to catalyst decomposition, the photocatalytic water oxidation activity was rationally improved by the suppression of the formation of the trimer.
Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.
Park, Kyung-Won; Sung, Yung-Eun
2005-07-21
Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.
Ohashi, Kenji; Takeda, Hiroyuki; Koike, Kazuhide; Ishitani, Osamu
2015-01-01
A novel method for constructing supramolecular hybrids composed of polyoxometalates and photofunctional metal complexes was developed. A Ru(II) complex with phosphonate groups (RuP) strongly interacted with Zn(II) to afford a 2 : 1 trinuclear metal complex ([(RuP)2Zn](3+)). In dimethylsulfoxide, [(RuP)2Zn](3+) strongly interacted with a Keggin-type heteropolyoxometalate (Si-WPOM) to form a 1 : 1 hybrid ([(RuP)2Zn]-POM). Irradiation of [(RuP)2Zn]-POM in the presence of diethanolamine caused rapid accumulation of the one-electron reduced hybrid with a quantum yield of 0.99.
NASA Astrophysics Data System (ADS)
Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun
2016-01-01
RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.
NASA Astrophysics Data System (ADS)
Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun
2014-06-01
A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.
Antolini, Ermete
2013-06-01
In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elaboration of a Highly Porous RuII,II Analogue of HKUST-1.
Zhang, Wenhua; Freitag, Kerstin; Wannapaiboon, Suttipong; Schneider, Christian; Epp, Konstantin; Kieslich, Gregor; Fischer, Roland A
2016-12-19
When the dinuclear Ru II,II precursor [Ru 2 (OOCCH 3 ) 4 ] is employed under redox-inert conditions, a Ru II,II analogue of HKUST-1 was successfully prepared and characterized as a phase-pure microcrystalline powder. X-ray absorption near-edge spectroscopy confirms the oxidation state of the Ru centers of the paddle-wheel nodes in the framework. The porosity of 1371 m 2 /mmol of Ru II,II -HKUST-1 exceeds that of the parent compound HKUST1 (1049 m 2 / mmol).
Epitaxial strain effect on the physical properties of layered ruthenate and iridate thin films
NASA Astrophysics Data System (ADS)
Miao, Ludi
Transition metal oxides have attracted widespread attention due to their broad range of fascinating exotic phenomena such as multiferroicity, superconductivity, colossal magnetoresistance and metal-to-insulator transition. Due to the interplay between spin, charge, lattice and orbital degrees of freedom of strongly correlated d electrons, these physical properties are extremely sensitive to the external perturbations such as magnetic field, charge carrier doping and pressure, which provide a unique chance in search for novel exotic quantum states. Ruthenate systems are a typical strongly correlated system, with rich ordered states and their properties are extremely sensitive to external stimuli. Recently, the experimental observation of spin-orbit coupling induced Mott insulator in Sr2IrO4 as well as the theoretical prediction of topological insulating state in other iridates, have attracted tremendous interest in the physics of strong correlation and spin-orbit coupling in 4d/5d compounds. We observe an itinerant ferromagnetic ground state of Ca2 RuO4 film in stark contrast to the Mott-insulating state in bulk Ca2RuO4. We have also established the epitaxial strain effect on the transport and magnetic properties for the (Ca,Sr) 2RuO4 thin films. For Sr2IrO4 thin films, we will show that the Jeff = 1/2 moment orientation can be modulated by epitaxial strain. In addition, we discovered novel Ba 7Ir3O13+x thin films which exhibit colossal permittivity.
Photoinduced Charge Transfer from Titania to Surface Doping Site
Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.
2013-01-01
We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229
Photoinduced Charge Transfer from Titania to Surface Doping Site.
Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S
2013-05-16
We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.
NASA Astrophysics Data System (ADS)
Kanchana Devi, A.; Ramesh, R.
2014-01-01
Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.
Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.; Ichikawa, F.
2018-03-01
This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.
2013-05-30
Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less
Kumar, Annamalai Senthil; Tanase, Tomoaki; Iida, Masayasu
2007-01-16
Nanostructured molecular film containing the (micro-hydroxo)bis(micro-carboxylato) diruthenium(III) units, [RuIII2(micro-OH)(micro-CH3COO)2(HBpz3)2]+ ({RuIII2(micro-OH)}), was prepared by an in situ conversion of its micro-oxo precursor, [RuIII2(micro-O)(micro-CH3COO)2(HBpz3)2] ({RuIII2(micro-O)}), in a Nafion membrane matrix, where HBpz3 is hydrotris(1-pyrazolyl)borate. The conversion procedure results in fine nanoparticle aggregates of the {RuIII2(micro-OH)} units in the Nafion membrane (Nf-{RuIII2(micro-OH)}), where an average particle size (4.1 +/- 2.3 nm) is close to the Nafion's cluster dimension of approximately 4 nm. Chemically modified electrodes by using the Nafion molecular membrane films (Nf-{RuIII2(micro-OH)}-MMFEs) were further developed on ITO/glass and glassy carbon electrode (GCE) surfaces, and a selective reduction of nitrosonium ion (NO+), presumably through reaction of a {RuIIRuIII(micro-OH)} mixed-valence state with HNO2, was demonstrated without interference by molecular oxygen in an acidic aqueous solution. The Nf-{RuIII2(micro-OH)}-MMFEs are stable even in a physiological condition (pH 7), where the naked {RuIII2(-OH)} complex is readily transformed into its deprotonated {RuIII2(micro-O)} form, demonstrating an unusual stabilizing effects for the {RuIII2(micro-OH)} unit by the Nafion cluster environment.
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Tsukada, Takeshi; Shibata, Yuki; Kodama, Takashi
2016-10-01
In a cooling malfunction accident of a high-level liquid waste (HLLW) tank, behavior of ruthenium (Ru) attracts much attention, since Ru could be oxidized to a volatile chemical form in the boiling and drying of HLLW, and part of radioactive Ru can potentially be released to the environment. In this study, nitrosyl Ru nitrate (Ru(NO)(NO3)3) dissolved in nitric acid (HNO3), which is commonly contained in a simulated HLLW, was dried and heated up to 723 K, and the evolved gas was introduced into a mass spectrometer. The well-known volatile species, ruthenium tetroxide (RuO4) was detected in a temperature range between 390 K and 500 K with the peak top around 440 K. Various gases such as HNO3, nitrogen dioxide (NO2), nitrogen monoxide (NO) also evolved due to evaporation of the nitric acid and decomposition of the nitrate ions. The ion current of RuO4 seems to increase with the increasing decomposition of nitrate, while the evaporation of HNO3 decreases. More volatilization of RuO4 was observed from the HNO3 solution containing not only Ru(NO)(NO3)3 but also cerium nitrate (Ce(NO3)3·6H2O) which was added for extra supply of nitrate ion, compared with that from the HNO3 solution containing only Ru(NO)(NO3)3. These experimental results suggest that Ru could be oxidized to form RuO4 by the nitrate ion as well as HNO3.
Enhancement of Curie temperature in Mn{sub 2}RuSn by Co substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.; Huh, Y.; Fuglsby, R.
2015-04-21
The Co-substituted Mn{sub 2}RuSn nanomaterials, namely, Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn have been synthesized and investigated. The presence of Co in the Mn{sub 2}RuSn (a = 6.21 Å) decreased the lattice parameter, where a = 6.14 Å and 6.12 Å for the as prepared Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn, respectively. The samples show a ferrimagnetic spin order with relatively small coercivities, similar to those of soft magnetic materials. There is a substantial increase in the Curie temperature (T{sub c} = 448 K for Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and 506 K for Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn) of Mn{sub 2}RuSn (T{sub c} = 272.1 K) due to Comore » substitution, which is a result of strengthening of the positive exchange interaction in this material. These materials are highly stable against heat treatment of up to 450 °C. The first-principles calculations are consistent with our experimentally observed structural and magnetic properties. They also provide insight on how the magnetic and electronic structures change when Ru is replaced with Co in Mn{sub 2}RuSn.« less
NASA Astrophysics Data System (ADS)
Mohamed Subarkhan, M.; Ramesh, R.
2015-03-01
A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.
Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-12-01
This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demandmore » when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.« less
Wang, Jin-Quan; Zhang, Ping-Yu; Qian, Chen; Hou, Xiao-Juan; Ji, Liang-Nian; Chao, Hui
2014-03-01
A series of novel chiral ruthenium(II) polypyridyl complexes (Δ-Ru1, Λ-Ru1, Δ-Ru2, Λ-Ru2, Δ-Ru3, Λ-Ru3) were synthesized and evaluated to determine their antiproliferative activities. Colocalization, inductively coupled plasma mass spectrometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay studies showed that these ruthenium(II) complexes accumulated preferentially in the mitochondria and exhibited cytotoxicity against various cancer cells in vitro. The complex Δ-Ru1 is of particular interest because it was found to have half-maximal inhibitory concentrations comparable to those of cisplatin and better activity than cisplatin against a cisplatin-resistant cell line, A549-CP/R. Δ-Ru1 induced alterations in the mitochondrial membrane potential and triggered intrinsic mitochondria-mediated apoptosis in HeLa cells, which involved the regulation of Bcl-2 family members and the activation of caspases. Taken together, these data suggest that Δ-Ru1 may be a novel mitochondria-targeting anticancer agent.
The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation
Garrick, Taylor R.; Diao, Weijian; Tengco, John M.; ...
2016-02-23
Here, a series of Ru-Pt bimetallic catalysts prepared by the electroless deposition of controlled and variable amounts of Ru on the Pt surface of a commercially-available 20 wt% Pt/C catalyst has been characterized and evaluated for the oxidation of methanol. The activity of each Ru-Pt catalyst was determined as a function of surface composition via cyclic voltammetry. For the Ru-Pt bimetallic catalysts, activity passed through a maximum at approximately 50% monodisperse Ru surface coverage. However, due to the monolayer coverage of Ru on Pt, the amount of metal in the catalyst is minimized compared to a bulk 1:1 atomic ratiomore » of Ru:Pt seen in commercial bimetallic catalysts. Chemisorption and temperature programmed reduction experiments confirmed that the surface had characteristics of a true bimetallic catalyst. On a mass of Pt basis, the activity of this composition for methanol oxidation was 7 times higher than pure Pt and 3.5 times higher than a commercial catalyst with a 1:1 Pt:Ru bulk atomic ratio.« less
Ru nanoframes with an fcc structure and enhanced catalytic properties
Ye, Haihang; Wang, Qingxiao; Catalano, Massimo; ...
2016-03-21
Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd–Ru core–frame octahedra could be easily converted to Ru octahedral nanoframes of ~2 nm inmore » thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. Furthermore, the fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH 4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.« less
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2005-05-30
The molecular structures and physicochemical properties of diruthenium complexes with ligand-unsupported Ru-Ru bonds, generally formulated as [A2{Ru2(DTBCat)4}] (DTB = 3,5- or 3,6-di-tert-butyl; Cat(2-) = catecholate), were studied in detail by changing the countercations. First, the binding structures of the cations in a family of [{A(DME)n}2{Ru2(3,5-DTBCat)4}] (n = 2 for A+ = Li+ and Na+ and n = 1 for A+ = K+ and Rb+) were systematically examined to reveal the effects of the cations on the molecular structures and electrochemical properties. Second, the complex (n-Bu4N)2[Ru2(3,6-DTBCat)4] with a cation-free structure was synthesized using tetra-n-butylammonium cations. The complex clearly demonstrates first that the ligand-unsupported Ru-Ru bonds are essentially stabilized by the dianionic nature of the catecholate derivatives without any other bridging or supporting species. In contrast, the redox potentials and absorption spectra of the complexes can sensitively respond to the countercations depending upon the polarity of the solvents.
Enhanced thermal stability of RuO2/polyimide interface for flexible device applications
NASA Astrophysics Data System (ADS)
Music, Denis; Schmidt, Paul; Chang, Keke
2017-09-01
We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.
Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit
2012-03-07
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.
Chen, Guifen; Zhai, Shengyong; Zhai, Yanling; Zhang, Ke; Yue, Qiaoli; Wang, Lei; Zhao, Jinsheng; Wang, Huaisheng; Liu, Jifeng; Jia, Jianbo
2011-03-15
Graphene oxide (GO) obtained from chemical oxidation of flake graphite was derivatized with sulfonic groups to form sulfonic-functionalized GO (GO-SO(3)(-)) through four sulfonation routes: through amide formation between the carboxylic group of GO and amine of sulfanilic acid (AA-GO-SO(3)(-)), aryl diazonium reaction of sulfanilic acid (AD-GO-SO(3)(-)), amide formation between the carboxylic group of GO and amine of cysteamine and oxidation by H(2)O(2) (CA-GO-SO(3)(-)), and alkyl diazonium reaction of cysteamine and oxidation by H(2)O(2) (CD-GO-SO(3)(-)). Results of Fourier transform infrared spectroscopy and X-ray photoelectrospectrocopy showed that -SO(3)(-) groups were attached onto GO. Thermo gravimetric analysis showed that derivatization with sulfonic groups improved thermo stability of GO. X-ray diffraction results indicated that GO-SO(3)(-) had more ordered π-π stacking structure than the original GO. GO-SO(3)(-) and cationic polyelectrote, poly (diallyldimethylammoniumchloride) (PDDA) were adsorbed at indium tin oxide (ITO) glass surface through layer-by-layer assembling to form (GO-SO(3)(-)/PDDA)(n)/ITO multilayers. After tris-(2,2'-bipyridyl) ruthenium (II) dichloride (Ru(bpy)(3)(2+)) was incorporated into the multilayers, the obtained Ru(bpy)(3)(2+)/(GO-SO(3)(-)/PDDA)(n)/ITO electrodes can be used as electrochemiluminescence sensors for detection of organic amine with high sensitivity (limit of detection of 1 nM) and stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Development of iron platinum/oxide high anisotropy magnetic media
NASA Astrophysics Data System (ADS)
Yang, En
Because the size of magnetic grains is approaching the superparamagnetic limit in current perpendicular media, it is necessary to produce thin film media made with magnetic alloys with larger magneto-crystalline anisotropy energies to achieve higher recording densities. Due to its high anisotropy field and good environmental stability, FePt (L10) is the most promising media for achieving such ultra-high recording densities. However, there are several challenges associated with the development of FePt as a perpendicular media. As deposited FePt has disordered fee phase; either high deposition temperature, > 600 oC, or a high temperature post annealing process is required to obtain the ordered L10 structure, which is not desirable for manufacturing purposes. Therefore, techniques that enable ordering at significantly reduced temperatures are critically and urgently needed. Furthermore, in order to use it as a high density recording media, very small (less than 5 nm), uniform and fully-ordered, magnetically isolated FePt (L10) columnar grains with well defined grain boundaries, excellent perpendicular texture and high coercivity are desired. In this study, experiments and research have been mainly focused on the following aspects: (1) controlling of c axis orientation of FePt, (2) obtaining small columnar FePt grains, (3) improving order parameter and magnetic properties at lower ordering temperature. After a systematic experimental investigation, we have found an experimental approach for obtaining highly ordered L1 0 FePt-oxide thin film media at moderate deposition temperatures. In most previous studies, the FePt-Oxide layer is directly deposited on a textured MgO (001) layer. By introducing a double buffer layer in between the FePt-oxide layer and the MgO underlayer, we are able to substantially enhance the L1 0 ordering of the FePt-oxide layer while lowering the deposition temperature to 400oC. The buffer layers also yield a significantly enhanced (001) texture of the formed L10 FePt film. With the order parameter near unity, the coercivity of the resulting granular L10 FePt-oxide film exceeds Hc > 20 kOe with an average grain size about D = 8 nm. With the buffer layer technique, l8kOe coercivity has also been achieved for L10 FePt-oxide film at a grain size of about D = 4.5 nm, but it requires 35% of SiO2 in the magnetic layer. With 9% of Oxide in the film, excellent perpendicular texture, very high order parameter and small grain size of FePt can also be obtained by utilizing RuAl grain size defining layer along with TiN barrier layer. With the Ag buffer layer technique, the microstructure and magnetic properties of FePt films with RuAl grain size defining layer can be further improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.
Two sensitizers, [Ru(bpy) 2 (dcb)] 2+ ( RuC ) and [Ru(bpy) 2 (dpb)] 2+ ( RuP ), were anchored to mesoporous TiO 2 thin films and utilized to sensitize the reaction of TiO 2 electrons with oxidized triphenylamines to visible light in CH 3 CN electrolytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polam, J.R.; Porter, L.C.
1993-01-01
The reaction of trans-RuCl[sub 2](dppe)[sub 2] (1), with AgBF[sub 4] in tetrahydrofuran leads to abstraction of one of the halide ligands to produce the trigonal-bipyrimidal complex. [RuCl(dppe)[sub 2
Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun
2010-07-20
Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.
Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng
2014-11-01
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
The web system for operative description of air quality in the city
NASA Astrophysics Data System (ADS)
Barth, A. A.; Starchenko, A. V.; Fazliev, A. Z.
2009-04-01
Development and implementation of information-computational system (ICS) is described. The system is oriented on the collective usage of the calculation's facilities in order to determine the air quality on the basis of photochemical model. The ICS has been implemented on the basis of the middleware of ATMOS web-portal [1, 2]. The data and calculation layer of this ICS includes: Mathematical model of pollution transport based on transport differential equations. The model describes propagation, scattering and chemical transformation of the pollutants in the atmosphere [3]. The model may use averaged data value for city or forecast results obtained with help of the Chaser model.[4] Atmospheric boundary layer model (ABLM) [3] is used for operative numerical prediction of the meteorological parameters. These are such parameters as speed and direction of the wind, humidity and temperature of the air, which are necessary for the transport impurity model to operate. The model may use data assimilation of meteorological measurements data (including land based observations and the results of remote sensing of vertical structure of the atmosphere) or the weather forecast results obtained with help of the Semi-Lagrange model [5]. Applications for manipulation of data: An application for downloading parameters of atmospheric surface layer and remote sensing of vertical structure of the atmosphere from the web sites (http://meteo.infospace.ru and http://weather.uwyo.edu); An application for uploading these data into the ICS database; An application for transformation of the uploaded data into the internal data format of the system. At present this ICS is a part of "Climate" web site located in ATMOS portal [5]. The database is based on the data schemes providing the calculation in ICS workflow. The applications manipulated with the data are working in automatic regime. The workflow oriented on computation of physical parameters contains: The application for the calculation of geostrophic wind components on the base of Eckman equations; The applications for solution of the equations derived from ABL and transport of impurity models. The application for representation of calculation results in tabular and graphical forms. "Cyberia" cluster [6] located in Tomsk State University is used for computation of the impurity transport equations. References: Gordov E.P., V. N. Lykosov, and A. Z. Fazliev, Web portal on environmental sciences "ATMOS"// Advances in Geoscience, 2006, v. 8, p. 33-38. ATMOS web-portal http://atmos.iao.ru/middleware/ Belikov D.A., Starchenko A.V. Numerical investigation of secondary air pollutions formation near industrial center // Computational technologies. 2005. V. 10. Special issue. Proceedings of the International Conference and the School of Young Scientists "Computational and informational technologies for environmental sciences" (CITES 2005). Tomsk, 13-23 March 2005. Part 2. P. 99-105 Sudo, K., Takahashi M., Kurokawa J., Akimoto H. CHASER: A global chemical model of the troposphere. Model description, J. Geophys. Res., 2002, Vol.107(D17), P. 4339. Tolstykh M.A., Fadeev R.Y. Semi-Lagrangian variable-resolution weather prediction model and its further development // Computational technologies. 2006. V. 11. Special issue. P. 176-184 ATMOS web-portal http://climate.atmos.math.tsu.ru/ Tomsk state university, Interregional computational center http://skif.tsu.ru
Protected electrode structures and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhaylik, Yuriy V.; Laramie, Michael G.; Kopera, John Joseph Christopher
2017-08-08
An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer. The first release layer may have a low mean peak to valley surface roughness, which may enable the formation of a thin protective layer with a low mean peak to valley surface roughness.
Cui, Zhiming; Li, Chang Ming; Jiang, San Ping
2011-09-28
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.
Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E
2008-05-20
The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.
Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.
2010-01-01
A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867
NASA Astrophysics Data System (ADS)
van Acken, David; Becker, Harry; Walker, Richard J.; McDonough, William F.; Wombacher, Frank; Ash, Richard D.; Piccoli, Phil M.
2010-01-01
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition. Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of -2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated. Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/ 188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/ 188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts. Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os- 187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.
Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios
NASA Astrophysics Data System (ADS)
Nair, Hari P.; Liu, Yang; Ruf, Jacob P.; Schreiber, Nathaniel J.; Shang, Shun-Li; Baek, David J.; Goodge, Berit H.; Kourkoutis, Lena F.; Liu, Zi-Kui; Shen, Kyle M.; Schlom, Darrell G.
2018-04-01
Epitaxial SrRuO3 and CaRuO3 films were grown under an excess flux of elemental ruthenium in an adsorption-controlled regime by molecular-beam epitaxy (MBE), where the excess volatile RuOx (x = 2 or 3) desorbs from the growth front leaving behind a single-phase film. By growing in this regime, we were able to achieve SrRuO3 and CaRuO3 films with residual resistivity ratios (ρ300 K/ρ4 K) of 76 and 75, respectively. A combined phase stability diagram based on the thermodynamics of MBE (TOMBE) growth, termed a TOMBE diagram, is employed to provide improved guidance for the growth of complex materials by MBE.
Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm
2017-02-08
Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Middey, S.; Aich, Payel; Meneghini, C.; Mukherjee, K.; Sampathkumaran, E. V.; Siruguri, V.; Mahadevan, P.; Ray, Sugata
2016-11-01
Perovskites containing barium metal at the A site often take up unusual hexagonal structures having more than one type of possible sites for the B cation to occupy. This opens up various different B -B - or B -O-B -type connectivities and consequent physical properties which are naturally missing in cubic perovskites. BaRuO3 is one such system where doping of Ru (4 d4 ) by other transition metals (Mn +) creates similar conditions, giving rise to various M -Ru interactions. Interestingly, the 6 H hexagonal structure of doped barium ruthenate triple perovskite (Ba3M Ru2O9 ) seems to possess some internal checks because within the structure M ion always occupies the 2 a site and Ru goes to the 4 f site, allowing only M -O-Ru 180∘ and Ru-O-Ru 90∘ interactions to occur. The only exception is observed in the case of the Fe dopant, which allows us to study almost the full Ba3Fe1 -xRu2 +xO9 series of compounds with wide ranges of x because here Fe ions have the ability to freely go to the 4 f sites and Ru readily takes up the 2 a positions. Therefore, here one has the opportunity to probe the evolution of electronic and magnetic properties as a function of doping by going from BaRuO3 (paramagnetic metal) to BaFeO3 (ferromagnetic insulator). Our detailed experimental and theoretical results show that the series does exhibit a percolative metal-insulator transition with an accompanying but not coincidental magnetic transition as a function of x .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Gregory; Prestigiacomo, Joseph; Haldolaarachchige, Neel
2016-04-15
Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} (Ln=Gd, Tb) have been grown using the self-flux method under Ru-poor conditions. The structure of the Gd analog is found to be highly dependent on the synthesis method. Gd{sub 2}Ru{sub 3}Al{sub 15.08} orders antiferromagnetically at 17.5 K. Tb{sub 2}Ru{sub 3}Al{sub 15.05} enters an antiferromagnetic state at 16.6 K followed by a likely incommensurate-to-commensurate transition at 14.9 K for crystals oriented with H//ab. For crystals oriented with H//c, a broad maximum is observed in the temperature dependent M/H, indicative of a highly anisotropic magnetic system with the hard axis in the c-direction. The magnetizationmore » as a function of field and magnetoresistance along the ab-direction of Tb{sub 2}Ru{sub 3}Al{sub 15.05} display a stepwise behavior and indicate strong crystalline electric field effects. - Graphical abstract: Single crystal, structure, and highly anisotropic magnetoresistance due to strong crystalline electric field effects of Tb{sub 2}Ru{sub 3}Al{sub 15.05}. - Highlights: • Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} were grown for the first time via flux growth. • The structure of Gd{sub 2}Ru{sub 3}Al{sub 15.09} differs from that of arc melted Gd{sub 2}Ru{sub 3.08}Al{sub 15}. • Tb{sub 2}Ru{sub 3}Al{sub 15.05} exhibits highly anisotropic magnetic and transport properties. • The properties of Tb{sub 2}Ru{sub 3}Al{sub 15.05} arise due to crystalline electric field effects.« less
Reduction of RuVI≡N to RuIII-NH3 by Cysteine in Aqueous Solution.
Wang, Qian; Man, Wai-Lun; Lam, William W Y; Yiu, Shek-Man; Tse, Man-Kit; Lau, Tai-Chu
2018-05-21
The reduction of metal nitride to ammonia is a key step in biological and chemical nitrogen fixation. We report herein the facile reduction of a ruthenium(VI) nitrido complex [(L)Ru VI (N)(OH 2 )] + (1, L = N, N'-bis(salicylidene)- o-cyclohexyldiamine dianion) to [(L)Ru III (NH 3 )(OH 2 )] + by l-cysteine (Cys), an ubiquitous biological reductant, in aqueous solution. At pH 1.0-5.3, the reaction has the following stoichiometry: [(L)Ru VI (N)(OH 2 )] + + 3HSCH 2 CH(NH 3 )CO 2 → [(L)Ru III (NH 3 )(OH 2 )] + + 1.5(SCH 2 CH(NH 3 )CO 2 ) 2 . Kinetic studies show that at pH 1 the reaction consists of two phases, while at pH 5 there are three distinct phases. For all phases the rate law is rate = k 2 [1][Cys]. Studies on the effects of acidity indicate that both HSCH 2 CH(NH 3 + )CO 2 - and - SCH 2 CH(NH 3 + )CO 2 - are kinetically active species. At pH 1, the reaction is proposed to go through [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a), [(L)Ru III (NH 2 SCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (3), and [(L)Ru IV (NH 2 )(OH 2 )] + (4) intermediates. On the other hand, at pH around 5, the proposed intermediates are [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 )(OH 2 )] + (2b) and [(L)Ru IV (NH 2 )(OH 2 )] + (4). The intermediate ruthenium(IV) sulfilamido species, [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a) and the final ruthenium(III) ammine species, [(L)Ru III (NH 3 )(MeOH)] + (5) (where H 2 O was replaced by MeOH) have been isolated and characterized by various spectroscopic methods.
Kim, Youngjin; Koo, Dongho; Ha, Seongmin; Jung, Sung Chul; Yim, Taeeun; Kim, Hanseul; Oh, Seung Kyo; Kim, Dong-Min; Choi, Aram; Kang, Yongku; Ryu, Kyoung Han; Jang, Minchul; Han, Young-Kyu; Oh, Seung M; Lee, Kyu Tae
2018-05-04
Lithium-oxygen (Li-O 2 ) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O 2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.
Nearest-neighbor Kitaev exchange blocked by charge order in electron-doped α -RuCl3
NASA Astrophysics Data System (ADS)
Koitzsch, A.; Habenicht, C.; Müller, E.; Knupfer, M.; Büchner, B.; Kretschmer, S.; Richter, M.; van den Brink, J.; Börrnert, F.; Nowak, D.; Isaeva, A.; Doert, Th.
2017-10-01
A quantum spin liquid might be realized in α -RuCl3 , a honeycomb-lattice magnetic material with substantial spin-orbit coupling. Moreover, α -RuCl3 is a Mott insulator, which implies the possibility that novel exotic phases occur upon doping. Here, we study the electronic structure of this material when intercalated with potassium by photoemission spectroscopy, electron energy loss spectroscopy, and density functional theory calculations. We obtain a stable stoichiometry at K0.5RuCl3 . This gives rise to a peculiar charge disproportionation into formally Ru2 + (4 d6 ) and Ru3 + (4 d5 ). Every Ru 4 d5 site with one hole in the t2 g shell is surrounded by nearest neighbors of 4 d6 character, where the t2 g level is full and magnetically inert. Thus, each type of Ru site forms a triangular lattice, and nearest-neighbor interactions of the original honeycomb are blocked.
Imhof, Wolfgang; Sterzik, Anke; Krieck, Sven; Schwierz, Markus; Hoffeld, Thomas; Spielberg, Eike T; Plass, Winfried; Patmore, Nathan
2010-07-21
Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.
NASA Astrophysics Data System (ADS)
Sundar Manoharan, S.; Sahu, R. K.; Rao, M. L.; Elefant, D.; Schneider, C. M.
2002-08-01
The La0.7Pb0.3Mn 1 - x Ru x O3 (0.0 <= x <= 0.4) system shows an innate relationship between Mn and Ru ions by a unique double-exchange mediated transport behavior. This is exonerated by the coexistence of Tp and Tc (range 330 K 245 K for 0.0 <= x <= 0.4). For Ru > 30%, the hole carrier mass influences the transport property. X-ray absorption spectra suggest that the Tc-Tp match is due to the transport mediated by the Mn3+/Mn4+ leftrightarrow Ru4+/Ru5+ redox pair and also due to the broad low-spin Ru:4d conduction band. For x > 0.2, T < 0.5Tc obeys a modified variable-range hopping model, where kT0 propto (M/Ms)2, suggesting a random magnetic potential which localizes the charge carriers.
Villa, Alberto; Schiavoni, Marco; Chan-Thaw, Carine E.; ...
2015-06-18
The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1% Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of Scontaining groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 8C and 7 bar H2) the catalyst shows high selectivity to g-valerolactonemore » (GVL; >95%) and high stability on recycling. However, under more severe conditions (200 8C and pH2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.« less
Khalil, M M; Ali, S A; Ramadan, R M
2001-04-01
Reaction of Ru3(CO)12, with 2-(2'-pyridyl)benzimidazole (HPBI) resulted in the formation of Ru(CO)3(HPBI) (I) complex. In presence of pyridine or dipyridine, the two derivatives [Ru(CO)3(HPBI)].Py (II) and [Ru(CO)3(HPBI)].dpy (III) were isolated. The corresponding reactions of Os3(CO)12 yielded only one single product; Os(CO)2(HPBI)2 (IV). Spectroscopic studies of these complexes revealed intramolecular metal to ligand CT interactions. Reactions of RuCl3 with HPBI gave three distinct products; [Ru(HPBI)2Cl2]Cl (V), [Ru(HPBI)(dipy)Cl2]C1 (VI) and [Ru(PBI)2(py)2]Cl (VII). The UV-vis studies indicated the presence of intramolecular ligand to metal CT interactions. Electrochemical investigation of the complexes showed some irreversible, reversible and quasi-reversible redox reactions due to tautomeric interconversions through electron transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, I.J.; Hrbek, J.
1990-01-01
The authors obtained infrared reflection absorption (IRAS) and thermal desorption spectroscopy (TDS) data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. They characterized the C-O stretching mode of both systems (4cm{sup {minus}1}FWHM) and a deformation mode of Mo(CO){sub 6} at 608cm{sup {minus}1} (1 cm{sup {minus}1}FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger formore » Ru{sub 3}(CO){sub 12} (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, I.J.; Hrbek, J.
1990-01-01
We obtained IRAS and TDS data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. We characterized the C-O stretching mode of both systems (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo(CO){sub 6} at 608 cm{sup {minus}1} (1 cm{sup {minus}1} FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger for Ru{sub 3}(CO){sub 12}more » (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68. 31 refs., 4 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gress, M.E.; Creutz, C.; Quicksall, C.O.
1981-05-01
For (Ru(NH/sub 3/)/sub 5/(C/sub 4/N/sub 2/H/sub 4/))(BF/sub 4/)/sub 2/ the space group is P2/sub 1/2/sub 1/2/sub 1/ with cell parameters a = 12.615 (2) A, b = 15.610 (3) A, c = 7.965 (2) A, and Z = 4. For (Ru(NH/sub 3/)/sub 5/(C/sub 4/N/sub 2/H/sub 4/))(CF/sub 3/SO/sub 3/)/sub 3/.H/sub 2/O the space group is Pnma with cell parameters a = 23.795 (4) A, b = 8.062 (2) A, c = 12.848 (2) A, and Z = 4. The geometries of both the Ru(NH/sub 3/)/sub 5/pz/sup 2 +/ (pz = pyrazine) and Ru(NH/sub 3/)/sub 5/pz/sup 3 +/ cations are approximately octahedral,more » with the plane of the pyrazine ring intersecting at a 45/sup 0/ angle the equatorial plane containing the bound pyrazine N and the three N atoms of the NH/sub 3/ groups, as is expected from steric considerations. The Ru-NH/sub 3/ bond lengths are similar to those found in other ammine complexes: Ru(II)-NH/sub 3/, 2.15 to 2.17 A; Ru(III)-NH/sub 3/, 2.10 to 2.13 A. By contrast the Ru(II)-pz bond (2.006 A) is shorter than the Ru(III)-pz bond (2.076 A) by 0.07 A. This is attributed to ..pi.. back-bonding between Ru(II) and pyrazine. The dimensions of the mononuclear ions Ru(NH/sub 3/)/sub 5/pz/sup 2 +/ and Ru(NH/sub 3/)/sub 5/pz/sup 3 +/ are used to model the structure of valence-localized Ru/sup II/(NH/sub 3/)/sub 5/pzRu/sup III/(NH/sub 3/)/sub 5//sup 5 +/. The observed properties of this ion are then compared with those predicted from Marcus-Hush electron-transfer theory.« less
1982-05-07
ATIO VE LOC I TY HUMIDITY TEMP. L ENGTH ClIFF. 72% 7TO 160 4% 53% IS 5% A8t RZ lit 492 29% 23% END Of DATA RIiM 29 MARINE SURFACE LAYER...DRAG NO.AT GMM AlTOIM FL UX FLUX FLUX FL UX FLU X RTATIO VK LOC ITTY HUtMIDITY TEMP. LEN4GTH COE. 160% 161% 116% 167% 128% 9% 124% 295% s8% 109% 71...SCC PSI 90951!4 DRAG; NT, VT "MXT ’tI TIM ELS L X H Sy I 1(09rU F LT PtX ATIO VE LOC ITY ((IIDITIY TE MP. L EM!.TIH ItF 11% (1, .14% Il 195 Tx 5% 2A
Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in
2016-05-23
Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.
Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.
Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei
2015-10-12
PtRu is regarded as the best catalyst for direct methanol fuel cells, but the performance decay resulting from the loss of Ru seriously hinders commercial applications. Herein, we demonstrated that the presence of Ni2 P largely reduces Ru loss, which thus makes the application of PtRu much stronger in direct methanol fuel cells. Outstanding catalytic activity and stability were observed by cyclic voltammetry. Upon integrating the catalyst material into a practical direct methanol fuel cell, the highest maximum power density was achieved on the PtRu-Ni2P/C catalyst among the reference catalysts at different temperatures. A maximum power density of 69.9 mW cm(-2) at 30 °C was obtained on PtRu-Ni2P/C, which is even higher than the power density of the state-of-the-art commercial PtRu catalyst at 70 °C (63.1 mW cm(-2)). Moreover, decay in the performance resulting from Ru loss was greatly reduced owing to the presence of Ni2 P, which is indicative of very promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai
2014-11-01
Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.
Li, Meng; Lai, Lanhai; Zhao, Zhennan; Chen, Tianfeng
2016-01-01
Aquation has been proposed as crucial chemical action step for ruthenium (Ru) complexes, but its effects on the action mechanisms remain elusive. Herein, we have demonstrated the aquation process of a potent Ru polypyridyl complex (RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , bmbp=2,6-bis(6-methylbenzimidazol-2-yl) pyridine, phen=phenanthroline) with a chloride ligand, and revealed that aquation of RuBmp effectively enhanced its hydrophilicity and cellular uptake, thus significantly increasing its anticancer efficacy. The aquation products (H-RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , [Ru(II) (bmbp)(phen)(H2 O)]ClO4 , bmbp) exhibited a much higher apoptosis-inducing ability than the intact complex, with involvement of caspase activation, mitochondria dysfunction, and interaction with cell membrane death receptors. H-RuBmp demonstrated a higher interaction potency with the cell membrane and induced higher levels of ROS overproduction in cancer cells to regulate the AKT, MAPK, and p53 signaling pathways. Taken together, this study could provide useful information for fine-tuning the rational design of next-generation metal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming
Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.
Kinetic modeling and transient DRIFTS–MS studies of CO 2 methanation over Ru/Al 2O 3 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiang; Hong, Yongchun; Shi, Hui
CO 2 methanation was investigated on 5% and 0.5% Ru/Al 2O 3 catalysts (Ru dispersions: ~18% and ~40%, respectively) by steady-state kinetic measurements and transient DRIFTS–MS. Methanation rates were higher over 5% Ru/Al 2O 3 than over 0.5% Ru/Al 2O 3. The measured activation energies, however, were lower on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3. Transient DRIFTS–MS results demonstrated that direct CO 2 dissociation was negligible over Ru. CO 2 has to first react with surface hydroxyls on Al 2O 3 to form bicarbonates, which, in turn, react with adsorbed H on Ru to produce adsorbed formate species. Formates, most likely at the metal/oxide interface, can react rapidly with adsorbed H forming adsorbed CO, only a portion of which is reactive toward adsorbed H, ultimately leading to CH4 formation. The measured kinetics are fully consistent with a Langmuir–Hinshelwood type mechanism in which the H-assisted dissociation of the reactive CO* is the rate-determining step (RDS). The similar empirical rate expressions (r CH4 = kPmore » $$0.1\\atop{CO2}$$P$$0.3-0.5\\atop{H2}$$) and DRIFTS–MS results on the two catalysts under both transient and steady-state conditions suggest that the mechanism for CO 2 methanation does not change with Ru particle size under the studied experimental conditions. Kinetic modeling results further indicate that the intrinsic activation barrier for the RDS is slightly lower on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3. Due to the presence of unreactive adsorbed CO under reaction conditions, the larger fraction of such surface sites that bind CO too strongly on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3, as revealed by FTIR measurements, is regarded as the main reason for the lower rates for CO 2 methanation on 0.5% Ru/Al 2O 3. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project. The authors gratefully acknowledge the financial support of this work by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.« less
Electric Field Control of Interfacial Ferromagnetism in CaMnO3/CaRuO3 Heterostructures
NASA Astrophysics Data System (ADS)
Grutter, A. J.; Kirby, B. J.; Gray, M. T.; Flint, C. L.; Alaan, U. S.; Suzuki, Y.; Borchers, J. A.
2015-07-01
New mechanisms for achieving direct electric field control of ferromagnetism are highly desirable in the development of functional magnetic interfaces. To that end, we have probed the electric field dependence of the emergent ferromagnetic layer at CaRuO3/CaMnO3 interfaces in bilayers fabricated on SrTiO3. Using polarized neutron reflectometry, we are able to detect the ferromagnetic signal arising from a single atomic monolayer of CaMnO3, manifested as a spin asymmetry in the reflectivity. We find that the application of an electric field of 600 kV /m across the bilayer induces a significant increase in this spin asymmetry. Modeling of the reflectivity suggests that this increase corresponds to a transition from canted antiferromagnetism to full ferromagnetic alignment of the Mn4 + ions at the interface. This increase from 1 μB to 2.5 - 3.0 μB per Mn is indicative of a strong magnetoelectric coupling effect, and such direct electric field control of the magnetization at an interface has significant potential for spintronic applications.
Ledger, Araminta E W; Moreno, Aitor; Ellul, Charles E; Mahon, Mary F; Pregosin, Paul S; Whittlesey, Michael K; Williams, Jonathan M J
2010-08-16
Treatment of Ru(PPh(3))(3)HCl with the pincer phosphines 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), bis(2-diphenylphosphinophenyl)ether (DPEphos), or (Ph(2)PCH(2)CH(2))(2)O affords Ru(P-O-P)(PPh(3))HCl (xantphos, 1a; DPEphos, 1b; (Ph(2)PCH(2)CH(2))(2)O, 1c). The X-ray crystal structures of 1a-c show that all three P-O-P ligands coordinate in a tridentate manner through phosphorus and oxygen. Abstraction of the chloride ligand from 1a-c by NaBAr(4)(F) (BAr(4)(F) = B(3,5-C(6)H(3)(CF(3))(2))(4)) gives the cationic aqua complexes [Ru(P-O-P)(PPh(3))(H(2)O)H]BAr(4)(F) (3a-c). Removal of chloride from 1a by AgOTf yields Ru(xantphos)(PPh(3))H(OTf) (2a), which reacts with water to form [Ru(xantphos)(PPh(3))(H(2)O)H](OTf). The aqua complexes 3a-b react with O(2) to generate [Ru(xantphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5a) and [Ru(DPEphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5b). Addition of H(2) or N(2) to 3a-c yields the thermally unstable dihydrogen and dinitrogen species [Ru(P-O-P)(PPh(3))(eta(2)-H(2))H]BAr(4)(F) (6a-c) and [Ru(P-O-P)(PPh(3))(N(2))H]BAr(4)(F) (7a-c), which have been characterized by multinuclear NMR spectroscopy at low temperature. Ru(PPh(3))(3)HCl reacts with 1,1'-bis(diphenylphosphino)ferrocene (dppf) to give the 16-electron complex Ru(dppf)(PPh(3))HCl (1d), which upon treatment with NaBAr(4)(F), affords [Ru(dppf){(eta(6)-C(6)H(5))PPh(2)}H]BAr(4)(F) (8), in which the PPh(3) ligand binds eta(6) through one of the PPh(3) phenyl rings. Reaction of 8 with CO or PMe(3) at elevated temperatures yields the 18-electron products [Ru(dppf)(PPh(3))(CO)(2)H]BAr(F)(4) (9) and [Ru(PMe(3))(5)H]BAr(4)(F) (10).
Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang
2015-02-07
The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru
2018-03-01
The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.
Qian, Jing; Zhou, Zhenxian; Cao, Xiaodong; Liu, Songqin
2010-04-14
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)(3)(2+)-encapsulated silica nanoparticle (SiO(2)@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO(2)@Ru nanoparticles. The as-synthesized SiO(2)@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)(3)(2+) inside the silica shell and of alpha-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)(3)(2+) into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)(3)(2+) and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)(3)(2+). The as-synthesized SiO(2)@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL(-1) with linear relation from 0.05 to 20 ng mL(-1) and a detection limit of 0.035 ng mL(-1) at 3sigma. The resulting immunosensors possess high sensitivity and good analytical performance. Copyright 2010 Elsevier B.V. All rights reserved.
Li, Kuo-Tseng; Yen, Ruey-Hsiang
2018-01-01
Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432
Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante
2007-07-07
The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.
NASA Astrophysics Data System (ADS)
Monyoncho, Evans A.; Ntais, Spyridon; Soares, Felipo; Woo, Tom K.; Baranova, Elena A.
2015-08-01
Palladium-ruthenium nanoparticles supported on carbon PdxRu1-x/C (x = 1, 0.99, 0.95, 0.90, 0.80, 0.50) were prepared using a polyol method for ethanol electrooxidation in alkaline media. The resulting bimetallic catalysts were found to be primarily a mix of Pd metal, Ru oxides and Pd oxides. Their electrocatalytic activity towards ethanol oxidation reaction (EOR) in 1M KOH was studied using cyclic voltammetry and chronoamperometry techniques. Addition of 1-10 at.% Ru to Pd not only lowers the onset oxidation potential for EOR but also produces higher current densities at lower potentials compared to Pd by itself. Thus, Pd90Ru10/C and Pd99Ru1/C provide the current densities of up to six times those of Pd/C at -0.96 V and -0.67 V vs MSE, respectively. The current density at different potentials was found to be dependent on the surface composition of PdxRu1-x/C nanostructures. Pd90Ru10/C catalyst with more surface oxides was found to be active at lower potential compared to Pd99Ru1/C with less surface oxides, which is active at higher potentials. The steady-state current densities of the two best catalysts, Pd90Ru10/C and Pd99Ru1/C, showed minimal surface deactivation from EOR intermediates/products during chronoamperometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hui; Gao, Junkuo, E-mail: jkgao@zstu.edu.cn; Wang, Jiangpeng
2015-03-15
A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. The RuBpy molecules were encapsulated between the 2-D sheets in ZJU-100. ZJU-100 showed bathochromic shift in the steady-state emission spectrum and increased emission lifetimes relative to RuBpy molecules. The extended lifetime is attributed to the reduced nonradiative decay rate due to the stabilization of RuBpy within the rigid MOF framework. These results represent the first example of MOF with confined complex synthesized by surfactant, indicating that the surfactant-thermal method could offer excitingmore » opportunities for preparing new MOFs host/guest materials with novel structures and interesting luminescent properties. - Graphical abstract: A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. - Highlights: • Surfactant-thermal synthesis of crystalline metal-organic framework host/guest materials. • RuBpy molecules were encapsulated between the 2-D sheets of MOFs. • Extended lifetime is observed due to the stabilization of RuBpy within the rigid MOF framework.« less
Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).
Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan
2016-02-01
The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).
Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.
2008-01-01
The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262
Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto
2017-06-15
Solid solutions Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} (0≤x≤1.0) and (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} (0≤x≤0.7) were obtained as a single phase compound. They crystallize in an orthorhombic superstructure derived from that of the cubic fluorite with space group Cmcm. The results of the Rietveld analysis for X-ray diffraction profiles of Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} showed that Ru and Ta atoms are randomly situated at the six-coordinate 4b site. For (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}, with increasing the concentration of Y ions (x value), the smaller Y ions occupy selectively the seven-coordinate 8g site rather than the eight-coordinate 4a site.more » Through magnetic susceptibility measurements for Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7}, the antiferromagnetic transition temperatures decrease linearly with increasing x value, and at x=0.75 no magnetic ordering was found down to 1.8 K, indicating the magnetic interaction is not one-dimensional, but three-dimensional. On the other hand, the antiferromagnetic transition temperature for (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} decreases with increasing x value, but above x≥0.50 it becomes constant (~12 K). This result indicates that Pr{sup 3+} ions at the seven-coordinate site greatly contribute to the antiferromagnetic interactions observed in (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}. Density functional calculations of Pr{sub 3}RuO{sub 7} demonstrate that the electronic structure gives insulating character and that oxygen 2p orbitals hybridize strongly with Ru 4d orbitals in the valence band (VB). Near the top of VB, the Pr 4 f orbitals at the seven-coordinated site also show a weak hybridization with the O(1) 2p orbitals. The Ru-O(1)-Pr superexchange pathway take part in three-dimensional magnetic interaction and play an important role in an enhancement of long-range magnetic ordering. - Graphical abstract: The spin densities and the spin polarization of Pr{sub 3}RuO{sub 7} are shown. Significant spin polarization is seen on the magnetic Pr and Ru ions, but there is also some on the O(1), (3) ligands of Ru. - Highlights: • New fluorite-related quaternary praseodymium ruthenates were prepared. • Pr{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 55 K. • The Ru-O-Pr superexchange interactions are three-dimensional.« less
Evaluation of Dynamic Changes in Rating of Russian Information Sources of Medical Education Sites.
Vasilyeva, Irina V; Arseniev, Sergey B
2016-01-01
The aim of the present study is to analyze dynamic changes in the rating of information sources of medical literature in the sites of the following electronic libraries (<rsl.ru>, <rssi.ru>, <elibrary.ru>) and the rating of information sources for electronic medical books (<booksmed.com>, <medliter.ru> <medbook.net.ru>). While using the on-line programs Alexa and Cy-pr, we have analyzed their website's rating and identified basic data and time-varying site data obtained for fourteen months. Alexa Rank rating was calculated for each sitemonthly. Our study has shown that the most popular information sources of medical education among the six studied sites for Russian users is <elibrary.ru>; the site <rssi.ru> is at the second place.
Han, Yong; Evans, James W.
2015-10-27
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maness, K.M.; Terrill, R.H.; Meyer, T.J.
The electronic conductivity and electrogenerated chemiluminescence (ECL) of thin, electropolymerized films of the fixed-site redox polymer poly[Ru(vbpy){sub 3}](PF{sub 6}){sub 2} (vbpy = 4-vinyl-4`-methyl-2,2`-bipyridine) on Pt interdigitated array electrodes were examined for both solvent-swollen and dry films. In both cases emission arose from {sup *}Ru{sup 2+} produced via the electron-transfer reaction between Ru{sup 3+} and Ru{sup 1+} states within the film (Ru = Ru-(vbpy){sub 3}). Dry films contained fixed concentration gradients of Ru{sup 3+}, Ru{sup 2+}, and Ru{sup 1+} states which were first introduced in an acetonitrile-swollen film via the constant potential oxidation and reduction of Ru{sup 2+} at opposing IDAmore » fingers. The gradients were then immobilized by drying and cooling the film while retaining the inter-electrode bias (2.6V). The resulting dried and cooled films responded rapidly to changes in voltage bias and exhibited diode-like characteristics, conducting and emitting light at biases >2.6 V and undergoing a reverse bias breakdown current, unassociated with light emission, at ca. -5.5 V. At 0{degree}C the optimum quantum efficiency of solid-state ECL emission ({phi}{sub ECL}) was similar to that in solvent-swollen films: 0.0003 photon/electron. In contrast to the dry films, solvent-swollen films were slow to respond to changes in voltage bias and did not exhibit diode-like behavior. 18 refs., 7 figs.« less
Zhou, Limin; Huang, Jianshe; Yu, Bin; You, Tianyan
2016-02-26
Poly(ethylenimine) (PEI) and Ru(bpy)3(2+)-doped silica (Ru-SiO2) nanoparticles were simply mixed together to prepare a novel self-enhanced electrochemiluminescence (ECL) composite of Ru-SiO2@PEI. The hollow Ru-SiO2@PEI nanoparticles were used to build an ECL immunosensor for the analysis of neuron specific enolase (NSE). PEI not only assembled on the surface of Ru-SiO2 nanoparticles through the electrostatic interaction to act as co-reactant for Ru(bpy)3(2+) ECL, but also provided alkaline condition to etch the Ru-SiO2 nanoparticles to form the hollow Ru-SiO2@PEI nanoparticles with porous shell. The unique structure of the Ru-SiO2@PEI nanoparticles loaded both a large amount of Ru(bpy)3(2+) and its co-reactant PEI at the same time, which shortened the electron-transfer distance, thereby greatly enhanced the luminous efficiency and amplified the ECL signal. The developed immunosensor showed a wide linear range from 1.0 × 10(-11) to 1.0 × 10(-5) mg mL(-1) with a low detection limit of 1.0 × 10(-11) mg mL(-1) for NSE. When the immunosensor was used for the determination of NSE in clinical human serum, the results were comparable with those obtained by using enzyme-linked immunosorbent assay (ELISA) method. The proposed method provides a promising alternative for NSE analysis in clinical samples.
Kamsuwan, Tanutporn; Praserthdam, Piyasan; Jongsomjit, Bunjerd
2017-01-01
In the present study, the catalytic dehydration of ethanol over H-beta zeolite (HBZ) catalyst with ruthenium (Ru-HBZ) and platinum (Pt-HBZ) modification was investigated. Upon the reaction temperature between 200 and 400°C, it revealed that ethanol conversion and ethylene selectivity increased with increasing temperature for both Ru and Pt modification. At lower temperature (200 to 250°C), diethyl ether (DEE) was the major product. It was found that Ru and Pt modification on HBZ catalyst can result in increased DEE yield at low reaction temperature due to increased ethanol conversion without a significant change in DEE selectivity. By comparing the DEE yield of all catalysts in this study, the Ru-HBZ catalyst apparently exhibited the highest DEE yield (ca. 47%) at 250°C. However, at temperature from 350 to 400°C, the effect of Ru and Pt was less pronounced on ethylene yield. With various characterization techniques, the effects of Ru and Pt modification on HBZ catalyst were elucidated. It revealed that Ru and Pt were present in the highly dispersed forms and well distributed in the catalyst granules. It appeared that the weak acid sites measured by NH 3 temperature-programmed desorption technique also decreased with Ru and Pt promotion. Thus, the increased DEE yields with the Ru and Pt modification can be attributed to the presence of optimal weak acid sites leading to increased intrinsic activity of the catalysts. It can be concluded that the modification of Ru and Pt on HBZ catalyst can improve the DEE yields by ca. 10%.
Synthesis and spectral and redox properties of three triply bridged complexes of ruthenium
Llobet, A.; Curry, M.E.; Evans, H.T.; Meyer, T.J.
1989-01-01
Syntheses are described for the ligand-bridged complexes [(tpm)RuIII(??-O)(??-L)2RuIII(tpm) n+ (L = O2P(O)(OH), n = 0 (1); L = O2CO, n = 0 (2); L = O2CCH3, n = 2 (3); tpm is the tridentate, facial ligand tris(1-pyrazolyl)methane. The X-ray crystal structure of [(tpm)Ru(??-O)(??-O2P(O)(OH))2Ru(tpm)]??8H 2O was determined from three-dimensional X-ray counter data. The complex crystallizes in the trigonal space group P3221 with three molecules in a cell of dimensions a = 18.759 (4) A?? and c = 9.970 (6) A??. The structure was refined to a weighted R factor of 0.042 based on 1480 independent reflections with I ??? 3??(I). The structure reveals that the complex consists of two six-coordinate ruthenium atoms that are joined by a ??-oxo bridge (rRU-O = 1.87 A??; ???RuORu = 124.6??) and two ??-hydrogen phosphato bridges (average rRu-O = 2.07 A??) which are capped by two tpm ligands. The results of cyclic voltammetric and coulometric experiments show that the complexes undergo both oxidative and reductive processes in solution. Upon reduction, the ligand-bridged structure is lost and the monomer [(tpm)Ru(H2O)3]2+ appears quantitatively. All three complexes are diamagnetic in solution. The diamagnetism is a consequence of strong electronic coupling between the low-spin d5 Ru(III) metal ions through the oxo bridge and the relatively small Ru-O-Ru angle. ?? 1989 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Evans, James W.
2015-10-28
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atommore » in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)« less
NASA Astrophysics Data System (ADS)
Zhou, Limin; Huang, Jianshe; Yu, Bin; You, Tianyan
2016-02-01
Poly(ethylenimine) (PEI) and Ru(bpy)32+-doped silica (Ru-SiO2) nanoparticles were simply mixed together to prepare a novel self-enhanced electrochemiluminescence (ECL) composite of Ru-SiO2@PEI. The hollow Ru-SiO2@PEI nanoparticles were used to build an ECL immunosensor for the analysis of neuron specific enolase (NSE). PEI not only assembled on the surface of Ru-SiO2 nanoparticles through the electrostatic interaction to act as co-reactant for Ru(bpy)32+ ECL, but also provided alkaline condition to etch the Ru-SiO2 nanoparticles to form the hollow Ru-SiO2@PEI nanoparticles with porous shell. The unique structure of the Ru-SiO2@PEI nanoparticles loaded both a large amount of Ru(bpy)32+ and its co-reactant PEI at the same time, which shortened the electron-transfer distance, thereby greatly enhanced the luminous efficiency and amplified the ECL signal. The developed immunosensor showed a wide linear range from 1.0 × 10-11 to 1.0 × 10-5 mg mL-1 with a low detection limit of 1.0 × 10-11 mg mL-1 for NSE. When the immunosensor was used for the determination of NSE in clinical human serum, the results were comparable with those obtained by using enzyme-linked immunosorbent assay (ELISA) method. The proposed method provides a promising alternative for NSE analysis in clinical samples.
Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi
2009-07-01
Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.
Mössbauer study of the Ru porcelain of Chinese Song Dynasty and Yuan Dynasty
NASA Astrophysics Data System (ADS)
Zhengyao, Gao; Songhua, Chen; Xiande, Chen
1994-12-01
The Mössbauer spectra from the glazes of the Song Dynasty and the Yuan Dynasty Ru porcelains and the imitative ancient Ru porcelain are compared and analyzed. It is determined that the original firing atmosphere of the Yuan Dynasty Ru porcelain was reductive. The firing temperature was 1250±20 ‡C. The original firing atmosphere of the Song Dynasty Ru porcelain was also reductive; the firing temperature was above 1200 ‡C. The coloring mechanism of these glazes is discussed.
Egorova, K.S.; Kondakova, A.N.; Toukach, Ph.V.
2015-01-01
Carbohydrates are biological blocks participating in diverse and crucial processes both at cellular and organism levels. They protect individual cells, establish intracellular interactions, take part in the immune reaction and participate in many other processes. Glycosylation is considered as one of the most important modifications of proteins and other biologically active molecules. Still, the data on the enzymatic machinery involved in the carbohydrate synthesis and processing are scattered, and the advance on its study is hindered by the vast bulk of accumulated genetic information not supported by any experimental evidences for functions of proteins that are encoded by these genes. In this article, we present novel instruments for statistical analysis of glycomes in taxa. These tools may be helpful for investigating carbohydrate-related enzymatic activities in various groups of organisms and for comparison of their carbohydrate content. The instruments are developed on the Carbohydrate Structure Database (CSDB) platform and are available freely on the CSDB web-site at http://csdb.glycoscience.ru. Database URL: http://csdb.glycoscience.ru PMID:26337239
Polypyrrole membranes as scaffolds for biomolecule immobilization
NASA Astrophysics Data System (ADS)
Hery, Travis M.; Satagopan, Sriram; Northcutt, Robert G.; Tabita, F. Robert; Sundaresan, Vishnu-Baba
2016-12-01
Enzymes have evolved over hundreds of years through changes in ecosystems (climate, atmosphere, hydrology, etc). The evolutionary changes driven by the need to survive has led to enzymes with diverse functionality such as reduction of carbon dioxide and methane to other forms of carbon, fixation of nitrogen, and high temperature biochemical processes. While these enzymes have useful properties, engineering a scalable cell-free system with these enzymes will be useful for stable production of desired products without involving the vagaries of cellular metabolism. This article presents various approaches to incorporate ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in a conducting polymer (polypyrrole (PPy)) doped with a bulky anion (dodecylbenzenesulfonate (DBS)) in an effort to create functional devices for the conversion of carbon dioxide into precursors for high-value chemicals. We demonstrate that the tailored device creates an environment where the enzyme can retain its function while being protected from denaturing conditions. It is envisioned that the 3-PGA produced by RuBisCO will be converted into value-added products.
In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films
NASA Astrophysics Data System (ADS)
Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek
2017-12-01
A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.
Enhanced thermoelectric power and electronic correlations in RuSe₂
Wang, Kefeng; Wang, Aifeng; Tomic, A.; ...
2015-03-03
We report the electronic structure, electric and thermal transport properties of Ru 1-xIr xSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru 0.8Ir 0.2Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.
NASA Astrophysics Data System (ADS)
Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.
PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.
High-Performance Ru1 /CeO2 Single-Atom Catalyst for CO Oxidation: A Computational Exploration.
Li, Fengyu; Li, Lei; Liu, Xinying; Zeng, Xiao Cheng; Chen, Zhongfang
2016-10-18
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO 2 (111), TiO 2 (110) and Al 2 O 3 (001) surfaces. The heterogeneous system Ru 1 /CeO 2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO 2 (110) and Al 2 O 3 (001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru 1 /CeO 2 exhibits good catalytic activity for CO oxidation via the Langmuir-Hinshelwood mechanism, thus is a promising single-atom catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)
NASA Astrophysics Data System (ADS)
Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori
2011-03-01
Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.
Next Generation Catalyst Engineering via Support Modification
2016-01-21
the effect of specific N functionalities on the stability of PtRu. DFT calculations show that N-defects such as pyrrolic and pyridinic N enhance the...stability of Pt in PtRu and that pyrrolic N improves the stability of PtRu by stabilizing both Pt and Ru. Hence, a balance between pyrrolic and
NASA Technical Reports Server (NTRS)
Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir
2013-01-01
The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.
Mastren, Tara; Radchenko, Valery; Hopkins, Philip D.; ...
2017-12-22
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. Furthermore, the development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was usedmore » to decontaminate 103Ru from the remaining impurities. This method then resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f) 103,106Ru reactions are reported within.« less
Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2.
Aigner, H; Wilson, R H; Bracher, A; Calisse, L; Bhat, J Y; Hartl, F U; Hayer-Hartl, M
2017-12-08
Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO 2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.
Tehrani, Ramin M A; Ab Ghani, Sulaiman
2012-01-01
A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhou, Yanhui; Xu, Meng; Liu, Yanan; Bai, Yan; Deng, Yuqian; Liu, Jie; Chen, Lanmei
2016-08-01
Methods for the synthesis of nanoparticles (NPs) for biomedical applications ideally involve the use of nontoxic reducing and capping agents, and more importantly, enable control over the shape and size of the particles. As such, we used gallic acid (GA) as both a reducing and a capping agent in a simple and "green" synthesis of stable Se/Rualloy NPs (GA-Se/RuNPs). The diameter and morphology of the Se/Ru alloy NPs were regulated by GA concentration, and the presence of Ru was found to be a key factor in regulating and controlling the size of GA-Se/RuNPs. Moreover, GA-Se/RuNPs suppressed HeLa cell proliferation through the induction of apoptosis at concentrations that were nontoxic in normal cells. Furthermore, GA-Se/RuNPs effectively inhibited migration and invasion in HeLa cells via the inhibition of MMP-2 and MMP-9 proteins. Our findings confirm that bimetallic (Se/Ru) NPs prepared via GA-mediated synthesis exhibit enhanced anticancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S
2006-05-25
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.
Structure and magnetic properties of Heusler alloy Co2RuSi melt-spun ribbons
NASA Astrophysics Data System (ADS)
Xin, Yuepeng; Ma, Yuexing; Hao, Hongyue; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng
2017-08-01
Heusler alloy Co2RuSi has been synthesized by melt-spinning technology successfully. Co2RuSi bulk sample after annealing is composed of an HCP Co-rich phase and a BCC Ru-Si phase, but melt-spinning can suppress the precipitation of the HCP phase and produce a single Co2RuSi Heusler phase. In the XRD pattern, it is found that Ru has a strong preference for the (A, C) sites, though it has fewer valence electrons compared with Co. This site preference is different from the case in Heusler alloys containing only 3d elements and is supported further by first-principles calculations. Melt-spun Co2RuSi has a Ms of 2.67 μB/f.u. at 5 K and a Tc of 491 K. An exothermic peak is observed at 871 K in the DTA curve, corresponding to the decomposition of the Heusler phase. Finally, the site preference and magnetic properties of Co2RuSi were discussed based on electronic structure calculation and charge density difference.
Hopkins, Philip D.; Engle, Jonathan W.; Weidner, John W.; Copping, Roy; Brugh, Mark; Nortier, F. Meiring; Birnbaum, Eva R.; John, Kevin D.
2017-01-01
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within. PMID:29272318
Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor
NASA Astrophysics Data System (ADS)
Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.
2018-04-01
Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.
The valence of Ru, Ce and Eu ions in the magneto-superconductor Eu 1.5Ce 0.5RuSr 2Cu 2O 10
NASA Astrophysics Data System (ADS)
Felner, I.; Asaf, U.; Godart, C.; Alleno, E.
1999-01-01
The superconducting (T c∼32 K) Eu 1.5Ce 0.5RuSr 2Cu 2O 10 (Ru-2122) material is also magnetically ordered (T M∼122 K) with TM≫ Tc. Superconductivity (SC) is confined to the CuO 2 planes, whereas magnetism is due to the Ru sublattice. Mossbauer spectroscopy performed at 90 and 300 K on 151Eu shows a single narrow line with an isomer shift=0.69(2) and a quadrupole splitting of 1.84 mm/s, indicating that the Eu ions are trivalent with a nonmagnetic J=0 ground state. This is in agreement with X-ray-absorption spectroscopy (XAS) taken at L III edges of Eu, Ce which shows that Eu is trivalent and Ce is tetravalent. XAS experiments at the K edge of Ru indicate that Ru is pentavalent. This indicates, that in the M-2122 system, SC exists only for pentavalent M ions such as Ta, Nb and Ru.
NASA Astrophysics Data System (ADS)
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2008-11-01
Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.
Tripathi, Shivendra; Rana, Rakesh; Kumar, Sanjay; Pandey, Parul; Singh, R. S.; Rana, D. S.
2014-01-01
The non-magnetic and non-Fermi-liquid CaRuO3 is the iso-structural analog of the ferromagnetic (FM) and Fermi-liquid SrRuO3. We show that an FM order in the orthorhombic CaRuO3 can be established by the means of tensile epitaxial strain. The structural and magnetic property correlations in the CaRuO3 films formed on SrTiO3 (100) substrate establish a scaling relation between the FM moment and the tensile strain. The strain dependent crossover from non-magnetic to FM CaRuO3 was observed to be associated with switching of non-Fermi liquid to Fermi-liquid behavior. The intrinsic nature of this strain-induced FM order manifests in the Hall resistivity too; the anomalous Hall component realizes in FM tensile-strained CaRuO3 films on SrTiO3 (100) whereas the non-magnetic compressive-strained films on LaAlO3 (100) exhibit only the ordinary Hall effect. These observations of an elusive FM order are consistent with the theoretical predictions of scaling of the tensile epitaxial strain and the magnetic order in tensile CaRuO3. We further establish that the tensile strain is more efficient than the chemical route to induce FM order in CaRuO3. PMID:24464302
NASA Astrophysics Data System (ADS)
Bo, Duan; Weijing, An; Jianwei, Zhou; Shuai, Wang
2015-07-01
This paper investigated the effect of FA/O and hydrogen peroxide (H2O2) on ruthenium (Ru) removal rate (RR) and static etching rate (SER). It was revealed that Ru RR and SER first linearly increased then slowly decreaseed with the increasing H2O2 probably due to the formation of uniform Ru oxides on the surface during polishing. Their corrosion behaviors and states of surface oxidation were analyzed. In addition, FA/O could chelate Ru oxides (such as (RuO4)2- and RuO4- changed into soluble amine salts [R(NH3)4] (RuO4)2) and enhance Ru RR. The non-ionic surfactant AD was used to improve the Ru CMP performance. In particular, the addition of AD can lead to significant improvement of the surface roughness. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Natural Science Foundation of Hebei Province (No. E2013202247), the Science and Technology Plan Project of Hebei Province (Nos. Z2010112, 10213936), the Hebei Provincial Department of Education Fund (No. 2011128), and the Scientific Research Fund of Hebei Provincial Education (No. QN2014208).
NASA Astrophysics Data System (ADS)
Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Ignatyuk, A.
2017-05-01
The main goals of this investigations were to expand and consolidate reliable activation cross-section data for the natMo(α,x) reactions in connection with production of medically relevant 97,103Ru and the use of the natMo(α,x)97Ru reaction for monitoring beam parameters. The excitation functions for formation of the gamma-emitting radionuclides 94Ru, 95Ru, 97Ru, 103Ru, 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 93mMo, 99Mo(cum), 90Nb(m+) and 88Zr were measured up to 40 MeV alpha-particle energy by using the stacked foil technique and activation method. Data of our earlier similar experiments were re-evaluated and resulted in corrections on the reported results. Our experimental data were compared with critically analyzed literature data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE 3.1 (Rivoli) and TALYS codes (TENDL-2011 and TENDL-2015 on-line libraries). Nuclear data for different production routes of 97Ru and 103Ru are compiled and reviewed.
Multilayer graphene as an effective corrosion protection coating for copper
NASA Astrophysics Data System (ADS)
Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu
2018-04-01
Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.
Mitra, Joyeeta; Narad, Priyanka; Sengupta, Abhishek; Sharma, P D; Paul, P K
2016-09-01
RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF-TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = -248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockemeyer, J.R.; Rauchfuss, T.B.; Wilson, S.R.
1989-11-22
The thermal reaction of ((cymene)RuCl{sub 2}){sub 2} and tetramethylthiophene (TMT) gives ((TMT)RuCl{sub 2}){sub 2} (1). Treatment of 1 with silver salts in the presence of various ligands gives salts of ((TMT)RuL{sub 3}){sup 2+} where L{sub 3} = (H{sub 2}O){sub 3}, (CH{sub 3}CN){sub 3}, and TMT. A crystallographic study demonstrated that ((TMT){sub 2}Ru)(BF{sub 4}){sub 2} {times} 2CH{sub 3}NO{sub 2} adopts a sandwich structure with sulfur atoms sited cis on the pseudooctahedron. Cyclic voltammetry studies show that ((TMT){sub 2}Ru){sup 2+} undergoes 2 reversible one-electron reductions. Solutions of 1 and phosphine and amine donors react to give well-behaved monometallic derivatives of the typemore » (TMT)RuCl{sub 2}L where L is PR{sub 3} and NH{sub 2}C{sub 6}H{sub 4}Me. For bulky L = PPh{sub 3} and P(C{sub 6}H{sub 4}Me){sub 3}, variable-temperature NMR studies demonstrate hindered rotation about the Ru-P and Ru{hor ellipsis} TMT axes. Treatment of 1 with (Me{sub 3}Si){sub 2}S gives the cluster ((TMT)RuCl){sub 3}S{sup +} whose PF{sub 6}{sup {minus}} salt was examined by X-ray crystallography. The cluster is comprised of 3 conjoined pseudooctahedral Ru centers bridged by 1 {mu}{sub 3}-S and 3 {mu}-Cl atoms.« less
Bratsos, Ioannis; Simonin, Camilla; Zangrando, Ennio; Gianferrara, Teresa; Bergamo, Alberta; Alessio, Enzo
2011-10-07
The Ru(II) complex fac-[RuCl(dmso-S)(3)(dmso-O)(2)][PF(6)] (P2) was found to be an excellent precursor for the facile preparation in high yield of half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N)(2)][PF(6)] (e.g. (N)(2) = 1,2-diaminoethane (en, 4), trans-1,2-diaminocyclohexane (dach, 5), or 2 NH(3) (6)). Neutral half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N-O)] where N-O is an anionic chelating ligand (e.g. N-O = picolinate (pic, 7)) are best prepared from the universal Ru(II)-dmso precursor cis-[RuCl(2)(dmso)(4)] (P1). These complexes, that were fully characterized in solution and in the solid state, are structurally similar to the anticancer organometallic compounds [Ru(η(6)-arene)(chel)Cl][PF(6)](n) but, in place of a face-capping arene, have the fac-Ru(dmso-S)(3) fragment. In contrast to what observed for the corresponding arene compounds, that rapidly hydrolyze the Cl ligand upon dissolution in water, compounds 4-6 are very stable and inert in aqueous solution. Probably their inertness is the reason why they showed no significant cytotoxicity against the MDA-MB-231 cancer cell line.
Olivier, Jean-Hubert; Bai, Yusong; Uh, Hyounsoo; Yoo, Hyejin; Therien, Michael J; Castellano, Felix N
2015-06-04
We report four supermolecular chromophores based on (porphinato)zinc(II) (PZn) and (polypyridyl)metal units bridged via ethyne connectivity (Pyr1RuPZn2, Pyr1RuPZnRuPyr1, Pyr1RuPZn2RuPyr1, and OsPZn2Os) that fulfill critical sensitizer requirements for NIR-to-vis triplet-triplet annihilation upconversion (TTA-UC) photochemistry. These NIR sensitizers feature: (i) broad, high oscillator strength NIR absorptivity (700 nm < λ(max(NIR)) < 770 nm; 6 × 10(4) M(-1) cm(-1) < extinction coefficient (λ(max(NIR))) < 1.6 × 10(5) M(-1) cm(-1); 820 cm(-1) < fwhm < 1700 cm(-1)); (ii) substantial intersystem crossing quantum yields; (iii) long, microsecond time scale T1 state lifetimes; and (iv) triplet states that are energetically poised for exergonic energy transfer to the molecular annihilator (rubrene). Using low-power noncoherent illumination at power densities (1-10 mW cm(-2)) similar to that of terrestrial solar photon illumination conditions, we demonstrate that Pyr1RuPZn2, Pyr1RuPZn2RuPyr1, and Pyr1RuPZnRuPyr1 sensitizers can be used in combination with the rubrene acceptor/annihilator to achieve TTA-UC: these studies represent the first examples whereby a low-power noncoherent NIR light source drives NIR-to-visible upconverted fluorescence centered in a spectral window within the bandgap of amorphous silicon.
Recent progress in the structure control of Pd–Ru bimetallic nanomaterials
Wu, Dongshuang; Kusada, Kohei; Kitagawa, Hiroshi
2016-01-01
Abstract Pd and Ru are two key elements of the platinum-group metals that are invaluable to areas such as catalysis and energy storage/transfer. To maximize the potential of the Pd and Ru elements, significant effort has been devoted to synthesizing Pd–Ru bimetallic materials. However, most of the reports dealing with this subject describe phase-separated structures such as near-surface alloys and physical mixtures of monometallic nanoparticles (NPs). Pd–Ru alloys with homogenous structure and arbitrary metallic ratio are highly desired for basic scientific research and commercial material design. In the past several years, with the development of nanoscience, Pd–Ru bimetallic alloys with different architectures including heterostructure, core-shell structure and solid-solution alloy were successfully synthesized. In particular, we have now reached the stage of being able to obtain Pd–Ru solid-solution alloy NPs over the whole composition range. These Pd–Ru bimetallic alloys are better catalysts than their parent metal NPs in many catalytic reactions, because the electronic structures of Pd and Ru are modified by alloying. In this review, we describe the recent development in the structure control of Pd–Ru bimetallic nanomaterials. Aiming for a better understanding of the synthesis strategies, some fundamental details including fabrication methods and formation mechanisms are discussed. We stress that the modification of electronic structure, originating from different nanoscale geometry and chemical composition, profoundly affects material properties. Finally, we discuss open issues in this field. PMID:27877905
NASA Astrophysics Data System (ADS)
Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian
2018-05-01
The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.
Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia
While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less
Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization
Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia
2017-01-25
While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less
Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.
Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming
2014-10-15
TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.