Science.gov

Sample records for rubble mound breakwaters

  1. Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters

    NASA Astrophysics Data System (ADS)

    Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.

    2016-12-01

    Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I

  2. Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.

    2015-08-01

    Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.

  3. Terrestrial laser scanning for geometry extraction and change monitoring of rubble mound breakwaters

    NASA Astrophysics Data System (ADS)

    Puente, I.; Lindenbergh, R.; González-Jorge, H.; Arias, P.

    2014-05-01

    Rubble mound breakwaters are coastal defense structures that protect harbors and beaches from the impacts of both littoral drift and storm waves. They occasionally break, leading to catastrophic damage to surrounding human populations and resulting in huge economic and environmental losses. Ensuring their stability is considered to be of vital importance and the major reason for setting up breakwater monitoring systems. Terrestrial laser scanning has been recognized as a monitoring technique of existing infrastructures. Its capability for measuring large amounts of accurate points in a short period of time is also well proven. In this paper we first introduce a method for the automatic extraction of face geometry of concrete cubic blocks, as typically used in breakwaters. Point clouds are segmented based on their orientation and location. Then we compare corresponding cuboids of three co-registered point clouds to estimate their transformation parameters over time. The first method is demonstrated on scan data from the Baiona breakwater (Spain) while the change detection is demonstrated on repeated scan data of concrete bricks, where the changing scenario was simulated. The application of the presented methodology has verified its effectiveness for outlining the 3D breakwater units and analyzing their changes at the millimeter level. Breakwater management activities could benefit from this initial version of the method in order to improve their productivity.

  4. Monte Carlo simulation model for economic evaluation of rubble mound breakwater protection in Harbors

    NASA Astrophysics Data System (ADS)

    Males, Richard M.; Melby, Jeffrey A.

    2011-12-01

    The US Army Corps of Engineers has a mission to conduct a wide array of programs in the arenas of water resources, including coastal protection. Coastal projects must be evaluated according to sound economic principles, and considerations of risk assessment and sea level change must be included in the analysis. Breakwaters are typically nearshore structures designed to reduce wave action in the lee of the structure, resulting in calmer waters within the protected area, with attendant benefits in terms of usability by navigation interests, shoreline protection, reduction of wave runup and onshore flooding, and protection of navigation channels from sedimentation and wave action. A common method of breakwater construction is the rubble mound breakwater, constructed in a trapezoidal cross section with gradually increasing stone sizes from the core out. Rubble mound breakwaters are subject to degradation from storms, particularly for antiquated designs with under-sized stones insufficient to protect against intense wave energy. Storm waves dislodge the stones, resulting in lowering of crest height and associated protective capability for wave reduction. This behavior happens over a long period of time, so a lifecycle model (that can analyze the damage progression over a period of years) is appropriate. Because storms are highly variable, a model that can support risk analysis is also needed. Economic impacts are determined by the nature of the wave climate in the protected area, and by the nature of the protected assets. Monte Carlo simulation (MCS) modeling that incorporates engineering and economic impacts is a worthwhile method for handling the many complexities involved in real world problems. The Corps has developed and utilized a number of MCS models to compare project alternatives in terms of their costs and benefits. This paper describes one such model, Coastal Structure simulation (CSsim) that has been developed specifically for planning level analysis of

  5. Effects of First Underlayer Weight on the Stability of Stone-Armored, Rubble-Mound Breakwater Trunks Subjected to Nonbreaking Waves with No Overtopping. Hydraulic Model Investigation.

    DTIC Science & Technology

    1980-01-01

    Experiment Station, CE, Vicksburg, Miss. Carver, R. D., and Davidson, D. D. 1976. "Stability of Rubble-Mound Breakwater, Jubail Harbor, Saudi Arabia ...types of armor units were tested: smooth quarrystones (basalt), rough quarry- stones ( granite ), tetrapods, quadripods, tribars, modified cubes, hexa...electrical output of the wave gages was directly proportional to their submergence depth. Materials used 23. Rough granite stone (W ) with an average

  6. Cost-Effective Optimization of Rubble-Mound Breakwater Cross Sections.

    DTIC Science & Technology

    1986-02-01

    a step-wise procedure is presented which can identify an optimum breakwater cross section, both in terms of structural integrity and functional I...District offices, can formulate an optimum cross-section configuration and verify its effectiveness, both in terms of structural integrity and functional...criterion can be referred to as the "structural integrity " or "survival" criterion. The second type, referred to as the "functional performance

  7. Ecological effects of rubble-mound breakwater construction and channel dredging at West Harbor, Ohio (western Lake Erie)

    USGS Publications Warehouse

    Manny, Bruce A.; Schloesser, Donald W.; Brown, Charles L.; French, John R. P.

    1985-01-01

    The investigation reported herein indicated that breakwater construction and associated channel dredging activities by the US Army Corps of Engineers in western Lake Erie at the entrance to West Harbor (Ohio) had no detectable adverse impacts on the distributions or abundances of macrozoobenthos and fishes. Rather, increases were noted in the number of fish eggs and larvae and in the density and biomass of periphyton and macrozoobenthos on and near the breakwaters. The area also served as a nursery ground for 20 species of fishes both during and after construction and dredging activities. Colonization of the breakwaters by periphyton, primarily a green alga (Cladophora glomerata), diatoms (Gomphonema parvulum), and a bluegreen alga (Oscillatoria tenuis), and by macrozoobenthos, primarily worms (Oligochaeta), amphipods (Gammarus spp.), and midge larvae (Chironomidae), was rapid and extensive, indicating that the breakwaters provided new, favorable habitat for primary and secondary producer organisms. Marked adverse changes in water quality, especially reduced dissolved oxygen concentrations (25 mg/l), occurred around the entrance to West Harbor in 1983 following cessation of construction and dredging activities. These water quality changes, however, could not be ascribed with certainty to construction and dredging activities at West Harbor. Construction of additional breakwaters in the study area at that time by the State of Ohio served to confound determination of the responsible causal factors.

  8. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Laboratory Techniques for Evaluating Effectiveness of Sealing Voids in Rubble-Mound Breakwaters and Jetties with Grouts and Concretes

    DTIC Science & Technology

    1990-03-01

    environmental effects of sealants. c. An initial laboratory assessment of the acute toxicity of sealants using Daphnia magna . The Daphnia should be exposed...Experiment Station, Vicksburg, MS. Tatem, H. E. 1988. "Use of Daphnia magna and Mysidopsis almyra to Assess Sediment Toxicity," Proceedings. Water...rubble-mound physical model at a scale sufficiently large so that deviations from similitude would be negligible; (b) preparation and injection into the

  9. Point Judith, Rhode Island, Breakwater Risk Assessment

    DTIC Science & Technology

    2015-08-01

    commercial harbor, and a sandy , recreational shoreline. The Main breakwater is presently in a severely damaged state, and its functional efficiency...rescue operations, a commercial harbor, and a sandy , recreational shoreline. The three breakwaters consist of the offshore Main breakwater and two... shore - connected breakwaters, all built as conventional multilayered rubble mound structures. The breakwaters have been rehabilitated a number of times

  10. Model test research of breakwater core material influence on wave propagation

    NASA Astrophysics Data System (ADS)

    Wang, Deng-ting; Sun, Tian-ting; Chen, Wei-qiu; Zhu, Jia-ling

    2016-10-01

    The interaction between waves and porous breakwater has an important theoretical significance and great application value of engineering. In this paper, the tests of the core material's influence in rubble mound breakwater on wave propagation are carried out. The relations among the transmitted wave height, incident wave element, and breakwater width are discussed. The calculation formula is obtained. The test results show that different core materials have obvious influence on wave propagation.

  11. Paleoenvironmental reconstruction of a downslope accretion history: From coralgal-coralline sponge rubble to mud mound deposits (Eocene, Ainsa Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, Marta; Reitner, Joachim

    2015-12-01

    In the Lutetian intraslope Ainsa sub-basin, small, sub-spherical, carbonate mud mounds occur associated with hemipelagic marls and mixed gravity flow deposits. The studied mud mounds consist of a mixture of allochthonous, parautochthonous and autochthonous components that show evidences of reworking, bioerosion, and accretion by different fossil assemblages at different growth stages. The crusts of microbial-lithistid sponges played an important role stabilizing the rubble of coralgal-coralline sponges and formed low-relief small benthic patches in a dominant marly soft slope environment. These accidental hard substrates turned into suitable initiation/nucleation sites for automicrite production (dense and peloidal automicrites) on which the small mud mounds dominated by opportunistic epi- and infaunal heterozoan assemblages grew. A detailed microfacies mapping and paleoenvironmental analysis reveals a multi-episodic downslope accretion history starred by demosponges (coralline and lithistid sponges), agariciid corals, calcareous red algae, putative microbial benthic communities and diverse sclerobionts from the upper slope to the middle slope. The analyzed mud mound microfacies are compared with similar fossil assemblages and growth fabrics described in many fossil mud mounds, and with recent deep-water fore reefs and cave environments.

  12. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Stability of Rubble-Mound Breakwater and Jetty Toes; Survey of Field Experience.

    DTIC Science & Technology

    1986-12-01

    the mouth of the Columbia River , Tillamook Bay, Yaquina Bay, Siuslaw River , Coos Bay, and Rogue River , the south jetties at Nehalem Bay and Umpqua ...13 South Pacific Division .......................................... 25 Southwestern Division...25 Lower Mississippi Valley Division................................. 29 South Atlantic Division

  13. Numerical study of breakwater failure due to tsunami-like undular bore impacts: The case of the port of Soma.

    NASA Astrophysics Data System (ADS)

    Martin-Medina, Manuel; Morichon, Denis; Abadie, Stephane; Le Roy, Sylvestre; Lemoine, Anne

    2017-04-01

    The Tohoku tsunami, that impacted the Japanese coast in 2011, caused great damages on many offshore vertical breakwaters ranging from the erosion of the rubble mound to the partial displacement or total collapse of caissons. The breakwater failure mechanisms were function of the tsunami wave types that vary along the Japanese coast according to the bathymetry features. The Iwate coast, characterized by deep water depths and steep slopes, was mainly impacted by tsunami overflow leading in particular to the failure of the world's deepest breakwater of Kamaishi. In the shallow waters of the Sendai bay, observations showed that breakwaters protecting harbor entrances were impacted by short waves train resembling to undular bore. This work aims to investigate this latter type of tsunami wave impacts that are less reported in the literature. We chose to focus on the highly damaged offshore breakwater of Soma, located in the south part of the Sendai bay. The hydrodynamics conditions during the tsunami impact are investigated using the VARANS Thetis code (Desombre et al., 2012), which allows to simulate both the free surface flow and the flow inside the rubble mound simulated by a porous medium. The model is forced at the offshore boundaries by the Funwave Boussinesq code that describes the transformation of the tsunami waves from the source to the generation of undular bores in shallow waters. The study includes the computation of forces acting on the caissons. We discuss the relevance of describing the hydrodynamics at the short wave scale to assess breakwater stability in the course of tsunami-like undular bore impact. References Desombre, J., Morichon, D., & Mory, M. (2012). SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE. Coastal Engineering Proceedings, 1(33), 56.

  14. Environmental Impact Research Program. Ecological Effects of Rubble-Mound Breakwater Construction and Channel Dredging at West Harbor, Ohio (Western Lake Erie).

    DTIC Science & Technology

    1985-09-01

    identified to the lowest possible taxonomic level, and enumerated. Colonial bryozoa were recorded as present or absent. For biomass determinations...Sphaerium spp. 0.04 Other 0.04 100. 00* * Colonial Bryozoa were present but were not enumerated. ** Taxonomy follows Burch (1975). 1 Total may not be...Pelecypoda Piaidiun spp. * Sphaerium spp. * Other (Unionidae) * Total 100.0 * Bryozoa were present but were not enumerated. **Less than 0.01 percent

  15. 14. View showing junction of arrowhead breakwater with West Breakwater ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View showing junction of arrowhead breakwater with West Breakwater at Harbor entrance At left is automatically controlled lighthouse. - Cleveland Breakwater at Cleveland Harbor, Cleveland, Cuyahoga County, OH

  16. Rubble around Jupiter

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    NASA's Jet Propulsion Laboratory has announced that Amalthea, a 270-km-long, potato-shaped inner moon of Jupiter, "apparently is a loosely packed pile of rubble," with empty space where the rubble does not fit well together.This is among the new findings about the moon announced by JPL astronomer John Anderson and his colleagues on 9 December at the AGU Fall Meeting in San Francisco.

  17. Condition and Performance Rating Procedures for Rubble Breakwaters and Jetties

    DTIC Science & Technology

    1998-11-01

    structures. With parallel jetties, one jetty may protect the inner side of the other jetty. For example, at the Umpqua River in Oregon, the south ...of strong currents that flow through tidal inlets, harbor entrances, or the mouths of major rivers . Usually constructed in pairs, jetties serve both...harbor structures could impede the passage of ice floes if a major stream or river discharges into the harbor; in severe cases, ice jam flooding could

  18. Detached Breakwaters for Shore Protection.

    DTIC Science & Technology

    1986-01-01

    Presque Isle , Pennsylvania . . . 13 6Detached breakwater at Venice, California .. ............. 15& 7 Shoreline response to...at Presque Isle , Pennsylvania .. ...... 24 *13 Breakwater project at Colonial Beach , Virginia. ........... 27 14 Small recreational beach project at...in Pope and Rowen (1983). Presque Isle , Pennsylvania 23. At Presque Isle on Lake Erie , a segmented system of over 50 de- tached breakwaters is

  19. When Rubble Piles Collide...

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.; Leinhardt, Z. M.; Quinn, T.

    1999-09-01

    There is increasing evidence that many km-sized bodies in the Solar System may be rubble piles, gravitationally bound collections of solid material (Richardson, Bottke, & Love 1998, Icarus 134, 47). If true, then collisions may occur in free space between rubble piles. Here we present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and may give insight into catastrophic disruption scaling laws. We use a direct numerical method (Richardson, Quinn, Stadel, & Lake 1999, Icarus, in press) to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact speed and angle, spin, mass ratio, and dissipation parameter. Speeds are kept low so that the maximum strain on the component material does not exceed the crushing strength, appropriate for dynamically cool systems such as the primordial disk during early planet formation. We compare our results with analytic estimates, laboratory experiments, hydrocode simulations, and stellar system collision models. We find that net accretion dominates the outcomes in head-on, slow encounters while net erosion dominates for off-axis, fast encounters. The dependence on impact angle is almost equally as important as the dependence on impact speed. Off-axis encounters can result in fast-spinning elongated remnants or contact binaries while fast encounters result in smaller fragments overall. Reaccumulation of debris escaping from the remnant can occur, leading to the formation of smaller rubble piles. Less than 2% of the system mass ends up in orbit around the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for

  20. When Rubble Piles Collide...

    NASA Astrophysics Data System (ADS)

    Leinhardt, Z. M.; Richardson, D. C.; Quinn, T.

    1999-01-01

    There is increasing evidence that many or most km-sized bodies in the Solar System may be rubble piles, that is, gravitationally bound aggregates of material susceptible to disruption or distortion by planetary tides (Richardson, Bottke, & Love 1998, Icarus 134, 47). If this is true, then collisions may occur in free space between rubble piles. Here we present preliminary results from a project to map the parameter space of rubble-pile collisions. The results will assist in parameterization of collision outcomes for simulations of Solar System formation and may give insight into scaling laws for catastrophic disruption. We use a direct numerical method (Richardson, Quinn, Stadel, & Lake 1998, submitted) to evolve the particle positions and velocities under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on the impact speed and impact parameter, as well as the spin and size of the colliding bodies. We use both spheroidal and ellipsoidal shapes, the former as a control and the latter as a more representative model of real bodies. Speeds are kept low so that the maximum strain on the component material does not exceed the crushing strength. This is appropriate for dynamically cool systems, such as in the primordial disk during the early stage of planet formation or possibly in the present-day classical Kuiper Belt. We compare our results to analytic estimates and to stellar system collision models. Other parameters, such as the coefficient of restitution (dissipation), bulk density, and particle resolution will be investigated systematically in future work.

  1. Kaumalapau Harbor, Hawaii, Breakwater Repair

    DTIC Science & Technology

    2012-05-01

    state includes a global wave model, Hawaii wave model, and separate nearshore domains for Kauai , Oahu, Maui, and the Big Island (The Maui domain...ER D C/ CH L TR -1 2 -7 Monitoring Completed Navigation Projects Program Kaumalapau Harbor, Hawaii , Breakwater Repair C oa st al a n d...Monitoring Completed Navigation Projects Program ERDC/CHL TR-12-7 May 2012 Kaumalapau Harbor, Hawaii , Breakwater Repair Jessica H. Podoski and

  2. Late Mississippian lime mud mounds, Pitkin Formation, northern Arkansas

    SciTech Connect

    Manger, W.L.; Ar, V.P.; Webb, G.E.

    1984-04-01

    Carbonates deposited under shallow, open shelf conditions during the Late Mississippian in northern Arkansas exhibit numerous discrete to coalescing lime mud mounds up to 20 m (65 ft) high and tens of meters in diameter. The mounds are composed of a carbonate mud core, typically with fenestrate texture, entrapped by a loosely organized framework dominated by cystoporate bryozoans and rugose corals in the lower part, and by blue-green algae and cryptostomous bryozoans in the upper part. Disarticulated crinozoan detritus is common throughout the core, suggesting that these organisms also contributed to entrapment of lime mud. During deposition, the mud core was indurated enough to support and preserve vertical burrows. Also, rubble of core mudstone is found on the flanks of some mounds, suggesting some erosion. Intermound lithology is a shoaling-upward sequence dominated by oolitic and bioclastic grainstones and packstones. Shale is also present in minor amounts. The Pitkin mounds, interbedded with these intermound sequences, developed contemporaneously with them. Depositional relief was probably less than 3 m (10 ft). The mounds expanded laterally during periods of quieter water; their growth was impeded during times of higher energy. Contacts of the mound and intermound lithologic characteristics are sharp, truncating surfaces. Mound deposition ended with the onset of high energy conditions throughout the region.

  3. Band of Rubble

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's animation illustrates a massive asteroid belt in orbit around a star the same age and size as our Sun. Evidence for this possible belt was discovered by NASA's Spitzer Space Telescope when it spotted warm dust around the star, presumably from asteroids smashing together.

    The view starts from outside the belt, where planets like the one shown here might possibly reside, then moves into to the dusty belt itself. A collision between two asteroids is depicted near the end of the movie. Collisions like this replenish the dust in the asteroid belt, making it detectable to Spitzer.

    The alien belt circles a faint, nearby star called HD 69830 located 41 light-years away in the constellation Puppis. Compared to our own solar system's asteroid belt, this one is larger and closer to its star - it is 25 times as massive, and lies just inside an orbit equivalent to that of Venus. Our asteroid belt circles between the orbits of Mars and Jupiter.

    Because Jupiter acts as an outer wall to our asteroid belt, shepherding its debris into a series of bands, it is possible that an unseen planet is likewise marshalling this belt's rubble. Previous observations using the radial velocity technique did not locate any large gas giant planets, indicating that any planets present in this system would have to be the size of Saturn or smaller.

    Asteroids are chunks of rock from 'failed' planets, which never managed to coalesce into full-sized planets. Asteroid belts can be thought of as construction sites that accompany the building of rocky planets.

  4. Band of Rubble

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's animation illustrates a massive asteroid belt in orbit around a star the same age and size as our Sun. Evidence for this possible belt was discovered by NASA's Spitzer Space Telescope when it spotted warm dust around the star, presumably from asteroids smashing together.

    The view starts from outside the belt, where planets like the one shown here might possibly reside, then moves into to the dusty belt itself. A collision between two asteroids is depicted near the end of the movie. Collisions like this replenish the dust in the asteroid belt, making it detectable to Spitzer.

    The alien belt circles a faint, nearby star called HD 69830 located 41 light-years away in the constellation Puppis. Compared to our own solar system's asteroid belt, this one is larger and closer to its star - it is 25 times as massive, and lies just inside an orbit equivalent to that of Venus. Our asteroid belt circles between the orbits of Mars and Jupiter.

    Because Jupiter acts as an outer wall to our asteroid belt, shepherding its debris into a series of bands, it is possible that an unseen planet is likewise marshalling this belt's rubble. Previous observations using the radial velocity technique did not locate any large gas giant planets, indicating that any planets present in this system would have to be the size of Saturn or smaller.

    Asteroids are chunks of rock from 'failed' planets, which never managed to coalesce into full-sized planets. Asteroid belts can be thought of as construction sites that accompany the building of rocky planets.

  5. Are some meteoroids rubble piles?

    NASA Astrophysics Data System (ADS)

    Borovička, Jiri

    2015-08-01

    It is generally accepted that some asteroids are rubble piles, i.e. strengthless aggregates of boulders of various sizes held together only by mutual gravity. This is particularly true for asteroids in the size range from ~ 200 m to 10 km, whose rotations are in almost all cases slower that the surface disruption barrier, at which the centrifugal force would exceed the gravitational force. On the other hand, smaller asteroids often rotate rapidly.Recently, Sánchez and Scheeres (2014, Meteorit. Planet. Sci. 49, 788) proposed that rubble piles may have some cohesive strength provided by van der Waals forces between small grains. They estimate the strength to be about 25 Pa. Such a low strength would be sufficient to hold some rapidly rotating small asteroids together against centrifugal force, even if they were rubble piles. In particular, Sánchez and Scheeres (2014) argued that asteroid 2008 TC3 was a rubble pile. That asteroid entered the Earth’s atmosphere and produced meteorites Almahata Sitta.Asteroids and meteoroids entering the atmosphere are subject to dynamic pressure p = ρv2, where ρ is atmospheric density and v is velocity. It can be expected that they break-up when the dynamic pressure exceeds their strength. Fragmentation of meteoroids is indeed common. For asteroidal bodies it usually occurs at pressures 0.1 - 10 MPa (Popova et al. 2011, Meteorit. Planet. Sci. 46, 1525). For example, the main break-up of 2008 TC3 occurred at 0.9 MPa. These pressures are lower than the strength of solid meteoric rocks but dramatically exceed the expected strength for rubble piles. They best correspond to fractured stones. Nevertheless, the first break-up of rubble piles can be expected at heights above 100 km, earlier than the intensive evaporation starts and the fireball begins to be visible. Is it possible that some meteoroids were broken-up already at the beginning of observation? I will discuss this question generally and also for several specific cases of

  6. Thermal Conductivity of Rubble Piles

    NASA Astrophysics Data System (ADS)

    Luan, Jing; Goldreich, Peter

    2015-11-01

    Rubble piles are a common feature of solar system bodies. They are composed of monolithic elements of ice or rock bound by gravity. Voids occupy a significant fraction of the volume of a rubble pile. They can exist up to pressure P≈ {ε }Yμ , where {ε }Y is the monolithic material's yield strain and μ its rigidity. At low P, contacts between neighboring elements are confined to a small fraction of their surface areas. As a result, the effective thermal conductivity of a rubble pile, {k}{con}≈ k{(P/({ε }Yμ ))}1/2, can be orders of magnitude smaller than the thermal conductivity of its monolithic elements, k. In a fluid-free environment, only radiation can transfer energy across voids. It contributes an additional component, {k}{rad}=16{\\ell }σ {T}3/3, to the total effective conductivity, {k}{eff}={k}{con}+{k}{rad}. Here ℓ, the inverse of the opacity per unit volume, is of the order of the size of the elements, and voids. An important distinction between {k}{con} and {k}{rad} is that the former is independent of the size of the elements, whereas the latter is proportional to it. Our expression for {k}{eff} provides a good fit to the depth dependence of thermal conductivity in the top 140 cm of the lunar regolith. It also offers a good starting point for detailed modeling of thermal inertias for asteroids and satellites. Measurement of the response of surface temperature to variable insolation is a valuable diagnostic of a regolith. There is an opportunity for careful experiments under controlled laboratory conditions to test models of thermal conductivity such as the one we outline.

  7. An Unusual Mound

    NASA Image and Video Library

    2014-03-26

    With its cracked, blistery appearance, this mound near the center of a very large, over 5-kilometer diameter mid-latitude crater poses an interesting question: how did this form? This image is from NASA Mars Reconnaissance Orbiter.

  8. Case History of Breakwater/Jetty Repair: Chemical Grout Sealing of Palm Beach Harbor South Jetty, Florida

    DTIC Science & Technology

    1987-06-01

    liquid or suspension into the voids of a soil or rock mass or into voids between these materials and an existing structure (Engineer Manual 1110-Z...3506). The injected grout must eventually form either a gel or a solid within the treated voids. The primary purposes of pressure grouting a soil or...chemical grouts under wave conditions where voids such as those found in rubble-mound structures exist. Chemical grouts for application to soil and

  9. Stair-stepped Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-429, 22 July 2003

    This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a stair-stepped mound of sedimentary rock (right of center) on the floor of a large impact crater in western Arabia Terra near 11.0oN, 4.4oW. Sedimentary rock outcrops are common in the craters of this region. The repeated thickness and uniformity of the layers that make up this mound suggest that their depositional environment was one in which cyclic or episodic events occurred over some period of time. The sediments might have been deposited in a lake, or they may have settled directly out of the atmosphere. Most of the layered material was later eroded away, leaving this circular mound and the other nearby mesas and knobs. The image is illuminated by sunlight from the lower left.

  10. Modern carbonate mound systems

    NASA Astrophysics Data System (ADS)

    Henriet, J. P.; Dullo, C.

    2003-04-01

    Carbonate mounds are prominent features throughout the geological record. In many hydrocarbon provinces, they form prime reservoir structures. But recent investigations have increasingly reported occurrences of large mound clusters at the surface of the seabed, or buried at shallow depth on modern ocean margins, and in particular in basins rich in hydrocarbons. Such exciting new observations along the West-European margin are promising for elucidating the setting and environment of modern carbonate mounds, but at the same time they confront us with puzzling or sometimes contradictory observations in the quest for their genesis. Spectacular cold-water coral communities have colonized such mounds, but convincing arguments for recognizing them as prime builders are still lacking. The geological record provides ample evidence of microbial mediation in mound build-up and stabilisation, but as long as mound drilling is lacking, we have no opportunity to verify the role of such processes and identify the key actors in the earliest stage of onset and development of modern mounds. Some evidence from the past record and from present very-high resolution observations in the shallow seabed suggest an initial control by fluid venting, and fluid migration pathways have been imaged or are tentatively reconstructed by modelling in the concerned basins, but the ultimate link in the shallow subsurface seems still to elude a large part of our efforts. Surface sampling and analyses of both corals and surface sediments have largely failed in giving any conclusive evidence of present-day or recent venting in the considered basins. But on the other hand, applying rigourously the interpretational keys derived from e.g. Porcupine Seabight settings off NW Ireland on brand new prospective settings e.g. on the Moroccan margin have resulted in the discovery of totally new mound settings, in the middle of a field of giant, active mud volcanoes. Keys are apparently working, but we still do not

  11. Mound Supports Galileo

    SciTech Connect

    Monsanto Research Corporation

    1986-01-01

    This video describes the invention of Radioisotope Thermoelectric Generators (RTGs) at Mound Laboratory, and radioisotope heat source production from 1 watt-thermal to 2400 watts-thermal. RTGs have been used in many space vehicles, but the RTG built for the Galileo mission to orbit Jupiter is the largest. This RTG unit will produce 4400 watts-thermal and convert to 300 watts-electric. The plutonium-238 heat source assembly and test at Mound is described. The RTGs are tested under simulated mission conditions. The RTG leakage radiation is carefully measured for background compensation for on-board radiation monitoring instruments.

  12. Gale Crater Mound

    NASA Image and Video Library

    2003-03-27

    The eroded, layered deposit in this NASA Mars Odyssey image of Gale Crater is a mound of material rising 3 km about 2 miles above the crater floor. It has been sculpted by wind and possibly water to produce the dramatic landforms seen today.

  13. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    SciTech Connect

    Palmer, E.

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  14. Coastal Response, a system of detached breakwaters

    NASA Astrophysics Data System (ADS)

    García Ortiz, Isabelo; Negro Valdecantos, Vicente; Santos López, Jose; Esteban, María Dolores

    2017-04-01

    The coastline's sedimentary response in the form of a tombolo or semi-tombolo (salient) as a result of the construction of detached breakwaters is an aspect that should be known in the design phase so that these marine structures may be properly designed. In achieving an ecological, social and economic value, such areas must also be properly managed. All design methods in existence since Dean (1978) are mainly based on hypotheses formulated from geometric studies on existing formations. No relationship at all is established with climate and littoral dynamics typical of the location (only Suh and Darlymple (1987) and the Japanese Ministry of Construction (1986) present relationships depending on wave variables). Neither has the influence on systems with more than two breakwaters been studied. These methods are not fully adapted to the cases existing on the Spanish Mediterranean littoral. The lines of investigation as proposed by L. Bricio and V. Negro (2010) were continued with for this study. These researchers developed a method for dimensioning isolated, detached breakwaters and their semi-tombolo or tombolo associated formations using all the characteristics of the site (energy, geometric and structural), specific climate and geomorphology and littoral dynamics' characteristics. This methodology is currently acknowledged and accepted in works undertaken on the Spanish Mediterranean littoral. A linear regression was obtained in the investigation undertaken on the 18 detached breakwater systems along the whole of the 1670 km of the Spanish Mediterranean littoral using the proposals made by L. Bricio and V. Negro. The adjustment of R2 ≥ 0.90 was used for the sandy, tombolo formations behind all the detached breakwater systems between several non-dimensional monomials displaying the most representative characteristics of the site. L/H12 + (2ṡB)/G =12,15ṡ(X/Xc)+7,3231 X: Distance of breakwaters from coastline Xc: Distance from coastline where the closure depth

  15. 15. Photo copy of drawing, June 2, 1985, SAYBROOK BREAKWATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photo copy of drawing, June 2, 1985, SAYBROOK BREAKWATER LIGHT, SAYBROOK, CONNECTICUT, MODERNIZATION 1985: REMOVALS. U.S. Coast Guard Civil Engineering Unit, Warwick, RI - Saybrook Breakwater Light, South tip of west end of Saybrook Breakwater, Old Saybrook, Middlesex County, CT

  16. Coastline Protection by a Submerged Breakwater

    NASA Astrophysics Data System (ADS)

    Valentine, B. D.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Coastal communities are in danger of the impact caused by storm surge and waves. Storm surge brings the water level to a higher elevation and farther inland. This rise in water level increases the chance of a higher number and larger set of waves approaching shorelines, and it can potentially devastate the coastal infrastructure. In this study, we evaluate the performance of a submerged, horizontal breakwater located near shore. Unlike other types of breakwaters, such as the ones that extend to the surface, either fixed or floating, a submerged horizontal breakwater does not create any visual distraction or limit most of the recreational and commercial activities in the nearshore areas. The Level I Green-Naghdi (GN) nonlinear water wave equations are utilized here to study the wave transformation over a submerged breakwater that is located in shallow water. The GN theory is based on the theory of directed fluid sheets and assumes an incompressible and inviscid fluid; no assumption on the rotationality of the flow is required. In this approach, the nonlinear boundary conditions and the averaged conservation laws are satisfied exactly. The reflection and transmission coefficients due to nonlinear shallow water waves are determined implementing two approaches which use Goda's (1976) and Grue's (1992) methods. The results are compared with the existing laboratory experiments, and close agreement is observed overall. Preliminary results of the performance of the breakwater on dissipating storm waves during Hurricane Ike (2008), approaching the shore of Galveston, Texas, are presented.

  17. The Mud-Laden Mound.

    ERIC Educational Resources Information Center

    Sams, Larry M.

    1990-01-01

    A family's trip to Winterville Indian Mounds State Park in Mississippi is described, focusing on the frustrations of a gifted six-year old who fell in the muck of the Great Temple Mound, and on the joys of seeing spectacular displays of ancient earthworks. (JDD)

  18. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings

    NASA Astrophysics Data System (ADS)

    Kazanidis, Georgios; Henry, Lea-Anne; Roberts, J. Murray; Witte, Ursula F. M.

    2016-03-01

    Cold-water coral reefs (CWRs) in the northeast Atlantic harbor diverse sponge communities. Knowledge of deep-sea sponge ecology is limited and this leaves us with a fragmented understanding of the ecological roles that sponges play in CWR ecosystems. We present the first study of faunal biodiversity associated with the massive demosponge Spongosorites coralliophaga (Stephens, 1915) that typically colonizes coral debris fields of CWRs. Our study focused on the sessile fauna inhabiting sponges mixed with coral rubble at two contrasting settings in the northeast Atlantic: the shallow inshore (120-190 m water depth) Mingulay Reef Complex (MRC) and the deep offshore (500-1200 m) Logachev Mound (LM) coral province. MRC is dominated by the scleractinian Lophelia pertusa, while LM is dominated by L. pertusa and Madrepora oculata. Nine sponge-coral rubble associations were collected from MRC and four from LM. Measurements of abundance, species richness, diversity, evenness, dry biomass, and composition of sessile fauna on sponge and coral rubble microhabitats were undertaken. Differences in community composition between the two regions were mainly a response to changes in fauna with depth. Fauna composition was also different between sponge and coral rubble within each region. Infauna constituted a minor component of the sponge-associated fauna in MRC but had a higher contribution in LM. Sponge and coral rubble sessile fauna in both regions was mainly composed of cnidarians and molluscs, similarly to some previous studies. Sponges' outer surfaces at MRC were colonized by a species-rich community with high abundance and biomass suggesting that S. coralliophaga at MRC acts as a settlement surface for various organisms but such a role is not the case at LM. This difference in the role of S. coralliophaga as a biological structure is probably related to differences in fauna composition with depth, bottom current speed, and the quantity/quality of food supplied to the benthos.

  19. Gale Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The eroded, layered deposit in Gale Crater is a mound of material rising 3 km above the crater floor. It has been sculpted by wind and possibly water to produce the dramatic landforms seen today. The origin of the sedimentary material that composes the mound remains a contested issue: was it produced from sedimentation in an ancient crater lake or by airfall onto dry land?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -5.1, Longitude 137.5 East (222.5 West). 19 meter/pixel resolution.

  20. Integrated research on the Pen Duick cold-water coral mounds: the MiCROSYSTEMS approach

    NASA Astrophysics Data System (ADS)

    van Rooij, David; de Mol, Lies; Blamart, Dominique; Mienis, Furu; Wehrmann, Laura M.; Barbieri, Roberto; Maignien, Lois; Templer, Stefanie P.; de Haas, Henk; Henriet, Jean-Pierre

    2010-05-01

    The ESF EuroDIVERSITY MiCROSYSTEMS project aimed to turn the cold-water coral (CWC) mounds on the Pen Duick Escarpment (PDE) in the Gulf of Cadiz into a natural laboratory, exploring this highly complex biotope and to characterize its biodiversity. A common point of discussion with all other CWC mound provinces, surpassing its broad range of regional and morphological variability, concerns the driving forces regarding the initiation of these complex deep-water systems. Both oceanographic and geological processes have been proposed to play a significant role in the mound nucleation, growth and decline. During IODP Expedition 307, the importance of biogeochemical processes was already elucidated. Here, we present the preliminary results of the MD169 campaign as an integrated case study of three PDE CWC mounds: Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and seafloor, no actual living reef has been observed during the many ROV surveys. This multidisciplinary study aims to present a comprehensive and holistic view on the local dynamic geological and oceanographic environment. Coring data suggests (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath PDE. Its dominant morphology has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for CWC mound nucleation near the top of PDE is offered through seepage-related carbonate crusts which might offer elevated colonization positions. Present-day seabed observations also suggested a possible important role of open coral rubble frameworks in the mound building process. These graveyards not only act as sediment trap

  1. Hydrodynamic characteristics of three rows of vertical slotted wall breakwaters

    NASA Astrophysics Data System (ADS)

    Alsaydalani, Majed O.; Saif, Mohammed A. N.; Helal, Medhat M.

    2017-09-01

    In this study, we examine the hydrodynamic characteristics of three rows of vertical slotted wall breakwaters in which the front and middle walls are permeable and partially immersed in a water channel of constant depth, whereas the third wall is impermeable. The wave-structure interaction and flow behavior of this type of breakwater arrangement are complicated and must be analyzed before breakwaters can be appropriately designed. To study the hydrodynamic breakwater performance, we developed a mathematical model based on the eigenfunction expansion method and a least squares technique for predicting wave interaction with three rows of vertical slotted wall breakwaters. We theoretically examined the wave transmission, reflection, energy loss, wave runup, and wave force under normal regular waves. Comparisons with experimental measurements show that the mathematical model results adequately reproduce most of the important features. The results of this investigation provide a better understanding of the hydrodynamic performance of triple-row vertical slotted wall breakwaters.

  2. Implementation of Structures in the CMS:Part 1, Rubble Mound

    DTIC Science & Technology

    2013-08-01

    System ( CMS ) operated through the Surface-water Modeling System (SMS). A coastal application at Dana Point Harbor, California is provided to illustrate...MODELING SYSTEM : The CMS , developed by the Coastal Inlets Research Program (CIRP), is an integrated suite of numerical models for simulating water...ERDC/CHL CHETN-IV-93 August 2013 Approved for public release; distribution is unlimited. Implementation of Structures in the CMS : Part I

  3. Lithifying Microbes Associated to Coral Rubbles

    NASA Astrophysics Data System (ADS)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  4. The sediment composition and predictive mapping of facies on the Propeller Mound—A cold-water coral mound (Porcupine Seabight, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Heindel, Katrin; Titschack, Jürgen; Dorschel, Boris; Huvenne, Veerle A. I.; Freiwald, André

    2010-10-01

    Here we provide a detailed qualitative and quantitative insight on recent sediment composition and facies distribution of a cold-water coral (CWC) mound using the example of the Propeller Mound on the Irish continental margin (Hovland Mound Province, Porcupine Seabight). Five facies types on Propeller Mound are defined: (1) living coral framework, (2) coral rubble, (3) dropstone, (4) hardground, representing the on-mound facies, and (5) hemipelagic sediment facies, which describes the off-mound area. This facies definition is based on already published video-data recorded by Remotely Operated Vehicle (ROV), photo-data of gravity cores, box cores, and dredges from sediment surfaces as well as on the composition of the sediment fraction coarser than 125 μm, which has been analyzed on five selected box cores. Sediment compositions of the living coral framework and coral rubble facies are rather similar. Both sediment types are mainly produced by corals (34 and 35 wt%, respectively), planktonic foraminifers (22 and 29 wt%, respectively), benthic foraminifers (both 7 wt%), and molluscs (21 and 10 wt%, respectively), whereas the living coral framework characteristically features additional brachiopods (6 wt%). Hardgrounds are well-lithified coral rudstones rich in coral fragments (>30 surf%), foraminifers, echinoderms, and bivalves. The dropstone facies and the hemipelagic sediment typically carry high amounts of lithoclasts (36 and 53 wt%, respectively) and planktonic foraminifers (35 and 32 wt%, respectively); however, their faunal diversity is low compared with the coral-dominated facies (12 and <2 wt% coral fragments, 7 and 6 wt% benthic foraminifers, and 4 and 0 wt% balanids). Using the maximum likelihood algorithm within ArcGIS 9.2, spatial prediction maps of the previously described mound facies are calculated over Propeller Mound and are based on mound morphology parameters, ground-truthed with the sedimentary and faunal information from box cores, photographs

  5. Sulphate release from building rubble of WWII

    NASA Astrophysics Data System (ADS)

    Mekiffer, Beate; Wessolek, Gerd; Vogeler, Iris; Brettholle, Mareike

    2010-05-01

    Sulphate concentration in the upper aquifer of Berlin, Germany is increasing continuously since 40 years. In downtown Berlin they particular exceed the precaution values of drinking water ordinance. We assume that the main source of sulphate in the groundwater is technogenic material, which is part of building rubble from WW II bombing. Nearly 115 Mio t of this material have been deposited in Berlin. Our aim is, ­ to identify rubble components which contain S and to quantify the S-pool of this material ­ to identify factors, influencing the release of SO4 and ­ to predict sulphate release from building rubble of WW II We analyzed total and water soluble S of various components and the fine earth fraction of the soils containing the rubble. We investigated the influence of physical and chemical parameters on the release of SO4 using unsaturated column experiments (With an automatic percolation system). Thereby, the particle size, the flow rate and the pH of the solution has been varied. Among the components, slag shows the highest total S-contents of up to 0,7% . Lignite Coal-ashes from Lusatia, Germany are also rich in SO4. The total S of brick varies between 0,01% and 0,3%. Mortar shows S-Values between 0,08 and 0,12%. In 75% of all samples show total S of less than 0,14%. There was no significant correlation between total S-amount and water-soluble SO4, which is caused by different chemical compounds in the samples. In the percolation experiments technogenic components with grain size <2mm cause a higher density, resulting in a lower percolation velocity. The concentration of ions in the according leachate is higher than in the leachate of coarse fraction (2 - 20mm). Gypsum-rich material (10%) released constant SO4 -concentration over the whole experiment. Slag-rich material released high initial SO4-concentrations which then fastly decreased. We concluded, that the kind of technogenic component and its grain size strongly influences the release of SO4 to the

  6. Fractured Mounds in Elysium Planitia

    NASA Image and Video Library

    2010-10-15

    This observation from NASA Mars Reconnaissance Orbiter shows fractured mounds on the southern edge of Elysium Planitia. The fractures that crisscross their surfaces are probably composed of solidified lava.

  7. Seismic features of Winnipegosis mounds in Saskatchewan

    SciTech Connect

    Gendzwill, D.J.

    1988-07-01

    The Winnipegosis Formation of southern Saskatchewan is characterized by reefs or reeflike mounds in its upper member. Several characteristic features of the mounds permit their identification from seismic-reflection data. These features include reflections from the flanks of the mound, a change in the reflection continuity in the middle and base of the mound, a velocity pullup under the mound, and subsidence of strata over the mound. Dissolution of the salt which surrounds the mounds sometimes occurs, resulting in a drape structure. Some or all of these features may be present at the correct seismic stratigraphic level for Winnipegosis mounds, depending on the local conditions. Subsidence of strata over the mounds indicates compaction and porosity loss from the original mound or possibly the degree of dolomitization or pressure dissolution. Salt-removal features over or adjacent to the mounds indicate fluid movements. Approximate ages can be estimated from stratigraphic thinning and thickening relationships above such features. Complications in identifying Winnipegosis mounds may arise from thin-bed effects if the mounds are not very thick compared to a seismic wavelength. Confusion may also arise from anhydrite, which may encase the mounds or which may form a thick horizontal layer at the tops of the mounds, causing an interfering signal.

  8. Bizarre Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 June 2003

    The height of the interior mound of sediment inside this crater exceeds the crater rim heights by 900 meters (3,000 ft). This is a confounding problem. How does all this material get inside this crater and actually rise higher than its holding chamber? What is this material? Where did it come from? Why is it still here? It is exactly these kinds of enigmas that makes Mars so very interesting.

    Image information: VIS instrument. Latitude 12.2, Longitude 26.3 East (333.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Load transmission through ice rubble on the Gulf Molikpaq

    SciTech Connect

    Timco, G.W. )

    1993-11-01

    A test program has been performed in an ice modeling basin to measure the load apportioning through ice rubble around Gulf's Molikpaq, a steel caisson offshore structure. A model of the Molikpaq and its supporting submarine berm was built at a 1:75 scale. The Molikpaq and berm were instrumented independently, so the load apportioning could be determined. Thirty-six ice-loading events, including rubble formation from level ice as well as impacts through the rubble by extreme ice features, were analyzed. The results of the tests show that the ice rubble can deform and transmit load to the structure at force levels well below those predicted by a rigid-body analysis of the rubble.

  10. Lower Portion of Mound Inside Gale Crater

    NASA Image and Video Library

    2011-07-22

    This oblique view of Gale crater shows the landing site and the mound of layered rocks that NASA Mars Science Laboratory will investigate. The landing site is in the smooth area in front of the mound.

  11. Threat from Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2015-12-01

    While chondrites are the most common meteoroids to enter our atmosphere, they represent a small fraction of recovered falls. Most stony meteorites disrupt during entry, consumed by ablation or lost by weathering; in contrast, small iron meteorites (<10 m) disrupt and disperse to create strewnfields due to interacting atmospheric bow shocks [e.g., Passey and Melosh, 1980]. The Carancas impact crater in 2007, however, challenged our understanding [Tancredi et al., 2008]: (a) first eyewitness of a crater formed by a stony meteorite; (b) undetected thermal entry at altitude; (c) no accessory meteorite falls; (d) "explosion" (not low-speed compression) crater; (e) infrasound/seismic data indicating a high-speed entry/collision; and (f) petrologic evidence for shock deformation/melting in breccias indicative of speeds >4 km/s. Although a monolithic chondrite (~ 10 m across) might allow surviving entry, most objects of this size contain multiple flaws, ensuring atmospheric disruption. Hence, an alternative "needle model" was proposed wherein a small rubble-pile object gradually re-shaped itself during entry [Schultz, 2008], a process that minimizes drag, thermal signatures of entry, and catastrophic disruption. First proposed to account for smaller than expected craters on Venus [Schultz, 1992], such a process resembles subsequent Shoemaker-Levy entry models [Boslough and Crawford, 1997] that predicted much deeper entry than standard models. Laboratory experiments at the NASA Ames Vertical Gun Range simulated this process by breaking-up hypervelocity projectiles into a cloud of debris and tracking its path at near-full atmospheric pressure. The resulting cloud of fragments exhibited less deceleration than a solid sphere at the same speed. Moreover, shadowgraphs revealed constituent fragments "surfing" the pressure jump within the mach cone/column. Previous models proposed that crater-forming impacts must be >50-100 m in diameter in order to survive entry [Bland and

  12. Small asteroids - rubble piles or boulders?

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.

    2013-10-01

    The asteroid rotation spin barrier at ~2.2 h period among asteroids 10 km > D > 200 m doesn’t prove all such asteroids are rubble piles, and the faster rotations among smaller asteroids doesn’t require monolithic strength, either. Only a very modest strength, perhaps no more than van der Waals force, might suffice to hold regolith together on a small super-fast rotator (Sanchez & Scheeres, 2013, arXif:1306.1622v1). The problem is that for a constant or only slowly varying strength with respect to diameter, the spin barrier becomes proportional to 1/D below the size where material strength is dominant, or perhaps a bit steeper if strength increases with decreasing D. What we observe in the distribution of asteroid spins versus diameter is that below D ~ 200 m, the spin barrier goes up at least ~D-3.5, if not abruptly. Models with constant or slowly varying strength fail to fit this observation, and the abrupt transition cannot be an observational selection effect: the void in the phase space of rotations would be among the easiest rotations to observe, e.g. the one conspicuous exception, 2001 OE84 (D ~ 0.7 km, P = 0.5 h) was easily and unambiguously measured (Pravec, et al. 2002, Proc. ACM 2002, ESA SP-500, 743-745). This abrupt transition is most easily explained as a real transition in material properties of asteroids in the size range ~200 m diameter, from “rubble pile” to “boulder”, although neither term may be fully descriptive of the actual structure. Two other lines of evidence suggest that this transition in properties is real: the dip in the size-frequency distribution of NEAs is maximum at ~150 m, suggesting that a transition to stronger material structure occurs about there, and we observe, e.g., Tunguska and the recent Chelyabinsk bolide, that bodies in the tens of meters size range entering the atmosphere behave more like solid rocks than rock piles (Boslough & Crawford 2008, Int. J. Imp. Eng. 35, 1441-1448). I encourage those doing computer

  13. Floating Breakwater Prototype Test Program: Seattle, Washington.

    DTIC Science & Technology

    1986-03-01

    however, several of the longitudinal pipes broke as a result of faulty welds , and the break- water had to be removed from the test site 6 months ahead...A poor weld between the two sections had finally failed because of a combination of corrosion and fatigue, allowing the .,,. two pipe sections to pull...breakwater should be redesigned. If a single 4-in.-diam by 40-in.-long keeper pipe were welded in place, the expensive 4-way cross coupler and 2-in. ID

  14. Proposal of honeycomb-based deployable breakwater

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Okabe, S.

    2016-04-01

    This paper describes development of a smart breakwater or river bank using honeycomb-like structure to be adaptive to change of water level. A designed cell is deformed using a tensile test machine, and the results show that the honeycomb cell can deploy up to double of is original height without plastic deformation and the deformation is reproducible. It is stacked up to twelve layers and similar performance can be found. In addition, a six-layer and double-row deployable model is prepared and it became clear that the model can change its height in proportion to the water height in the experimental range and successfully block the water.

  15. Crater Rim Layers, Rubble, and Gullies

    NASA Image and Video Library

    2017-08-07

    This observation from NASA's Mars Reconnaissance Orbiter shows a close view of the rim and upper wall of an impact crater on the Martian surface. The layers in enhanced color are exposed subsurface strata that are relatively resistant to erosion. Boulder-like rubble beyond the crater rim is scattered down the wall of the crater (down-slope is toward the lower left of the image). Another feature of interest to Mars scientists is a large gully roughly 100 meters across. These gullies may have formed when water from melted ice on the crater walls, or from groundwater within the walls, assisted in transporting eroding material downslope. https://photojournal.jpl.nasa.gov/catalog/PIA21870

  16. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand

  17. Earth melter with rubble walls and method of use

    DOEpatents

    Chapman, Chris C.

    1998-01-01

    The present invention is an improvement to the earth melter described and claimed in U.S. Pat. No. 5,443,618. The improvement is the use of rubble for retaining walls. More specifically, the retaining walls rest on ground level and extend above ground level piling rubble around a melt zone. A portion of the melter may be below grade wherein sidewalls are formed by the relatively undisturbed native soil or rock, and the rubble may be used as a backfill liner for the below grade sidewalls.

  18. Paleoenvironmental setting of Paleozoic mud mounds

    SciTech Connect

    Wanless, H.R. . Dept. Geological Sciences); Tedesco, L.P. )

    1992-01-01

    Paleozoic carbonate mud mounds formed above storm wave base, which in many settings was in moderate to extremely shallow water. This is concluded by a comparative analysis of sedimentary structures, fabrics and small scale sequences occurring in Mississippian and Pennsylvanian mounds and in modern mud mounds and Halimeda bioherms. Most small mounds studied contain a shallowing sequence that represents shallowing into the zone of daily agitation. The bulk of each mound sequence is detrital deposition of layered mudstones to wackestones in the mound core and packstones to grainstones on the flanks and shoal cap. If macroskeletal fauna and flora are present, an autochthonous skeletal packstone may occur in the upper portion of the shallowing sequence beneath the detrital grainstone cap. Burrow excavations and grainy tubular tempestite infillings partially to completely modify the primary depositional fabric of all of these facies. Larger mounds studied are a composite of several to numerous smaller mound depositional sequences. High vertical relief of some larger mounds may be more the result of continued accommodation space provided by subsidence/downfaulting than be deposition in extremely deep water. Although the biotic components of carbonate mounds vary greatly through the Paleozoic, the contained sedimentary structures, fabrics and fundamental depositional sequences remain very similar. This suggests a general similarity in the mechanism and depositional setting of mound formation.

  19. Microclimatic conditions of Lasius flavus ant mounds

    NASA Astrophysics Data System (ADS)

    Véle, Adam; Holuša, Jaroslav

    2017-05-01

    Like other organisms, ants require suitable microclimatic conditions for their development. Thus, ant species inhabiting colder climates build nest mounds that rise above the soil surface, presumably to obtain heating from solar radiation. Although some ant species construct mounds of organic materials, which generate substantial heat due to microbial metabolism, Lasius flavus mounds consists mostly of soil, not organic material. The use of artificial shading in the current study demonstrated that L. flavus depends on direct solar radiation to regulate the temperature in its mound-like nests. Temperatures were much lower in shaded mounds than in unshaded mounds and were likely low enough in shaded mounds to reduce ant development and reproduction. In areas where L. flavus and similar ants are undesirable, they might be managed by shading.

  20. Astronomical Aspects of Krakow's Monumental Mounds

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, Joanna

    2015-05-01

    Krakus' mound and Wanda's mound are the largest prehistoric mounds in the region. According to the legend, they were raised by prehistoric Slavs as the burial sites of Krakow's founder - Krakus (or Krak), and his daughter - Wanda. Archaeological excavations have only been conducted on the mound of Krakus. They revealed that the mound was erected not earlier than the 1st century AD and not later than the 10th century AD. Furthermore, the studies conducted in the 1970s by professor Kotlarczyk showed that the azimuth connecting these mounds points to the sunrise on 1 May. As this day marks an important festival in the Celtic calendar - Beltaine - the two mounds could be related to the Celtic culture. This study presents the findings of the latest research.

  1. Microclimatic conditions of Lasius flavus ant mounds.

    PubMed

    Véle, Adam; Holuša, Jaroslav

    2016-11-23

    Like other organisms, ants require suitable microclimatic conditions for their development. Thus, ant species inhabiting colder climates build nest mounds that rise above the soil surface, presumably to obtain heating from solar radiation. Although some ant species construct mounds of organic materials, which generate substantial heat due to microbial metabolism, Lasius flavus mounds consists mostly of soil, not organic material. The use of artificial shading in the current study demonstrated that L. flavus depends on direct solar radiation to regulate the temperature in its mound-like nests. Temperatures were much lower in shaded mounds than in unshaded mounds and were likely low enough in shaded mounds to reduce ant development and reproduction. In areas where L. flavus and similar ants are undesirable, they might be managed by shading.

  2. Microclimatic conditions of Lasius flavus ant mounds

    NASA Astrophysics Data System (ADS)

    Véle, Adam; Holuša, Jaroslav

    2016-11-01

    Like other organisms, ants require suitable microclimatic conditions for their development. Thus, ant species inhabiting colder climates build nest mounds that rise above the soil surface, presumably to obtain heating from solar radiation. Although some ant species construct mounds of organic materials, which generate substantial heat due to microbial metabolism, Lasius flavus mounds consists mostly of soil, not organic material. The use of artificial shading in the current study demonstrated that L. flavus depends on direct solar radiation to regulate the temperature in its mound-like nests. Temperatures were much lower in shaded mounds than in unshaded mounds and were likely low enough in shaded mounds to reduce ant development and reproduction. In areas where L. flavus and similar ants are undesirable, they might be managed by shading.

  3. On the tsunami wave-submerged breakwater interaction

    SciTech Connect

    Filianoti, P.; Piscopo, R.

    2008-07-08

    The tsunami wave loads on a submerged rigid breakwater are inertial. It is the result arising from the simple calculation method here proposed, and it is confirmed by the comparison with results obtained by other researchers. The method is based on the estimate of the speed drop of the tsunami wave passing over the breakwater. The calculation is rigorous for a sinusoidal wave interacting with a rigid submerged obstacle, in the framework of the linear wave theory. This new approach gives a useful and simple tool for estimating tsunami loads on submerged breakwaters.An unexpected novelty come out from a worked example: assuming the same wave height, storm waves are more dangerous than tsunami waves, for the safety against sliding of submerged breakwaters.

  4. 7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA

  5. 77. Plan of Proposed Concrete of Rubble Masonry Dam at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Plan of Proposed Concrete of Rubble Masonry Dam at Frog Tanks on the Agua Fria River, Arizona. September 1903. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, VIEW FACING SOUTHEAST. - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  7. 54. POWDER MAGAZINE, VENTILATION PASSAGE ALONG REAR. NOTE STONE RUBBLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. POWDER MAGAZINE, VENTILATION PASSAGE ALONG REAR. NOTE STONE RUBBLE CONSTRUCTION TO LEFT (SOUTHWEST); ENTRANCE TO A MAGAZINE TO THE RIGHT. VIEW IS NORTHWEST TO SOUTHEAST. - Fort Monroe, Fortress, Hampton, Hampton, VA

  8. 10. DETAIL OF RUBBLE MASONRY ABUTMENT ON THE SOUTH BANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF RUBBLE MASONRY ABUTMENT ON THE SOUTH BANK AND DISINTEGRATING CONCRETE FACING; VIEW FROM WEST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  9. 146. Credit ER. Rubble masonry header box with dual intake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. Credit ER. Rubble masonry header box with dual intake pipes at Coleman powerhouse forebay. (ER, v. 64 1911 p. 701). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  10. 14. PERSPECTIVE OF ROAD OR TRAMWAY AND RUBBLE IN QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PERSPECTIVE OF ROAD OR TRAMWAY AND RUBBLE IN QUARRY NORTHWEST OF STONE TOWER - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  11. Periodic Inspections of Hilo, Kahului, Laupahoehoe, and Nawiliwili Breakwaters, Hawaii

    DTIC Science & Technology

    2011-10-01

    breakwater. ...................... 99  Figure B9. Sta 26+26, harbor side, New Dolphin and walkway adjacent to breakwater; built 2005...LIDAR data were collected using a fixed wing Twin Otter aircraft outfitted with a scanning, pulsed, infrared (1064) laser ERDC/CHL TR-11-8 8...respectively. The mounted laser transmitter/receiver transmits a laser pulse, which travels to the air-water interface, where some of the energy is

  12. Mathematical modelling of wave impact on floating breakwater

    NASA Astrophysics Data System (ADS)

    Ghani, Fadhlyya Arawaney Abdul; Shahridwan Ramli, Mohd; Noar, Nor Aida Zuraimi Md; Kasim, Abdul Rahman Mohd; Greenhow, Martin

    2017-09-01

    The impact of breaking wave on shoreline can be lessen or prevented by placing some kind of protection before the wave to reduce the speed of the wave before attacking the shoreline. Such protection can be in the form of a breakwater which is a structure designed to help reducing the wave intensity in whether in inshore waters or relatively shallow water. Thus, a mathematical model of Pressure Impulse, P is used to model the effect of waves exerted on a wall of a breakwater. A two-dimensional field of equations is derived for P which are applicable in three regions of breakwater problems by expressing this in terms of eigenfunctions that satisfy the boundary conditions apart from that the impact region and the matching of the three regions (before the breakwater, under the breakwater and after the breakwater). As in Cooker, we found that the equations of P in region 1 and region 3 are same as Cooker only that equation in region 3 has to include a secular term.

  13. Structural stability of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2013-03-01

    Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154, 432-448; Harris, A.W., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310-318; Sharma, I., Jenkins, J.T., Burns, J.A. [2009]. Icarus 200, 304-322). Here, we extend the classical Lagrange-Dirichlet stability theorem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the stability of several near-Earth asteroids, and explore the influence of material parameters such as internal friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability in certain situations, it is possible to estimate material properties of some asteroids like, for example, 1943 Anteros.

  14. Air sparging: Much ado about mounding

    SciTech Connect

    Lundegard, P.D.

    1995-12-31

    Groundwater mounding is the upward movement of the water table that can occur in association with air injection into the saturated zone. Multiphase flow simulations are here used to define general mounding behavior and dynamics under simplified subsurface conditions. Field observations at three sites are then used to describe a range of expected groundwater mounding responses for subsurface conditions, ranging from relatively homogeneous to highly heterogeneous. Results show that mounding (1) is a transient response that is usually negligible at steady state, (2) dissipates by radial wavelike spreading, and (3) occurs well beyond the saturated zone region of airflow.

  15. End of Life Scenarios for Rubble Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.

    2014-12-01

    Recent theory and observations of asteroids have shown that rubble pile bodies can have a weak level of cohesion, allowing them to spin faster than the gravitational limit, but not too fast (Sanchez & Scheeres MAPS 2014; Hirabayashi et al. ApJL 2014). However, these predicted fission spin rates are less than the maximum spin rates observed for small asteroids, implying that some of these smaller asteroids may be the monolithic components of a rubble pile, or boulders shed from these bodies in the past. For a rubble pile body with a given level of cohesion, its maximum spin rate is inversely proportional to the body diameter. Thus, every time a rubble pile body is split into smaller components, the resulting body can spin proportionally faster before it can shed or fission again. In contrast, the YORP effect's spin acceleration is inversely proportional to the body diameter squared. Thus, the time it takes for the components of a fissioned body to spin up to its new fission limit is proportional to the body diameter and takes proportionally less time to achieve their next fission. If a body fissions into N components, the new effective diameters of the components will equal N-1/3N^{-1/3} times their initial diameter. Thus, if we assume that a fissioned component is immediately accelerated to its next fission rate, the total time for a rubble pile to completely fission is a convergent power series, and can be shown to be equal to the initial YORP time scale of the starting, initial rubble pile. This total time can be extended by an order of magnitude if a fissioned body is initially rotationally decelerated. It may also be extended if its post-fission tumbling state slows its YORP rotational acceleration. We will present predictions for the lifetimes of small rubble pile asteroids before they are disaggregated. Direct comparisons will be made between the competing effects of YORP acceleration, dissipation of a complex rotation state back to uniform rotation, and the

  16. Numerical experiments with rubble piles: equilibrium shapes and spins

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Elankumaran, Pradeep; Sanderson, Robyn E.

    2005-02-01

    We present numerical experiments investigating the shape and spin limits of self-gravitating "perfect" rubble piles that consist of identical, smooth, rigid, spherical particles with configurable normal coefficient of restitution and no sliding friction. Such constructs are currently employed in a variety of investigations, ranging from the formation of asteroid satellites to the dynamical properties of Saturn's densest rings. We find that, owing to cannonball stacking behavior, rubble piles can maintain non-spherical shapes without bulk spin, unlike a fluid, and can spin faster than a perfect fluid before shedding mass, consistent with the theory for the more general continuum rubble pile model (Holsapple, 2004, Icarus 172, 272-303). Rubble piles that reassemble following a catastrophic disruption reconfigure themselves to lie within stability limits predicted by the continuum theory. We also find that coarse configurations consisting of a small number of particles are more resistant to tidal disruption than fine configurations with many particles. Overall this study shows that idealized rubble piles behave qualitatively in a manner similar to certain granular materials, at least in the limit where global shape readjustments and/or mass shedding begins. The limits obtained here may provide constraints on the possible internal structure of some small Solar System bodies that have extreme shapes or are under high stress. Amalthea is presented as a case study.

  17. An Unsteady Dual Porosity Representation Of Concrete Rubble Disposal

    SciTech Connect

    Flach, G

    2006-03-29

    Decontamination and decommissioning at the Savannah River Site have produced on-site disposals of low-level solid radioactive waste in the form of concrete rubble. In the case of a former tritium extraction facility, building demolition produced a significant volume of rubble embedded with tritium. The contaminated debris comprises a heterogeneous mixture of sizes, shapes, and internal tritium distributions. The rubble was disposed in long, shallow, unlined, earthen trenches, that were subsequently backfilled with excavated soil and exposed to normal infiltration. To forecast tritium flux to the water table, an unsteady dual porosity model was developed to describe vadose zone leaching and transport. Tritium was assumed to be released through unsteady, one-dimensional, molecular diffusion within concrete, while advective and diffusive transport occur in the surrounding backfill. Rubble size and shape variations were characterized through a combination of physical measurement and photographic image analysis. For simplicity, the characterization data were reduced to an approximately equivalent distribution of one-dimensional slab thicknesses for representation in the dual porosity formulation. Each size classification was simulated separately, and individual flux results were then blended in proportion to the thickness distribution to produce a composite flux. The fractional flux from concrete rubble was predicted to be roughly 40% of that from tritium-contaminated soil. The lower flux is a result of slower release to soil pore water, and a reduced effective trench conductivity from the presence of impervious concrete.

  18. Study of vertical breakwater reliability based on copulas

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Li, Jingjing; Li, Xue; Wei, Yong

    2016-04-01

    The reliability of a vertical breakwater is calculated using direct integration methods based on joint density functions. The horizontal and uplifting wave forces on the vertical breakwater can be well fitted by the lognormal and the Gumbel distributions, respectively. The joint distribution of the horizontal and uplifting wave forces is analyzed using different probabilistic distributions, including the bivariate logistic Gumbel distribution, the bivariate lognormal distribution, and three bivariate Archimedean copulas functions constructed with different marginal distributions simultaneously. We use the fully nested copulas to construct multivariate distributions taking into account related variables. Different goodness fitting tests are carried out to determine the best bivariate copula model for wave forces on a vertical breakwater. We show that a bivariate model constructed by Frank copula gives the best reliability analysis, using marginal distributions of Gumbel and lognormal to account for uplifting pressure and horizontal wave force on a vertical breakwater, respectively. The results show that failure probability of the vertical breakwater calculated by multivariate density function is comparable to those by the Joint Committee on Structural Safety methods. As copulas are suitable for constructing a bivariate or multivariate joint distribution, they have great potential in reliability analysis for other coastal structures.

  19. Geological mounds and their seismic expression

    SciTech Connect

    Swarbrick, R.E. )

    1991-03-01

    Mound geometry (convex upward structure developed above a subhorizontal surface) is common in many geological environments and frequently observed in 2-dimensions on seismic sections. Seismic mounds are typically associated with deep-water clastic sediments, e.g. submarine fans and slumps, and with a variety of carbonate depositional settings, e.g., reefs and banks, but also exist in other depositional settings. Recognition will be dependent on mound dimension, velocity contrast, amplitude strength, and the resolution of the seismic data. Since mounds can represent an important exploration target and recognition of porous, hydrocarbon-bearing section is all-important, careful restitution of the original depositional morphology from the seismic data is required. Details of present velocity distribution are critical, along with a realistic concept of any post-depositional modification, such as compaction, which may have taken place during burial. Where differential compaction is taking place, for example between sand and shale, seismic expression of morphology will be continually modified during progressive burial. Analysis of structure at the top and base of the mound can provide support for lithological interpretation based on other criteria, such as seismic facies analysis based on internal and external reflections. Modeling, using parameters from mounds in a variety of known depositional settings, illustrates many of the interpretational problems associated with seismic mounds and provides some objective criteria for analysis of mound morphology. Comparison is made with real data, principally from northwest Europe and North America.

  20. Sulphur Extraction at Bryan Mound

    SciTech Connect

    Kirby, Carolyn L; Lord, Anna C. Snider

    2015-08-01

    The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

  1. Autonomous robotic platforms for locating radio sources buried under rubble

    NASA Astrophysics Data System (ADS)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  2. Scaling law for Dictyostelium Discoideum mounds

    NASA Astrophysics Data System (ADS)

    Voeltz, Camilla; Bodenschatz, Eberhard

    2004-03-01

    Little is known about how multicellular organisms regulate the size of their tissues during development. The eukaryote Dictyostelium Discoideum, may be studied as a model system. When starved, these amoebae aggregate and form cell mounds. These mounds develop into moving slugs and fruiting bodies consisting of a spore mass held atop a rigid stem of stalk cells. We report experiments on the development of mounds of Dicty-cells when confined to different heights. At the smallest height the amoebae are confined to a monolayer of cells in a 2d-plane. We found that the confinement inhibited the development of moving slugs and fruiting bodies. The cells aggregated and formed mounds whose size was found to be proportional to the height of the mounds. The precise mechanism is yet unknown. We will present the data and discuss possible mechanisms. This work is supported by the NSF through the Biocomplexity Program.

  3. COCARDE: new view on old mounds - an international network of carbonate mound research

    NASA Astrophysics Data System (ADS)

    Rüggeberg, A.; Foubert, A.; Vertino, A.; van Rooij, D.; Spezzaferri, S.; Henriet, J.-P.; Dullo, W.-C.; Cocarde Science Community

    2012-04-01

    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern cold-water coral carbonate mounds over the last decades made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community with cold-water corals as main framework builders, some fundamental questions could be addressed, until now not yet explored in fossil mound settings. The international network COCARDE (http://www.cocarde.eu) is a platform for exploring new insights in carbonate mound research of recent and ancient mound systems. The aim of the COCARDE network is to bring together scientific communities, studying Recent carbonate mounds in midslope environments in the present ocean and investigating fossil mounds spanning the whole Phanerozoic time, respectively. Scientific challenges in modern and ancient carbonate mound research got well defined during the ESF Magellan Workshop COCARDE in Fribourg, Switzerland (21.-24.01.2009). The Special Volume Cold-water Carbonate Reservoir systems in Deep Environments - COCARDE (Marine Geology, Vol. 282) was the major outcome of this meeting and highlights the diversity of Recent carbonate mound studies. The following first joint Workshop and Field Seminar held in Oviedo, Spain (16.-20.09.2009) highlighted ongoing research from both Recent and fossil academic groups integrating the message from the industry. The field seminar focused on mounds from the Carboniferous platform of Asturias and Cantabria, already intensively visited by industrial and academic researchers. However, by comparing ancient, mixed carbonate-siliciclastic mound systems of Cantabria with the Recent ones in the Porcupine Seabight, striking similarities in their genesis and processes in mound development asked for an integrated drilling campaign to understand better the 3D internal mound build-up. The

  4. Sea Ice Friction: The Effect of Ice Rubble

    NASA Astrophysics Data System (ADS)

    Scourfield, S.; Sammonds, P. R.; Lishman, B.; Riska, K.; Marchenko, A. V.

    2015-12-01

    Ice deformation processes in the Arctic often generate ice rubble, and situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on fjord ice in Svea, Svalbard, which investigated the velocity and hold time dependence of sea ice friction involving ice gouge. Average air temperature for the duration of time in which experiments were run was -12.4°C, and the thickness of the level fjord ice was 70 cm. A double-direct-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by moving a floating ice block through a channel of open water whilst subjected to normal loading, which was transferred through regions of ice rubble on both sides of the mobile block. The ice rubble regions were 30 cm deep and 50 cm wide. The displacement of the block and the force needed to move the block were measured. The rate dependence of friction was investigated for speeds of 10-3 to 10-2 ms-1. To investigate the state dependence of friction, slide-hold-slide (SHS) tests were conducted for hold times ranging from 1 second to 18 hours. When comparing the results from these experiments with a model for ice friction presented by Schulson and Fortt (2013), similar behaviour is seen at low hold times, where the peak coefficient of friction has a linear relationship with the logarithm of hold time. This is not the case for long hold times, however, and we attribute this to thermal consolidation of the ice rubble region.

  5. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  6. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  7. Stellar Rubble May be Planetary Building Blocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for animation Birth of 'Phoenix' Planets?

    This artist's concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA's Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the remaining stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    Supernovas are a source of iron, nitrogen and other 'heavy metals' in the universe. They spray these elements out into space, where they eventually come together in clouds that give rise to new stars and planets. The Spitzer finding demonstrates that supernovas might also contribute heavy metals to their own planets, a possibility that was first suggested when astronomers discovered planets circling a pulsar called PSR B1257+12 in 1992.

    Birth of 'Phoenix' Planets? About the Movie This artist's animation depicts the explosive death of a massive star, followed by the creation of a disk made up of the star's ashes. NASA's Spitzer Space Telescope was able to see the warm glow of such a dusty disk using its heat-seeking infrared vision. Astronomers believe planets might form in this dead star's disk, like the mythical Phoenix rising up out of the ashes.

    The movie begins by showing a dying massive star called a red giant. This bloated star is about 15 times more massive than our sun, and approximately 40 times bigger in diameter. When the star runs out of nuclear fuel, it collapses and ultimately blows apart in what is called a supernova. A lone planet around the star is shown being incinerated by the fiery blast. Astronomers do not know if stars of this heft host planets, but if they do, the

  8. Stellar Rubble May be Planetary Building Blocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for animation Birth of 'Phoenix' Planets?

    This artist's concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA's Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the remaining stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    Supernovas are a source of iron, nitrogen and other 'heavy metals' in the universe. They spray these elements out into space, where they eventually come together in clouds that give rise to new stars and planets. The Spitzer finding demonstrates that supernovas might also contribute heavy metals to their own planets, a possibility that was first suggested when astronomers discovered planets circling a pulsar called PSR B1257+12 in 1992.

    Birth of 'Phoenix' Planets? About the Movie This artist's animation depicts the explosive death of a massive star, followed by the creation of a disk made up of the star's ashes. NASA's Spitzer Space Telescope was able to see the warm glow of such a dusty disk using its heat-seeking infrared vision. Astronomers believe planets might form in this dead star's disk, like the mythical Phoenix rising up out of the ashes.

    The movie begins by showing a dying massive star called a red giant. This bloated star is about 15 times more massive than our sun, and approximately 40 times bigger in diameter. When the star runs out of nuclear fuel, it collapses and ultimately blows apart in what is called a supernova. A lone planet around the star is shown being incinerated by the fiery blast. Astronomers do not know if stars of this heft host planets, but if they do, the

  9. SPH simulations of impacts on rubble pile asteroids

    NASA Astrophysics Data System (ADS)

    Deller, J.; Lowry, S.; Price, M. C.; Sierks, H.; Snodgrass, C.

    2013-09-01

    Many rubble pile asteroids with low bulk densities, like Itokawa, must include a high level of macroporosity, probably more than 40% [1]. Although little is known about their internal structure, numerical simulations of impact events on these rubble pile asteroids rely on assumptions on how the voids are distributed. While most hydrocodes do not distinguish between microand macroporosity, Benavidez et al. [2] introduced a rubble pile model where the asteroid is represented as a spherical target shell filled with an uneven distribution of basalt spheres ranging in radius from 8% to 20% of the asteroid's radius. In this study, we present a new approach to create rubble pile simulants for the use in impact simulations and quantify the dependence of impact outcomes on the internal structure of the target. The formation of the asteroid is modelled as a gravitational aggregation of spherical 'pebbles', that form the building blocks of our target. This aggregate is then converted into a high-resolution Smoothed Particle Hydrodynamics (SPH) model, which also accounts for macroporosity inside the pebbles'. To simulate high-velocity impacts on these models, we use the SPH solver in the code Autodyn. We will compare impact event outcomes for a large set of internal configurations to explore the parameter space of our model-building process. The analysis of the fragment size distribution and the disruption threshold will quantify the specific influence of each set-up parameter. This work is ongoing and we will present preliminary results at the meeting.

  10. Stellar Rubble May be Planetary Building Blocks Artist Concept

    NASA Image and Video Library

    2006-04-05

    This artist concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago.

  11. Model for Understanding Flow Processes and Distribution in Rock Rubble

    NASA Astrophysics Data System (ADS)

    Green, R. T.; Manepally, C.; Fedors, R.; Gwo, J.

    2006-12-01

    Recent studies of the potential high-level nuclear waste repository at Yucca Mountain, Nevada, suggest that degradation of emplacement drifts may be caused by either persistent stresses induced by thermal decay of the spent nuclear fuel disposed in the drifts or seismic ground motion. Of significant interest to the performance of the repository is how seepage of water onto the engineered barriers in degraded emplacement drifts would be altered by rubble. Difficulty arises because of the uncertainty associated with the heterogeneity of the natural system complicated by the unknown fragment size and distribution of the rock rubble. A prototype experiment was designed to understand the processes that govern the convergence and divergence of flow in the rubble. This effort is expected to provide additional realism in the corresponding process models and performance assessment of the repository, and to help evaluate the chemistry of water contacting the waste as well as conditions affecting waste package corrosion in the presence of rubble. The rubble sample for the experiment was collected from the lower lithophysal unit of the Topopah Spring (Tptpll) unit in the Enhanced Characterization of the Repository Block Cross Drift and is used as an approximate analog. Most of the potential repository is planned to be built in the Tptpll unit. Sample fragment size varied from 1.0 mm [0.04 in] to 15 cm [6 in]. Ongoing experiments use either a single or multiple sources of infiltration at the top to simulate conditions that could exist in a degraded drift. Seepage is evaluated for variable infiltration rates, rubble particle size distribution, and rubble layering. Comparison of test results with previous bench-scale tests performed on smaller-sized fragments and different geological media will be presented. This paper is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of NRC. The NRC staff views expressed herein are preliminary

  12. Breakage of Concrete Armor Units; Survey of Existing Corps Structures.

    DTIC Science & Technology

    1984-03-01

    the Pacific coast about 17 miles* south of the Oregon -California border (Plate 1). The existing outer breakwater is 4,670 ft in length. The main stem...Are (or Were) on the: Beachside Above the Water? Beachside Below the Water? Seaside Above the Water? Seaside Below the Water? A3 SUBJECT: Rubble-Mound

  13. Experimental and Numerical Investigations of Floating Breakwater Performance.

    USDA-ARS?s Scientific Manuscript database

    Floating breakwaters are commonly used to protect small marinas and for shoreline erosion control in coastal areas. They are efficient wave attenuation structures for relatively short waves and shallow water depths. The main objective of the current study is to investigate the hydrodynamic interacti...

  14. Formation of Mima mounds: A seismic hypothesis

    SciTech Connect

    Berg, A.W. )

    1990-03-01

    Mima mounds approximately 2.5 to 15 m in diameter and up to 3 m high occur on the ground surfaces at Mima Prairie, south of Olympia, Washington, in the Channeled Scabland of eastern Washington, and at many other locations in the United States and around the world. Small-scale Mima mounds can be produced experimentally by subjecting a plywood board covered with a thin veneer of loess to impacts that produce vibrations in the board. Experimentally produced mounds have characteristics that are nearly identical to those found in the field. This suggests that most Mima mounds formed as the result of seismic activity in conjunction with unconsolidated fine sediments on a relatively rigid planar substratum.

  15. Impact Simulations on the Rubble Pile Asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Snodgrass, Colin; Lowry, Stephen C.; Price, Mark C.; Sierks, Holger

    2014-11-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) has revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a ‘rubble pile’, created from the gravitational aggregation of spherical ‘pebbles’ that represent fragments from a major disruption event. These ‘pebbles’ follow a power law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in Autodyn. We show that this approach allows us to explicitly follow the behavior of a single ‘pebble’, while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to investigate if surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, can be explained by the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater.Acknowledgements: Jakob Deller thanks the Planetary Science Institute for a Pierazzo International Student Travel Award that funds

  16. Impact simulations on the rubble pile asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger

    2015-04-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be

  17. Data Summary Report D-Area Burning/Rubble Pits

    SciTech Connect

    Palmer, E.R.

    1994-10-01

    The purpose of this report is to verify that all analytical data collected at the D-Area Burning/Rubble Pits at the Savannah River Site for use in developing risk assessment and potential remediation procedures have been validated at the appropriate level. Any discrepancies or reasons why the data should be rejected for this purpose will be addressed. This report documents the data validation procedures used by Environmental Monitoring Section, Exploration Resources, and RUST Environment {ampersand} Infrastructure for Assigning qualifiers.

  18. Analytical Constraints on Rubble Pile Fission, Dynamics and End States

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel Jay; Gabriel, Travis

    2015-08-01

    Recent progress in the study and analysis of rubble pile asteroids has focused on the numerical simulation of self-gravitating collections of rigid components that can rest on each other. These simulations are complex and can model thousands of grains interacting with each other, but due to this can sometimes present barriers to the understanding of their behavior in terms of fundamental physical principles.To address this we have embarked on an analytical study of the energetics and stability of few-body granular mechanics systems, comprised of gravitationally attracting elements that can rest on each other and transmit surface forces through friction or cohesion. These studies have primarily focused on simple shapes such as spheres and ellipsoids in contact. We have found that rigorous results can be placed on the stability of these resting and orbiting configurations as a function of their total angular momentum. These results shed direct light into the manner in which rubble pile asteroids can fail and what stable configurations they can settle in, accounting only for internal forces and dynamics. We note that these studies are also applicable for the accumulation stage of a rubble pile formation, following the catastrophic disruption of its parent body.There are several fundamental results from these analyses that have physical implications. A notable result provides conditions for when fissioned rubble piles can escape from each other, or conversely remain bound. It is significant that recent observations of asteroid pairs are consistent with these limits. Another result is that when a given configuration becomes unstable due to an increase in its total angular momentum (for example due to YORP), that it may sometimes settle into one of several stable configurations depending on how its energy is dissipated. This introduces a level of indeterminacy into the physical evolution of gravitational aggregates, and motivates the development of statistical approaches

  19. MHD instabilities in accretion mounds - I. 2D axisymmetric simulations

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea

    2013-04-01

    We have performed stability analysis of axisymmetric accretion mounds on neutron stars in high-mass X-ray binaries by 2D magnetohydrodynamic (MHD) simulations with the PLUTO MHD code. We find that the mounds are stable with respect to interchange instabilities, but the addition of excess mass destabilizes the equilibria. Our simulations confirm that accretion mounds are unstable with respect to MHD instabilities beyond a threshold mass. We investigate both filled and hollow mounds and for the latter also compute the expected profile of cyclotron resonance scattering features (CRSF). In comparison to the CRSF from filled mounds reported in our earlier work, hollow mounds display wider and more complex line profiles.

  20. GPR investigation of the West Prairie Mound Group, central Wisconsin, USA: are they burial mounds or natural landforms?

    NASA Astrophysics Data System (ADS)

    Kloehn, N. B.; Junck, M. B.; Jol, Harry M.; Running, G. L., IV; Greek, D.; Caldwell, K.

    2000-04-01

    Ground penetrating radar (GPR) investigations were conducted to determine the origin of the West Prairie Mound Group. The mound group consists of thirteen low, conical, earthen mounds within Fort McCoy (central Wisconsin). Historically interpreted as PreColumbian Native American burial mounds, mounting evidence to the contrary suggests a natural origin for the mounds (e.g. no archaeological material recovered from within or near the mounds, mounds located where morphologically similar natural landforms are common, and the mounds are identified as natural landforms in local Native American oral tradition). Even so, U.S. Federal antiquities laws prohibit disturbance of these mounds and investigations to determine their true origin are limited to non-invasive techniques. Non-invasive, high resolution GPR survey methods were utilized to address the research problem. Mounds B and K were selected for detailed GPR surveys. In both cases, observed GPR reflection patterns are consistent with sandy, eolian geomorphic units common in the mound area. Moreover, no reflection patterns typical of burial disturbance or cultural practices were observed in either mound. Therefore, our analysis of Mounds B and K GPR data strongly supports the emerging interpretation that the West Prairie Mound Group is the result of natural rather than cultural processes.

  1. The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric boundary conditions of a newly discovered cold-water coral province

    NASA Astrophysics Data System (ADS)

    Glogowski, Silke; Dullo, Wolf-Christian; Feldens, Peter; Liebetrau, Volker; von Reumont, Jonas; Hühnerbach, Veit; Krastel, Sebastian; Wynn, Russell B.; Flögel, Sascha

    2015-08-01

    This study reports a new cold-water coral (CWC) province covering ~410 km2 off western Morocco (ca. 31°N) ~40 nautical miles north of the Agadir Canyon system between 678 and 863 m water depth, here named the Eugen Seibold coral mounds. Individual mounds are up to 12 m high with slope angles varying between 3° and 12°. Hydroacoustic data revealed mound axes lengths of 80 to 240 m. Slope angle, mound height, and density of mounds decrease with increasing water depth. The deepest mounds are composed of dead and fragmented Lophelia pertusa branches. Living CWCs, mainly L. pertusa, were sampled with box cores between 678 and 719 m water depth. Conductivity-temperature-depth (CTD) measurements revealed living CWC colonies to occur within the deeper part of the North Atlantic Central Water (NACW; conservative temperature Θ of 9.78-9.94 °C, absolute salinity SA of ca. 35.632 g/kg, and seawater density σΘ of 27.31-27.33 kg/m3). Comparable CWC reefs off Mauritania (17°N-18°N) and on the Renard Ridge (35°N) in the Gulf of Cadiz, the latter consisting only of a dead CWC fabric, are also located in the deeper layer of the NACW slightly above the Mediterranean Outflow Water. The new CWC province, with its thin cover of living corals and much larger accumulations of dead thickets and fragmented coral rubble, was successfully discovered by CTD reconnaissance applying seawater density as a potential indicator of CWC occurrences, followed by hydroacoustic mapping. U-Th isotope systematics for macroscopically altered buried Lophelia material (25 cm sediment depth) yielded absolute ages dating back to the late Holocene at least.

  2. The Dangeard and Explorer canyons, South Western Approaches UK: Geology, sedimentology and newly discovered cold-water coral mini-mounds

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Davies, Jaime S.; Guinan, Janine; Howell, Kerry L.

    2014-06-01

    The Celtic Margin is a complex area in terms of sedimentary dynamics and evolution, with a number of submarine canyons dissecting the continental slope and outer continental shelf. The complex terrain and diverse range of sea-bed sediments play a part in submarine canyons being described as areas of high habitat heterogeneity. This study has concentrated on the heads of two canyons: Dangeard (also known as Dangaard) and Explorer (first named here) located in UK territorial waters, in water depths between 138 and 1165 m. Multibeam echosounder, 2D reflection seismic and photographic ground-truthing data have been combined to map the sea-bed geomorphology, sedimentary features and canyon megafauna of these canyons. In addition, two previously unknown provinces of cold-water coral (CWC) mini-mounds were discovered on the interfluves of the Dangeard and Explorer canyons. The study area comprises a dendritic network of gullies feeding into the canyon thalwegs. Amphitheatre rims, where slope angles are commonly in excess of 20°, occur along the margins and heads of both canyons and are interpreted as drainage basins indicative of retrogressive mass-wasting in a shelfward direction. The CWC mini-mounds occur in water depths between 250 m and 410 m, with more than 400 mounds identified. They are up to 3 m in height and 50-150 m in diameter with no sub-surface expression, suggesting these mounds are, in geological terms, relatively young and possibly Holocene in age. Biological analyses revealed that the mounds form a habitat for ophiuroids and Munida associated with Lophelia pertusa coral rubble, suggesting these mini-mounds are not present-day living features.

  3. Field Experiences with Floating Breakwaters in the Eastern United States.

    DTIC Science & Technology

    1982-07-01

    7AD-AL ’b76 MARINE RESOURCE MANAGEMENT INC CAMBRIDGE MA FIG 1 3/2 FIELD EXPERIENCES WITH FLOATING BREAKWATERS IN THE EASTERN UNIT--ETC(U) JUL 82 A...Resource Management , Inc. 12 Arrow Street [31679 Cambridge, Massachusetts 02138 If. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Department of the...Development. The report was prepared by Andrew V. Baird, Marine Resource Management , Inc., Cambridge, Massachusetts, and Neil W. Ross, who provided

  4. Development of Design Methods for Breakwater Armour Units

    DTIC Science & Technology

    1990-09-06

    possibility of measuring impact loads in model tests with the small scale units (200 g) , 4) Wave tank parametric studies of the dependence of the armour...t=2cm Dolosse 0.23 SWL .08 1- .. ..ore 0.0 . "/////,///////z//’/ // / Cross section of the breakwater Measures and levels in meter Fig. 5. Set-up of...between the strength (structural integrity) of the units and the hydraulic stability ( resistance to displace- ments) of the armour layer. Although the

  5. Numerical Model Study of Breakwaters at Grand Isle, Louisiana

    DTIC Science & Technology

    1994-09-01

    For the most part, these references indicate that the East Cameron Parish and Holly Beach project will have some accretion. Gourlay (1981) and the...34 accretion" accretion" Nir (1982) "non-depo- "non-depo- "depositional "non-depo- non-deposi- aitional" aitional" sitional" tional" Gourlay (1981) no...Waterways Experiment Station, Vicksburg, MS. Gourlay , M. R., 1981, "Beach Processes in the Vicinity of Offshore Breakwaters," Proceedings Fifth Australian

  6. Mound-Interface Kinetics in Dictyostelium Aggregation

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki

    2002-09-01

    The mound development of the cellular slime mold amoebae Dictyostelium discoideum is studied with an interface kinetic model for the height of cell layers. As a competitive role for the chemotaxis, we compare two types of curvature relaxations; the surface relaxation induced by cell-substrate affinity (model A), and that comes from a cell-cell adhesive effect (model B). It is found that both models are characterized by the growth law for the maximum mound height. Based on a self-similarity scaling hypothesis for the spatial structure of streaming pattern, we suggest a scaling law for the growth of mound-height hmax ˜ t1-1/α+β/α with α = 2 (4) for the model A (B) and a number 0 ≤ β < 1.

  7. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    NASA Astrophysics Data System (ADS)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  8. The giant cold-water coral mound as a nested microbial/metazoan system: physical, chemical, biological and geological picture (ESF EuroDiversity MiCROSYSTEMS)

    NASA Astrophysics Data System (ADS)

    Henriet, J. P.; Microsystems Team

    2009-04-01

    The MiCROSYSTEMS project under the ESF EUROCORES EuroDiversity scheme is a holistic and multi-scale approach in studying microbial diversity and functionality in a nested microbial/metazoan system, which thrives in deep waters: the giant cold-water coral mound. Studies on prolific cold-water coral sites have been carried out from the canyons of the Bay of Biscay to the fjords of the Norwegian margin, while the Pen Duick carbonate mound province off Morocco developed into a joint natural lab for studying in particular the impact of biogeochemical and microbial processes on modern sedimentary diagenesis within the reef sediments, in complement to the studies on I0DP Exp. 307 cores (Challenger Mound, off Ireland). Major outcomes of this research can be summarized as follows. • IODP Exp. 307 on Challenger Mound had revealed a significant prokaryotic community both within and beneath the carbonate mound. MiCROSYSTEMS unveils a remarkable degree of compartmentalization in such community from the seawater, the coral skeleton surface and mucus to the reef sediments. The occurrence of such multiple and distinct microbial compartments associated with cold-water coral ecosystems promotes opportunities for microbial diversity in the deep ocean. • New cases of co-habitation of cold-water corals and giant deep-water oysters were discovered in the Bay of Biscay, which add a new facet of macrofaunal diversity to cold-water coral reef systems. • The discovery of giant, ancient coral graveyards on the Moroccan mounds not only fuels the debate about natural versus anthropogenic mass extinction, but these open frameworks simultaneously invite for the study of bio-erosion and early diagenesis, in particular organo-mineralization, and of the possible role and significance of these thick, solid rubble patches in 3D mound-building and consolidation. • The assessment of the carbonate budget of a modern cold-water coral mound (Challenger Mound) reveals that only 33 to 40 wt % of

  9. A global survey of martian central mounds: Central mounds as remnants of previously more extensive large-scale sedimentary deposits

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Bell, James F.

    2016-01-01

    We conducted a survey of central mounds within large (>25 km diameter) impact craters on Mars. We use mound locations, mound offsets within their host craters, and relative mound heights to address and extend various mound formation hypotheses. The results of this survey support the hypothesis that mound sediments once filled their host craters and were later eroded into the features we observe today. The majority of mounds are located near the boundaries of previously identified large-scale sedimentary deposits. We discuss the implications of the hypothesis that central mounds are part of previously more extensive sedimentary units that filled and overtopped underlying impact craters. In this scenario, as erosion of the sedimentary unit occurred, the sediment within impact craters was preserved slightly longer than the overlying sediment because it was sheltered by the crater walls. Our study also reveals that most mounds are offset from the center of their host crater in the same direction as the present regional winds (e.g., the mounds in Arabia Terra are offset towards the western portion of their craters). We propose that this implies that wind has been the dominant agent causing the erosion of central mounds. Mound offset (r) is normalized to each crater's radius. The Mound offset (θ) is such that 0 is north and 270 is west.

  10. Interplay of instabilities in mounded surface growth

    SciTech Connect

    Chakrabarti, Buddhapriya; Dasgupta, Chandan

    2005-02-01

    We numerically study a one-dimensional conserved growth equation with competing linear (Ehrlich-Schwoebel) and nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium phase transition between two mounded states, one of which exhibits slope selection and the other does not. The coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the steady-state configuration depends crucially on which of the two instabilities dominates the early time behavior.

  11. Approximate Equilibrium Shapes for Spinning, Gravitating Rubble Asteroids

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Sharma, I.; Jenkins, J. T.

    2007-10-01

    Approximate Equilibrium Shapes for Spinning, Gravitating Rubble Asteroids Joseph A. Burns, Ishan Sharma and James T. Jenkins Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study those equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes may be compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. First, to instill confidence in our approach, we have collapsed our dynamical approach to its statical limit to re-derive regions in spin-shape parameter space that allow equilibrium solutions to exist. Not surprisingly, our results duplicate static results reported by Holsapple (Icarus 154 [2001], 432; 172 [2004], 272) since the two sets of final equations match, although the formalisms to reach these expressions differ. We note that the approach applied here was obtained independently by I.S. in his Ph.D. dissertation (Cornell University, 2004); it provides a general, though approximate, framework that is amenable to systematic improvements and flexible enough to incorporate the dynamical effects of a changing shape, different rheologies and complex rotational histories. To demonstrate the power of our technique, we investigate the non-equilibrium dynamics of rigid-plastic, spinning, prolate asteroids to watch the simultaneous histories of shape and spin rate for rubble piles. We have succeeded in recovering most results of Richardson et al. (Icarus 173 [2004], 349), who obtained equilibrium shapes by studying numerically the passage into equilibrium of aggregates containing discrete, interacting, frictionless, spherical particles. Our mainly analytical approach aids

  12. Diurnal respiration of a termite mound

    NASA Astrophysics Data System (ADS)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  13. Mounds View Environmental Education Project, Report #1.

    ERIC Educational Resources Information Center

    Budde, Duane

    Prepared for the 1971 National Science Teachers Association (NSTA) Annual Meeting, this collection of ideas, activities, and unit plans from the Mounds View Environmental Education Project would be useful for junior and senior high school teachers and curriculum planners. Content includes: (1) a senior high course outline and daily lesson plans…

  14. On the formation of periodic sandy mounds

    NASA Astrophysics Data System (ADS)

    Porcile, Gaetano; Blondeaux, Paolo; Vittori, Giovanna

    2017-08-01

    Le Bot and Trentesaux (Marine Geology 211, 2004) surveyed the periodic morphological patterns which are present in the English Channel close to the strait of Calais-Dover, where the shortage of sand does not allow the formation of typical sand waves (tidal dunes). The field observations show that, for similar hydrodynamic and morphodynamic conditions, the crest-to-crest distance of the observed sandy mounds is larger than the wavelength of the sand waves which form where sand is abundant. The present contribution describes an idealized model able to predict the hydrodynamics and the morphodynamics of the interaction of tidal currents with large scale bedforms such as sand waves and sandy mounds in sand-starved environments. Indeed, when the availability of sand is limited, classical morphodynamic stability analyses cannot be applied for two main reasons. First, part of the rigid substratum becomes bared when bedforms appear and the bed profile is no longer sinusoidal. Second, the formulae commonly used to quantify sand transport are no longer valid when sandy mounds alternate with a rigid substratum. In accordance with the field observations, the analysis shows that the bedforms which appear when the rigid substratum is bared (sandy mounds) are longer than those which form in a rich sand environment (sand waves).

  15. Considerations in recycling contaminated scrap metal and rubble

    SciTech Connect

    Kluk, A.F. ); Hocking, E.K. )

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations.

  16. Considerations in recycling contaminated scrap metal and rubble

    SciTech Connect

    Kluk, A.F.; Hocking, E.K.

    1992-07-01

    Management options for the Department of Energy`s increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations.

  17. TMI criticality studies: lower vessel rubble and analytical benchmarking

    SciTech Connect

    Westfall, R M; Knight, J R; Fox, P B; Hermann, O W; Turner, J C

    1986-05-01

    A bounding strategy has been adopted for assuring subcriticality during all TMI-2 defueling operations. The strategy is based upon establishing a safe soluble boron level for the entire reactor core in an optimum reactivity configuration. This paper presents the determination of a fuel rubble model which yields a maximum infinite lattice multiplication factor and the subsequent application of cell-averaged constants in finite system analyses. Included in the analyses are the effects of fuel burnup determined from a simplified power history of the reactor. A discussion of the analytical methods employed and the determination of an analytical bias with benchmark critical experiments completes the presentation. 14 refs., 17 tabs.

  18. Independent technical review of the Mound Plant

    SciTech Connect

    Not Available

    1994-06-01

    This report documents an Independent Technical Review (ITR) of the facilities, organizations, plans, and activities required to transition particular elements of the Mound Plant from Defense Program (DP) funded operation as appropriate either to community developed reuse or safe deactivation leading to decontamination and decommissioning (D&D). The review was conducted at the request of the Dr. Willis Bixby, Deputy Assistant Secretary, U.S. Department of Energy EM-60, Office of Facility Transition and Management and is a consensus of the nine member ITR Team. Information for the review was drawn from documents provided to the ITR Team by the Miamisburg Area Office (MB) of the DOE, EG&G, the City of Miamisburg, and others; and from presentations, discussions, interviews, and facility inspections at the Mound Plant during the weeks of March 14 and March 28, 1994. During the week of April 25, 1994, the ITR Team met at Los Alamos, New Mexico to develop consensus recommendations. A presentation of the core recommendations was made at the Mound Plant on May 5, 1994. This is an independent assessment of information available to, and used by, the Mound Plant personnel. Repetition of the information is not meant to imply discovery by the ITR Team. Team members, however, acting as independent reviewers, frequently assess the information from a perspective that differs significantly from that of the Mound Plant personnel. The report is based on information obtained and conditions observed during the March 1994 review interval. The ITR process and normal site work often initiate rapid, beneficial changes in understanding and organization immediately following the review. These changes frequently alter conditions observed during the review, but the report does not address changes subsequent to the review interval.

  19. Investigation of Hydrodynamic Parameters and the Effects of Breakwaters During the 2011 Great East Japan Tsunami in Kamaishi Bay

    NASA Astrophysics Data System (ADS)

    Ozer Sozdinler, Ceren; Yalciner, Ahmet Cevdet; Zaytsev, Andrey; Suppasri, Anawat; Imamura, Fumihiko

    2015-12-01

    The March 2011 Great East Japan Tsunami was one of the most disastrous tsunami events on record, affecting the east coast of Japan to an extreme degree. Extensive currents combined with flow depths in inundation zones account for this devastating impact. Video footage taken by the eyewitnesses reveals the destructive effect and dragging capability of strong tsunami currents along the coast. This study provides a numerical modeling study in Kamaishi Bay, calculating the damage inflicted by tsunami waves on structures and coastlines in terms of the square of the Froude number Fr 2 ; and also other calculated hydrodynamic parameters, such as the distribution of instantaneous flow depths, maximum currents and water surface elevations that occurred during this catastrophic tsunami. Analyses were performed by using the tsunami numerical modeling code NAMI DANCE with nested domains at a higher resolution. The effect of the Kamaishi breakwater on the tsunami inundation distance and coastal damage was tested by using the conditions of "with breakwater," "without breakwater," and "damaged breakwater." Results show that the difference between the hydrostatic pressure on the seaward side of the breakwater and the leeward side of the breakwater is quite high, clarifying conditions contributing to failure of the breakwater. Lower water surface elevations were calculated in the case of a breakwater existing at the entrance, a partly valid condition for the damaged breakwater case. The results are different for current velocities and Fr_{max}2 in the "with breakwater" condition due to the concentration of energy through the breakwater gaps.

  20. Mound site environmental report for calendar year 1991

    SciTech Connect

    Bauer, L.R.

    1992-06-01

    Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the U.S. Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear, and energy technology. The purpose of this report is to inform the public about the impact of Mound`s operations on the population and the environment. This report summarizes data from the Environmental Monitoring Program, through which Mound maintains continuous surveillance of radiological and nonradiological substances released from the facility.

  1. The ecology of rubble structures of the South Atlantic Bight: A community profile. [Jetties

    SciTech Connect

    Hay, M.E.; Sutherland, J.P.

    1988-09-01

    This community profile provides an introduction to the ecology of the communities living on and around rubble structures in the South Atlantic Bight (Cape Hatteras to Cape Canaveral). The most prominent rubble structures in the bight are jetties built at the entrances to major harbors. After an initial discussion of the various kinds of rubble structures and physical factors that affect the organisms associated with them, the major portion of the text is devoted to the ecology of rubble structure habitats. Community composition, distribution, seasonality, and the recruitment patterns of the major groups of organisms are described. The major physical and biological factors affecting the organization of intertidal, sunlit subtidal, and shaded subtidal communities are presented and the potential effects of complex interactions in structuring these communities are evaluated. The profile concludes with a general review of the effects of rubble structures on nearshore sediment dynamics and shoreline evolution. 295 refs., 33 figs., 4 tabs.

  2. Use of rubble from building demolition in mortars.

    PubMed

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  3. Tidal Disruption of Rubble-Pile Comets and Asteroids

    NASA Astrophysics Data System (ADS)

    Movshovitz, Naor; Asphaug, E.; Korycansky, D.

    2010-10-01

    Following the investigations of Richardson et al. (2005) and Korycansky and Asphaug (2006, 2008), we study the shape and spin state of rubble-pile asteroids and cometary nuclei, focusing here on the process and aftermath of tidal disruption. A fast and robust commercial physics engine (www.nvidia.com/physx) is used to model thousands of polyhedral elements including self-gravity and intergranular forces such as friction and cohesion. The physics engine has been tested and validated with small scale laboratory experiments (granular avalanche, brazil-nut effects); its speed and its ability to deal with resting contacts allow us to use a variety of element shapes, from simple primitives to arbitrary polyhedra. Here we model the tidal disruption of comet Shoemaker-Levy 9 and other split comets, extending the work of Asphaug and Benz (1996) to include bodies with realistic rubble properties. One result is that a modest cohesion can account for the absence of small tidal-disruption crater chains on Ganymede and Callisto.

  4. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  5. The rubble-pile asteroid Itokawa as observed by Hayabusa.

    PubMed

    Fujiwara, A; Kawaguchi, J; Yeomans, D K; Abe, M; Mukai, T; Okada, T; Saito, J; Yano, H; Yoshikawa, M; Scheeres, D J; Barnouin-Jha, O; Cheng, A F; Demura, H; Gaskell, R W; Hirata, N; Ikeda, H; Kominato, T; Miyamoto, H; Nakamura, A M; Nakamura, R; Sasaki, S; Uesugi, K

    2006-06-02

    During the interval from September through early December 2005, the Hayabusa spacecraft was in close proximity to near-Earth asteroid 25143 Itokawa, and a variety of data were taken on its shape, mass, and surface topography as well as its mineralogic and elemental abundances. The asteroid's orthogonal axes are 535, 294, and 209 meters, the mass is 3.51 x 10(10) kilograms, and the estimated bulk density is 1.9 +/- 0.13 grams per cubic centimeter. The correspondence between the smooth areas on the surface (Muses Sea and Sagamihara) and the gravitationally low regions suggests mass movement and an effective resurfacing process by impact jolting. Itokawa is considered to be a rubble-pile body because of its low bulk density, high porosity, boulder-rich appearance, and shape. The existence of very large boulders and pillars suggests an early collisional breakup of a preexisting parent asteroid followed by a re-agglomeration into a rubble-pile object.

  6. Hydrodynamic performance of multiple-row slotted breakwaters

    NASA Astrophysics Data System (ADS)

    Elbisy, Moussa S.; Mlybari, Ehab M.; Helal, Medhat M.

    2016-06-01

    This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients ( C R , C T , and C E ) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the C R increases with increasing wave number, kd, and with a decreasing permeable wall part, dm. The C T follows the opposite trend. The C E slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the C R , while increasing the C T . At lower values of kd, a decreasing porosity increases the C E , but for high values of kd, a decreasing porosity reduces the C E . The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd<0.5. Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd>0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.

  7. Floating Breakwaters: State-of-the-Art Literature Review.

    DTIC Science & Technology

    1981-10-01

    breakwaters with a width of more than 12 modules.) Generally, the data show that as W/L increases, the transmission coefficient, Ct, decreases. Also, for...was a 1/16-inch stainless steel aircraft cable of 7 by 7 stranding. The mooring force data (Fig. 176) were determined with a mooring line slope of 1...UTIC T’ jg~’f :(I_ 2 UNCLASSIFIED SECURITY CL ASSI FIC ATION OF TMIS P AGEfW?,.n Data Fntered) PREFACE This report is published to provide coastal

  8. Ecological value of submerged breakwaters for habitat enhancement on a residential scale.

    PubMed

    Scyphers, Steven B; Powers, Sean P; Heck, Kenneth L

    2015-02-01

    Estuarine shorelines have been degraded since humans arrived in the coastal zone. In recent history, a major cause of habitat degradation has been the armoring of shorelines with vertical walls to protect property from erosive wave energy; however, a lack of practical alternatives that maintain or enhance ecological function has limited the options of waterfront residents and coastal zone managers. We experimentally investigated the habitat value of two configurations of submerged breakwaters constructed along an eroding shoreline in northwest Mobile Bay, AL (USA). Breakwaters comprised of bagged oyster shell or Reef Ball™ concrete domes were built by a community-based restoration effort. Post-deployment monitoring found that: bagged oyster breakwaters supported much higher densities of live ribbed mussels than Reef Ball breakwaters; both breakwater configurations supported increased species richness of juvenile and smaller fishes compared to controls; and that larger fishes did not appear to be affected by breakwater presence. Our study demonstrates that ecologically degraded shorelines can be augmented with small-scale breakwaters at reasonable cost and that these complex structures can serve as habitat for filter-feeding bivalves, mobile invertebrates, and young fishes. Understanding the degree to which these structures mitigate erosive wave energy and protect uplands will require a longer time frame than our 2-year-long study.

  9. Ecological Value of Submerged Breakwaters for Habitat Enhancement on a Residential Scale

    NASA Astrophysics Data System (ADS)

    Scyphers, Steven B.; Powers, Sean P.; Heck, Kenneth L.

    2015-02-01

    Estuarine shorelines have been degraded since humans arrived in the coastal zone. In recent history, a major cause of habitat degradation has been the armoring of shorelines with vertical walls to protect property from erosive wave energy; however, a lack of practical alternatives that maintain or enhance ecological function has limited the options of waterfront residents and coastal zone managers. We experimentally investigated the habitat value of two configurations of submerged breakwaters constructed along an eroding shoreline in northwest Mobile Bay, AL (USA). Breakwaters comprised of bagged oyster shell or Reef Ball™ concrete domes were built by a community-based restoration effort. Post-deployment monitoring found that: bagged oyster breakwaters supported much higher densities of live ribbed mussels than Reef Ball breakwaters; both breakwater configurations supported increased species richness of juvenile and smaller fishes compared to controls; and that larger fishes did not appear to be affected by breakwater presence. Our study demonstrates that ecologically degraded shorelines can be augmented with small-scale breakwaters at reasonable cost and that these complex structures can serve as habitat for filter-feeding bivalves, mobile invertebrates, and young fishes. Understanding the degree to which these structures mitigate erosive wave energy and protect uplands will require a longer time frame than our 2-year-long study.

  10. Light-toned Mounds in Gorgonum Basin

    NASA Image and Video Library

    2017-06-29

    This image from NASA's Mars Reconnaissance Orbiter shows Gorgonum Basin, one of several large basins within the Terra Sirenum region of Mars. Each basin has light-toned mounds, many of which contain clays. Scientists think that Terra Sirenum once had a large lake during an epoch called the Late Noachian/Early Hesperian, and each basin filled with sediments. The water within the lake may have altered these sediments to form the clays we now observe from orbit. Ma'adim Vallis, which drains into Gusev Crater where the Spirit rover landed, drained the water from this ancient lake. Why the basin floors exhibit mounds similar to chaos regions on Mars is unknown, but could be the result of collapse and subsequent erosion within the basins. https://photojournal.jpl.nasa.gov/catalog/PIA21767

  11. Dynamic thermal structure of imported fire ant mounds.

    PubMed

    Vogt, James T; Wallet, Bradley; Coy, Steven

    2008-01-01

    A study was undertaken to characterize surface temperatures of mounds of imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) and S. richteri Forel, and their hybrid, as it relates to sun position and shape of the mounds, to better understand factors that affect absorption of solar radiation by the nest mound and to test feasibility of using thermal infrared imagery to remotely sense mounds. Mean mound surface temperature peaked shortly after solar noon and exceeded mean surface temperature of the surrounding surface. Temperature range for mounds and their surroundings peaked near solar noon, and the temperature range of the mound surface exceeded that of the surrounding area. The temperature difference between mounds and their surroundings peaked around solar noon and ranged from about 2 to 10 degrees C. Quadratic trends relating temperature measurements to time of day (expressed as percentage of daylight hours from apparent sunrise to apparent sunset) explained 77 to 88% of the variation in the data. Mounds were asymmetrical, with the apex offset on average 81.5 +/- 1.2 mm to the north of the average center. South facing aspects were about 20% larger than north facing aspects. Mound surface aspect and slope affected surface temperature; this affect was greatly influenced by time of day. Thermal infrared imagery was used to illustrate the effect of mound shape on surface temperature. These results indicate that the temperature differences between mounds and their surroundings are sufficient for detection using thermal infrared remote sensing, and predictable temporal changes in surface temperature may be useful for classifying mounds in images.

  12. Upper Carboniferous reef mounds and climate change

    SciTech Connect

    West, R.R.; Archer, A.W. )

    1992-01-01

    Tetractinomorph demosponges (chaetetids) are a minor component of extant tropical reefs, but they were the major framebuilder of reef mounds during the Westphalian (Carboniferous). These chaetetids were confined to tropical latitudes during the Carboniferous, reached an abundance peak in the Westphalian, and then declined suddenly until the Upper Triassic. After their decline, red and green algae became the dominant reef builders of the Stephanian. The marked decline of chaetetids corresponds with the disappearance, and/or decline of other marine benthic invertebrates, as well as some terrestrial plants and is the basis for the biostratigraphic boundary between the Westphalian and Stephanian (Desmoinesian and Missourian). This biostratigraphic boundary coincides with a minor extinction event and a major'' climatic change. The Westphalian climate was wetter than that of the Stephanian, and in the midcontinent this change is recorded by a gradual decline in coals and siliciclastic lithologies and a corresponding increase in carbonate lithologies. A rise in water temperature might be expected in a drier tropical climate, and if extant chaetetids are any clue, elevated water temperature may have been detrimental. Extant chaetetids are associated with tropical coral reefs that are confined to a narrow temperature range. It is not unreasonable to suggest that elevated seawater temperatures were responsible, in part, for the disappearance of chaetetid reef mounds. Red and green algae, presumably more tolerate of higher water temperatures, became the major framebuilders of reef mounds in the Stephanian. Thus, the demise of chaetetid reef mounds, and other organisms at the end of the Westphalian, may be the result of global warming.

  13. Troubleshooting guide for Mound calorimeter systems

    SciTech Connect

    Breakall, K.L.; Duff, M.F.; Rodenburg, W.W.

    1988-06-29

    This report is to be used as a tool for troubleshooting Mound calorimeter systems. It describes in simple language the equilibration, prediction, and servo-control modes of operation. A problem-cause-action table provides suggestions and, in some cases, directs personnel to one of six troubleshooting flow charts included in the report. Using the flow charts, laboratory personnel should be able to rcognize and troubleshoot most problems that occur. 4 figs., 1 tab.

  14. Mathematical models for Isoptera (Insecta) mound growth.

    PubMed

    Buschini, M L T; Abuabara, M A P; Petrere-Jr, Miguel

    2008-08-01

    In this research we proposed two mathematical models for Isoptera mound growth derived from the Von Bertalanffy growth curve, one appropriated for Nasutitermes coxipoensis, and a more general formulation. The mean height and the mean diameter of ten small colonies were measured each month for twelve months, from April, 1995 to April, 1996. Through these data, the monthly volumes were calculated for each of them. Then the growth in height and in volume was estimated and the models proposed.

  15. Constraining the Interior Geophysics of Rubble Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Jacobson, S.; McMahon, J.; Hirabayashi, M.

    2013-12-01

    The internal geophysics of small rubble pile asteroids are largely unknown, and standard geophysical theories are not well matched to the extreme environment these bodies exist in. Interior pressures within rapidly spinning rubble piles are predicted to be as small as a few Pascals, a regime in which small non-gravitational forces not considered for larger bodies may become important. Previous research has suggested that the standard geophysical models for internal energy dissipation in this regime require modification (Goldreich and Sari, ApJ 2009), adding additional uncertainty in the geophysics. We report on new theoretical and observational results that suggest a direct way in which fundamental geophysical parameters of small rubble pile asteroids can be constrained. Specifically, we will discuss how the ratio Q/k, tidal dissipation number over tidal Love number, can be inferred and more strictly constrained for primaries in small binary asteroid systems where the secondary is spin-synchronized and the primary is super-synchronous, the most common class of small asteroid binary systems. Jacobson & Scheeres (ApJ 2011) proposed that many of these binary asteroid systems may be in an equilibrium state where contractive Binary YORP forces balance against expansive tidal torques due to tidal distortion of the primary body. The predicted equilibrium semi-major axes for such binary asteroid systems (based on presumed values for the Binary YORP force and Q/k values) has been seen to be consistent with the observed sizes of many of these systems (see figure). Recently, it has also been reported that the spacecraft-accessible binary asteroid 1996 FG3 is in such an equilibrium state (Scheirich et al., Binaries Workshop 2013). The combined detection of such an equilibrium coupled with their theoretical model makes it feasible to sharply constrain the Q/k parameter for the primary asteroid in the 1996 FG3 system and extrapolate its functional form to other such systems. We

  16. Coarse fraction of soils from building rubble (WWII)

    NASA Astrophysics Data System (ADS)

    Mekiffer, Beate; Wessolek, Gerd; Scheytt, Traugott; Bussert, Robert; Nehls, Thomas

    2010-05-01

    Soils, resulting from building rubble of WWII are wide spread in whole Europe. The parent material for pedogenesis originates from different kinds of buildings, which where destroyed of different ways. Also the kind of sorting and disposing was varying for this material. So the most important feature of soils, resulting from building rubble of WWII, is their heterogeneity. We investigated samples of soils developed from building rubble to answer the following questions: ­ What are the amounts of coarse fraction and what are their main components? ­ What are the chemical properties and what is the crystalline mineral composition of technogenic components? ­ What is the release of ions from coarse technogenic components? We sieved and hand sorted the materials, used the X-ray diffractometry and X-ray fluorescence spectroscopy and measured the ions released in 1:2-extract. In most cases, the soils have a high amount of coarse fraction (> 2mm) (median 25% w/w, N=52). Dominating components in the coarse fraction are in the order of decreasing abundance: bricks, mortar (incl. plaster and stucco), slag, ashes and unburned coals. The analyzed components show alkalescent to alkaline pH-values. 75% of the samples show low electrical conductivities of up to 141 µS/cm. Bricks mainly consist of Si oxides, followed by oxides of Al, Ca, Fe, Mg and K. X-Ray-diffractometry of bricks showed, that most common minerals are clay minerals (Kaolinit, Illit, Montmorillonit and Chlorit), Quarz, and Carbonates (Calcite and Dolomite, Siderite). Bricks contain Fe-Oxides (Hematite, Goethite), Sulphates and Sulfides (Gypsum, Pyrite, Markasite) in lower amounts. 5-20 % of the minerals are x-ray-amorphous. Mortar is characterized by a high amount of silicates (nearby 80%). The samples showed a lower percentage of Al- and Ca-compounds than bricks. Chemical composition of ashes and slag varies in wide ranges, depending on their genesis. We found mainly ashes from stove heating. They contained

  17. EG G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  18. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier.

    PubMed

    Chen, K M; Huang, Y; Zhang, J; Norman, A

    2000-01-01

    A new sensitive microwave life-detection system which can be used to locate human subjects buried under earthquake rubble or hidden behind various barriers has been constructed. This system operating at 1150 MHz or 450 MHz can detect the breathing and heartbeat signals of human subjects through an earthquake rubble or a construction barrier of about 10-ft thickness. The basic physical principle for the operation of a microwave life-detection system is rather simple. When a microwave beam of appropriate frequency (L or S band) is aimed at a pile of earthquake rubble covering a human subject or illuminated through a barrier obstructing a human subject, the microwave beam can penetrate the rubble or the barrier to reach the human subject. When the human subject is illuminated by a microwave beam, the reflected wave from the human subject will be modulated by the subject's body movements, which include the breathing and the heartbeat. If the clutter consisting of the reflected wave from stationary background can be completely eliminated and the reflected wave from the human subject's body is properly modulated, the breathing and heartbeat signals of the subject can be extracted. Thus, a human subject buried under earthquake rubble or hidden behind barriers can be located. This system has been tested extensively in a simulated earthquake rubble in the laboratory and also in a field test using realistic earthquake rubble conducted by a Federal Emergency Management Agency (FEMA) Task Force.

  19. Structural Modeling Of Rubble Piles In Two And Three Dimensions

    NASA Astrophysics Data System (ADS)

    Korycansky, Donald

    2012-10-01

    One of the puzzles about the structure of asteroids and other small bodies of the solar system is amount void space that is apparently present, from measurements of their bulk densities as compared to the mineral grain densities of their surfaces. In many cases, void fractions of 40% or more are inferred. The question arises as to whether this large void fraction is the result of large-scale internal structure ("macroporosity") or small-scale grain-density effects ("microporosity"). In this work I present results from modeling rubble piles. In particular, rubble piles are modeled as assemblages of irregular polyhedra. Modeling is done by a so-called "penalty method" where repulsive forces are applied to prevent interpenetration of the constitutent blocks. Displacements are proportional to the forces, so this is a first-order dynamics method (i.e.there is no inertia). Collision detection among the elements is done via Minkowski summation: compilation of the pairwise differences of the polyhedra vertices, followed by the application of a convex hull. Minkowski summation provides the minimum distance required to resolve a collision, but the location of the overlap region is lost. Thus, further operations are done to recover this information. Given the depth of overlaps and their locations, the positions and orientations of polyhedra are adjusted to reduce the overlap until a structure with minimal interpenetration is produced. Initial calculations done with 100 polyhedra derived from voronoi decomposition of a cube yield results with void fractions in the range of 20-25%. Further results will be reported at the DPS conference. This work was supported by NASA PG&G award NNX07AQ04G.

  20. Brick-pile To Rubble-pile Impact Transitions

    NASA Astrophysics Data System (ADS)

    Korycansky, Donald; Asphaug, E.

    2010-10-01

    One of the chief lines of evidence that asteroids are "rubble piles", (loose aggregates of rock and/or ice held together by gravity and friction) is the under-density that many of them exhibit compared to the density of solid rock as inferred from surface compositions. Under-densities up to 50% or greater have been found for some objects (Britt and Consolmagno 2002). However, little is known of the internal structure of these bodies. Under-density may be due to "microporosity", i.e. porosity at the level of grains, or "macroporosity" in which void space is provided by the mis-match of large structural blocks that comprise the bulk of the object. We present work that models sub-catastrophic impacts into "brick piles", i.e. close-fitting aggregates with little or no void space. Calculations follow the partial or complete dispersal of an asteroid and its reassembly. After reassembly, the post-impact volume of the object is compared to the pre-impact object to derive a void fraction. Model calculations were carried out with programs based on the Open Dynamics Engine library that has been used by us for a number of studies (Korycansky and Asphaug 2009, Korycansky 2010a,b LPSC). Initial brick-pile objects were constructed by means of quasi-random Voronoi decompositions of an initial volume that is the hull of the pre-impact object. We will present results on the amount and distribution of void space of post-impact rubble piles and compare to the observed distribution of inferred void space, and characterize our results in terms of body and impact parameters, such as numbers and size distribution of pre-impact brick piles and impact velocities and geometry. This work has been supported by NASA Planetary Geology and Geophysics program grant NNX07AQ04G.

  1. Cartografical And Geodetical Aspects Of The Krakus Mound In Cracow

    NASA Astrophysics Data System (ADS)

    Banasik, Piotr

    2015-12-01

    In this work the fate of the Krakus Mound, the oldest of all existing Krakow's mounds, has been presented. The work was carried out based on selected iconographic, cartographic and geodetic documents. Using as an example old views, panoramas of the city and maps, various functions that the Krakus Mound was fulfilling over its long history were shown. An attempt was made to document the military significance of this mound and the surrounding hills. The particular astro-geodetic importance of the Krakus Mound on the scale of the city and southern Poland region was widely discussed. The Krakus Mound also inscribed itself in the history of the use of GPS technology as well as research on the local determination of the geoid in the area of Krakow.

  2. MHD instabilities in accretion mounds - II. 3D simulations

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea

    2013-10-01

    We investigate the onset of pressure-driven toroidal-mode instabilities in accretion mounds on neutron stars by 3D magnetohydrodynamic (MHD) simulations using the PLUTO MHD code. Our results confirm that for mounds beyond a threshold mass, instabilities form finger-like channels at the periphery, resulting in mass-loss from the magnetically confined mound. Ring-like mounds with hollow interior show the instabilities at the inner edge as well. We perform the simulations for mounds of different sizes to investigate the effect of the mound mass on the growth rate of the instabilities. We also investigate the effect of such instabilities on observables such as cyclotron resonant scattering features and timing properties of such systems.

  3. Environmental control on cold-water carbonate mounds development

    NASA Astrophysics Data System (ADS)

    Rüggeberg, A.; Liebetrau, V.; Raddatz, J.; Flögel, S.; Dullo, W.-Chr.; Exp. 307 Scientific Party, Iodp

    2009-04-01

    Cold-water coral reefs are very abundant along the European continental margin in intermediate water depths and are able to build up large mound structures. These carbonate mounds particularly occur in distinct mound provinces on the Irish and British continental margins. Previous investigations resulted in a better understanding of the cold-water coral ecology and the development of conceptual models to explain carbonate mound build-up. Two different hypotheses were evoked to explain the origin and development of carbonate mounds, external versus internal control (e.g., Freiwald et al. 2004 versus e.g. Hovland 1990). Several short sediment cores have been obtained from Propeller Mound, Northern Porcupine Seabight, indicating that cold-water corals grew during interglacial and warm interstadial periods of the Late Pleistocene controlled by environmental and climatic variability supporting the external control hypothesis (e.g. Dorschel et al. 2005, R

  4. Mound site environmental report for calendar year 1992

    SciTech Connect

    Bauer, L.R.

    1993-07-01

    The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the US Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies.

  5. A lone biodetrital mound in the Chesterian (Carboniferous) of Alabama?

    USGS Publications Warehouse

    Kopaska-Merkel, D. C.; Haywick, D.W.

    2001-01-01

    A carbonate mound in the Chesterian Bangor Limestone of Lawrence County, Alabama, consists chiefly of packstone and grainstone dominated by echinoderm ossicles and fragments of fenestrate bryozoans. In-situ colonies of the rugose coral Caninia flaccida comprise about 8% of the mound by volume. The exposed portion of the mound is approximately 25 m wide, 1.6 m thick at the thickest point and roughly circular in plan. The mound developed on top of a shallow ooid shoal that had been cemented and stabilised during an earlier episode of sub-aerial exposure. Subsequent flooding of the exposed shoal surface permitted establishment of the mound biota. Lateral and vertical facies relationships suggest that the mound possessed about 45 cm of synoptic relief when fully developed. Rugose corals, fenestrate and ramose bryozoans, stalked echinoderms, and sessile soft-bodied organisms encrusted by foraminifera colonised the shoal, forming a mound. Baffling resulted in deposition of mixed-fossil packstone containing locally derived debris and coated grains from the surrounding sea floor. Strong currents within the mound are indicated by preferred orientation of corals and by coarse, commonly cross-stratified grainstone in channels between neighboring coral colonies. Corals are most abundant on the windward side of the mound, where they account for about 13% of the mound compared to 6- 10% in the central part of the mound, and 2-4% on the leeward flank. Biodetrital mounds such as the one described here are uncommon in upper Paleozoic strata and previously unknown in the Bangor Limestone. Of 10 carbonate buildups we examined in the Bangor in Alabama and Tennessee, only one is a biodetrital mound. Two are rugose coral-microbial reefs, one is a coral biostrome, and six are dominated by microbialite. The Bangor shelf, previously interpreted as sedimentologically simple, appears to contain many small mounds of quite varied characteristics. Also, the discovery of a biodetrital mound in

  6. A lone biodetrital mound in the Chesterian (Carboniferous) of Alabama?

    NASA Astrophysics Data System (ADS)

    Kopaska-Merkel, David C.; Haywick, Douglas W.

    2001-12-01

    A carbonate mound in the Chesterian Bangor Limestone of Lawrence County, Alabama, consists chiefly of packstone and grainstone dominated by echinoderm ossicles and fragments of fenestrate bryozoans. In-situ colonies of the rugose coral Caninia flaccida comprise about 8% of the mound by volume. The exposed portion of the mound is approximately 25 m wide, 1.6 m thick at the thickest point and roughly circular in plan. The mound developed on top of a shallow ooid shoal that had been cemented and stabilised during an earlier episode of sub-aerial exposure. Subsequent flooding of the exposed shoal surface permitted establishment of the mound biota. Lateral and vertical facies relationships suggest that the mound possessed about 45 cm of synoptic relief when fully developed. Rugose corals, fenestrate and ramose bryozoans, stalked echinoderms, and sessile soft-bodied organisms encrusted by foraminifera colonised the shoal, forming a mound. Baffling resulted in deposition of mixed-fossil packstone containing locally derived debris and coated grains from the surrounding sea floor. Strong currents within the mound are indicated by preferred orientation of corals and by coarse, commonly cross-stratified grainstone in channels between neighboring coral colonies. Corals are most abundant on the windward side of the mound, where they account for about 13% of the mound compared to 6-10% in the central part of the mound, and 2-4% on the leeward flank. Biodetrital mounds such as the one described here are uncommon in upper Paleozoic strata and previously unknown in the Bangor Limestone. Of 10 carbonate buildups we examined in the Bangor in Alabama and Tennessee, only one is a biodetrital mound. Two are rugose coral-microbial reefs, one is a coral biostrome, and six are dominated by microbialite. The Bangor shelf, previously interpreted as sedimentologically simple, appears to contain many small mounds of quite varied characteristics. Also, the discovery of a biodetrital mound in

  7. 12. CCC RUBBLE PAVING IN GRAND CANAL AT 4E10N NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CCC RUBBLE PAVING IN GRAND CANAL AT 4E-10N NEAR 83RD AVENUE AND BETHANY HOME ROAD, GLENDALE. Photographer unknown, January 18, 1938 - Grand Canal, North side of Salt River, Tempe, Maricopa County, AZ

  8. 13. VIEW NORTH, PERSPECTIVE OF TOWER VICINITY, ROAD/TRAMWAY, AND RUBBLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTH, PERSPECTIVE OF TOWER VICINITY, ROAD/TRAMWAY, AND RUBBLE - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  9. Mound-cell movement and morphogenesis in Dictyostelium.

    PubMed

    Kellerman, K A; McNally, J G

    1999-04-15

    To examine the mechanisms of cell locomotion within a three-dimensional (3-D) cell mass, we have undertaken a systematic 3-D analysis of individual cell movements in the Dictyostelium mound, the first 3-D structure to form during development of the fruiting body. We used time-lapse deconvolution microscopy to examine two strains whose motion represents endpoints on the spectrum of motile behaviors that we have observed in mounds. In AX-2 mounds, cell motion is slow and trajectories are a combination of random and radial, compared to KAX-3, in which motion is fivefold faster and most trajectories are rotational. Although radial or rotational motion was correlated with the optical-density wave patterns present in each strain, we also found small but significant subpopulations of cells that moved differently from the majority, demonstrating that optical-density waves are at best insufficient to explain all motile behavior in mounds. In examining morphogenesis in these strains, we noted that AX-2 mounds tended to culminate directly to a fruiting body, whereas KAX-3 mounds first formed a migratory slug. By altering buffering conditions we could interchange these behaviors and then found that mound-cell motions also changed accordingly. This demonstrates a correlation between mound-cell motion and subsequent development, but it is not obligatory. Chimeric mounds composed of only 10% KAX-3 cells and 90% AX-2 cells exhibited rotational motion, suggesting that a diffusible molecule induces rotation, but many of these mounds still culminated directly, demonstrating that rotational motion does not always lead to slug migration. Our observations provide a detailed analysis of cell motion for two distinct modes of mound and slug formation in Dictyostelium.

  10. Development of a separation method for molybdenum from zirconium, niobium, and major elements of rubble samples.

    PubMed

    Shimada, Asako; Ozawa, Mayumi; Yabuki, Koshi; Kimiyama, Kazuhiro; Sato, Kenji; Kameo, Yutaka

    2014-12-05

    A method for separation of Mo from Zr, Nb, and other major elements of rubble samples from the Fukushima Daiichi Nuclear Power Station (FDNPS) was developed to enable 93Mo assay of the rubble samples. Although (93)Mo analysis has been reported in a few studies, the known separation method is tedious and time consuming, or the target is a simple material. Therefore, a simple and rapid protocol for the separation of a complex material, i.e., the rubble sample, was developed in this study. Firstly, loss of Mo during the digestion of simulated rubble samples was evaluated. Next, weight distribution coefficients (Kd's) of Zr, Nb, and Mo between an extraction chromatographic resin (tetra valent actinide resin, TEVA resin) and acid solutions (HF-HCl and HF-HNO3 solutions) were determined to obtain suitable solution conditions for the separation of Mo from Zr and Nb. Based on the obtained Kd's, a chromatographic separation scheme was designed and applied to the digested solution of the simulated rubble sample. Consequently, Mo was successfully separated from Zr, Nb and other major metal ions of the simulated rubble sample.

  11. Are pre-crater mounds gas-inflated?

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre

  12. Monitoring bioeroding sponges: using rubble, Quadrat, or intercept surveys?

    PubMed

    Schönberg, C H L

    2015-04-01

    Relating to recent environmental changes, bioerosion rates of calcium carbonate materials appear to be increasing worldwide, often driven by sponges that cause bioerosion and are recognized bioindicators for coral reef health. Various field methods were compared to encourage more vigorous research on bioeroding sponges and their inclusion in major monitoring projects. The rubble technique developed by Holmes et al. (2000) had drawbacks often due to small specimen sizes: it was time-costly, generated large variation, and created a biased impression about dominant species. Quadrat surveys were most rapid but overestimated cover of small specimens. Line intercepts are recommended as easiest, least spatially biased, and most accurate, especially when comparing results from different observers. Intercepts required fewer samples and provided the best statistical efficiency, evidenced by better significances and test power. Bioeroding sponge abundances and biodiversities are influenced by water depth, sediment quality, and most importantly by availability of suitable attached substrate. Any related data should thus be standardized to amount of suitable substrate to allow comparison between different environments, concentrating on dominant, easily recognized species to avoid bias due to experience of observers.

  13. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    PubMed

    Scyphers, Steven B; Powers, Sean P; Heck, Kenneth L; Byron, Dorothy

    2011-01-01

    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2) at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this

  14. Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries

    PubMed Central

    Scyphers, Steven B.; Powers, Sean P.; Heck, Kenneth L.; Byron, Dorothy

    2011-01-01

    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards “living shoreline” approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m−2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and

  15. Pits, Mounds and Soil Transport on Hillslopes in NW Delaware

    NASA Astrophysics Data System (ADS)

    Hasbargen, L.

    2006-12-01

    Pit and mound topography in hardwood forests in the Piedmont of northwest Delaware exhibit a range of forms based on age. This change in shape with age provides an opportunity to place constraints on the dominant transport process acting on the hillslope at this local scale, as well as longer term hillslope transport rates. This is done via numerical modeling of pit and mound profiles. Applying a slope-dependent transport law to a young measured profile provides a forward model of pit and mound topography. Slope-dependent transport yields consistent predictions about mound and pit evolution. Namely, asperities on the mound are rapidly smoothed out. The pit fills with sediment. The uphill scarp reclines. Both upslope from the pit and downslope from the mound, the evolution of topography depends strongly on the boundary conditions in the model. A "no flux" boundary yields a growing wedge at the base and reclining slope at the top of the profile, both of which are inconsistent with old pit and mound profiles. A constant flux boundary must be estimated to replicate observed profiles. Specified flux boundaries from numerical modeling provide some estimate, then, of longer term transport rates along the hillslope. Both the up and down slope effects (in the numerical model) are small, however, relative to the large changes of steep slopes on the mound itself. The slope-dependent transport model yields a strong and fairly straight- forward prediction: asperities smooth rapidly over time. Older mound profiles do spread out over the hillslope over time, suggesting a diffusive type of transport. However, slope-dependent diffusive transport does not adequately describe all of the mounds we observe. Sharp asperities persist on many mounds long after the log has decayed and the pit has largely filled in. Why? Pebbles mantle many of the older mounds, and rock- capped pedestals are common. Rock-covered pinnacles imply that rain splash and/or surface runoff are dominant sediment

  16. Asphalt mounds and associated biota on the Angolan margin

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Walls, Anne; Clare, Michael; Fiske, Mike S.; Weiland, Richard J.; O'Brien, Robert; Touzel, Daniel F.

    2014-12-01

    Release of hydrocarbons from sediments is important in increasing habitat heterogeneity on deep ocean margins. Heterogeneity arises from variation in abiotic and biotic conditions, including changes in substratum, geochemistry, fluid flow, biological communities and ecological interactions. The seepage of heavy hydrocarbons to the seafloor is less well studied than most other cold seep systems and may lead to the formation of asphalt mounds. These have been described from several regions, particularly the Gulf of Mexico. Here, we describe the structure, potential formation and biology of a large asphalt mound province in Block 31SE Angola. A total of 2254 distinct mound features was identified by side-scan sonar, covering a total area of 3.7 km2 of seafloor. The asphalt mounds took a number of forms from small (<0.5 m diameter; 13% observations) mounds to large extensive (<50 m diameter) structures. Some of the observed mounds were associated with authigenic carbonate and active seepage (living chemosynthetic fauna present in addition to the asphalt). The asphalt mounds are seabed accumulations of heavy hydrocarbons formed from subsurface migration and fractionation of reservoir hydrocarbons primarily through a network of faults. In Angola these processes are controlled by subsurface movement of salt structures. The asphalt mounds were typically densely covered with epifauna (74.5% of mounds imaged had visible epifauna) although individual mounds varied considerably in epifaunal coverage. Of the 49 non-chemosynthetic megafaunal taxa observed, 19 taxa were only found on hard substrata (including asphalt mounds), 2 fish species inhabited the asphalt mounds preferentially and 27 taxa were apparently normal soft-sediment fauna. Antipatharians (3.6±2.3% s.e.) and poriferans (2.6±1.9% s.e.) accounted for the highest mean percentage of the observed cover, with actinarians (0.9±0.4% s.e.) and alcyonaceans (0.4±0.2% s.e.) covering smaller proportions of the area

  17. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D&D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  18. Geochemical Arrays at Woolsey Mound Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.

    2011-12-01

    A suite of geochemical monitoring arrays has been developed for the Woolsey Mound Seafloor Observatory in the northern Gulf of Mexico to evaluate the oceanographic and tectonic forcing factors on the formation and stability of gas hydrates. These arrays are designed to collect sustained, time-series data of chemical concentrations, gradients and fluxes from the subsurface to the seafloor and into the near bottom water column. A Pore Fluid Array provides time-series measurements of methane, sulfate and salinity in subsurface pore waters to evaluate microbial activity, hydrate formation and/or hydrate dissociation. A Chimney Sampler Array collects in situ chemical and physical readings at the benthic boundary. The array is designed around a vertical cylinder with a known volume and washout rate for measuring chemical gradients and flux at the seafloor. The Benthic Boundary Layer Array extends into the water column with a package of sensors in a node close to the seafloor and a similar node 20 m above the seafloor to evaluate upward, downward and transversely advecting fluids. The three arrays can be used in concert to evaluate a release of methane by the dissociation of gas hydrates: the Pore Fluid Array identifies the breakdown of gas hydrates in the subsurface, the Chimney Array determines the rate of flux at the seafloor and the Benthic Boundary Layer Array evaluates the fate of the release in the water column. Combining the data from the geochemical arrays with output from the geophysical arrays provides key information to evaluate the specific and relative importance of tectonic and oceanographic triggers for hydrate dissociation. New probes and deployment platforms have been developed for the installation and maintenance of the arrays and new systems are in place and under development for the recovery of the data. Generally, the complete array or its components have to be recovered to download the data. However, this summer 2011, a new optic modem system was

  19. Burial, mounding key at Isle of Purbeck

    SciTech Connect

    Reed, C.G. )

    1989-07-17

    Design and installation of LPG storage for BP Petroleum Development Ltd.'s Wytch Farm Project on the Isle of Purbeck was guided by the central need to obscure the storage site from view and preserve the natural beauty of the island. The Wytch Farm oil field development is an expansion project aimed at increasing crude-oil production from 5,500 b/d to 60,000 b/d. The oil field is located beneath the southern shores of Poole Harbour on the south coast of the U.K. in an area of outstanding beauty and adjacent to sites of special scientific interest. The article is divided into the following areas: Storage needs; Mounding concrete; Pressure resistance; Fracture, cracking concerns; Coating criteria; Cleaning, application; Sand bed foundations; Earthworks, Preparation installation; Settlement monitoring.

  20. Applicability of CADMAS-SURF to evaluate detached breakwater effects on solitary tsunami wave reduction

    NASA Astrophysics Data System (ADS)

    Hanzawa, Minoru; Matsumoto, Akira; Tanaka, Hitoshi

    2012-10-01

    Detached breakwaters, made with wave-dissipating concrete blocks such as Tetrapods, have been widely applied in Japan, but the effectiveness of such kinds of detached breakwaters on tsunami disaster prevention has never been discussed in detail. A numerical wave flume called CADMAS-SURF has been developed for advanced maritime structure design. CADMAS-SURF has been applied mainly to ordinary wave conditions such as wind waves, and little attempt has been made for expanding its application to tsunami waves. In this study, the applicability of CADMAS-SURF for evaluating the effectiveness of detached breakwaters on a solitary tsunami wave reduction is investigated by comparing the calculated results with those from hydraulic experiments. First, the effectiveness of a detached breakwater on the reduction of wave height and wave pressure was confirmed both by hydraulic experiments and numerical simulations. Finally, CADMAS-SURF has been found to be a useful tool for evaluating the effects of detached breakwaters on tsunami wave height and pressure reduction, as a first step in a challenging study.

  1. Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA

    SciTech Connect

    Kupecz, J.A.; Arestad, J.F.; Blott, J. E.

    1996-06-01

    Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximal flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.

  2. Rubble-Pile Minor Planet Sylvia and Her Twins

    NASA Astrophysics Data System (ADS)

    2005-08-01

    the triple asteroid system showing the large asteroid 87 Sylvia spinning at a rapid rate and surrounded by two smaller asteroids (Remus and Romulus) in orbit around it. This computer animation is also available in broadcast quality to the media (please contact Herbert Zodet). One of these asteroids was 87 Sylvia, which was known to be double since 2001, from observations made by Mike Brown and Jean-Luc Margot with the Keck telescope. The astronomers used NACO to observe Sylvia on 27 occasions, over a two-month period. On each of the images, the known small companion was seen, allowing Marchis and his colleagues to precisely compute its orbit. But on 12 of the images, the astronomers also found a closer and smaller companion. 87 Sylvia is thus not double but triple! Because 87 Sylvia was named after Rhea Sylvia, the mythical mother of the founders of Rome [3], Marchis proposed naming the twin moons after those founders: Romulus and Remus. The International Astronomical Union approved the names. Sylvia's moons are considerably smaller, orbiting in nearly circular orbits and in the same plane and direction. The closest and newly discovered moonlet, orbiting about 710 km from Sylvia, is Remus, a body only 7 km across and circling Sylvia every 33 hours. The second, Romulus, orbits at about 1360 km in 87.6 hours and measures about 18 km across. The asteroid 87 Sylvia is one of the largest known from the asteroid main belt, and is located about 3.5 times further away from the Sun than the Earth, between the orbits of Mars and Jupiter. The wealth of details provided by the NACO images show that 87 Sylvia is shaped like a lumpy potato, measuring 380 x 260 x 230 km (see ESO PR Photo 25a/05). It is spinning at a rapid rate, once every 5 hours and 11 minutes. The observations of the moonlets' orbits allow the astronomers to precisely calculate the mass and density of Sylvia. With a density only 20% higher than the density of water, it is likely composed of water ice and rubble

  3. Geotechnical characteristics of shallow ocean dredge spoil disposal mounds

    SciTech Connect

    Demars, K.R.; Dowling, J.J.; Long, R.P.; Morton, R.W.

    1984-05-01

    This paper summarizes the data obtained from site surveying and sediment sampling of dredge spoil disposal mounds at the Central Long Island Sound site. Emphasis is placed on the geotechnical and geological features of the mound and natural seabed. Since some of the spoil is contaminated, cappings of clean spoil have been used to isolate the spoil mounds from fauna and flora in the water column. Because of the contaminated spoil, improvements in the disposal techniques are needed and methodologies must be developed for evaluating short-term and long-term stability of these shallow ocean deposits which are subjected to loadings from waves, spoil disposal and capping operations.

  4. Fissuring near the TAG active hydrothermal mound, 26°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Kleinrock, M. C.

    2000-05-01

    Analysis of 12,000 electronic still camera images collected with the ARGO II vehicle near the Trans-Atlantic Geotraverse (TAG) active hydrothermal mound, 26°N on the Mid-Atlantic Ridge, has made possible the first quantitative in situ assessment of both fissure orientation and width within the median valley of a slow-spreading ridge. Fissures near the TAG mound are partially rubble-filled extensional fractures that cut lightly sedimented seafloor and in ∼1% of our observations host pillow lavas. Fissure widths range from 0.15 to 3.5 m, with a mean of 0.7 m, and do not vary systematically within the survey area. First-order estimates of crack depth, based on these width measurements and reasonable elastic moduli, indicate that fissures are restricted to depths <500 m, with a mean depth of ∼70 m. Fissure-associated eruptives were therefore probably fed by shallow propagating dikes. TAG fissures exhibit a wide range of orientations, with ∼40% deviating by >45° from the strike of the ridge axis. The formation of obliquely oriented fissures requires that the local least compressive stress direction varies (at least temporarily) from that predicted by the regional tectonic stress field associated with plate separation. This stress field reorientation may be facilitated by variations in the style of magma emplacement within the rift. The close spatial association of long-term hydrothermal activity, fissure-hosted lava flows, and faults and fissures trending oblique to the spreading axis suggests a causal relationship between the impact of dike intrusion and the maintenance of localized hydrothermal flow.

  5. Experimental study on wave force of anti-L-shaped parapet of inclined breakwater

    NASA Astrophysics Data System (ADS)

    Pan, Xingkai; Gui, Jingsong; Chen, Ding

    2017-08-01

    The stability of the parapet of the inclined breakwater directly determines whether the project can run safely. In recent years, people have studied the wave force of L-shaped parapet of inclined breakwater. The distribution of wave force is clear and the calculation method is relatively mature. However, there is little research on the distribution and calculation method of wave force on the surface of anti-L-shaped parapet. Through the physical model test, the distribution law of the wave force of the anti-L-shaped parapet is explored, and the calculated value of the wave force is compared with the measured value. The stress mode of the parapet inclined breakwater in the actual project is summarized, which can provide reference for the engineering application.

  6. Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai.

    PubMed

    Bauman, Andrew G; Dunshea, Glenn; Feary, David A; Hoey, Andrew S

    2016-04-30

    Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter.

  7. Application of medical X-ray computed tomography in the study of cold-water carbonate mounds

    NASA Astrophysics Data System (ADS)

    de Mol, L.; Pirlet, H.; van Rooij, D.; Blamart, D.; Cnudde, V.; Duyck, P.; Houbrechts, H.; Jacobs, P.; Henriet, J.-P.; Dufresne 169 Shipboard Party, The Marion

    2009-04-01

    During the R/V Marion Dufresne 169 'MiCROSYSTEMS' cruise (July 2008) to the El Arraiche mud volcano field in the Gulf of Cadiz cold-water coral mounds were targeted. Four on-mound gravity cores, with a total length of 17.5 m, were obtained for sedimentological and palaeoceanographic analyses in order to unveil the history of the uppermost meters of these cold-water coral build-ups. In parallel, four on-mound cores were taken on approximately the same location for microbiological and biogeochemical analyses. By comparing and correlating both results, more information can be revealed about the processes acting in the dead coral rubble fields which cover these mounds. Computed X-ray tomography (CT) was used for the identification and quantification of the corals inside the gravity cores. Furthermore, this technique is also useful for the investigation of sedimentological features, i.e. bioturbation, porosity, laminations... In this study, cores were scanned using a medical CT scanner on a relative high resolution which allows the three-dimensional visualization of the corals and sedimentological features. Slices were taken every 3 mm with an overlap of 1 mm. Based on these data it was possible to delineate different "CT" facies within the cores. On one hand there are intervals with a high amount of corals and on the other hand zones with a very low amount of corals or even no corals at all. In the first case two different facies can be distinguished: one facies with clearly recognizable, well preserved corals, and the second facies with crushed coral fragments. In both facies the corals are embedded in a homogenous matrix. Different facies could also be defined in the intervals containing little or no corals. For example, a homogenous facies with bioturbations and/or cracks. Also an important observation is the presence of pyrite which appears in all cores at a certain depth. Sometimes the pyrite could be observed in bioturbations or inside the corals. Besides that

  8. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  9. How Did the Mound in Gale Crater Form?

    NASA Image and Video Library

    2013-05-22

    Scientist hypothesize that a lake of liquid water once filled Gale crater, and the layers in the mound formed as sediment settled down through the water to the bottom of the lake in this image from NASA Mars Reconnaissance Orbiter.

  10. Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100)

    SciTech Connect

    Zuo, J.; Wendelken, J.

    1997-04-01

    Evolution of mound morphology in reversible homoepitaxy on Cu(100) was studied via spot-profile-analysis (SPA) LEED and scanning tunneling microscopy. The mound separation shows coarsening vs growth time with L(t){approximately}t{sup 1/4}, in support of theory based on capillarity between mounds. The growth ultimately reaches a steady state characterized by a selected mound angle of {approximately}5.6{degree}. We suggest that this results from a downhill current driven by step edge line tension in balance with an uphill current due to the Schwoebel barrier effect. Also, we have clarified the interpretation for the evolution of the SPA-LEED profile from a ring structure to a single time-invariant peak. {copyright} {ital 1997} {ital The American Physical Society}

  11. 2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM TOP OF BERM. - NIKE Missile Base C-84, Acid Fueling Station, North of Launch Area Entrance Drive, eastern central portion of base, Barrington, Cook County, IL

  12. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    USGS Publications Warehouse

    Carleton, Glen B.

    2010-01-01

    Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the

  13. VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS USED FOR OBSERVATION EQUIPMENT AND PERISCOPE TOPS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  14. Environmental assessment for commercialization of the Mound Plant

    SciTech Connect

    Not Available

    1994-10-26

    In November 1993 US DOE decided to phase out operations at the Mound Plant in Miamisburg, Ohio, with the goal of releasing the site for commercial use. The broad concept is to transform the plant into an advanced manufacturing center with the main focus on commercializing products and other technology. DOE proposes to lease portions of the Mound Plant to commercial enterprises. This Environmental Impact statement has a finding of no significant impact in reference to such action.

  15. Termite mounds harness diurnal temperature oscillations for ventilation.

    PubMed

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  16. Ireland's deep-water coral carbonate mounds: multidisciplinary research results

    NASA Astrophysics Data System (ADS)

    Kozachenko, M.; Wheeler, A.; Beyer, A.; Blamart, D.; Masson, D.; Olu-Le Roy, K.

    2003-04-01

    Recent international research activity, involving a strong Irish collaboration, has shown that coral reefs are not exclusively associated with warm tropical waters but are also present in the deeper and colder Northeast Atlantic. In the Porcupine Seabight west of Ireland, coral-colonised carbonate mounds (up to 350m high) are present at 600-900m water depth. The corals Lophelia pertusa L. and Madrepora oculata L. contribute to this diverse ecosystem that may also play a significant role in expanding deep-water fisheries. New side-scan sonar, multibeam echosounder, sub-bottom profiler and underwater video imagery supplemented with sedimentological sample material were used to map the seabed in the environs of the Belgica Carbonate Mound province, eastern Porcupine Seabight. The data were integrated in a GIS and provides information on sediment pathways and benthic current patterns within the study area. A facies map of the study area highlights differing sedimentary processes showing evidences for strong northward bottom currents whose interaction has an influence on mounds growth and morphology. This survey revealed mound flanks dominated by sediment waves that give way to coral banks towards the mound summits. A form of coral accumulation was also documented. Detailed analyses of sediment properties from long cores through sediment drifts have generated a high-resolution palaeoclimate record revealing temporal patterns in bottom current strength variations. An accurate assessment of this influence on mound through a comparison with coral growth rates is ongoing.

  17. Termite mounds harness diurnal temperature oscillations for ventilation

    PubMed Central

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2015-01-01

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023

  18. SIMULATING ASTEROID RUBBLE PILES WITH A SELF-GRAVITATING SOFT-SPHERE DISTINCT ELEMENT METHOD MODEL

    SciTech Connect

    Sanchez, Paul; Scheeres, Daniel J.

    2011-02-01

    This paper applies a soft-sphere distinct element method Granular Dynamics code to simulate asteroid regolith and rubble piles. Applications to regolith studies in low gravity are also studied. Then an algorithm to calculate self-gravity is derived and incorporated for full-scale simulations of rubble-pile asteroids using Granular Dynamics techniques. To test its validity, the algorithm's results are compared with the exact direct calculation of the gravitational forces. Further avenues to improve the performance of the algorithm are also discussed.

  19. Food preferences and mound-building behaviour of the mound-building mice Mus spicilegus

    NASA Astrophysics Data System (ADS)

    Hölzl, Michaela; Krištofík, Ján; Darolová, Alžbeta; Hoi, Herbert

    2011-10-01

    Optimal foraging strategies and food choice are influenced by various factors, e.g. availability, size and caloric content of the food type and predation risk. However, food choice criteria may change when food is not eaten immediately but has to be carried to a storage site for later use. For example, handling time in terms of harvesting and transport time should be optimized, particularly when the risk of predation is high. Thus, it is not clear whether food selected by hoarding animals reflects their food preference due to intrinsic features of the food type, e.g. size, caloric or lipid content, or whether the food type selected is a compromise that also considers the handling time required for harvesting and transport. We investigate this question in relation to food hoarding behaviour in mound-building mice. In autumn, mound-building mice Mus spicilegus collect seeds and other plant material and cover it with soil. Such above-ground storage is quite unusual for rodents. Here, we investigated whether there is a relationship between the seed species preferred as building materials and those preferred for food. We conducted a seed preference test using three most collected weed species for mound building. Controlling factors like food availability or predation risk, mice prefer Setaria spp. as food, although Amaranthus spp. and Chenopodium spp. were preferentially harvested and stored. By including the availability of the three species, our experimental results were confirmed, namely, a clear preference for Setaria spp. Also, handling time and seed size revealed to influence plant choice.

  20. Environmental monitoring at Mound: 1987 report

    SciTech Connect

    Carfagno, D.G.; Farmer, B.M.

    1988-04-25

    The local environment around Mound as monitored primarily for tritium and plutonium-238. The results are reported for 1987. Environmental media analyzed included air, water, vegetation, food-stuffs, and sediment. The average concentrations of plutonium 238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1987 were 4.6 x 10/sup -18/ ..mu..Ci/mL and 12.9 x 10/sup -12/ ..mu..Ci/mL, respectively. These correspond to 0.02% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1987 was 1.4 x 10/sup - 12/ ..mu..Ci/mL which is 0.0004% of the DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1987 was 0.07 x 10/sup -6/ ..mu..Ci/mL which is 0.004% of the DOE DCG. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are 1% of the DOE standard of 100 mrem. 23 refs., 5 figs., 34 tabs.

  1. From Shell Midden to Midden-Mound: The Geoarchaeology of Mound Key, an Anthropogenic Island in Southwest Florida, USA

    PubMed Central

    Cherkinsky, Alexander; Roberts Thompson, Amanda D.; Walker, Karen J.; Newsom, Lee A.; Savarese, Michael

    2016-01-01

    Mound Key was once the capital of the Calusa Kingdom, a large Pre-Hispanic polity that controlled much of southern Florida. Mound Key, like other archaeological sites along the southwest Gulf Coast, is a large expanse of shell and other anthropogenic sediments. The challenges that these sites pose are largely due to the size and areal extent of the deposits, some of which begin up to a meter below and exceed nine meters above modern sea levels. Additionally, the complex depositional sequences at these sites present difficulties in determining their chronology. Here, we examine the development of Mound Key as an anthropogenic island through systematic coring of the deposits, excavations, and intensive radiocarbon dating. The resulting data, which include the reversals of radiocarbon dates from cores and dates from mound-top features, lend insight into the temporality of site formation. We use these insights to discuss the nature and scale of human activities that worked to form this large island in the context of its dynamic, environmental setting. We present the case that deposits within Mound Key’s central area accumulated through complex processes that represent a diversity of human action including midden accumulation and the redeposition of older sediments as mound fill. PMID:27123928

  2. The Gale Crater Mound in a Regional Geologic Setting

    NASA Astrophysics Data System (ADS)

    Allen, C.; Korn, L.

    2012-12-01

    The Mars Science Laboratory Rover Curiosity is commencing a two-year investigation of Gale crater and Mt. Sharp, the crater's prominent central mound. Gale is a 155 km, late Noachian / early Hesperian impact crater located near the dichotomy boundary separating the southern highlands from the northern plains. The central mound is composed of layered sedimentary rock, with upper and lower mound units separated by a prominent erosional unconformity (Milliken et al., 2010). The lower mound is of particular interest, as it contains secondary minerals indicative of a striking shift from water-rich to water-poor conditions on early Mars. A key unknown in the history of Gale is the relationship between the sedimentary units in the mound and sedimentary sequences in the surrounding region. We employed orbital remote sensing data to determine if areas within a 1,000 km radius of Gale match the characteristics of sedimentary units in Mt. Sharp. Regions of interest were defined based on: the mound's inferred age (late Noachian to early Hesperian), altitude range (-4,600 m to +400 m), and THEMIS nighttime brightness (a proxy for thermal inertia). This combination of characteristics is matched by two extensive units, the late Noachian subdued cratered unit Npl2 and Noachian / Hesperian undivided material HNu (Greeley and Guest, 1987), located along the dichotomy. Geomorphic units have been mapped within the Gale mound by Thomson et al. (2011) based on albedo, layering and erosional characteristics. Using orbital CTX, MOC and HiRISE images we examined all areas within our regions of interest for analogous geomorphic units in the same altitude ranges as the corresponding units in Mt. Sharp. The most convincing geomorphic analogs to lower mound units, dominated by fine-scale layering and prominent yardangs, were located approximately 200 km northeast and southeast of Gale in late Noachian unit Npl2. The most convincing geomorphic analogs to upper mound layered units are located

  3. Epifaunal Community Development on Great Lakes Breakwaters: An Engineering with Nature Demonstration Project

    DTIC Science & Technology

    2014-08-01

    Anthony M. Friona “Deliver enduring and essential water resource solutions, utilizing effective transformation strategies .” Goal 2. USACE...primarily designed. Demonstrating this approach, and fostering its integration into USACE normal business practices of project design, is intended both...jetties, breakwaters, bulkheads, and revetments under USACE purview were designed with features specifically intended to provide environmental or

  4. Experimental Investigation of Cylindrical Floating Breakwater Performance with different mooring configurations

    USDA-ARS?s Scientific Manuscript database

    Floating breakwaters are typically used on limited-fetch water bodies, such as lakes, reservoirs, and bays, where wavelengths are relatively short. They are also often preferred for sites with large water level changes. Common uses are to protect small marinas or for shoreline erosion control. While...

  5. Experimental study of dissolved oxygen transport by regular waves through a perforated breakwater

    NASA Astrophysics Data System (ADS)

    Yin, Zegao; Yu, Ning; Liang, Bingchen; Zeng, Jixiong; Xie, Shaohua

    2016-02-01

    The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with regular waves through a vertical perforated breakwater were conducted. The oxygen scavenger method was used to reduce the dissolved oxygen concentration of inner water body with the chemicals Na2SO3 and CoCl2. The dissolved oxygen concentration and wave parameters of 36 experimental scenarios were measured with different perforated arrangements and wave conditions. It was found that the oxygen transfer coefficient through wave surface, K1 a 1, is much lower than the oxygen transport coefficient through the perforated breakwater, K2 a 2. If the effect of K1 a 1 is not considered, the dissolved oxygen concentration computation for inner water body will not be greatly affected. Considering the effect of a permeable area ratio a, relative location parameter of perforations δ and wave period T, the aforementioned data of 30 experimental scenarios, the dimensional analysis and the least squares method were used to derive an equation of K2 a 2 (K2 a 2=0.0042 a 0.5 δ 0.2 T -1). It was validated with 6 other experimental scenarios data, which indicates an approximate agreement. Therefore, this equation can be used to compute the DO concentration caused by the water transport through perforated breakwater.

  6. Prototype Scale Mooring Load and Transmission Tests for a Floating Tire Breakwater.

    DTIC Science & Technology

    1978-04-01

    laboratory research into the wave transmission and mooring load characteristics of floating tire breakwaters. Kame l and Davidson (1968) conducted model...Floating Tire Break- waters ,” Marine Technical Report No. 54, University of Rhode Island, Kings ton , R.L , Apr. 1977. KAME L, A.M ., and DAVIDSON , D.D

  7. Proposed Plan for the Burma Road Rubble Pit (231-4F)

    SciTech Connect

    Palmer, E.

    1995-11-01

    The purpose of this proposed plan is to describe the preferred alternative for addressing the Burma Road Rubble Pit (BRRP) source unit soils (231-4F) located at the SRS in Aiken, South Carolina and to provide an opportunity for public input into the remedial action selection process.

  8. Commensal Leucothoidae (Crustacea, Amphipoda) of the Ryukyu Archipelago, Japan. Part III: coral rubble-dwellers

    PubMed Central

    White, Kristine N.; Reimer, James Davis

    2012-01-01

    Abstract Commensal leucothoid amphipods have been collected from coral rubble samples throughout the Ryukyu Archipelago, Japan. Seven new species are described in two generawith valuable location data. A new locality is presented for Paranamixis misakiensis Thomas, 1997. An identification key to all described Leucothoidae of the Ryukyu Archipelago is provided. PMID:22448118

  9. Recovery in rubble fields: long-term impacts of blast fishing.

    PubMed

    Fox, Helen E; Pet, Jos S; Dahuri, Rokhmin; Caldwell, Roy L

    2003-08-01

    This paper presents initial results from a study of factors that inhibit or enhance hard coral recovery in rubble fields created by blast fishing in Komodo National Park and Bunaken National Park, Indonesia. Within nine sites monitored since 1998, there was no significant natural recovery. Levels of potential source coral larvae were assessed with settlement tiles in the rubble fields and in nearby high coral cover sites. Rubble movement was measured and shown to be detrimental to small scleractinians, especially in high current areas. In shallow water (2-6 m deep), rubble is often overgrown by soft corals and corallimorpharians, which inhibit hard coral survival. There is increased scleractinian recruitment in quadrats cleared of soft coral, and Acropora nubbins transplanted into soft coral fields suffer greater mortality than those transplanted above the soft coral canopy. Gaining an understanding of the prognosis for coral recovery is essential not only in order to assess the long-term impacts of blast fishing, but also to improve management decisions about protection of intact reefs and potential restoration of damaged areas.

  10. Wave Transformation and Attenuation near the Submerged Breakwater and Vegetation: Field investigation and Numerical simulation

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, I.; Hur, D.; Lee, W.; Kim, J.; Lee, J. L.; Lee, H. S.; Kim, H. G.

    2016-12-01

    The large scale decreasing of beach width in the Anmok beach had occurred due to the coastal erosion caused by the short-term events, such as unexpected high waves and storms. Hence, the city officials decided the installation of hard construction, and the first submerged breakwater, which is a structure that parallels the beach and support as a wave absorber, was constructed on this beach in September 2014. In order to deduce the correlation equation of the transmitted wave heights (TWH) after the breakwater installed, we have observed the transmitted wave height at four sites nearby the breakwater, two wave gauges were mounted on the front side of the breakwater, and the others were placed in the behind side of it. We found that the TWH using the formula suggested by Takayama et al. (1985) for the submerged breakwaters (crown elevation: D.L. (-)0.5 m, crown width: 18.5 m, bottom width: 22.8 m) was 0.501, whereas the value which was measured by the wave gauge showed 0.547. Therefore, we suggested a formula for estimating the TWH based on the field observation data. 3D numerical model (LES-WASS-3D) was employed to estimate hydrodynamic chracteristics near the submerged breakwater. The results showed that the predicted TWH agreed well with the field field observation data results. In order to consider evironmet-friendly measure, the model also simulated the wave transformation and attenuation phenomina near the area of submerged vegetation. The model was already verified in two-dimensional laboratory experiments. In this study, the numerical model is used to predict the three-dimensional wave transformation and attenucation through the underwater vegetation. The results are compared with those in the case of submerged breakwater. This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A2B4015419) and Korean Institute of Marine Science and Technology

  11. Environmental monitoring at Mound: 1986 report

    SciTech Connect

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of the DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.

  12. Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene Challenger Mound record (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Thierens, M.; Browning, E.; Pirlet, H.; Loutre, M.-F.; Dorschel, B.; Huvenne, V. A. I.; Titschack, J.; Colin, C.; Foubert, A.; Wheeler, A. J.

    2013-08-01

    Through the interplay of a stabilising cold-water coral framework and a dynamic sedimentary environment, cold-water coral carbonate mounds create distinctive centres of bio-geological accumulation in often complex (continental margin) settings. The IODP Expedition 307 drilling of the Challenger Mound (eastern Porcupine Seabight; NE Atlantic) not only retrieved the first complete developmental history of a coral carbonate mound, it also exposed a unique, Early-Pleistocene sedimentary sequence of exceptional resolution along the mid-latitudinal NE Atlantic margin. In this study, a comprehensive assessment of the Challenger Mound as an archive of Quaternary palaeo-environmental change and long-term coral carbonate mound development is presented. New and existing environmental proxy records, including clay mineralogy, planktonic foraminifer and calcareous nannofossil biostratigraphy and assemblage counts, planktonic foraminifer oxygen isotopes and siliciclastic particle-size, are thereby discussed within a refined chronostratigraphic and climatic context. Overall, the development of the Challenger Mound shows a strong affinity to the Plio-Pleistocene evolution of the Northern Hemisphere climate system, albeit not being completely in phase with it. The two major oceanographic and climatic transitions of the Plio-Pleistocene - the Late Pliocene/Early Pleistocene intensification of continental ice-sheet development and the mid-Pleistocene transition to the more extremely variable and more extensively glaciated late Quaternary - mark two major thresholds in Challenger Mound development: its Late Pliocene (>2.74 Ma) origin and its Middle-Late Pleistocene to recent decline. Distinct surface-water perturbations (i.e. water-mass/polar front migrations, productivity changes, melt-water pulses) are identified throughout the sequence, which can be linked to the intensity and extent of ice development on the nearby British-Irish Isles since the earliest Pleistocene. Glaciation

  13. The Gale Crater Mound in a Regional Geologic Setting

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Korn, L. K.

    2012-01-01

    The Mars Science Laboratory Rover Curiosity is commencing a two-year investigation of Gale crater and Mt. Sharp, the crater s prominent central mound. Gale is a 155 km, late Noachian / early Hesperian impact crater located near the dichotomy boundary separating the southern highlands from the northern plains. The central mound is composed of layered sedimentary rock, with upper and lower mound units separated by a prominent erosional unconformity (Milliken et al., 2010). The lower mound is of particular interest, as it contains secondary minerals indicative of a striking shift from water-rich to water-poor conditions on early Mars. A key unknown in the history of Gale is the relationship between the sedimentary units in the mound and sedimentary sequences in the surrounding region. We employed orbital remote sensing data to determine if areas within a 1,000 km radius of Gale match the characteristics of sedimentary units in Mt. Sharp. Regions of interest were defined based on: the mound s inferred age (late Noachian to early Hesperian), altitude range (-4,600 m to +400 m), and THEMIS nighttime brightness (a proxy for thermal inertia). This combination of characteristics is matched by two extensive units, the late Noachian subdued cratered unit Npl2 and Noachian / Hesperian undivided material HNu (Greeley and Guest, 1987), located along the dichotomy. Geomorphic units have been mapped within the Gale mound by Thomson et al. (2011) based on albedo, layering and erosional characteristics. Using orbital CTX, MOC and HiRISE images we examined all areas within our regions of interest for analogous geomorphic units in the same altitude ranges as the corresponding units in Mt. Sharp. The most convincing geomorphic analogs to lower mound units, dominated by fine-scale layering and prominent yardangs, were located approximately 200 km northeast and southeast of Gale in late Noachian unit Npl2. The most convincing geomorphic analogs to upper mound layered units are located

  14. Physical modeling of long-wave run-up mitigation using submerged breakwaters

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng

    2016-04-01

    Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.

  15. Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters

    NASA Astrophysics Data System (ADS)

    Elbisy, Moussa S.

    2017-06-01

    This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient C T; reflection coefficient C R, and energy dissipation coefficient C E coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that C R reaches the maximum value when B/L = 0.46 n while it is smallest when B/L=0.46 n+0.24 ( n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and C R and C T ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced C R, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.

  16. HiRISE observations of fractured mounds: Possible Martian pingos

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Mellon, Michael T.; McEwen, Alfred S.; Lefort, Alexandra; Keszthelyi, Laszlo P.; Thomas, Nicolas

    2008-02-01

    Early images from the High Resolution Imaging Science Experiment (HiRISE) camera have revealed small fractured mounds in the Martian mid-latitudes. HiRISE resolves fractures on the mound surfaces, indicating uplift, and shows that the mound surface material resembles that of the surrounding landscape. Analysis of Mars Orbiter Camera (MOC) images shows that in Utopia Planitia the mounds lie almost exclusively between 35-45°N. This range coincides with the peak-abundance latitudes of several landforms attributed to ground water or ice, including gullies, and suggests a ground ice-related origin. The best terrestrial analogues for the observed mound morphology are pingos, although some differences are noted. The presence of uncollapsed pingos would indicate the presence of near-surface ground ice in the Martian mid-latitudes, at depths greater than the ~1 meter sampled by orbital spectrometers. Pingo formation may require near-surface liquid water, which is consistent with a shallow groundwater model for the origin of gullies.

  17. Mechanisms of Mound Coarsening in Unstable Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.

    1998-03-01

    A variety of recent experiments on semiconductor and metal surfaces have measured the mound coarsening behavior and coarsening exponent n (where the mound or feature size rc goes as h^n where h is the film thickness) during homoepitaxial growth. The value predicted by the simplest theories and observed in a number of growth experiments corresponds to n ~= 1/4, a value which is also close to that expected for the `quasi-equilibrium' coarsening of three-dimensional mounds via surface adatom exchange in the absence of deposition. However, asymptotic values as high as n ~= 1/3 have also been observed experimentally and have not been fully explained, although recent kinetic Monte Carlo simulations with a large Ehrlich-Schwoebel barrier footnote J.G. Amar and F. Family, Phys. Rev. B 44, 1224 (1996) lead to similarly large values for n. Here we present the results of a systematic study of the dependence of the asymptotic mound coarsening behavior on the rate of interlayer diffusion as well as on such processes as edge-diffusion, diffusion around kinks, and detachment. Our results indicate that all these processes play an important role in determining the asymptotic coarsening behavior. Results for the mound coarsening behavior in one-dimension, corresponding to highly anisotropic diffusion, will also be presented.

  18. HiRISE observations of fractured mounds: Possible Martian pingos

    USGS Publications Warehouse

    Dundas, C.M.; Mellon, M.T.; McEwen, A.S.; Lefort, A.; Keszthelyi, L.P.; Thomas, N.

    2008-01-01

    Early images from the High Resolution Imaging Science Experiment (HiRISE) camera have revealed small fractured mounds in the Martian mid-latitudes. HiRISE resolves fractures on the mound surfaces, indicating uplift, and shows that the mound surface material resembles that of the surrounding landscape. Analysis of Mars Orbiter Camera (MOC) images shows that in Utopia Planitia the mounds lie almost exclusively between 35-45??N. This range coincides with the peak-abundance latitudes of several landforms attributed to ground water or ice, including gullies, and suggests a ground ice-related origin. The best terrestrial analogues for the observed mound morphology are pingos, although some differences are noted. The presence of uncollapsed. pingos would indicate the presence of near-surface ground ice in the Martian mid-latitudes, at depths greater than the ???1 meter sampled by orbital spectrometers. Pingo formation may require near-surface liquid water, which is consistent with a shallow groundwater model for the origin of gullies. Copyright 2008 by the American Geophysical Union.

  19. Cell Sorting in the Mound Stage of Dictyostelium

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Levine, Herbert; Glazier, James

    1998-03-01

    In the mound stage of slime mold Dictyostelium discoideum, cells differentiated into two types: pre-stalk and pre-spore. Pre-stalk cells sort and form a tip at the apex of the mound of prespore cells. How this pattern forms is as yet unknown. A cellular level model allows us to simulate both differential cell adhesion and chemotaxis, two principle mechanisms for cell migration. Simulations show that with differential adhesion only, pre-stalk cells move to the surface of the mound but form no tip. With chemotaxis driven by an outgoing circular wave only, a tip forms but contains both pre-stalk and pre-spore cells. Only for a narrow range of relative strengths between differential adhesion and chemotaxis, can both mechanisms work in concert to form a tip which contains only pre-stalk cells. The simulations provide a method to determine the processes necessary for patterning and suggest a series of further experiments.

  20. Environmental survey preliminary report, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Mound Plant, conducted August 18 through 29, 1986. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Mound Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Mound Plant, and interviews with site personnel. The Survey found no environmental problems at the Mound Plant that represent an immediate threat to human life. The environmental problems identified at the Mound Plant by the Survey confirm that the site is confronted with a number of environmental problems which are by and large a legacy from past practices at a time when environmental problems were less well understood. Theses problems vary in terms of their magnitude and risk, as described in this report. Although the sampling and analysis performed by the Mound Plant Survey will assist in further identifying environmental problems at the site, a complete understanding of the significance of some of the environmental problems identified requires a level of study and characterization that is beyond the scope of the Survey. Actions currently under way or planned at the site, particularly the Phase II activities of the Comprehensive Environmental Analysis and Response Program (CEARP) as developed and implemented by the Albuquerque Operations Office, will contribute toward meeting this requirement. 85 refs., 24 figs., 20 tabs.

  1. Perennial mounds in Utopia Planitia: (HiRISE) Evidence of a Glacial Origin

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Osinski, G. R.; Thomson, L.

    2009-03-01

    Here, we use HiRISE and high-resolution MOC images to discuss sub-kilometer pingo-like mounds in Utopia Planita. The mounds show geological characteristics consistent with formation by glacial accumulation, and ablation by sublimation.

  2. MHD instabilities in accretion mounds on neutron star binaries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea

    We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined to the polar cap of neutron stars. From the equilibrium solutions we explore the stability of the accretion mounds using the PLUTO MHD code. We find that pressure driven modes disrupt the equilibria beyond a threshold mound mass, forming dynamic structures, as matter spreads over the neutron star surface. Our results show that local variation of magnetic field will significantly affect the shape and nature of the cyclotron features observed in the spectra of High Mass X-ray Binaries.

  3. Hydrothermal Tar Mounds in Escanaba Trough, Southern Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Koski, R. A.; Clague, D. A.; Rosenbauer, R. A.; Hostettler, F. D.; Kvenvolden, K. A.; Lamothe, P. J.

    2002-12-01

    Mounds of asphaltic petroleum were located and sampled by the submersible ROV Tiburon at two sites on the 3300-m-deep, sediment-covered floor of Escanaba Trough, southern Gorda Ridge. The northern site (41.01°N) consists of several individual mounds up to 1 m across and 25 cm high that occur within 100 m of active hydrothermal vents and polymetallic sulfide deposits. These mounds are not covered by sediment and serve as solid substrates for anemones and sponges. Fragments of a partly-buried tar mound at the southern site (40.69°N) were recovered near a field of inactive sulfide deposits. The mounds have a lobate morphology in which younger lobes with lustrous surfaces drape over older lobes encrusted by mud and faunal debris. In cross section, individual lobes have dense rinds, softer inner walls, and hollow cores. Coupled gas chromatography-mass spectrometry analyses of tar samples show the presence of a mixture of aliphatic and aromatic hydrocarbons. The aliphatic fractions have homologous n-alkane distributions from n-C12 to n-C36 with Cmax = n-C28, and a distinctive even-over-odd C-number predominance. Epimer ratios for hopanes and steranes indicate hydrocarbons that are relatively immature. The polycyclic aromatic hydrocarbons (PAH) are dominated by high-molecular-weight parent molecules such as pyrene and phenanthrene; alkylated derivatives are minor constituents. The aromatic fractions also contain a large unresolved complex mixture (UCM). The presence of high-molecular-weight PAH (e.g., benzo-pyrene, indeno-pyrene) reflects formation at high temperatures compared to conventional petroleum. Microwave digestion followed by inductively coupled plasma-mass spectrometry analyses of the soluble organic fraction from three tar samples reveal the following concentrations: 0.1 to 0.2 wt% S, 1 to 10 ppm Mg, Al, P, Cr, Fe, Ni, Cu, Zn, As, Se, and Ba, 1 to 100 ppb Pd and Pt, and 1 to 10 ppb Au. The insoluble residues separated from these samples, analyzed by scanning

  4. Analysis of Subsidence Data for the Bryan Mound Site, Texas

    SciTech Connect

    Bauer, Stephen J.

    1999-07-01

    The elevation change data measured at the Bryan Mound Strategic Petroleum Reserve (SPR) site over the last 16+ years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Bryan Mound is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  5. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    NASA Astrophysics Data System (ADS)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy

  6. The Gale Crater Mound in a Regional Geologic Setting: Mapping and Probing Surrounding Outcrops for Areas Akin to the Central Mound at Gale

    NASA Technical Reports Server (NTRS)

    Korn, Lisa; Allen, Carlton

    2013-01-01

    There are several hypotheses on the origin of Gale Crater s central mound. These include ground water upwelling [1], aeolian, ice, volcanic [1-3], lacustrine [1-3], hydrothermal [1-3], and polar deposits [2]. The Mars Science Laboratory rover, Curiosity, landed in Gale Crater on August 6, 2012. It is currently analyzing samples along its traverse towards a channel and layered deposits that will provide insight into the sedimentary history of the crater [4]. Located at 5S, 138E, Gale is a 155km diameter, Late Noachian/Early Hesperian crater. It is situated along the southern highlands/northern lowlands dichotomy boundary and contains a central mound that rises approximately 5km from the crater floor [1]. The highest parts of Mt. Sharp are higher than the northern rim, but are roughly the same height as the southern rim. Mt. Sharp is divided into an upper mound and a lower mound, which are separated by an erosional unconformity [2]. The lower mound s sequences span the Late Noachian/Early Hesperian Epoch [1], while the upper mound s age is poorly constrained. The lower mound s sequences feature parallel beds of varying thickness, albedo, texture, and dip angle that are eroded into channels and yardangs [2]. The upper mound has finer layers at higher angles [1] with yardangs, serrated erosional patterns, and lobate features [3]. The lower mound also exhibits an upward progression of phyllosilicate to sulfate rich sediments, contrasting the upper mound s lack of hydrated minerals [4].

  7. Integrated and holistic suitability assessment of recycling options for masonry rubble

    NASA Astrophysics Data System (ADS)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical

  8. Equilibrium shapes of rubble-pile binaries: The Darwin ellipsoids for gravitationally held granular aggregates

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2010-02-01

    Binaries are in vogue; many minor-planets like asteroids are being found to be binary or contact-binary systems. Even ternaries like 87 Sylvia have been discovered. The densities of these binaries are often estimated to be very low, and this, along with suspected accretionary origins, hints at a rubble interior. As in the case of fluid objects, a rubble-pile is unable to sustain all manners of spin, self-gravitation, and tidal interactions. This motivates the present study of the possible ellipsoidal shapes and mutual separations that members of a rubble-pile binary system may achieve. Conversely, knowledge of a granular binary's shape and separation will constrain its internal structure - the ability of the binary's members to sustain elongated shapes and/or maintain contact will hint at appreciable internal frictional strength. Because the binary's members are allowed to be of comparable mass, the present investigation constitutes an extension of the second classical Darwin problem to granular aggregates. General equations defining the ellipsoidal rubble-pile binary system's equilibrium are developed. These are then specialized to a pair of spin-locked, possibly unequal, prolate ellipsoidal granular aggregates aligned along their long axes. We observe that contact rubble-pile binaries can indeed exist. Further, depending on the binary's geometry, an equilibrium contact binary's members may, in fact, disrupt if separated. These results are applied to four suspected or known binaries: 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope. This exercise helps to bound the shapes and/or provide information about the interiors of these binaries. The binary's interior will be modeled as a rigid-plastic, cohesionless material with a Drucker-Prager yield criterion. This rheology is a reasonable first model for rubble piles. We employ an approximate volume-averaging procedure that is based on the classical method of moments, and is an extension of the virial method

  9. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  10. Radiocarbon dating of large termite mounds of the miombo woodland of Katanga, DR Congo

    NASA Astrophysics Data System (ADS)

    Erens, Hans; Boudin, Mathieu; Mees, Florias; Dumon, Mathijs; Mujinya, Basile; Van Strydonck, Mark; Baert, Geert; Boeckx, Pascal; Van Ranst, Eric

    2015-04-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1, ~5 m high, ~15 m in diameter). The time it takes for these mounds to attain this size is still largely unknown. In this study, the age of four of these mounds is determined by 14C-dating the acid-insoluble organic carbon fraction of samples taken along the central vertical axis of two active and two abandoned mounds. The age sequence in the active mounds is erratic, but the results for the abandoned mounds show a logical increase of 14C-age with depth. The ages measured at 50 cm above ground level were 2335 - 2119 cal yr BP for the large abandoned mound (630 cm high), and 796 - 684 cal yr BP for the small abandoned mound (320 cm high). Cold-water-extractable organic carbon (CWEOC) measurements combined with spectroscopic analysis revealed that the lower parts of the active mounds may have been contaminated with recent carbon that leached from the active nest. Nonetheless, this method appears to provide reliable age estimates of large, abandoned termite mounds, which are older than previously estimated. Furthermore, historical mound growth rates seem to correspond to past temperature changes, suggesting a relation between past environmental conditions and mound occupancy. Keywords : 14C, water-extractable carbon, low-temperature combustion

  11. Monthly fluctuation of termite caste proportions (Isoptera) within fire ant mounds (hymenoptera: formicidae)

    Treesearch

    Thomas G. Shelton; J.T. Vogt; Marla J. Tanley; Arthur G. Appel

    2003-01-01

    Monthly abundance and caste proportions of subterranean termites (Reticulitennes spp.) inhabiting red imported fire ant (Solenopsis invicta Buren) mounds were recorded during 1999 and 2000 from a relatively undisturbed forest edge in Tuskegee, Alabama. Temperature data were also recorded at these mounds; mean air, soil, and mound temperatures followed a sine model over...

  12. The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric steering of a newly discovered cold-water coral province

    NASA Astrophysics Data System (ADS)

    Glogowski, Silke; Dullo, Christian; Flögel, Sascha; Feldens, Peter; Hühnerbach, Veit; von Reumont, Jonas; Krastel, Sebastian; Wynn, Russ B.; Liebetrau, Volker

    2015-04-01

    This study presents new seafloor bathymetric and sidescan sonar data identifying a previously unknown cold-water coral (CWC) province on the Atlantic margin off western Morocco (ca. 31° N). Applying the concept of seawater density as a predictive tool for living CWC reef occurrence during research cruise 32 aboard RV Maria S. Merian in October 2013 CTD casts revealed potential sites. Direct sampling retrieved living coral patches within an extensive field of carbonate mounds, covering an area of ~410 km2 on the upper slope ~40 nautical miles north of Agadir Canyon. Individual mounds are up to 12 m high and are mainly composed of dead cold-water corals Lophelia pertusa thickets at present-day water depths of 678-863 m. Living CWCs represent only a thin veneer and were sampled by box coring in the shallower parts of the mound field between 678 and 719 m. CTD measurements in these shallower areas revealed that the occurrence of these living CWC reefs coincides with the deeper part of the North Atlantic Central Water (NACW) mass exhibiting conservative temperatures Φ of 9.78-9.94° C, absolute salinity SA of 35.632 g/kg, and a sea water density σΦ of 27.31-27.33 kg/m3). This is in good agreement with observations from the Renard Ridge (35° N, Gulf of Cadiz) to the north and sites off Mauretania (17° N-18° N) to the south, 'with the exception of sparse live corals in the latter region, the CWC reefs of both regions consist of a dead fabric in the deeper layer of the NACW slightly above the Mediterranean Outflow Water. The bathymetric and oceanographic settings of this newly discovered CWC site, with its thin veneer of living corals and much larger accumulations of coral rubble, are consistent with published evidence that, over the past three glacial-interglacial cycles, active CWC reef growth south of 50° N was more favourable during glacial times (possibly up to the very early Holocene) in this sector of the northeast Atlantic Ocean. The newly discovered

  13. The strength of rubble-pile bodies: Theory, observations, and predictions

    NASA Astrophysics Data System (ADS)

    Scheeres, D.; Sanchez, P.

    2014-07-01

    The strength and morphology of a rubble-pile body will control how fast it can rotate before shedding mass or deforming, influence the process by which multi-component asteroid systems are created, and could have significance for the mitigation of hazardous near-Earth asteroids (NEA) should this be necessary in the future [1,2,3]. The morphology of these bodies, including the size distribution of boulders and grains internal to the system, the macro-porosity of these bodies, and the shapes and spin states of these bodies, are important for understanding and interpreting spacecraft imaging of asteroids, for predicting the end-state evolution of these bodies, and for gaining insight into their formation circumstances. Despite these compelling issues and questions, real insight on the strength of rubble-pile bodies and their morphology remains elusive. We explore a theory recently developed by us [3] for the morphology and strength of a rubble-pile body based on the properties of cohesive powders and show that several observations of small asteroid properties are consistent with the predictions of this model. That small asteroids can be rubble-pile bodies is clear based on several lines of evidence, including spacecraft imaging and sample analysis of Itokawa [4,5], the existence of the rotation spin rate barrier for bodies larger than a few hundred meters [6], and the recent observations of disrupting asteroids in the main belt [7,8]. A simple extrapolation from these observations are that bodies of at least a few hundred meters and larger are composed of a size distribution of components that range from decameter-sized boulders down to micron-sized grains. The relevant questions then become what the characteristics of these size distributions are and what physical implications for the strength of these bodies arise from this morphology. Based on the theory of cohesive granular mechanics [9] combined with a thorough review of results from the Hayabusa mission [4

  14. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  15. Spirit Mound at Edge of Endeavour Crater, Mars Enhanced Color

    NASA Image and Video Library

    2016-10-07

    This scene from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity shows "Spirit Mound" overlooking the floor of Endeavour Crater. The mound stands near the eastern end of "Bitterroot Valley" on the western rim of the crater, and this view faces eastward. In this version of the scene the landscape is presented in enhanced color to make differences in surface materials more easily visible For scale, the two rocks at lower center are each about 8 inches (about 20 centimeters) across. At the mound's crest line, the image covers an area about 28 feet (about 8.5 meters) wide. The component images for this mosaic were taken on Sept. 21, 2016, during the 4,501st Martian day, or sol, of Opportunity's work on Mars. Exposures were taken through three of the Pancam's color filters, centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The informal name the rover's science team chose for this feature refers to Spirit Mound in South Dakota. The team is using names of sites visited by the Lewis and Clark Expedition as informal names for features in Mars' Bitterroot Valley (named for a valley that the expedition visited in Montana). http://photojournal.jpl.nasa.gov/catalog/PIA20852

  16. Spirit Mound at Edge of Endeavour Crater, Mars

    NASA Image and Video Library

    2016-10-07

    This scene from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity shows "Spirit Mound" overlooking the floor of Endeavour Crater. The mound stands near the eastern end of "Bitterroot Valley" on the western rim of the crater, and this view faces eastward. For scale, the two rocks at lower center are each about 8 inches (about 20 centimeters) across. At the mound's crest line, the image covers an area about 28 feet (about 8.5 meters) wide. The component images for this mosaic were taken on Sept. 21, 2016, during the 4,501st Martian day, or sol, of Opportunity's work on Mars. Exposures were taken through three of the Pancam's color filters, centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The scene is presented here in approximately true color. The informal name the rover's science team chose for this feature refers to Spirit Mound in South Dakota. The team is using names of sites visited by the Lewis and Clark Expedition as informal names for features in Mars' Bitterroot Valley (named for a valley that the expedition visited in Montana). http://photojournal.jpl.nasa.gov/catalog/PIA20851

  17. 28. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Overall view taken from top of water storage mound showing building 154, missile assembly building on right, Minnesota Department of Transportation communication tower in center, and Minnesota Bureau of Mines wind tunnel on left, looking southwest toward launch pad area - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  18. Spirit Mound at Edge of Endeavour Crater, Mars (Anaglyph)

    NASA Image and Video Library

    2016-10-07

    This stereo scene from NASA's Mars Exploration Rover Opportunity shows "Spirit Mound" overlooking the floor of Endeavour Crater. The mound stands near the eastern end of "Bitterroot Valley" on the western rim of the crater, and this view faces eastward. The image combines views from the left eye and right eye of the rover's panoramic camera (Pancam) to appear three-dimensional when seen through blue-red glasses with the red lens on the left. The component images were taken on Sept. 21, 2016, during the 4,501st Martian day, or sol, of Opportunity's work on Mars For scale, the two rocks at lower center are each about 8 inches (about 20 centimeters) across. At the mound's crest line, the image covers an area about 28 feet (about 8.5 meters) wide. The informal name the rover's science team chose for this feature refers to Spirit Mound in South Dakota. The team is using names of sites visited by the Lewis and Clark Expedition as informal names for features in Mars' Bitterroot Valley (named for a valley that the expedition visited in Montana). http://photojournal.jpl.nasa.gov/catalog/PIA20853

  19. Stable isotopes sales: Mound customer and shipment summaries, FY 1985

    SciTech Connect

    Flayler, K.A.

    1987-12-15

    A listing is given of Mound's sales of stable isotopes of noble gases, deuterium, carbon, oxygen, nitrogen, chlorine, bromine, and sulfur for fiscal year 1985. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic and foreign customers. Cross-reference listings by isotope purchased are included for all customers.

  20. Stable isotope sales: Mound customer and shipment summaries, FY 1986

    SciTech Connect

    Kramer, L.R.; Flayler, K.A.

    1988-05-20

    A listing is given of Mound's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for fiscal year 1986. Purchasers are listed alphabetically and are divided into domestic and foreign groups. Cross-reference indexes by location and by isotope are included for all customers. 3 tabs.

  1. 32. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Overall view taken from top of water storage mound showing building 154, missile assembly building in center, and building 161, fallout shelter in lower right corner, looking west - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  2. VIEW LOOKING SOUTHWEST AT THE EARTH MOUND USED TO ENCASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING SOUTHWEST AT THE EARTH MOUND USED TO ENCASE THE INSTRUMENTATION AND CONTROL TANKS AND PROTECT EQUIPMENT. NOTE THE TEST STAND IN THE BACKGROUND RIGHT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. Formation of Saturn's F ring by collision between rubble-pile satellites

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Ohtsuki, Keiji

    2014-11-01

    Saturn’s F ring is located just outside the Roche limit. This pure icy ring is radially narrow and is thought to be dynamically young. Two shepherding satellites, inner Pandora and outer Prometheus, confine and regulate its current dynamical evolution. The bulk density of these satellites is lower than that of rigid water ice, thus they are likely to be rubble-pile bodies. Crida & Charnoz (2012) showed that Saturn’s inner major satellites are formed by spreading of ancient massive rings through the Roche limit using one-dimensional analytical model. Recently, we have performed N-body simulations of the evolution of circumplanetary particle disks initially confined within a planet’s Roche limit, and showed that rubble-pile co-orbital satellites are often formed just outside the Roche limit (Hyodo et al, submitted). However, these co-orbital satellites are not always stable but can experience collisions between them. In addition, at radial locations barely outside the Roche limit, accretion efficiency is not 100%, and collision between aggregates can lead to complete or partial disruption (Karjalainen 2007, Hyodo & Ohtsuki 2014).In the present work, we perform local N-body simulations in the Hill coordinate system and investigate collisional disruption of rubble-pule satellites just outside the Roche limit corresponding to the location of Saturn’s F ring. We find that in some cases, collision between two aggregates results in partial disruption such that the dispersed particles are distributed between the two remnant satellites with small radial extent. Our results suggest that the F ring is a relic of collisional disruption between rubble-pile satellites formed at the last stage of the formation of inner major satellites as the rings spread across the Roche limit.

  4. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches.

    PubMed

    Beltrán, Yislem; Cerqueda-García, Daniel; Taş, Neslihan; Thomé, Patricia E; Iglesias-Prieto, Roberto; Falcón, Luisa I

    2016-01-01

    Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.

  5. Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2016-07-01

    Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems.

  6. Case Histories of Corps Breakwater and Jetty Structures. Report 3. North Central Division

    DTIC Science & Technology

    1988-06-01

    Presque Isle Breakwaters Presque Island Peninsula, Pennsylvania Date(s) Construction and Rehabilitation History 1978 Construction of three detached... Isle , Pennsylvania . .. 371 " ,"’ ? % .%’..•. P4. 04 .A -’ - -’- 0 Ov’W-e % % Table 92 Erie Harbor Piers Erie , Pennsylvania J .8 Date(s) Construction...1,618 1949 M Harbor, Mich. cc 16 Big Bay Harbor, B(2) S,SSP,CSSP 1,258 1960 R Mich. 17 Presque Isle B(1)

  7. Peak mooring forces in the horizontal interlaced multi-layered moored floating pipe breakwater

    NASA Astrophysics Data System (ADS)

    Mane, Vishwanath; Rajappa, Sacchi; Rao, Subba; Vittal, Hegde A.

    2011-06-01

    Present study aims to investigate the influence of relative breakwater width W/L (W=width of breakwater, L=wavelength), wave steepness Hi/gT2 (Hi=incident wave height, T=wave period) and relative wave height d/W (d=water depth) on forces in the moorings of horizontal interlaced multi-layered moored floating pipe breakwater (HIMMFPB) model. Studies were conducted on scaled down physical models having three layers of Poly Vinyl Chloride (PVC) pipes, wave steepness Hi/gT2 varying from 0.063 to 0.849, relative width W/L varying from 0.4 to 2.65 and relative spacing S/D=2 (S=horizontal centre-to-centre spacing of pipes, D=diameter of pipes). Peak mooring forces were also measured and data collected is analyzed by plotting non-dimensional graphs depicting variation of fs/γW2 (fs=Sea side Mooring force, γ=specific weight of water) & fl/γW2 (fl=Lee side Mooring force) with Hi/gT2 for d/W varying from 0.082 to 0.276 and also variation of fs/γW2 and fl/γW2 with W/L for Hi/d varying from 0.06 to 0.400.

  8. Numerical Prediction of Wave Forces on a Breakwater under Tsunami Loading

    NASA Astrophysics Data System (ADS)

    Brucker, Kyle A.; Oshnack, Mary Beth; O'Shea, Thomas T.; Cox, Dan; Dommermuth, Douglas G.

    2010-11-01

    Numerical Flow Analysis (NFA) predictions of wave propagation and wave- impact loading are compared to the Oregon State University (OSU) O.H. Hinsdale Wave Research Laboratories Tsunami experiments (Oshnack, et al. 2009). The simulations were designed to replicate the experiments such that a soliton is sent down a wave flume, runs up a small beach, and impacts with a breakwater. The soliton is 1.2m high in a water depth of 2.29m and travels over 61m before hitting the breakwater. The NFA predictions are compared to laboratory measurements of a) free-surface elevation at several locations down the flume and b) impact pressure at the base of the breakwater. The free-surface elevations as predicted by NFA are in excellent agreement with the experimental measurements. This shows that NFA can simulate the propagation of waves over long distances with minimal amplitude and dispersion errors. Pressures that are induced by the jet are important because in certain coastal areas buildings must be designed to sustain Tsunami loads. The pressure predictions over the duration of breaking agree very well with laboratory measurements. The peak pressures predicted by NFA are in excellent agreement with experiments.

  9. The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Gràcia, Eulàlia; Ranero, Cesar R.; Emelianov, Mikhail; Huvenne, Veerle A. I.; Bartolomé, Rafael; Booth-Rea, Guillermo; Prades, Javier; Ambroso, Stefano; Dominguez, Carlos; Grinyó, Jordi; Rubio, Eduardo; Torrent, Josep

    2014-01-01

    A new mound field, the West Melilla mounds, interpreted as being cold-water coral mounds, has been recently unveiled along the upper slope of the Mediterranean Moroccan continental margin, a few kilometers west of the Cape Tres Forcas. This study is based on the integration of high-resolution geophysical data (swath bathymetry, parametric sub-bottom profiler), CTD casts, Acoustic Doppler Current Profiler (ADCP), ROV video and seafloor sampling, acquired during the TOPOMED GASSIS (2011) and MELCOR (2012) cruises. Up to 103 mounds organized in two main clusters have been recognized in a depth range of 299-590 m, displaying a high density of 5 mounds/km2. Mounds, 1-48 m high above the surrounding seafloor and on average 260 m wide, are actually buried by a 1-12 m thick fine-grained sediment blanket. Seismic data suggest that the West Melilla mounds grew throughout the Early Pleistocene-Holocene, settling on erosive unconformities and mass movement deposits. During the last glacial-interglacial transition, the West Melilla mounds may have suffered a drastic change of the local sedimentary regime during the late Holocene and, unable to stand increasing depositional rates, were progressively buried. At the present day, temperature and salinity values on the West Melilla mounds suggest a plausible oceanographic setting, suitable for live CWCs. Nonetheless, more data is required to groundtruth the West Melilla mounds and better constrain the interplay of sedimentary and oceanographic factors during the evolution of the West Melilla mounds.

  10. Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Lewis, Kevin W.; Lamb, Michael P.; Newman, Claire E.; Richardson, Mark I.

    2013-05-01

    Ancient sediments provide archives of climate and habitability on Mars. Gale Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5-km-high sedimentary mound (Mount Sharp/Aeolis Mons). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and aeolian processes, but the origin and original extent of Gale’s mound is unknown. Here we show new measurements of sedimentary strata within the mound that indicate ˜3° outward dips oriented radially away from the mound center, inconsistent with the first three hypotheses. Moreover, although mounds are widely considered to be erosional remnants of a once crater-filling unit, we find that the Gale mound’s current form is close to its maximal extent. Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained by growth in place near the center of the crater mediated by wind-topography feedbacks. Our model shows how sediment can initially accrete near the crater center far from crater-wall katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope winds strong enough to erode the mound. The slope wind enhanced erosion and transport (SWEET) hypothesis indicates mound formation dominantly by aeolian deposition with limited organic carbon preservation potential, and a relatively limited role for lacustrine and fluvial activity. Morphodynamic feedbacks between wind and topography are widely applicable to a range of sedimentary and ice mounds across the Martian surface, and possibly other planets.

  11. How cold-water coral mounds modify their physical environment and therefore influence reef development

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Lavaleye, M.; van Haren, H.; Mohn, C.; Cyr, F.

    2015-12-01

    Cold-water coral framework acts as a sediment trap and as a result kilometres long and up to 360m high mound structures have formed on the SE Rockall Bank. Earlier observations showed that most of the mounds have their summits around 550 m water depth and summits have been reported as being covered with living coral. Pelagia cruises in 2012 and 2013 revealed completely new insights in mound development. Video transects across mounds with different morphology showed that summits of the highest and largest mounds are presently not covered by living coral as opposed to smaller and lower mounds which are covered with a thriving living coral framework. Measurements in the water column with CTD and near-bottom with benthic landers and thermistor string showed that turbulence is likely the most important factor influencing nutrient and food supply and thus coral growth. It seems that the large mounds have outgrown themselves and that their relatively large size and flat summits are limiting turbulence, thereby limiting oxygen, nutrient and food replenishment. Redistribution of nutrients, oxygen and food is vital for ecosystem functioning and reef development. The presence of a healthy coral cover on the summits of the small mounds was also shown by the vertical mound growth rate measured in sediment cores. These showed fourfold higher sedimentation rates during the Holocene on small mounds compared to highest mounds.

  12. Diversity of fungi from the mound nests of Formica ulkei and adjacent non-nest soils.

    PubMed

    Duff, Lyndon B; Urichuk, Theresa M; Hodgins, Lisa N; Young, Jocelyn R; Untereiner, Wendy A

    2016-07-01

    Culture-based methods were employed to recover 3929 isolates of fungi from soils collected in May and July 2014 from mound nests of Formica ulkei and adjacent non-nest sites. The abundance, diversity, and richness of species from nest mounds exceeded those of non-mound soils, particularly in July. Communities of fungi from mounds were more similar to those from mounds than non-mounds; this was also the case for non-mound soils with the exception of one non-mound site in July. Species of Aspergillus, Paecilomyces, and Penicillium were dominant in nest soils and represented up to 81.8% of the taxa recovered. Members of the genus Aspergillus accounted for the majority of Trichocomaceae from nests and were represented almost exclusively by Aspergillus navahoensis and Aspergillus pseudodeflectus. Dominant fungi from non-mound sites included Cladosporium cladosporioides, Geomyces pannorum, and species of Acremonium, Fusarium, Penicillium, and Phoma. Although mound nests were warmer than adjacent soils, the dominance of xerotolerant Aspergillus in soils from mounds and the isolation of the majority of Trichocomaceae at 25 and 35 °C suggests that both temperature and water availability may be determinants of fungal community structure in nests of F. ulkei.

  13. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    NASA Astrophysics Data System (ADS)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  14. Seeing Below the Surface with Electrical Resistivity Tomography: Exploring the Deepest Reaches of Arkansas' Tallest Prehistoric Mounds

    NASA Astrophysics Data System (ADS)

    Zimmer-Dauphinee, James

    Despite decades of research and over a century of public interest, the most prominent features at Toltec Mounds Archeological State Park, Mound A and Mound B, remain virtually unexamined by modern archaeological techniques, and poorly understood. The tremendous scale and importance of these mounds makes most standard research methods difficult if not impossible. Electrical Resistivity Tomography, a geophysical technique rarely used in North America, was employed to survey both Mound A and Mound B, resulting in models of the subsurface that provide insights into the construction, modification and condition of the mounds.

  15. Slope selection of mounds with permeable steps in homoepitaxy

    NASA Astrophysics Data System (ADS)

    Korutcheva, Elka; Koroutchev, Kostadin; Markov, Ivan

    2013-02-01

    We study the growth of mounds representing stacks of monolayer islands in homoepitaxy assuming terrace-edge-kink mechanism of attachment of atoms to kink sites and allowing a permeability of the single steps. We show that the latter can result in slope selection of the growing mounds at comparatively small values of the Ehrlich-Schwoebel barrier to down-step diffusion. The value of the permeability coefficient at which a slope selection occurs is always very close to the upper limit for complete step permeability. The latter is in agreement with the row-by-row mechanism of step propagation at which the steps are kink-free for most of the time.

  16. Mound cyclone incinerator. Volume I. Description and performance

    SciTech Connect

    Klingler, L.M.

    1981-12-22

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials.

  17. Reef mounds indicate timing of hydrocarbon charge off Seychelles

    SciTech Connect

    Plummer, P.

    1998-07-06

    Carbonate mounds developed on Coetivy Bank and the northern Seychelles Plateau appear to have formed in response to pulses of hydrocarbon fluid migration along underlying faults during the late Paleocene and late Eocene. Gas chimneys emanating from these mounds are evident on seismic data, while gas sniffer and/or UV fluorescence anomalies have been recorded in the overlying waters. Such a combination of hydrocarbon anomalies is indicative of minor active gas seepage and confirms the prospectivity of these features and their underlying sequences. Recently it has also been realized that both authigenic and biogenic carbonates proliferate above faults from which hydrocarbon seepage occurs, forming chemosynthetic reefs. When identified on seismic data, such reef/fault associations constitute seismic hydrocarbon indicators (SHIs), and the reefs/faults off Seychelles have been interpreted as SHIs. This paper discusses the geology, source rocks, thermal history, and chemosynthetic reefs.

  18. Effects of bannertail kangaroo rat mounds on small-scale plant community structure.

    PubMed

    Guo, Qinfeng

    1996-04-01

    The effects of bannertail kangaroo rat (Dipodomys spectabilis) mounds and associated soil-surface disturbance on plant species composition and diversity in the Chihuahuan Desert were examined with multivariate analysis. Kangaroo rat mounds created disturbance gaps and contributed to local species diversity by creating microhabitats that supported unique plant communities. These microhabitats supported populations of species that were relatively rare in surrounding areas. The diversity observed at the whole habitat level resulted from (1) local spatial heterogeneity, because the mounds offered microenvironments with distinctive nutrient, water, and light conditions; and (2) local patterning of disturbance, because the digging and traffic of the kangaroo rats maintained high levels of soil disturbance at and near the mounds. At a finer scale, species diversity was highest in the area immediately adjacent to active and inactive mounds, and was lower on both the highly disturbed soil of the mounds and in the relatively undisturbed area between mounds. Lowest species diversity occurred on inactive mounds. Annual plant biomass was much greater on mounds than in inter-mound areas. The results support the predictions that intermediate levels of disturbance and small-scale environmental heterogeneity contribute to supporting high species diversity.

  19. Temporal variability in shell mound formation at Albatross Bay, northern Australia

    PubMed Central

    Petchey, Fiona; Allely, Kasey; Shiner, Justin I.; Bailey, Geoffrey

    2017-01-01

    We report the results of 212 radiocarbon determinations from the archaeological excavation of 70 shell mound deposits in the Wathayn region of Albatross Bay, Australia. This is an intensive study of a closely co-located group of mounds within a geographically restricted area in a wider region where many more shell mounds have been reported. Valves from the bivalve Tegillarca granosa (Linnaeus, 1758) were dated. The dates obtained are used to calculate rates of accumulation for the shell mound deposits. These demonstrate highly variable rates of accumulation both within and between mounds. We assess these results in relation to likely mechanisms of shell deposition and show that rates of deposition are affected by time-dependent processes both during the accumulation of shell deposits and during their subsequent deformation. This complicates the interpretation of the rates at which shell mound deposits appear to have accumulated. At Wathayn, there is little temporal or spatial consistency in the rates at which mounds accumulated. Comparisons between the Wathayn results and those obtained from shell deposits elsewhere, both in the wider Albatross Bay region and worldwide, suggest the need for caution when deriving behavioural inferences from shell mound deposition rates, and the need for more comprehensive sampling of individual mounds and groups of mounds. PMID:28854234

  20. Temporal variability in shell mound formation at Albatross Bay, northern Australia.

    PubMed

    Holdaway, Simon J; Fanning, Patricia C; Petchey, Fiona; Allely, Kasey; Shiner, Justin I; Bailey, Geoffrey

    2017-01-01

    We report the results of 212 radiocarbon determinations from the archaeological excavation of 70 shell mound deposits in the Wathayn region of Albatross Bay, Australia. This is an intensive study of a closely co-located group of mounds within a geographically restricted area in a wider region where many more shell mounds have been reported. Valves from the bivalve Tegillarca granosa (Linnaeus, 1758) were dated. The dates obtained are used to calculate rates of accumulation for the shell mound deposits. These demonstrate highly variable rates of accumulation both within and between mounds. We assess these results in relation to likely mechanisms of shell deposition and show that rates of deposition are affected by time-dependent processes both during the accumulation of shell deposits and during their subsequent deformation. This complicates the interpretation of the rates at which shell mound deposits appear to have accumulated. At Wathayn, there is little temporal or spatial consistency in the rates at which mounds accumulated. Comparisons between the Wathayn results and those obtained from shell deposits elsewhere, both in the wider Albatross Bay region and worldwide, suggest the need for caution when deriving behavioural inferences from shell mound deposition rates, and the need for more comprehensive sampling of individual mounds and groups of mounds.

  1. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6832 (19 Nov. 1969) --- A close-up view of a lunar mound as photographed during the Apollo 12 extravehicular activity (EVA) on the lunar surface. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  2. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6825 (19 Nov. 1969) --- Close-up view of a lunar rock, small crater, and lunar mound as photographed during the Apollo 12 extravehicular activity (EVA). Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  3. Transient solutions to groundwater mounding in bounded and unbounded aquifers.

    PubMed

    Korkmaz, Serdar

    2013-01-01

    In this study, the well-known Hantush solution procedure for groundwater mounding under infinitely long infiltration strips is extended to finite and semi-infinite aquifer cases. Initially, the solution for infinite aquifers is presented and compared to those available in literature and to the numerical results of MODFLOW. For the finite aquifer case, the method of images, which is commonly used in well hydraulics, is used to be able to represent the constant-head boundaries at both sides. It is shown that a finite number of images is enough to obtain the results and sustain the steady state. The effect of parameters on the growth of the mound and on the time required to reach the steady state is investigated. The semi-infinite aquifer case is emphasized because the growth of the mound is not symmetric. As the constant-head boundary limits the growth, the unbounded side grows continuously. For this reason, the groundwater divide shifts toward the unbounded side. An iterative solution procedure is proposed. To perform the necessary computations a code was written in Visual Basic of which the algorithm is presented. The proposed methodology has a wide range of applicability and this is demonstrated using two practical examples. The first one is mounding under a stormwater dispersion trench in an infinite aquifer and the other is infiltration from a flood control channel into a semi-infinite aquifer. Results fit very well with those of MODFLOW. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  4. Thermal analysis of The Mound One Kilowatt package

    NASA Astrophysics Data System (ADS)

    Or, Chuen T.

    1993-01-01

    The Mound One Kilowatt (1 kW) package was designed for the shipment of plutonium (Pu-238) with not more than 1 kW total heat dissipation. To comply with regulations, the Mound 1 kW package has to pass all the requirements under Normal Conditions of Transport (NCT; 38 °C ambient temperature) and Hypothetical Accident Conditions (HAC; pacage engulfed in fire for 30 minutes). Analytical and test results were presented in the Safety Analysis Report for Packaging (SARP) for the Mound 1 kW package, revision 1, April 1991. Some issues remained unresolved in that revision. In March 1992, Fairchild Space and Defense Corporation was commissioned by the Department of Energy to perform the thermal analyses. 3-D thermal models were created to perform the NCT and HAC analyses. Four shipping configurations in the SARP revision 3 were analyzed. They were: (1) GPHS graphite impact shell (GIS) in the threaded product can (1000 W total heat generation); (2) The fueled clads in the welded product can (1000 W total heat generation); (3) The General Purpose Heat Source (GPHS) module (750 W total heat generation); and (4) The Multi-Hundred Watt (MHW) spheres (810 W total heat generation). Results from the four cases show that the GIS or fuel clad in the product can is the worst case. The temperatures predicted under NCT and HAC in all four cases are within the design limits. The use of helium instead of argon as cover gas provides a bigger safety margin.

  5. EG&G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG&G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy`s Albuquerque Field Office. The contractor`s Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG&G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, ``Pay, Leave, and Allowances.`` Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  6. Paleo-environment Simulation using GIS based on Shell Mounds

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Asanuma, I.; Harada, E.

    2016-02-01

    Paleo-coastlines are simulated using the geographic information system (GIS) based on the shell mounds as the paleo-environment in the Tsubaki-no-umi, Ocean of Camellia in Japanese, the paleo-ocean, in Japan. The shell mounds, which are introduced in the paleo-study in the class history in junior and senior high, are used to estimate the paleo-coastlines. The paleo-coastlines are simulated as the function of sea levels relative to the current sea level for 6000 to 3000 BP on the digital elevation map of the GIS. The polygon of the simulated sea level height of 10 m extracted the shell mounds during 6000 to 5500 BP as the result of the spatial operation, and exhibited the consistency with the previous studies. The simulated sea level height of 5.5 m showed the paleo-coastline during 3600 to 3220 BP, while the Tsubaki-no-Umiturned into the brackish water lake, partly isolated from the ocean. The simulation of sea levels with GIS could be implemented to the class in the junior and senior high school with minimum efforts of teachers with the available computer and software environments.

  7. A coral-rubble ridge as evidence for hurricane overwash, Anegada (British Virgin Islands)

    NASA Astrophysics Data System (ADS)

    Spiske, M.; Halley, R. B.

    2014-01-01

    A coral-rubble ridge fringes part of the north shore of Anegada, a low-lying island in the northern Caribbean. Both historical reports and the geological record underline its vulnerability to tsunami and hurricanes. In this study we document the sedimentary characteristics of a coral-rubble ridge, which extends discontinuously along 1.5-1.8 km of chiefly north-facing shores at Soldier Wash. The ridge is less distinctive and appears only in patches along the west-facing shoreline at Windless Bight, where the wave regime is calmer. It is located ca. 8 m from the fair-weather shore, has a maximum width of 15 m and a maximum thickness of 0.8 m. The lower seaward-facing slope of the ridge is relatively flat, probably due to successive reworking, whereas the upper seaward slope is steep and partly displays avalanching faces. The landward flank is gently sloping and terminates abruptly. The ridge is mainly composed of well-rounded, encrusted and bored coral rubble (average diameter of 16 cm) that has been reworked in the shallow marine environment prior to transport. Only a few pieces of angular beach rock and karstified Pleistocene limestone are incorporated. The components build a clast-supported framework. No sand is present in the interstices. Imbrication of flat clasts indicates a deposition during landward bed load transport. The ridge morphology, composition and related hydrodynamic conditions during its emplacement are typical for coral-rubble ridges deposited by hurricane-induced storm surges. In comparison, nearby evidence for tsunami inundation is very different because the tsunami-transported coral boulders on Anegada are much bigger (2 m) than the biggest components in the ridge, they are deposited much farther inland (up to 1.5 km), and the corals seem to have been freshly broken out of the reef by the tsunami. The age of the ridge is difficult to estimate. The dark grey surface of the ridge is caused by bioweathering by endolithic organisms that takes tens

  8. Using Cold-water Coral Mini-mounds as Analogue for Giant Mound Growth: Assessment of Environmental Drivers and Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Collart, T.; Stewart, H. A.; Howell, K.; Bourillet, J. F.; Llave, E.; Blamart, D.; Mienis, F.; Van Rooij, D.

    2015-12-01

    Cold-water coral (CWC) reefs are formed by framework building scleratinians Lophelia pertusa and Madrepora oculata that baffle sediment and over time, have the potential to develop into large coral mounds of up to 300m high (e.g. Belgica Mound Province). The detailed mechanisms of initiation and build-up of such large CWC mounds are however not yet fully understood. It is therefore essential to study smaller mounds (often termed "mini-mounds") that can be interpreted as earlier growth stages that haven't had the time to coalesce and develop into larger mounds. The FWO Minimound project (2013-2017) aims to investigate CWC mini-mounds within the Bay of Biscay (European Margin) in order to determine the impact of: (1) palaeoceanographic changes related to glacial-interglacial climate change in the last 15 ka, (2) hydrocarbon seepage processes and (3) anthropogenic fishing activities on CWC habitats. The project targets three minimound provinces: the Ferrol Canyon (Cantabrian Margin), the Guilvinec Canyon (Armorican Margin) and the Explorer and Dangeard Canyons (Celtic Margin). These mini-mounds are fossil and occur at relative shallow depths on the interface between the Eastern North Atlantic Central Water (ENACW) and the Mediterranean Outflow Water (MOW). Contrastingly, most living CWC reefs in this region of the Atlantic, dwell in the deeper MOW depth range, relying on the density and dynamics of this water mass for their food supply. In order to investigate the initiation, growth and demise of CWC mini-mounds, 35m of USBL guided sediment cores were retrieved from the Explorer and Dangeard Interfluves. We present data of sedimentological, geochemical and palaeoceanographic analyses throughout the cores, coupled with high-resolution geophysical data. Preliminary results indicate that the mound base is associated with a strong shift in sedimentation regime potentially linked to climate driven palaeoceanographic changes of the MOW-ENACW interface.

  9. Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement

    NASA Astrophysics Data System (ADS)

    Duraiswami, Raymond A.; Bondre, Ninad R.; Managave, Shreyas

    2008-11-01

    Lava flows with preserved bases and brecciated upper crusts constitute a morphological type that differs in character from typical pahoehoe and a'a: such flows have been reported from many provinces around the world. Previous studies had referred to these flows informally as 'pahoehoe flows with rubbly tops', 'broken-top pahoehoe' and 'rubbly pahoehoe'. Recent studies have formally applied the latter term to describe parts of the well-studied Laki flow in Iceland as well as flows from the Columbia River Basalt province. Rubbly pahoehoe flows are abundant in the upper stratigraphic formations of the Deccan Volcanic Province (DVP), and are more commonly known as simple flows. This study presents detailed observations of such flows from various parts of the DVP and discusses their implications for understanding flow emplacement. These flows, which appear to be single units at the outcrop-scale, are generally much thicker and significantly more extensive than individual pahoehoe lobes that dominate the lower formations of the Deccan stratigraphy. They are characterised by preserved, gently undulating tachylitic bases but variably disrupted crustal zones that grade into flow-top breccias. The breccias are constituted of highly vesicular and oxidised fragments of varying sizes that appear to have been derived from previously formed pahoehoe crusts. Previous work has indicated that the morphology of these flows might be related to initial inflation, accompanied by rapid volatile exsolution and an increase in effusion rate and/or viscosity with time. This agrees reasonably well with the qualitative and quantitative models of emplacement developed for the Laki flow. The abundance of such flows in the upper formations of the Deccan stratigraphy clearly hints at a significant shift in the nature of the Deccan eruptions; this could be indicative of higher eruption rates during this period. This, in turn, raises the possibility of hazardous impact on the climate during the

  10. A new approach to modelling impacts on rubble pile asteroid simulants

    NASA Astrophysics Data System (ADS)

    Deller, J. F.; Lowry, S. C.; Snodgrass, C.; Price, M. C.; Sierks, H.

    2016-02-01

    Many asteroids with low bulk densities must have a rubble pile structure and internal voids. Although little is known about their internal structure, numerical simulations of impact events on these asteroids rely on assumptions on how the voids are distributed. We present a new approach to model impacts on rubble pile asteroids that explicitly takes into account their internal structure. The formation of the asteroid is modelled as a rubble pile aggregate of spherical pebbles of different sizes. This aggregate is then converted into a high-resolution smoothed particle hydrodynamics (SPH) model, accounting for macroporosity inside the pebbles. We compare impact-event outcomes for a large set of internal configurations to explore the parameter space of our model-building process. The analysis of the fragment size distribution and the disruption threshold quantifies the specific influence of each input parameter. The size distribution of the pebbles used in our model is a simple power law, containing three free parameters: the slope α, the lower cut-off radius rmin and the upper cut-off radius rmax. The influence of all three parameters on the outcome is assessed in this paper. The existence of void space in our model increases the resistance against collisional disruption, a behaviour previously reported based on numerical simulations using a continuum description of porous material (Holsapple 2009). We show, for a set of asteroid collisions typical for small asteroids in the main belt, that no a priori knowledge of the exact size distribution of the pebbles inside the asteroid is needed, as the choice of the corresponding parameters does not directly correlate with the impact outcome.

  11. A Geophysical Laboratory for Rubble Pile Asteroids: The BASiX Mission

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel J.; Chesley, Steven; Anderson, Robert C.

    2014-11-01

    Small rubble pile asteroids exhibit a diverse range of evolutionary behaviors and morphologies, driven by an array of poorly understood geophysical effects. The complex ways that these bodies evolve belies their simple structure: gravitational aggregates of shattered primitive bodies. Their evolution can be dramatic, such as seen in the active asteroids P/2013 P5 and P/2013 R3, or may be subtly masked, such as in the tide-BYORP equilibria of singly-synchronous binary asteroids. Their evolutionary outcomes can defy the imagination, such as asteroid 1950 DA which is spinning faster than its gravitational attraction yet is held together by weak van der Waals forces (Rozitis et al. 2014), or present us with profound mysteries, such as how the Almahata Sitta meteorite could be comprised of such diverse components. Beyond these motivations, the study of rubble pile asteroid geophysics can shed insight into any solar system environment where gravitational aggregates interact in a micro-gravity setting, ranging from the protoplanetary disc to planetary ring systems. The broad study of the geophysics of aggregates in such micro-gravity environments is becoming both a unifying theme and emerging field of study. Out of the many diverse and complex forms that rubble pile asteroids take on, the study of NEA binary asteroids can in particular be used to expose the geophysics of micro-gravity aggregates. Binaries are an expression of micro-gravity geophysics due to the manner in which they form and their continuing evolution. Due to our ability to visit, probe and interact with NEA, we can also turn them into geophysical laboratories. This talk will introduce the science of the Binary Asteroid in-situ Explorer (BASiX) Discovery mission, which proposes to turn the primitive C-Type binary asteroid (175706) 1996 FG3 into such a geophysical laboratory. Exploring this body enables us to probe a broad range of rubble pile asteroid properties: internal tidal dissipation (through FG3

  12. A search for color heterogeneity on the surfaces of rapidly rotating rubble pile asteroids

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas

    2014-02-01

    We propose to use ANDICAM's unique capabilities (IR+visible) to obtain simultaneous observations in the visible and near-infrared to detect rotational color variation on asteroidal surfaces. Our survey focuses on fast-rotating asteroids (P<=2.5 hours) on the edge of the "rubble pile spin barrier", where objects larger than 200 meters in diameter shed mass and disintegrate. Detecting color variation, due to exposure of "fresh" material, will allow us to model the mass shedding process, its extent and age, and thus support or reject hypotheses of rotational-fission. We will obtain V-J colors where the distinction between "fresh" and "weathered" surfaces are most prominent.

  13. [Distribution of Formica cunicularia mound and related affecting factors on mobile dune in Horqin sandy land].

    PubMed

    Liu, Ren-Tao; Zhao, Ha-Lin; Zhao, Xue-Yong

    2009-02-01

    Taking the typical mobile dune in Horqin sandy land as test object, the density, diameter, and coverage of Formica cunicularia mounds on different land forms were investigated by quadrate method, with the spatial distribution of F. cunicularia mounds and the effects of topography and soil property on F. cunicularia nest-building activities discussed. The results showed that the density of F. cunicularia mounds decreased in the order of ridge > leeward slope > windward slope, while the diameter and coverage of the mounds were in the order of ridge > windward slope > leeward slope and conditioned by mound density. The spatial distribution of F. cunicularia mounds was in random pattern. Topography and soil property co-affected the nest-building activities of F. cunicularia.

  14. Imported fire ant (Hymenoptera: Formicidae) mound shape characteristics along a north-south gradient.

    PubMed

    Vogt, James T; Wallet, Bradley; Freeland, Thomas B

    2008-02-01

    The nests of some mound-building ants are thought to serve an important function as passive solar collectors. To test this hypothesis, imported fire ant (Solenopsis invicta Buren, S. richteri Forel, and their hybrid) mound shape characteristics (south facing slope angle and area, mound height, and basal elongation in the plane of the ground) were quantified in 2005 and 2006 at a number of locations from approximately 30 degrees 25' N (Long Beach, MS) to 35 degrees 3' N (Fayetteville, TN). Insolation (w*h/m2), maximum sun angle (sun elevation in degrees above the horizon at noon, dependent on date and latitude), cumulative rainfall (7 and 30 d before sampling), and mean ambient temperature (7 d before sampling) for each site x date combination were used as predictive variables to explain mound shape characteristics. Steepness of south-facing mound slopes was negatively associated with maximum sun angle at higher temperatures, with predicted values falling from approximately 36 degrees at sun angle=40 degrees to 26 degrees at sun angle=70 degrees; at lower temperatures, slope remained relatively constant at 28 degrees. On average, mound height was negatively correlated with maximum sun angle. Rainfall had a net negative effect on mound height, but mound height increased slightly with maximum sun angle when rainfall was high. Mound elongation generally increased with increased mound building activity. Under favorable temperature conditions and average rainfall, imported fire ant mounds were tallest, most eccentric, and had the steepest south facing slopes during periods of low maximum sun angle. Mound shape characteristics are discussed with regard to season and their potential usefulness for remote sensing efforts.

  15. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  16. Galapagos hydrothermal mounds: stratigraphy and chemistry revealed by deep-sea drilling.

    PubMed

    Natland, J H; Rosendahl, B; Hekinian, R; Dmitriev, Y; Fodor, R V; Goll, R M; Hoffert, M; Humphris, S E; Mattey, D P; Petersen, N; Roggenthen, W; Schrader, E L; Srivastava, R K; Warren, N

    1979-05-11

    The Galápagos mounds sea-floor hydrothermal system is at least 300,000 years old and once produced manganese-poor sediments, which nearly blanketed the area of the present mounds field. Present-day mound deposits are limited manganese-rich exposures, suggesting that the system has changed from rock-to water-dominated and has diminished in intensity with time.

  17. Possible effects of human impacts on epibenthic communities and coral rubble features in the marine Park of Bunaken (Indonesia)

    NASA Astrophysics Data System (ADS)

    Fava, Federica; Ponti, Massimo; Scinto, Alice; Calcinai, Barbara; Cerrano, Carlo

    2009-10-01

    Indo-Pacific coral reefs are considered among the most complex and biodiversified ecosystems in the world. Their existence is threatened by both natural and anthropogenic factors. Therefore, the assessment of anthropogenic disturbances is necessary to protect and manage these marine natural resources. In Bunaken Marine Park (North Sulawesi, Indonesia) epibenthic assemblages and coral rubble features at four impacted sites (each of them located close to villages and frequently exploited as recreational diving spots), and four well preserved sites (far from villages and scarcely frequented by divers), were investigated at 6, 12 and 18 m depth, in order to identify possible reef modifications. The assemblages were sampled by way of photographs. Coral rubble cover was estimated both by way of photographs and along belt transects, while grain size and the living fraction of the coral rubble were assessed by direct samples. The data showed significant differences between the study sites and between depths with regard to human activity. The hard coral cover and the assemblage heterogeneity are higher in control sites than in the impacted site where, especially in shallow water, the mechanical damage can strongly affect the assemblage structure. The mean percentage of coral rubble cover was significantly higher in the impacted sites, while its living portion was higher in the controls. The fine fraction (0.1-0.5 cm) of coral rubble was more abundant in the impacted sites, coarse fraction (4-8 cm) prevailed at the control sites while intermediate fractions did not show any differences. The three-dimensional structural complexity of the assemblages was reduced in the sites affected by physical disturbances. These results are strongly independent of depth. Human activities, which damage corals and increase coral rubble production, are mainly performed on the reef flat and reef edge but their effects are transferred along the reef wall in depth.

  18. Variability of soil properties within large termite mounds in South Katanga, DRC - origins and applications.

    NASA Astrophysics Data System (ADS)

    Erens, Hans; Bazirake Mujinya, Basile; Boeckx, Pascal; Baert, Geert; Mees, Florias; Van Ranst, Eric

    2014-05-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1). With an average height of 5.05 m and diameter of 14.88 m, these are some of the largest biogenic structures in the world. The mound material is known to differ considerably from the surrounding Ferralsols. Specifically, mound material exhibits a finer texture, higher CEC and exchangeable basic cation content, lower organic matter content, and an accumulation of phosphorous, nitrate and secondary carbonates. However, as demonstrated by the present study, these soil properties are far from uniform within the volume of the mound. The termites' nesting and foraging activity, combined with pedogenic processes over extended periods of time, generates a wide range of physical, chemical, and biological conditions in different parts of the mound. Analysis of samples taken along a cross-section of a large active mound allowed generating contour plots, thus visualizing the variability of soil properties within the mound. The central columns of three other mounds were sampled to confirm apparent trends. The contour plots show that the mounds comprise four functional zones: (i) the active nest, found at the top; (ii) an accumulation zone , in more central parts of the mound; (iii) a dense inactive zone, surrounding the accumulation zone and consisting of accumulated erosion products from former active nests; and (iv) the outer mantle, characterized by intense varied biological activity and by a well-developed soil structure. Intermittent leaching plays a key role in explaining these patterns. Using radiocarbon dating, we found that some of these mounds are at least 2000 years old. Their current size and shape is likely the result of successive stages of erosion and rebuilding, in the course of alternating periods of mound abandonment and recolonization. Over time, termite foraging combined with limited leaching

  19. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    PubMed

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  20. Investigating the Lack of Pit/Mound Microtopography in Subalpine Forests of the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Martin, Y.; Johnson, E.; Chaikina, O.

    2012-04-01

    This investigation is a followup to our earlier study analyzing tree throw and associated sediment transport in Hawk Creek Watershed, Canadian Rockies (Gallaway et al., 2009). The motivation for the present study is that landscapes in subalpine forests in the Canadian Rockies do not show the pronounced pit/mound microtopography found in some other forests, such as some deciduous forests of eastern North America or coniferous forests in western British Columbia, Canada. Given the impact that pit/mound topography can have on both soils and hydrology, it was decided to investigate why some forests demonstrate notable pit/mound microtopography while other forests do not. First, we analyze field data from our study drainage basin in the Canadian Rockies to define the sizes of pit/mound features in these forests and how slope gradient influences pit/mound dimensions. Next, we test a series of possible formulae to simulate degradation for different sizes of pit/mound features in profile form for slopes ranging from 10 to 30 degrees. For slopes of zero or near-zero gradient, our field results show that the majority of sediment from the root plate is returned to the pit and does not form a distinct pit/mound feature; this finding is in agreement with other studies in the published literature. Our model results show that the magnitude of a pit/mound feature and the choice of formula to simulate pit/mound degradation play key roles in determining pit/mound longevity. Finally, we connect our earlier numerical model of tree population dynamics in the Canadian Rockies to a numerical model of pit/mound degradation to explore how these elements combine to influence landscape microtopography over time. At any time, the density and size of pit-mound features on the landscape is a function of pit/mound formation rates (not necessarily constant) and the rate of pit/mound degradation (Schaetzl and Follmer, 1990). Our tree population dynamics model is driven by wildfire disturbance

  1. Mima mounds in the Kenya highlands: significance for the Dalquest-Scheffer hypothesis.

    PubMed

    Cox, George W; Gakahu, Christopher G

    1983-03-01

    The Dalquest-Scheffer Hypothesis that Mima mounds in western North America are the long-term product of burrowing activities of geomyid pocket gophers was tested by examination of areas of similar topography in the highlands of Kenya. Two mound areas, located near Nyahururu at an elevation of about 2,400 m, were studied in detail. The mounds ranged from less than 25 cm to 2 m in height and from a few m to about 20 m in diameter, and were not the remains of large termite nests. Populations of the rhizomyid mole rat, Tachyoryctes splendens, a fossorial rodent similar in morphology and social behavior to geomyid pocket gophers, were associated with these mounds. Mound density and dispersion pattern were similar to North American Mima mounds, and the distribution of fresh soil heaps indicated that the activities of these animals were mound-centered. A shallow laterite hardpan underlay these mound areas, fulfilling another requirement of the Dalquest-Scheffer hypothesis. It is concluded that Mima mounds are the product of the burrowing of fossorial rodents such as pocket gophers and mole rats, and that these two groups are convergent in morphology, burrowing behavior, and impact on the landscape.

  2. Evolution of major sedimentary mounds on Mars: Buildup via anticompensational stacking modulated by climate change

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Sneed, Jonathan; Mayer, David P.; Lewis, Kevin W.; Michaels, Timothy I.; Hore, Alicia; Rafkin, Scot C. R.

    2016-11-01

    We present a new database of >300 layer orientations from sedimentary mounds on Mars (Mount Sharp/Aeolis Mons, plus Nia, Juventae, Ophir, Ceti, Melas, Coprates, and Ganges Mensae). Together, these mounds make up ½ of the total volume of canyon/crater-hosted sedimentary mounds on Mars. The layer orientations, together with draped landslides, and draping of rocks over differentially eroded paleodomes, indicate that for the stratigraphically uppermost 1 km, the mounds formed by the accretion of draping strata in a mound shape. The layer-orientation data further suggest that layers lower down in the stratigraphy also formed by the accretion of draping strata in a mound shape. The data are consistent with terrain-influenced wind erosion but inconsistent with tilting by flexure, differential compaction over basement, or viscoelastic rebound. We use a simple model of landscape evolution to show how the erosion and deposition of mound strata can be modulated by shifts in obliquity. The model is driven by multi-Gyr calculations of Mars' chaotic obliquity and a parameterization of terrain-influenced wind erosion that is derived from mesoscale modeling. The model predicts that Mars mound stratigraphy emerges from a drape-and-scrape cycle. Our results suggest that mound-spanning unconformities with kilometers of relief emerge as the result of chaotic obliquity shifts. Our results support the interpretation that Mars' rocks record intermittent liquid-water runoff during a ≫ 108 yr interval of sedimentary rock emplacement.

  3. The origin of conical mounds at the mouth of Chasma Boreale

    NASA Astrophysics Data System (ADS)

    Warner, Nicholas H.; Farmer, Jack D.

    2008-11-01

    One-hundred and six isolated conical mound landforms were identified proximal to the north polar cap of Mars at the mouth of Chasma Boreale. Five unique morphologies were identified including moderately sloped (4°-6°) cratered mound forms including two mounds of Abalos Colles, flat-topped moderately sloped (4°-6°) polygonal mound forms, steeper (6-13°) conical mound forms, subdued mound forms with low-angle slopes (0.5-3°), and small (<2 km diameter) clustered conical forms with low- to moderate-angle (1-5°) flank slopes. From first-order relationships between flank slope and the volcano productivity index (volume/diameter ratio), 16 mounds were found to be morphologically similar to terrestrial low-angle basaltic shield volcanoes. Thirteen mounds exhibit summit craters that range in depth (d) to diameter (D) ratio from 1:9 to 1:320. The circularity and d/D ratios of mound summit craters are consistent with highly modified northern plains impact craters. Image analysis of shield-like mounds reveals morphologic characteristics inconsistent with pristine volcanic landforms for most features. Horizontal flank layering (10-100 m thick), polygonal map-view morphology, topographic relationships, and spatial association with retreating polar scarps suggest that mound forms at the mouth of Chasma Boreale represent remnants of a once thicker, more continuous sequence of near-polar layered material. Evidence for northward scarp retreat is visible along Rupes Tenuis, a sinuous scarp located west of Chasma Boreale. Along this scarp, a single ~100-m-thick resistant cap unit (part of the Early Amazonian age Rupes Tenuis unit) is being undermined by aeolian erosion, solar ablation, and mass wasting. Remnants of the cap unit rest along the scarp margin and in places form small conical mound clusters at the base of the scarp. Fracture controlled retreat of the scarp is visible along the eastern portion of Rupes Tenuis and along the Escorial crater remnant mesa where small

  4. Exploring the city of Rubble: botanical fieldwork in bombed cities in Germany after World War II.

    PubMed

    Lachmund, Jens

    2003-01-01

    In recent decades, the flora and fuana of cities have become the objects of the inter-disciplinary research field of urban ecology and related policies of urban nature conservation. Although the term "urban ecology" is quite recent, it is argued in this paper that the formation of urban nature as an object of ecological knowledge has a much longer history. For example, in Germany, after World War II, the large rubble areas that existed in all bombed cities soon became important research fields for botanists studying plant migration and vegetation development in the context of the city. This paper uses the case of these botanical research activities to shed light on the historical origins of ecological thinking about nature in the city. Drawing upon a socio-spatial approach to science and practice, the paper explores the interaction between the social and material order of the city and the formation of ecological knowledge. As will be shown, botanists studying the rubble areas created various representations (e.g., lists, statistical tabulations, maps) of urban space that contributed to the transformation of the cultural and political meaning of urban wastelands. At the same time, it will be argued, urban wastelands were practically appropriated as scientific workplaces in which these representations were locally crafted. What later became the science and politics of urban ecology is to a large extent the outcome of this mutual shaping of knowledge and urban space in the post-Second World War period.

  5. A large submarine sand-rubble flow on kilauea volcano, hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Moore, J.G.; Calk, L.

    1979-01-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.

  6. Phytogenic mounds of four typical shoot architecture species at different slope gradients on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Du, Hua-Dong; Jiao, Ju-Ying; Jia, Yan-Feng; Wang, Ning; Wang, Dong-Li

    2013-07-01

    In semi-arid regions, the spatial pattern of vegetation usually appears as a mosaic of plants surrounded by bare soil. Phytogenic mounds often develop under these plants and create microenvironments that promote plant establishment. This study examined the effects of ground slope and plant shoot architecture on mound formation. Four species representing different shoot architectures (Artemisia gmelinii, with dense shoot architecture; Artemisia giraldii, with expanding shoot architecture; tussock-forming Bothriochloa ischaemum; and Sophora viciifolia, with a main-stem shoot architecture) and four classes of slope were selected. A two-dimensional 'microprofilemeter' was used to measure mound shape and height, and mound area was measured using the Image Pro-plus software with a planer mound picture. Phytogenic mound shapes changed from symmetrical mound type to asymmetrical terrace type as slope increased. With increasing slope mound height increased for all species; the mound area of S. viciifolia decreased; and that of A. giraldii increased. A. gmelinii and B. ischaemum had a relatively constant mound area irrespective of slope. Among the plant shoot architecture parameters, the basal diameter along the slope (Dba) significantly correlated with mound height, while the plant basal diameter perpendicular to the slope (Dbp) and the total cross-sectional area of the stem at the base (Sn) were related to mound area. The results indicate that phytogenic mounds on gentler slopes are formed due to the difference in rain splash erosion beneath the plant canopy and surrounding bare surfaces. On steeper slopes, mounds are formed due to water erosion on bare soil and the prevention of erosion and sediment accumulation under plants. Plant shoot architecture also influences mound formation. Species with expanding shoot architecture, such as A. giraldii that spread laterally to create high density stems and occupy a large area, can create relatively large mounds. Species with main

  7. A groundwater vortex hypothesis for mima-like mounds, Laramie Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Reider, Richard G.; Huss, Joseph M.; Miller, Timothy W.

    1996-08-01

    Mima-like mounds in the Laramie Basin occur where: (1) impervious bedrock (shale) is at a shallow depth (˜ 2-5 m); (2) bedrock is overlain by a thin veneer (˜ 1-4 m) of alluvial gravels; and (3) a strong argillic/calcic or petrocalcic soil caps the landform, typically a terrace. Active and inactive mounds contain churned materials, including pebbles derived from adjacent/subjacent units. The mounds are circular in plan view and lens- or funnel-shaped in cross-section. The strong intermound (premound) soil collapses beneath the mound, is entirely or partly destroyed at its base, or is truncated at the mound edge. Stratigraphic relationships on the youngest terrace of the Laramie River indicate that the inactive mounds are Holocene in age. Sodium concentrations (used as a tracer) in mound material and adjacent/subjacent units suggest that the mounds rotate counterclockwise. This movement may be driven by free spiral vortices (low hydraulic head) in confined (artesian) groundwater flow in alluvium between shallow bedrock and strong surface soil. The vortices (similar to water draining from a bathtub or a whirlpool in a river) may result from enlargements, constrictions, or changes in permeability of the aquifer — or meandering of groundwater flow. Groundwater, dissolved ions, and materials in suspension, or through friction and turbidity, then would move from adjacent high-hydraulic head areas into and down the vortex. In effect, the high head (intermound) areas would act as a pump whereas the vortex (which would form a mound) would act as a turbine — responding, therefore, to energy transformations between groundwater velocity and pressure according to the Bernoulli principle and Newton's Second Law of Motion. Soil or sediment, incapable of being fully moved into and down the vortex, would amass at the land surface as a circular mound that in cross-section would have a lens or funnel (turbine) shape. Computer modelling shows that mounds tend to form over deep

  8. Morphology and spatial patterns of Macrotermes mounds in the SE Katanga, D.R. Congo

    NASA Astrophysics Data System (ADS)

    Bazirake Mujinya, Basile; Mees, Florias; Erens, Hans; Baert, Geert; Van Ranst, Eric

    2015-04-01

    The spatial distribution patterns and morphological characteristics of Macrotermes falciger mounds were investigated in the Lubumbashi area, D.R. Congo. Examination of the spatial patterns of M. falciger mounds on high resolution satellite images reveals a mean areal number density of 2.9 ± 0.4 mounds ha-1. The high relative number of inactive mounds in the region, along with their regular distribution pattern, suggests that current termite mound occurrences are largely palaeostructures. Mound positions in the habitat are consistent with intraspecific competition rather than soil and substrate characteristics as controlling factor. Detailed morphological description of five deep termite-mound profiles (~7 m height/depth) shows that carbonate pedofeatures are present in all studied profiles, in contrast to the control soils. They mainly occur in the form of soft powdery masses, nodules and coatings on ped faces, all clearly pedogenic. Carbonate coatings occur mainly between 1 m above the soil surface and 1 m below that level in all mound profiles. Carbonate nodules do show a different distribution pattern at each site. Furthermore, when the studied profiles are considered to represent a toposequence, the stone layer occurs at greater depth in topographically low areas compared to crest and slope positions, which is mainly conditioned by erosion. The clay content of epigeal mounds increases from the summit to the toe slope, which can be largely related to differences in parent material. The Mn-Fe oxide concentrations occurring in all studied termite mound profiles reflect a seasonally high perched water table beneath the mound, which is more pronounced at the lower slope positions.

  9. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  10. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    SciTech Connect

    D.S. Shafer; J. Gommes

    2009-02-03

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

  11. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6795 (19-20 Nov. 1969) --- A view of the lunar surface in the vicinity of the Apollo 12 lunar landing site, photographed during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot. Conrad and Bean encountered the odd, anthill-shaped mound during their lunar traverse. The two descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  12. Numerical analyses of caisson breakwaters on soft foundations under wave cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-zhan; Yan, Zhen; Wang, Yu-chi

    2016-03-01

    A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.

  13. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  14. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA.

    PubMed

    Rozitis, Ben; MacLennan, Eric; Emery, Joshua P

    2014-08-14

    Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such 'rubble-pile' asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3 (ref. 7), although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA (ref. 8) is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith.

  15. Using binary asteroids to explore the interior geophysics of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Scheeres, D.; Jacobson, S.; McMahon, J.; Hirabayashi, M.

    2014-07-01

    The internal geophysics of small rubble-pile asteroids are largely unexplored, with standard geophysical theories of strength and dissipation not being well matched to the extreme environment these bodies exist in. Interior pressures within rapidly spinning rubble piles are computed to be as small as a few Pascals, a regime in which small non-gravitational forces not considered for larger bodies may become important. The limited research done on the geophysics of such bodies has suggested that the standard geophysical models for internal energy dissipation in this regime require significant modification [1], changing some of the fundamental relations between size and strength. Binary asteroid systems provide a unique opportunity for developing constraints and deeper understanding of the magnitude and operation of tidal dissipation within rubble-pile bodies. Recently, Jacobson and Scheeres [2] proposed that the most common class of binary asteroid systems, those with a synchronized secondary and rapidly spinning primary, may be in an equilibrium state where contractive Binary YORP forces balance against expansive tidal torques due to tidal distortion of the primary body. In such systems it becomes possible to develop estimates of the ratio of tidal dissipation number over tidal Love number, Q/k. The predicted equilibrium semi-major axes for such binary asteroid systems (based on presumed values for the Binary YORP force and Q/k values) has been seen to be consistent with the observed sizes of many of these systems (see figure). To refine the estimates for this ratio it is necessary to both confirm the existence of binary asteroids in such an equilibrium state and develop a better understanding of what value the Binary YORP coefficient of binary systems will have [3]. Recently, it has been verified that the spacecraft-accessible binary asteroid 1996 FG_3 is in such an equilibrium state [4]. The combined detection of such an equilibrium coupled with knowledge about

  16. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  17. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  18. Catastrophic windthrow in the Southern Appalachians: characteristics of pits and mounds and initial vegetation responses

    Treesearch

    Barton D. Clinton; Corey R. Baker

    2000-01-01

    We characterized pit and mound (PM) topography resulting from catastrophic wind in the Coweeta Basin, and located 48 PM’s across a variety of forest types. Our measurements included pit length, width, and depth; and mound height, thickness, and width. Species of fallen trees were...

  19. An Exercise in Field Archaeology for the Gifted: Fake Mound, Genuine Scholarship.

    ERIC Educational Resources Information Center

    White, John R.

    1992-01-01

    At an archaeology camp program for gifted youngsters, students ages 11-16 built a mound with 5 archaeological levels, for future exploration. The "fake" mound ensured that student interest would be maintained, that students would learn about special problems and situations, and that irreplaceable bits of prehistory would not risk being damaged.…

  20. Plant succession on gopher mounds in Western Cascade meadows: consequences for species diversity and heterogeneity

    Treesearch

    Chad C. Jones; Charles B. Halpern; Jessica Niederer

    2008-01-01

    Pocket gophers have the potential to alter the dynamics of grasslands by creating mounds that bury existing vegetation and locally reset succession. Gopher mounds may provide safe sites for less competitive species, potentially increasing both species diversity and vegetation heterogeneity (spatial variation in species composition). We compared species composition,...

  1. IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE) MOUND SHAPE CHARACTERISTICS ALONG A NORTH-SOUTH GRADIENT

    USDA-ARS?s Scientific Manuscript database

    Imported fire ant mound shape characteristics (south facing slope angle and area, mound height, and basal elongation in the plane of the ground) were quantified in 2005 and 2006 at a number of locations from about 30° 25’ N (Long Beach, Mississippi, USA) to 35° 3’ N (Fayetteville, Tennessee, USA). ...

  2. Nonlinear dynamics of coiling, and mounding in viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Ober, Thomas; McKinley, Gareth

    2009-11-01

    Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.

  3. Opportunity Inspects Gasconade on Spirit Mound of Mars

    NASA Image and Video Library

    2016-12-07

    This relatively bright outcropping of rock, dubbed "Gasconade," was investigated by NASA's Mars Exploration Rover Opportunity while the rover was perched on "Spirit Mound" at the western edge of Mars' Endeavour Crater. This mosaic combines four frames taken by the microscopic imager on Opportunity's robotic arm on Oct. 2, 2016, during the 4,512st Martian day, or sol, of the rover's work on Mars. Enhanced color information from Opportunity's panoramic camera has been added to emphasize differences in the materials visible in the target. Figure A is a version with no color information added to the microscopic imager mosaic. The view covers an area about 2 inches (5 centimeters) wide. Opportunity's inspection found Gasconade to be a wind-etched outcrop with angular bits of darker rock within a lighter matrix, which may have been formed from fallout of the impact event that excavated the crater. This location of Spirit Mound, shown at PIA20854, is the deeper on the western rim of Endeavour Crater than any site visited previously by Opportunity. http://photojournal.jpl.nasa.gov/catalog/PIA21141

  4. Dating a burnt mound from Kilmartin, Argyll, Scotland

    NASA Astrophysics Data System (ADS)

    Anthony, I. M. C.; Sanderson, D. C. W.; Cook, G. T.; Abernethy, D.; Housley, R. A.

    2001-12-01

    Around 1600 burnt mounds, comprising heaps of fire cracked stones, up to several metres across with characteristic forms, are listed in the National Monuments Records of Scotland, with a diverse distribution. Many more are known in other parts of Europe, notably in Ireland and Scandinavia. Traditionally, these monuments are thought to relate to cooking activities throughout the Bronze Age though in recent years alternative functions have been suggested. Here results are presented from Lady Glassery Wood, a recently excavated site in the Kilmartin Valley. Samples for luminescence dating were collected in 1998, together with field gamma spectrometry measurements. Associated charcoal has also been subjected to radiocarbon dating. Despite and unusually low internal radioactivity from the rock samples examined, and low luminescence sensitivities from separated minerals, it has been possible to obtain concordant luminescence ages from both quartz and feldspars, giving a mean date of 2800±300 BC. Radiocarbon dating produces a 2 sigma calibrated age range of approximately 2800-2400 cal BC, in agreement with the luminescence age, indicating a late Neolithic date for the mound, one of a growing number of early dates in Scotland.

  5. Contaminant exposures at the 4H shell mounds in the Santa Barbara Channel.

    PubMed

    Phillips, Charles R; Salazar, Michael H; Salazar, Sandra M; Snyder, Barry J

    2006-12-01

    Remobilization, bioavailability, and potential toxicity of chemical contaminants were evaluated at the 4H shell mounds - the site of abandoned offshore oil and gas production platforms in the Santa Barbara Channel region of the Southern California Bight. Evaluations used a weight-of-evidence approach based on results from bulk phase chemical analyses and laboratory toxicity testing of shell mound cores, in situ field bioassays using caged mussels, and surficial sediment chemistry. Shell mound cores contained elevated concentrations of metals associated with drilling wastes (e.g., Ba, Cr, Pb, and Zn), as well as monocyclic and polycyclic aromatic hydrocarbons (PAHs). The highest concentrations along with pockets of free oil were associated with the middle "cuttings" stratum. Sediments composited from all core strata caused significant acute toxicity and bioaccumulation of Ba and PAHs in test organisms during laboratory exposures. In contrast, caged mussels placed at each of the shell mounds for a period of 57-58 days had greater than 90% survival, and there were no significant differences in survival of mussels placed at the shell mounds and corresponding reference sites. While all mussel samples exhibited increases in shell length, whole animal weight, and tissue lipid content, in some cases growth metrics for the shell mound mussels were significantly higher than those for the reference sites. Concentrations of metals, PAHs, and polychlorinated biphenyls (PCBs) in tissues of the shell mound mussels were not significantly different from those at reference sites. The presence of labile aromatic hydrocarbons in shell mound cores and absence of significant contaminant accumulation of tissues of caged mussels indicated that chemical contaminants are not being remobilized from the 4H shell mounds. Surficial bottom sediments near the shell mounds contained elevated Ba concentrations that probably were associated with drilling wastes. However, concentrations did not

  6. Variety and complexity in the mound of sedimentary rock in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Malin, M. C.

    2011-12-01

    NASA's Mars Science Laboratory rover, Curiosity, will be used to explore a portion of the lower stratigraphic record of the northwest side of a mound of layered rock ˜5 km thick in the 155 km-diameter Gale Crater. The rock materials are of a sedimentary origin, though the proportions of clastic sediment, tephra, and chemical precipitates are presently unknown. The mound is usually described as having lower and upper units separated by an erosional unconformity. However, some investigators recognize that it is considerably more complex. The stratigraphy displays vertical and lateral complexity; multiple erosional unconformities; filled, buried, interbedded, and exhumed or partly exhumed impact craters; evidence for deposition along the base of the mound followed by retreat of less-resistant rocks and abandonment of erosion-resistant materials shed from the mound; lithified sediments deposited at the mouths of streams that cut mound rock; inversion of intra-canyon stream channel sediment; and widening of canyons. On the northeast side of the mound there are landslide deposits, shed from the mound, that contain large blocks (10s to 100s of m) of layered rock in various orientations. The mound's highest feature does not exhibit layering and has been interpreted by some as being Gale's impact-generated central peak. However, its highest elevation exceeds that of most of the crater rim, an observation inconsistent with central peaks (where they occur at all) in martian craters of diameters similar to Gale. The layered materials that occur highest in the mound are also at elevations that exceed most of the crater rim; these exhibit repeated stratal packages that drape previously-eroded mound topography; they produce boulders as they erode, attesting to their lithified nature and requiring that a lithification process occurred in materials located ≥ 5 km above the deepest part of Gale. The lower mound strata, including the Curiosity field site, are diverse materials

  7. Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico

    USGS Publications Warehouse

    Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.

    2008-01-01

    Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico. ?? 2008 Elsevier Ltd.

  8. On the influence of cold-water coral mound size on flow hydrodynamics, and vice versa

    NASA Astrophysics Data System (ADS)

    Cyr, Frédéric; Haren, Hans; Mienis, Furu; Duineveld, Gerard; Bourgault, Daniel

    2016-01-01

    Using a combination of in situ observations and idealistic 2-D nonhydrostatic numerical simulations, the relation between cold-water coral (CWC) mound size and hydrodynamics is explored for the Rockall Bank area in the North Atlantic Ocean. It is shown that currents generated by topographically trapped tidal waves in this area cause large isopycnal depressions resulting from an internal hydraulic control above CWC mounds. The oxygen concentration distribution is used as a tracer to visualize the flow behavior and the turbulent mixing above the mounds. By comparing two CWC mounds of different sizes and located close to each other, it is shown that the resulting mixing is highly dependent on the size of the mound. The effects of the hydraulic control for mixing, nutrient availability, and ecosystem functioning are also discussed.

  9. The nature and origin of Mafic Mound in the South Pole-Aitken Basin

    NASA Astrophysics Data System (ADS)

    Moriarty, Daniel P.; Pieters, Carle M.

    2015-10-01

    "Mafic Mound" is a distinctive and enigmatic feature 75 km across and 1 km high near the center of the vast South Pole-Aitken Basin (SPA). Using several modern data sets, we characterize the composition, morphology, and gravity signature of the structure in order to assess its origin. Mafic Mound is found to exhibit a perched circular depression and a homogeneous high-Ca pyroxene-bearing composition. Several formation hypotheses based on known lunar processes are evaluated, including the possibilities that Mafic Mound represents (1) uplifted mantle, (2) SPA-derived impact melt, (3) a basalt-filled impact crater, or (4) a volcanic construct. Individually, these common processes cannot fully reproduce the properties of Mafic Mound. Instead, we propose a hybrid origin in which Mafic Mound is an edifice formed by magmatic processes induced by the formation and evolution of SPA. This form of nonmare volcanism has not previously been documented on the Moon.

  10. Kentucky and Tennessee. Mounds of potential pay in Ft. Payne reef trend

    SciTech Connect

    Bigelow, T.

    1983-06-01

    It is one of the hottest areas in Tennessee. Largely centered in Fentress, Scott and Morgan counties, the Ft. Payne reefs are a series of subsurface mounds, parallel to one another, that seemingly align in a northeast- southwest direction. The mounds are at depths of 1000 to 2500 ft. To the west near the Cincinnati Arch, the mounds are relatively shallow. Whereas to the southeast the mounds downdip at a rate of ca 50 ft/mile toward the Appalachian fold belt. Most activity to date has been in the shallower Ft. Payne. Production varies greatly, from 5 bopd/well to more than 900 bopd/well. There are 21 producing fields in the Ft. Payne, with total production in excess of 6 million bbl. The mounds are of Lower Mississippian age and are thought to have been deposited along a transgressive/regressive shoreline.

  11. A Biomechanical Comparison of Pitching From a Mound Versus Flat Ground in Adolescent Baseball Pitchers

    PubMed Central

    Nissen, Carl W.; Solomito, Matthew; Garibay, Erin; Õunpuu, Sylvia; Westwell, Melany

    2013-01-01

    Background: Baseball professionals believe that pitching from a mound can increase the stresses placed on the body. Hypothesis: There is no difference in kinematics or kinetics in pitching from a mound versus flat-ground conditions in adolescent baseball pitchers. Study Design: Laboratory investigation. Methods: The fastball pitching motions of 15 adolescent baseball pitchers, including upper extremity kinematics and kinetics and lead- and trail-leg kinematics, were evaluated while pitching from the mound and flat ground. Student t tests were used to determine the differences between the 2 testing conditions. Results: Maximum external glenohumeral rotation was similar between the 2 conditions (134° ± 14° mound vs 133° ± 14° flat ground, P = 0.10). Ankle plantar flexion of the lead leg at ball release was greater in the flat-ground condition (−20° ± 10° mound vs −15° ± 12° flat ground, P = 0.01). A statistically significant increase in glenohumeral internal rotation moment (33.6 ± 12.1 Nm mound vs 31.7 ± 11.6 Nm flat ground, P = 0.01) and an increase in elbow varus moment (33.3 ± 12.3 Nm mound vs 31.4 ± 11.8 Nm flat ground, P = 0.02) was measured when pitching from the mound as compared with flat ground. Conclusion: Pitching from the mound causes increased stress on the shoulder and elbow of adolescent pitchers as compared with that from flat ground. Clinical Relevance: The differences in kinematics as well as increased moments in the shoulder and elbow are helpful for pitchers and their coaches to know at the beginning of their season or as they return from injury or surgery. Pitchers in these situations should start their pitching progression on flat ground and progress to the mound. PMID:24427428

  12. Alternation of microbial mounds and ooid shoals (Middle Jurasssic, Morocco): Response to paleoenvironmental changes

    NASA Astrophysics Data System (ADS)

    Tomás, Sara; Homann, Martin; Mutti, Maria; Amour, Frédéric; Christ, Nicolas; Immenhauser, Adrian; Agar, Susan M.; Kabiri, Lahcen

    2013-08-01

    The occurrence of neritic microbial carbonates is often related to ecological refuges, where grazers and other competitors are reduced by environmental conditions, or to post-extinction events (e.g. in the Late Devonian, Early Triassic). Here, we present evidence for Middle Jurassic (Bajocian) microbial mounds formed in the normal marine, shallow neritic setting of an inner, ramp system from the High Atlas of Morocco. The microbial mounds are embedded in cross-bedded oolitic facies. Individual mounds show low relief domal geometries (up to 3 m high and 4.5 m across), but occasionally a second generation of mounds exhibits tabular geometries (< 1 m high). The domes are circular in plan view and have intact tops, lacking evidence of current influence on mound preferred growth direction or distribution patterns, or truncation. The mound facies consists almost entirely of non-laminated, micritic thrombolites with branching morphologies and fine-grained, clotted and peloidal fabrics. Normal marine biota are present but infrequent. Several lines of evidence document that microbial mound growth alternates with time intervals of active ooid shoal deposition. This notion is of general significance when compared with modern Bahamian microbialites that co-exist with active subaquatic dunes. Furthermore, the lack of detailed studies of Middle Jurassic, normal marine shallow neritic microbial mounds adds a strong motivation for the present study. Specifically, Bajocian mounds formed on a firmground substratum during transgressive phases under condensed sedimentation. Furthermore, a transient increase in nutrient supply in the prevailing mesotrophic setting, as suggested by the heterotrophic-dominated biota, may have controlled microbial mound stages.

  13. [Dimensional characteristics and spatial distribution patterns of pit and mound complexes in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wei, Quan-Shuai; Qiao, Lu; Chen, Li-Xin; Wang, Ting; Zhang, Xin; Gu, Wei; Sun, Hu

    2014-11-01

    Characteristics of pit and mound complexes in different sizes of forest gaps and closed stands and their distribution patterns were compared and analyzed. The results showed that mean mound width, mound height, mound thickness of all pit and mound complexes were larger than corresponding mean pit length, pit width, pit depth in large, medium and small gaps as well as in closed stands. Mound width, mound height, mound thickness, pit length, pit width, pit depth were the largest in large gap, being 2.85, 0.37, 2.00, 2.99, 2.10, 0.39 m, respectively, and the smallest in closed stands, being 2.35, 0.19, 1.60, 2.66, 1.65, 0.21, respectively. Mean mound volume (1.66 m3) was larger than mean pit volume (1.44 m3). The difference in characteristic values between the most of pit and mound complexes was significant for the same size of forest gap, not significant for closed stands, significant for different sizes of forest gaps and closed stands. Most of characteristic values for pit and mound complexes within the plot in 2012 were significantly less than those in 2011. 89.5% and 60.5% of type and shape of pit and mound complexes were hinge and semiellipse, respectively. Their distribution was relatively centralized.

  14. Effigy mound sites as cultural landscapes: A geophysical spatial analysis of two Late Woodland sites in southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Kaufmann, Kira E.

    This dissertation is a spatial analysis of a class of sacred sites known as Effigy Mounds during the Late Woodland period in southeast Wisconsin, circa A.D. 700--1100. Effigy Mounds are earthworks in the shape of animals, conical, linear, or geometric shapes. The research is focused on the upper Rock River Drainage in southern Wisconsin, a region where Effigy Mounds are very common. Although there are many theories concerning the meanings of Effigy Mounds, there is no cohesive description of Effigy Mounds as landscape elements and their function in the use of space by Late Woodland people. This research connects cultural and cognitive aspects of Native American cosmology with physical manifestations on the landscape. Effigy Mounds are examined from ideological and physical perspectives that are not mutually exclusive. Effigy Mounds are viewed as signifiers with multiple levels of function and meaning including sacred space, territorial markers, and mechanisms of social control and cohesion. Investigation at two Late Woodland Effigy Mound sites, Indian Mounds County Park in Jefferson County and Nitschke Mounds County Park in Dodge County, shows that landscape utilization varied significantly within and among Effigy Mound sites. An alternative model to understand Late Woodland Effigy Mound sites as ritual landscapes explores these features, their distribution across space, and the connection to internal site structures by synthesizing multidisciplinary data from historical ethnographic accounts, previous archaeological surveys, and new geophysical data. This multidisciplinary approach provides an example applicable to other landscape studies.

  15. Characterization of the Burma Road Rubble Pit at the Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Ward, K.G.; Frazier, W.L.; McAdams, T.D.; McFalls, S.L.; Rabin, M.; Voss, L. |

    1996-05-01

    The Burma Road Rubble Pit (BRRP) is located at the Savannah River Site (SRS). The BRRP unit consists of two unlined earthen pits dug into surficial soil and filled with various waste materials. It was used from 1973--1983 for the disposal of dry inert rubble such as metal, concrete, lumber, poles, light fixtures, and glass. No record of the disposal of hazardous substances at the BRRP has been found. In 1983, the BRRP was closed by covering it with soil. In September 1988, a Ground Penetrating Radar survey detected three disturbed areas of soil near the BRRP, and a detailed and combined RCRA Facility Investigation/Remedial Investigation was conducted from November 1993 to February 1994 to determine whether hazardous substances were present in the subsurface, to evaluate the nature and extent of contamination, and to evaluate the risks posed to the SRS facility due to activities conducted at the BRRP site. Metals, semi-volatile organic compounds, volatile organic compounds, radionuclides and one pesticide (Aldrin) were detected in soil and groundwater samples collected from seventeen BRRP locations. A baseline risk assessment (BRA) was performed quantitatively to evaluate whether chemical and radionuclide concentrations detected in soil and groundwater at the BRRP posed an unacceptable threat to human health and the environment. The exposure scenarios identifiable for the BRRP were for environmental researchers, future residential and occupational land use. The total site noncancer hazard indices were below unity, and cancer risk levels were below 1.0E-06 for the existing and future case environmental researcher scenario. The future case residential and occupational scenarios showed total hazard and risk levels which exceeded US EPA criterion values relative to groundwater scenarios. For the most part, the total carcinogenic risks were within the 1.0E-04 to 1.0E-06 risk range. Only the future adult residential scenario was associated with risks exceeding 1.0E-04.

  16. Seismic Exploration for Pennsylvanian Algal Mounds, Paradox Basin

    SciTech Connect

    Moriarty, B.; Grundy, R.

    1985-05-01

    During the past 2 years, several new field discoveries were drilled in Pennsylvanian algal mounds of the Paradox basin. Most of these discoveries were based, at least partially, on state-of-the-art seismic data. New field production comes from either the Ismay or Desert Creek zones the Paradox Formation. The algal correlate laterally with either marine shelf or penesaline facies. Detection of the Ismay and Desert Creek buildups is difficult because of their limited thickness. Therefore, the acquisition of good signal-to-noise high-frequency data and stratigraphic processing for frequency enhancement are both critical for successful seismic exploration in the Paradox basin. Bug, Patterson, Ismay, Cache, and Rockwell Springs fields are characteristic of Desert Creek and Ismay stratigraphic trapping.

  17. Three-dimensional potential flow over hills and oval mounds

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1976-01-01

    An analysis was made of the potential flow behavior for an initially uniform flow passing over a single axisymmetric hill, an oval mound, and a combination of two hills. Small perturbation theory was used, and the resulting Laplace equation for the perturbation velocity potential was solved by using either a product solution or a Green's function. The three dimensional solution is of interest in calculating the pressure distribution around obstacles, the flow of pollutants carried by the wind, and the augmentation of wind velocity for windmill siting. The augmentation in velocity at the top of a hill was found to be proportional to the hill height relative to a characteristic width dimension of the hill. An axisymmetric hill produced about 20 percent less velocity increase than a two dimensional ridge having the same cross-sectional profile.

  18. Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests

    SciTech Connect

    Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.; Warpinski, N.R.; Wolhart, S.L.

    1999-01-25

    This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the major horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.

  19. Ecology and Distribution of the Benthic Community on the Monterey Breakwater, Monterey, California.

    DTIC Science & Technology

    1981-03-01

    lN Offlee)" S . SECURITY CLASS. (of Mo rIaq) ,-- .....:- -Unclassified ,IS M §YGST IU OH STAT EM IS NT ’.1 hE . ie ) Approved for public release...1473 EDITION or Iov a s L TE i ,.OA § e 1JSiCUmT CLAIICATION O1 THIS PIA45711r1INI j a -U* j kuuWO&Te CLAMIAegTIOe VestYs v41r% 0%0". Umfem.E...slope of 33.70 down to a depth of 4.8 m (MLLW), and 38.60 13 -- Location of Transect S /MOLE/ Figure 2. Monterey breakwater showing position of study

  20. Disturbance, colonization and succession in a deep-sea sediment community: artificial-mound experiments

    NASA Astrophysics Data System (ADS)

    Kukert, Helmut; Smith, Craig R.

    1992-08-01

    Megafaunally produced sediment mounds can be sites of rapid biodeposition and may be important sources of infaunal disturbance aat the deep-sea floor. We conducted experiments in the Santa Catalina Basin (1240 m depth) using artificial mounds (≈9 cm high by 35 cm wide) to assess macrobenthic disturbance from mound formation and to evaluate modes and patterns of recolonization. To differentiate colonization modes, we created two types of mounds: unfloored (allowing all potential colonists) and floored (excluding burrowing immigrants). Burial beneath an average of 5-6 cm of artificial-mound sediments yielded a 32% reduction in macrofaunal abundance over time scales of ≤1 month. All functional groups were disturbed by burial, although subsurface deposit feeders appearedd to be the least susceptible. In addition, eight of the 14 dominant background species showed significant population reduction on mound treatments. Macrobenthos in unfloored treatments reached background levels of abundance after 11 months, suggesting colonization rates 3 × higher than estimated by previous deep-sea studies using colonization trays. Comparisons between floored and unfloored treatments suggest that burrowing was a significant dispersal mode for colonists. Intermediate peaks in the abundance of two infaunal species on unfloored artificial mounds, as well as changes in trophic-group composition, indicate that community succession proceeded for at least 23 months, these treatments also exhibited enhanced species diversity, providing the first direct evidence that the intermediate disturbance hypothesis helps to explain high macrobenthic diversity in the deep sea.

  1. Ground-squirrel mounds and related patterned ground along the San Andreas Fault in Central California

    USGS Publications Warehouse

    Wallace, Robert E.

    1991-01-01

    Extensive areas of mound topography and related patterned ground, apparently derived from the mounds of the California Ground Squirrel (Spermophilus beecheyi beecheyi), are in central California.  The relation of patterned ground to the San Andreas fault west of Bakersfield may provide insight into the timing of deformation along the fault as well as the history of ground squirrels.  Mound topography appears to have evolved through several stages from scattered mounds currently being constructed on newly deposited alluvial surfaces, to saturation of areas by mounds, followed by coalescence, elongation and lineation of the mounds.  Elongation, coalescence and modification of the mounds has been primarily by wind, but to a lesser extent by drainage and solifluction.  A time frame including ages of 4,000, 10,500, 29,000, and 73,000 years BP is derived by relating the patterns to slip on the San Andreas fault.  Further relating of the patterns to faulting, tilting, and warping may illuminate details of the rates and history of deformation.  Similarly, relating the patterns to the history of ground squirrel activity may help answer such problems as rates of dispersal and limits on population density.

  2. Composition of seismically identified satellite mounds surrounding Greater Aneth field, southeast Utah

    SciTech Connect

    Eby, D.E. ); Groen, W.G.; Johnson, J.F. )

    1993-08-01

    Five different types of satellite mounds have been encountered during drilling and extensive coring of approximately 40 high-resolution CDP (common depth point) seismic anomalies in the Desert Creek interval of the Pennsylvanian (Desmoinesian) Paradox Formation around the periphery of Greater Aneth field. The composition and diagenetic modification of these mound types directly affect the quality of porosity and permeability within each satellite buildup. The mound types and their principal characteristics are (1) crinoid-sponge limestone with wackestone to packstone fabrics; (2) coralline algal boundstones that are slightly dolomitized; (3) bryozoan-dominated lime boundstones with no significant dissolution porosity; (4) phylloid algal bafflestones with extensive dissolution and some dolomitization occasionally overlain by dolomitized stromatolitic/thrombolitic boundstones; and (5) stacked bioclastic grainstones with extensive dissolution and complete dolomitization. Controls on the development of each mound type appear to be a function of water depth and prevailing water energy. Mound types 1 and 2 typically have low porosity, whereas type 3 preserved primary porosity. Types 4 and 5 commonly exhibit extensive porosity and permeability modification through freshwater dissolution and early dolomitization. Up to five cycles of buildup growth can occur within the Desert Creek satellite mounds. Mound composition types will recur or change to another growth type depending upon local water depth and energy conditions. Calibration of seismic amplitude variations can be used in imaging reservoir size and porosity variation.

  3. Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane

    NASA Astrophysics Data System (ADS)

    Sugimoto, Atsuko; Inoue, Tetsushi; Kirtibutr, Nit; Abe, Takuya

    1998-12-01

    Emission rates and carbon isotope ratios of CH4, emitted by workers of termites, and of CH4, emitted from their mounds, were observed in a dry evergreen forest in Thailand to estimate the proportion of CH4 oxidized during emission through the mound. The δ13C of CH4 emitted from a termite mound (-70.9 to -82.4‰) was higher than that of CH4 emitted by workers in the mound (-85.4 to -97. l‰). Using a fractionation factor (a = 0.987) for oxidation of CH4 which was obtained in the incubation experiment, an emission factor defined as (CH4 emitted from a termite mound/CH4 produced by termites) was calculated. The emission factor obtained in each termite mound was nearly zero for Macrotermes (fungus-growing termites), of which the nest has a thick soil wall and subterrannean termites, and 0.17 to 0.47 for Termitinae (small-mound-making termites). Global CH4 emission by termites was estimated on the basis of the CH4 emission rates by workers and termite biomass with the emission factors. The calculated result was 1.5 to 7.4 Tg/y (0.3 to 1.3% of total source), which is considerably smaller than the estimate by the IPCC [1994].

  4. Surgical anatomy of the midcheek and malar mounds.

    PubMed

    Mendelson, Bryan C; Muzaffar, Arshad R; Adams, William P

    2002-09-01

    The anatomy of the midcheek has not been satisfactorily described to adequately explain midcheek aging and malar mounds, nor has it suggested a logical approach to their correction or provided sufficient detail for safe surgery in this area. This cadaver study, which was complemented by many operative dissections, located a missing link: a glide plane space overlying the body of the zygoma. The space functions to allow mobility of the orbicularis oculi, where it overlies the zygoma and the origins of the elevator muscles to the upper lip. The space is a cleft between the sub-orbicularis oculi fat and the preperiosteal fat and is lined by a fine membrane. The anatomic boundaries are clearly defined by retaining ligaments, which correlate with the triangularity of the space. Several anatomic features provide the functional characteristics of the prezygomatic space, including the (1) absence of direct attachments between the orbicularis in the roof to the floor, (2) more rigid inferior boundary formed by the zygomatic ligaments, and (3) more mobile upper ligamentous boundary formed by the orbicularis retaining ligament (separating from the preseptal space of the lower lid). These components determine the characteristic aging changes that occur in this region and explain much about malar mounds. An appreciation of this anatomy has several surgical implications. The prezygomatic space is a junction area that can be approached from the temple, lower lid, and cheek. The zygomatic branches of the facial nerve to the orbicularis do not cross the space; rather, they course in the walls and in the sub-orbicularis fat within the roof of the space.

  5. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil.

    PubMed

    Diehl, E; Junqueira, L K; Berti-Filho, E

    2005-08-01

    This paper reports on ant and termite species inhabiting the mounds (murundus) found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  6. Late Maastrichtian chalk mounds, Stevns Klint, Denmark — Combined physical and biogenic structures

    NASA Astrophysics Data System (ADS)

    Anderskouv, Kresten; Damholt, Tove; Surlyk, Finn

    2007-08-01

    Upper Maastrichtian chalk exposed at the Sigerslev quarry, Stevns Klint, Denmark is characterized by wavy and mound-like bedding geometries outlined by bands of black flint nodules. Four morphological elements are recognized, although bedding geometries are highly variable: southward migrating mounds, eastward migrating mounds, chalk waves and evenly bedded chalk. The mounds are interpreted as having been formed by currents carrying fine-grained suspended sediment which was primarily deposited on the up-current mound flanks. Bryozoans were prolific on the up-current flanks and mound summits, which stabilized the mounds, increased bed roughness and the overall accumulation rate. However, accumulation thicknesses do not correlate consistently with bryozoan density. The bryozoans were therefore important for the formation of the mounds, but the distribution of bryozoans did not solely determine depositional thickness across a mound and thus mound growth pattern. Relatively long wavelength wavy-bedded chalk show gentle convex-up geometries and would probably be described as sediment waves if recognized in seismic sections. The chalk waves were deposited under weaker current velocities than those active during mound formation. The exposed succession is topped by more evenly bedded chalk which was deposited by quiet pelagic fall-out of fine-grained material. The whole succession was deposited on the upper part of the northern flank of a large WNW-ESE trending 3 km wide depositional ridge with an amplitude of 35-40 m formed by contour-parallel WNW-ward flowing bottom currents. The mounds may have been deposited by regional bottom currents, or by spill-over currents from the valley south of the large ridge. The succession was deposited during varying bottom current intensities and the depositional architecture indicates a complex and dynamic environment. The depositional style seems to be controlled by the interplay and relative importance of two end-member processes

  7. Decay of silicon mounds: scaling laws and description with continuum step parameters

    PubMed

    Ichimiya; Hayashi; Williams; Einstein; Uwaha; Watanabe

    2000-04-17

    The decay of mounds about a dozen layers high on the Si(111)-(7x7) surface has been measured quantitatively by scanning tunneling microscopy and compared with analytic predictions for the power-law dependence on time predicted for a step-mediated decay mechanism. Conformably, we find an exponent 1/4 associated with the (3D) decay of the mound height and exponent 1/3 associated with the (2D) decay of top-layer islands. Using parameters from a continuum step model, we capture the essence of the kinetics. Qualitative features distinguish these mounds from multilayer islands found on metals.

  8. [Flora Differentiation among Local Ecotopes in the Transzonal Study of Forest-Steppe and Steppe Mounds].

    PubMed

    Lisetskii, F N; Sudnik-Wojcikowska, B; Moysiyenko, I I

    2016-01-01

    Flora similarity was assessed using complete floristic lists of five ecotopes in each of four mounds along the transect from meadow steppes to desert steppes. It was found that the circumapical similitude of floras is more significant than the expositional similitude. Soil analysis in separate ecotopes showed that regular changes in the biogeochemical features are manifested along the topographic gradient and under the effect of the insolation exposure of slopes in local (mound) ecosystems. It was noted that the slopes are characterized by the most abundant steppe vegetation classes in the phytosociological spectrum of mound ecotopes.

  9. Statement of Basis/Proposed Plan for the F-Area Burning/Rubble Pits (231-F, 231-1F, and 231-2F)

    SciTech Connect

    Palmer, E.

    1996-08-01

    The purpose of this source unit Statement of Basis/Proposed Plan is to describe the preferred alternative for addressing the F-Area Burning/Rubble Pits (231-F and 231-1F) and Rubble Pit (231-2F) (FBRP) source unit located at SRS, in southwestern Aiken County, South Carolina and to provide an opportunity for public input into the remedial action selection process.

  10. Spatial variability in community composition on a granite breakwater versus natural rocky shores: lack of microhabitats suppresses intertidal biodiversity.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2014-10-15

    Strong differences have been observed between the assemblages on artificial reefs and on natural hard-bottom habitats worldwide, but little is known about the mechanisms that cause contrasting biodiversity patterns. We examined the influence of spatial attributes in relation to both biogenic and topographic microhabitats, in the distribution and composition of intertidal species on both artificial and natural reefs. We found higher small-scale spatial heterogeneity on the natural reef compared with the study breakwater. Species richness and diversity were associated with a higher availability of crevices, rock pools and mussels in natural habitats. Spatial distribution of certain grazers corresponded well with the spatial structure of microhabitats. In contrast, the lack of microhabitats on the breakwater resulted in the absence of several grazers reflected in lower species richness. Biogenic and topographic microhabitats can have interactive effects providing niche opportunities for multiple species, explaining differences in species diversity between artificial versus natural reefs.

  11. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    SciTech Connect

    Palmer, E.

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  12. Proceedings of the Floating Tire Breakwater Workshop Held in Niagara Falls, New York on 8-9 November 1984.

    DTIC Science & Technology

    1985-11-01

    two and one-half year period in Presque Isle Bay, Erie , Pennsylvania . During two winters the breakwater has been frozen in a thick ice cover and has... Isle Bay, Erie , Pennsylvania , using mostly standard marina facilities and equipment. Specially developed techniques employed in the construction of the...Inc. 10:0’ Break 10:30 Fastening and Strength Tests of Anthony Franco, State Conveyer Belting University of New York 11:30 Erie , Pennsylvania , Field

  13. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    SciTech Connect

    Haddad, W.S.

    1997-04-10

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described.

  14. Buried cold-water coral mounds and contourite deposits in the Atlantic Moroccan Coral Province

    NASA Astrophysics Data System (ADS)

    Vandorpe, Thomas; Hebbeln, Dierk; Wienberg, Claudia; Van den Berghe, Michèle; Van Rooij, David

    2016-04-01

    The Atlantic Moroccan Coral Province (AMCP) is situated in the southern Gulf of Cadiz roughly between 34° 50'N to 35°35'N and 6°30'W to 7°15'W. The region displays tectonic (ridges and both large transverse as well as small normal and reverse faults) as well as sedimentological features (drifts deposits and sediment waves). Eleven mud volcanoes are present in the northern part of the region as well (Vandorpe et al., in press). Besides the presence of many surfacing small cold-water coral mounds, hundreds to thousands of mounds were discovered in the subsurface through 2D seismic parasound and sparker seismic profiles. Over 90% of the mounds are situated at water depths between 600 and 1000 meters and most of them occur in clusters. The cold-water coral mounds are rather small in this region (compared to the 100 m high mounds in the Belgica Province in the Porcupine basin (Huvenne et al., 2003)). Their widths vary between 20 and 200 m with a modus around 60 m, while their heights vary between 2 and 40 m with a modus around 10 m. Moreover, ten horizons at which mound growth initiated can be distinguished, compared to the single mound growth event observed in the Porcupine Basin (Huvenne et al., 2003). This points towards rapidly changing environmental conditions in the AMCP which were sometimes favourable for initiation and growth of cold-water coral mounds. These favourable periods rapidly switched to periods when corals were not able to settle and the mounds could get buried. Mound growth initiates mostly at elevated places, e.g. tectonic ridges, outcropping bedrock or even previous cold-water coral mounds. Elevated places deflect bottom currents and increase the amount of food particles and sediments delivered to the corals, but also create sedimentological features such as contourites. The contourite deposits in the region greatly depend on the slope of the topography against which they are present (Vandorpe et al., in press). When mounds were able to reach a

  15. Sedimentary Mounds on Mars: Tracing Present-day Formation Processes into the Past

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.; Edwards, C. S.

    2014-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one and revealed spectacular views of finely layered sedimentary materials throughout the globe [1]. Some of these sedimentary deposits are 'mound' shaped and lie inside of craters (Fig 1). Crater mound deposits are found throughout the equatorial region, as well as ice-rich deposits found in craters in the north and south polar region [2-4]. Despite their wide geographical extent and varying volatile content, the 'mound' deposits have a large number of geomorphic and structural similarities that suggest they formed via equivalent processes. Thus, modern depositional processes of ice and dust can serve as an invaluable analog for interpreting the genesis of ancient sedimentary mound deposits.

  16. Former UST Site Reused as Greenspace and Access to Ancient Ceremonial Nikwasi Mound in North Carolina

    EPA Pesticide Factsheets

    Read about a former underground storage tank site fronting on the Little Tennessee River in Franklin, NC that is now reused as an attractive greenspace with parking and Main Street access to the Nikwasi Mound.

  17. Assessment of the AWC TRUclean process for use on Mound soils and sediments

    SciTech Connect

    Rogers, D.R.

    1989-03-23

    The AWC TRUclean System has been proposed as a method to reduce the volume of LSA waste during D&D excavation of Pu-238 contaminated soils on the Mound Site and Pu-238 contaminated sediments in the Miami-Erie Canal. Following test runs with Mound soil, AWC suggested that the TRUclean Process could reduce the amount of LSA waste by greater than 90% if a machine could be built and used to process the Mound soil. The cost savings which could potentially be realized by assuming this magnitude of volume reduction were thought to be significant on large projects. These preliminary results suggested that a review of the TRUclean Process and the 1987 test results should be performed to determine a course of action. The AWC TRUclean Process and the test data have been evaluated and the potential effectiveness of the process determined for use on Mound soils and/or on the sediments in the Miami-Erie Canal.

  18. Hyperspectral Remote Sensing of Seasonally-Acquired Imported Fire Ant Mound Features (Hymenoptera: Formicidae) in Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Invasive mound-building imported fire ants (Solenopsis spp.) impact soil quality and turfgrass nutrient management in sod production, recreational, residential, and commercial settings. Ground-based hyperspectral studies focused on the seasonal monitoring of reflectance characteristics of imported f...

  19. Interpretation and mapping of carbonate mounds within the Ordovician on Gotland, Sweden

    NASA Astrophysics Data System (ADS)

    Levendal, Tegan; Sopher, Daniel; Juhlin, Christopher

    2017-04-01

    Oljeprospecketering AB (OPAB), a Swedish state owned company, acquired an extensive data set in the 1970s and 1980s for the purposes of hydrocarbon exploration. This OPAB data set is largely unpublished and consists of over 300 well data reports and logs and over 33000 km of 2D marine seismic data, as well as land seismic data from the island of Gotland. In this study we use processed land seismic profiles from Gotland and well data to interpret the thickness of the Ordovician across the island. As well as gain insight into the internal stratigraphy and structural framework of the Ordovician. The Ordovician sequence is 100-150 m thick consisting of three formations (Fm), informally defined by OPAB, the Bentonitic Limestone Fm, the Kvarne Fm and the Klasen Fm. Carbonate mounds are locally formed from siliciclastic rich muds. In the lower sequences carbonate mounds are present that are observed both in the seismic and well data. These mounds were of great interest during the exploration phase since they are sometimes host to hydrocarbon accumulations. In the present study we place emphasis on mapping the size, distribution and density of the carbonate mounds within the Ordovician. The original driving force for the development of these mounds are related to sea level and climate changes during deposition. Post depositional erosion, biotic factors and basin evolution also played a role in their development. During the Late Ordovician-Early Silurian, Baltica moved northwards towards the equator resulting in a typical depositional environment consisting of proximal coastal areas, and transgressive, lowstand shelf settings conducive to mound development. The mounds act as potential reservoirs, in the form of isolated bodies of limestone capped by tabular and tight argillaceous limestones acting as a cap rock. To date studies of carbonate mound features have primarily focused on detailed analysis of well log, core and outcrop information. This extensive dataset therefore

  20. Some characteristics of soils on the man made mounds in the Harran Plain of Turkey.

    PubMed

    Irmak, Seyyid; Surucu, Abdülkadir

    2007-12-15

    Morphological, chemical and some mineralogical characteristics of five soils, were researched to understand the genesis of soils on the man made mounds in the Harran Plain, in the Southeast Anatolia Region of Turkey. Five soil profiles developed on the man made mounds in the arid region. Time and climate have affected soil formation. Also, parent material has influenced the chemistry of soils. The parent material of man made mounds were carried from around soils in the Harran Plain by men in years ago. The parent materials of around soils are calcareous parent materials and alluvium materials. Pedon 1 was described on the Konuklu man made mounds the northeast of the study area and Pedon 5 was described on the Küplüce man made mounds the southeast of the study area. According to the place of man made mounds were ordered from north to south as following: Pedon 1, Pedon 2, Pedon 3, Pedon 4 and Pedon 5. The old of Konuklu mounds is approximately 5000-6000 years. The old of Sultantepe and Koruklu mounds are approximately 6000 years. Pedon 4 which was described on the old Harran city remnants have the youngest soils of study area. The Harran mounds was made in 1258 A.I. by Mongolians. Mongolians destroyed the Harran City and made the Harran mounds. The most important pedogenic processes is carbonate leaching and accumulation in the pedon 5 on the Küplüce man made mounds. The CaCO3 content of Pedon 5 may be attributed to eolian addition from Syria. Total Al2O3 contents of soils higher than total Fe2O3 content. According to the degree of soil formation the profiles were ordered as following: Pedon 3 > Pedon 5 > Pedon 2 > Pedon 1 > Pedon 4. The results of total elements analysis were used to determine the beta leaching factor according to Jenny. The leaching factor were determined as < 1 in the Pedon 1 (0.99), Pedon 2 (0.97), Pedon 3 (0.74) and Pedon 5 (0.92). The leaching factor were determined as >1 in the Pedon 4(1.13).

  1. Water fluxes between inter-patches and vegetated mounds in flat semiarid landscapes

    NASA Astrophysics Data System (ADS)

    Rossi, María J.; Ares, Jorge O.

    2017-03-01

    It has been assumed that bare soil (BS) inter-patches in semi arid spotted vegetation behave as sources of water to near vegetated soil (VS) patches. However, little evidence has been gained from direct measurements of overland and infiltration water fluxes between bare soil inter-patches and shrub mounds at a scale compatible with available high resolution imagery and hydrological modeling techniques. The objective of this study is to address the thin scale internal redistribution of water between BS inter-patches and vegetated mounds at relatively flat spotted semiarid landscapes. The relation between plant cover, topography and runoff was inspected with non-parametric association coefficients based on high resolution remotely sensed imagery, ground truth topographic elevation and spatial-explicit field data on potential runoff. Measurements of advective flows at the same spatial scale were carried out at micro-plots of BS and shrub mounds. Water fluxes between BS inter-patch and a shrub mound were simulated under varying typical Patagonian rainfall scenarios with an hydrological model. Results obtained revealed that the soil properties, infiltration and overland flow metrics at the mounds and inter-patches exhibit spatially and dynamic variable hydraulic properties. High micro-topographic roughness and depression storage thickened overland flow depth at VS patches. At BS inter-patches prevailing low slopes and depression storage were found to be important variables attenuating the surface runoff. At both rainfall scenarios simulated, the soil under the shrub mound accumulated more moisture (from direct rain) and reached saturation long before this occurred in BS nearby inter-patch area. Overland flow at the inter-patch was attenuated as it reached the border of the patch, diverging from the latter as it followed the (small) topographic gradient. The overland flow generated inside the vegetated mound was effectively retained at the typical Summer rainfall

  2. Archaeological mounds as analogs of engineered covers for waste disposal sites: Literature review and progress report. [Appendix contains bibliography and data on archaeological mounds

    SciTech Connect

    Chatters, J C; Gard, H A

    1991-09-01

    Closure caps for low-level radioactive waste disposal facilities are typically designed as layered earthen structures, the composition of which is intended to prevent the infiltration of water and the intrusion of the public into waste forms. Federal regulations require that closure caps perform these functions well enough that minimum exposure guidelines will be met for at least 500 years. Short-term experimentation cannot mimic the conditions that will affect closure caps on the scale of centuries, and therefore cannot provide data on the performance of cap designs over long periods of time. Archaeological mounds hundreds to thousands of years old which are closely analogous to closure caps in form, construction details, and intent can be studied to obtain the necessary understanding of design performance. Pacific Northwest Laboratory conducted a review and analysis of archaeological literature on ancient human-made mounds to determine the quality and potential applicability of this information base to assessments of waste facility design performance. A bibliography of over 200 English-language references was assembled on mound structures from the Americas, Europe, and Asia. A sample of these texts was read for data on variables including environmental and geographic setting, condition, design features, construction. Detailed information was obtained on all variables except those relating to physical and hydrological characteristics of the mound matrix, which few texts presented. It is concluded that an extensive amount of literature and data are available on structures closely analogous to closure caps and that this information is a valuable source of data on the long-term performance of mounded structures. Additional study is recommended, including an expanded analysis of design features reported in the literature and field studies of the physical and hydraulic characteristics of different mound designs. 23 refs., 10 figs., 12 tabs.

  3. Buried Cold-Water Coral Mound Provinces and Contourite Drifts Along the Eastern Atlantic Margin: Controls, Interactions and Connectivity

    NASA Astrophysics Data System (ADS)

    Van Rooij, D.; Vandorpe, T.; Delivet, S.; Hebbeln, D.; Wienberg, C.; Martins, I.

    2014-12-01

    The association between cold-water coral mounds and contourite drift deposits has been demonstrated in the Belgica mound province, off Ireland. On that location, IODP expedition 307 was able to drill through the base of a mound, dating mound initiation at 2.65 Ma. However, the Belgica mounds are just one of the many expressions of mound growth. More enigmatic is the buried Magellan mound province, located in the northern part of the Porcupine Basin, featuring over 1000 relatively closely spaced buried mounds, which are all rooted on a common reflector. This indicates a common start-up event, but the true driving forces behind their initial settling, growth and demise are still unknown. The influence of bottom currents cannot be ruled out, since clear obstacle marks are present surrounding the mounds. In 2013, some 3000 km south of the Magellan mounds, a new province of buried mounds was discovered along the Moroccan Atlantic Margin, which may shed new light on the "life" cycle of mounds. Here, we report the preliminary results and propose a first view on the controls, interactions and connectivity between these 2 provinces, assisted by a series of studies of contourite drifts along the Eastern Atlantic Margin. The newly discovered buried mounds can be associated to a vast province of several clusters of seabed mounds. They occur in water depths between 500 and 1000 m, buried under up to 50 m of sediment. With respect to the Magellan mounds, they are smaller, but more importantly, they do not root on one single stratigraphic level. At least 4 different initiation levels were identified. The off-mound reflectors indicate a slight influence of bottom currents, since the mounds are located in a large sediment drift. Moreover, the link between the two buried mound provinces may be found in connecting the evolution of the associated contourite drift systems, respectively in Porcupine Seabight and the Gulf of Cádiz. Intermediate sites on Goban Spur and near Le Danois

  4. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  5. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  6. Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Maignien, L.; Depreiter, D.; Foubert, A.; Reveillaud, J.; de Mol, L.; Boeckx, P.; Blamart, D.; Henriet, J.-P.; Boon, N.

    2010-03-01

    The Gulf of Cadiz is an area of mud volcanism and gas venting through the seafloor. In addition, several cold-water coral carbonate mounds have been discovered at the Pen Duick escarpment amidst the El Arraiche mud volcano field on the Moroccan margin. One of these mounds -named Alpha mound- has been studied to examine the impact of the presence of methane on pore-water geochemistry, potential sulphate reduction (SR) rate and dissolved inorganic carbon (DIC) budget of the mound in comparison with off-mound and off-escarpment locations. Pore-water profiles of sulphate, sulphide, methane, and DIC from the on-mound location showed the presence of a sulphate to methane transition zone at 350 cm below the sea floor. This was well correlated with an increase in SR activity. 13C-depleted DIC at the transition zone (-21.9‰ vs. Vienna Pee Dee Belemnite) indicated that microbial methane oxidation significantly contribute to the DIC budget of the mound. The Alpha mound thus represents a new carbonate mound type where the presence and anaerobic oxidation of methane has an important imprint on both geochemistry and DIC isotopic signature and budget of this carbonate mound.

  7. Recycling of rubble from building demolition for low-shrinkage concretes.

    PubMed

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    SciTech Connect

    Fonti, Roberta Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-12-31

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.

  9. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, Terry R.

    1983-01-01

    A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

  10. Rubble masonry response under cyclic actions: The experience of L'Aquila city (Italy)

    NASA Astrophysics Data System (ADS)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-12-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different "modes of damage" of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L'Aquila district is discussed.

  11. Seismic vulnerability of the Himalayan half-dressed rubble stone masonry structures, experimental and analytical studies

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ali, Q.; Ashraf, M.; Alam, B.; Naeem, A.

    2012-11-01

    Half-Dressed rubble stone (DS) masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally). Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction.

  12. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, T.R.

    1983-07-05

    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  13. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland

    PubMed Central

    Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940’s, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5–5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form ‘towers’ above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development. PMID:27168157

  14. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland.

    PubMed

    Zangerlé, Anne; Renard, Delphine; Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940's, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5-5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form 'towers' above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development.

  15. Oil reservoirs in grainstone aprons around Bryozoan Mounds, Upper Harrodsburg Limestone, Mississippian, Illinois Basin

    SciTech Connect

    Jobe, H.; Saller, A.

    1995-06-01

    Several oil pools have been discovered recently in the upper Harrodsburg Limestone (middle Mississippian) of the Illinois basin. A depositional model for bryozoan mound complexes has allowed more successful exploration and development in this play. In the Johnsonville area of Wayne County, Illinois, three lithofacies are dominant in the upper Harrodsburg: (1) bryozoan boundstones, (2) bryozoan grainstones, and (3) fossiliferous wackestones. Bryozoan boundstones occur as discontinuous mounds and have low porosity. Although bryozoan boundstones are not the main reservoir lithofacies, they are important because they influenced the distribution of bryozoan grainstones and existing structure. Bryozoan grainstones have intergranular porosity and are the main reservoir rock. Bryozoan fragments derived from bryozoan boundstone mounds were concentrated in grainstones around the mounds. Fossiliferous wackestones are not porous and form vertical and lateral seals for upper Harrodsburg grainstones. Fossiliferous wackestones were deposited in deeper water adjacent to bryozoan grainstone aprons, and above grainstones and boundstones after the mounds were drowned. Upper Harrodsburg oil reservoirs occur where grainstone aprons are structurally high. The Harrodsburg is a good example of a carbonate mound system where boundstone cores are not porous, but adjacent grainstones are porous. Primary recovery in these upper Harrodsburg reservoirs is improved by strong pressure support from an aquifer in the lower Harrodsburg. Unfortunately, oil production is commonly decreased by water encroaching from that underlying aquifer.

  16. Textural variation within Great Salt Lake algal mounds: Chapter 8.5 in Stromatolites

    USGS Publications Warehouse

    1976-01-01

    This chapter discusses textural variation within the Great Salt Lake algal mounds. Great Salt Lake algal mounds contain: (1) a framework of non-skeletal, algally induced aragonite precipitates; (2) internal sediment; and (3) inorganic cement. These three elements create a variety of laminated, poorly laminated, and unlaminated internal textures. Interior framework precipitates bear little resemblance to the present living film of the mound surface. Internal texture of the mounds is believed to be largely relict and to have resulted from precipitation by algae different than those presently living at the surface. The most probable cause of local extinction of the algal flora is change in brine salinity. Precipitated blue-green algal structures in ancient rocks may indicate other than normal marine salinity and near shore sedimentation. Extreme variation of internal texture reflects extreme environmental variability typical of closed basin lakes. Recognition of mounds similar to those in the Great Salt Lake can be a first step toward recognition of ancient hyper-saline lake deposits, if such an interpretation is substantiated by consideration of the entire depositional milieu of precipitated algal mounds.

  17. Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Amador, E. S.; Allen, Carlton; Oehler, D. Z.

    2010-01-01

    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains.

  18. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).

    PubMed

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  19. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    PubMed Central

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  20. Relationship between high-order non-linearity of random waves and wave pressures acting on offshore breakwaters

    NASA Astrophysics Data System (ADS)

    Kashima, Hiroaki

    2016-04-01

    In the design of breakwaters, the wave pressures out of the surf zone are estimated by the maximum wave height which corresponds to the 1.8 times of significant wave height according to Rayleigh theory. On the other hand, the nonlinear four-wave interactions can lead to a significant enhancement of occurrence frequency of extreme waves which have more than twice the significant wave height. It is necessary to appropriately evaluate the effects of the deviation from Rayleigh theory on the wave pressures acting on offshore breakwaters under extreme wave conditions. In this study, the physical experiments in a wave tank were conducted to understand the effect of the occurrence frequency of the maximum wave height on the wave pressures acting on offshore breakwaters. In our analysis, the wave pressures acting on breakwaters were estimated by using three kinds of the maximum wave heights. The first and second are the maximum wave height and the 1.8 times of significant wave height obtained from the physical experiments. The last is the maximum wave height given by the Japanese design method for breakwaters taking into account the nonlinear wave shoaling effects. As a result, the occurrence frequency of the maximum wave height given by the physical experiments is in a good agreement with the high-order nonlinear theory by Mori and Janssen (2006) and there is the deviation from the Rayleigh theory not only offshore but also in the intermediate depth. Moreover, the wave pressures using the maximum wave height are widely distributed to the designed value of the wave pressure while the dispersion of the wave pressures using the 1.8 times of the significant wave height is small. As the non-linearity of the waves becomes stronger, the wave pressures tend to exceed the designed value of the wave pressure on the average through the behavior of the maximum wave height depending on the kurtosis which is the indicator of the high-order nonlinear interactions. Finally, it is

  1. Biogeochemistry and geomicrobiology of cold-water coral carbonate mounds - lessons learned from IODP Expedition 307

    NASA Astrophysics Data System (ADS)

    Ferdelman, Timothy; Wehrmann, Laura; Mangelsdorf, Kai; Kano, Akihiro; Williams, Trevor; Jean-Pierre, Henriet

    2010-05-01

    Large mound structures associated with cold-water coral ecosystems commonly occur on the slopes of continental margins, for instance, west of Ireland in the Porcupine Seabight, the Gulf of Cadiz or the Straits of Florida. In the Porcupine Seabight over 1500 mounds of up to 5 km in diameter and 250 m height lie at water depths of 600 to 900 m. The cold-water coral reef ecosystems associated with these structures are considered to be "hotspots" of organic carbon mineralization and microbial systems. To establish a depositional and biogeochemical/diagenetic model for cold-water carbonate mounds, Challenger Mound and adjacent continental slope sites were drilled in May 2005 during IODP Expedition 307. One major objective was to test whether deep sub-surface hydrocarbon flow and enhanced microbial activity within the mound structure was important in producing and stabilizing these sedimentary structures. Drilling results showed that the Challenger mound succession (IODP Site U1317) is 130 to 150 meters thick, and mainly consists of floatstone and rudstone facies formed of fine sediments and cold-water branching corals. Pronounced recurring cycles on the scales of several meters are recognized in carbonate content (up to 70% carbonate) and color reflectance, and are probably associated with Pleistocene glacial-interglacial cycles. A role for methane seepage and subsequent anaerobic oxidation was discounted both as a hard-round substrate for mound initiation and as a principal source of carbonate within the mound succession. A broad sulfate-methane transition (approximately 50 m thick)within the Miocene sediments suggested that the zone of anaerobic oxidation of methane principally occurs below the moundbase. In the mound sediments, interstitial water profiles of sulfate, alkalinity, Mg, and Sr suggested a tight coupling between carbonate diagenesis and low rates of microbial sulfate reduction. Overall organic carbon mineralization within cold-water coral mound appeared

  2. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  3. Bryan Mound SPR cavern 113 remedial leach stage 1 analysis.

    SciTech Connect

    Rudeen, David Keith; Weber, Paula D.; Lord, David L.

    2013-08-01

    The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage volume in the existing Bryan Mound 113 cavern from a starting volume of 7.4 million barrels (MMB) to its design volume of 11.2 MMB. The first stage was terminated several months earlier than expected in August, 2012, as the upper section of the leach zone expanded outward more quickly than design. The oil-brine interface was then re-positioned with the intent to resume leaching in the second stage configuration. This report evaluates the as-built configuration of the cavern at the end of the first stage, and recommends changes to the second stage plan in order to accommodate for the variance between the first stage plan and the as-built cavern. SANSMIC leach code simulations are presented and compared with sonar surveys in order to aid in the analysis and offer projections of likely outcomes from the revised plan for the second stage leach.

  4. Earth-mounded concrete bunker PLAP technical approach

    SciTech Connect

    Eng, R.

    1989-11-01

    Under the US DOE Prototype License Application Project (PLAP), Ebasco Services Incorporated was commissioned to develop a preliminary design of the Earth-Mounded Concrete Bunker (EMCB) concept for low-level radioactive waste (LLW) disposal. The EMCB disposal concept is of great interest because it represents the only engineered LLW disposal technology currently in use in the commercial sector. By definition, the EMCB disposal structure is located partially below grade and partially above grade. The concrete bunker is an engineered structure designed to be structurally stable for the prerequisite time horizon. The basic design parameters of the disposal facility were stipulated by US DOE, a northeast site location, representative waste, 30 year operational life, and a 250,000 ft{sup 3}/year disposal capacity. The design was developed to satisfy only US NRC Part 61 disposal requirements, not individual state requirements that may go beyond Part 61 requirements. The technical safety analysis of the preliminary design was documented according to the format specifications of NUREG-1199, to the extent practicable with quite limited resources.

  5. Origin Hypotheses for Kilometer-Scale Mounds on Dwarf Planet Ceres

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna G.; Platz, Thomas; Schmidt, Britney E.; Scully, Jennifer E. C.; Russell, Christopher T.; Mest, Scott C.; Crown, David A.; Sykes, Mark V.; Hughson, Kynan H. G.; Chilton, Heather T.; Williams, David A.; Pieters, Carle M.; Marchi, Simone; Travis, Bryan; Raymond, Carol A.

    2015-11-01

    The Dawn Framing Camera has revealed numerous domical to conical features on Ceres, which may have relevance to the presence and history of near-surface ice. These features fall into two broad classes, large domes 10s to >100 km in diameter exhibiting 1-5 km of positive relief, and small mounds <10 km in diameter exhibiting sub-kilometer relief. Here, we propose three hypotheses for the origin of the ~150 small mounds identified thus far, and discuss morphological observations that could support each hypothesis as higher resolution data becomes available.Hypothesis 1: Kilometer-scale mounds are produced by localized eruption of cryomagma or hydrothermal material. Observational tests: Kilometer and sub-kilometer scale albedo variations; sub-kilometer flow features on individual mounds; localized vents; conical or domical shape. Challenge: Features are smaller than convective plumes expected from thermal evolution modeling.Hypothesis 2: Kilometer-scale mounds are analogous to terrestrial and martian pingos, which grow by drawing liquid water through a silicate matrix as a freezing front propagates downward. Observational tests: Mounds occurring on smooth material that floods or embays large-scale features; little or no local albedo variation; no small flows associated with individual mounds; domical or ring-shape; concentric or radial fractures on dome, or central depression. Challenge: Small Cerean mounds observed thus far are an order of magnitude larger than terrestrial or martian pingos.Hypothesis 3: Kilometer-scale mounds are rootless cones analogous to features observed on the surface of volcanic flows in volatile-rich regions of Earth and Mars. Rootless cones are produced when layers of fluid material inundate a region; localized devolatilization of a layer mobilizes clasts to form cone-shaped deposits. Observational tests: Mounds on smooth material that floods or embays large-scale features; conical, not domical, profile; large central

  6. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such

  7. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  8. Science Targets in the Landing Ellipse and Lower Mound at the Gale Crater Field Site

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Bell, J. F.

    2011-12-01

    The Mars Science Laboratory (MSL) rover Curiosity will land at the ~155 km diameter Gale Crater (4.6°S 137.2°E) in early August of 2012. The landing ellipse is centered in the northwestern floor of the crater on an alluvial fan composed of material from the crater rim. MSL will sample this material and test the hypothesis that the fan was deposited by flowing liquid water, and then drive south toward the base of the >5km tall central mound of layered rocks. Along this traverse, the smooth, low-thermal-inertia surface of the alluvial fan transitions to a fractured, layered, and spectrally neutral high thermal inertia unit. MSL will be able to assess the interpretation of this unit as cemented alluvial material and determine the cementing agent. Fresh craters in the high thermal inertia unit are important targets for MSL because their ejecta has had less exposure to the harsh radiation environment of the surface which can destroy biomarkers. Continuing south, MSL will descend across a short scarp where the units of the crater floor have eroded to expose the underlying basal unit of the mound. This erosion has formed ridged mesas interpreted to be lithified aeolian bedforms that are part of a widespread "mound-skirting" unit. MSL will test the hypothesis that this unit comprises debris shed from the mound during an early stage of erosion. The heavily fractured basal unit is partially obscured by relatively young mafic dunes, which will provide information about modern aeolian processes on Mars. After analyzing the basal unit and the dunes, MSL will begin climbing the layered rocks of the mound, beginning with a light-toned ridge which shows spectral evidence of hydrated sulfates. Beyond this ridge, the rover will encounter a phyllosilicate-bearing surface exposed in a trough paralleling the ridge. These lower mound layers are the primary targets of the MSL traverse. MSL will test the hypothesis that the lower mound sediments were deposited in a lacustrine setting

  9. Carbonate mound reservoirs in the paradox formation: An outcrop analogue along the San Juan River, Southeastern Utah

    SciTech Connect

    Chidsey, T. C. Jr.; Morgan, C.D.; Eby, D.E.

    1996-06-01

    Carbonate mound reservoirs within the Pennsylvanian (Desmoinesian) Paradox Formation are major producers of oil and gas in the Paradox basin of Utah, Colorado, and Arizona. Outcrops of the Paradox Formation along the San Juan River of southeastern Utah provide small-scale analogues of reservoir heterogeneity, flow barriers and baffles, lithofacies, and geometry. These characteristics can be used in reservoir simulation models for secondary/tertiary recovery of oil from small fields in the basin. Exposures of the Paradox Formation Ismay zone in the Wild Horse Canyon area display lateral facies changes from phylloid algal mounds to off-mound detrital wedges or fans bounded at the top by a flooding surface. The phylloid mounds are composed of bafflestone, skeletal grainstone, packstone, and cementstone. Algal plates, brachiopods, bryozoans, and rugose corals are commonly found in the phylloid mounds. The mound wall is composed of rudstone, lumpstone, and cementstone. The detrital fan consists of transported algal material, grainstone, and mudstone with open-marine fossils. Within the mound complex is an inter-mound trough tentatively interpreted to be a tidal channel. The geometry and composition of the rocks in the trough significantly add to the overall heterogeneity of the mound. Reservoir models are being developed for possible water- and carbon-dioxide floods of small Paradox basin fields to determine the most effective secondary/tertiary recovery method. The models will include lithologic fabrics, flooding surfaces, and inter-mound troughs, based on the mound complex exposed at Wild Horse Canyon. This project may also provide reservoir information for simulation models in small Paleozoic carbonate mound fields in other basins worldwide.

  10. Elimination of the Mound-Building Termite, Nasutitermes exitiosus (Isoptera: Termitidae) in South-Eastern Australia Using Bistrifluron Bait.

    PubMed

    Webb, Garry A; Mcclintock, Charles

    2015-12-01

    Bistrifluron, a benzoylphenylurea compound, was evaluated for efficacy against Nasutitermes exitiosus (Hill), a mound-building species in southern Australia. Bistrifluron bait (trade name Xterm) was delivered as containerized pellets inserted into plastic feeding stations implanted in the sides of mounds-60 g for bistrifluron bait-treated mounds and 120 g of blank bait for untreated mounds. Termites actively tunneled in the gaps between pellets and removed bait from the canisters. All five treated mounds were eventually eliminated, and all five untreated mounds remained active at the end of the trial. Four of the five treated mounds were considered dead and excavated after 26 wk, but there were earlier signs of mound distress-reduced repair of experimental casement damage and reduced activity in bait canisters by 22 wk and reduced internal mound temperature after 11 wk. One treated mound showed activity in the bait station right through until almost the end of the trial (47 wk), but excavation at 49 wk showed no further activity in the mound. The five untreated colonies removed on average 97% of blank bait offered, while the five treated colonies removed on average 39.1% of bait offered. There was a wide variation in temperature profiles of mounds (up to 15°C for both minimum and maximum internal temperatures), from the beginning of the trial and even before the effects of baiting were evident. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics

  12. Permanent groundwater storage in basaltic dyke fractures and termite mound viability

    NASA Astrophysics Data System (ADS)

    Mège, Daniel; Rango, Tewodros

    2010-04-01

    Many basaltic dykes of the Ethiopian flood basalt province are observed in the northwestern Ethiopian lowlands. In this area, the termites preferentially build their epigeous mounds on the top of dolerite dykes. The relationship between termite mounds and dykes is investigated from the analysis of their distribution along one of these dykes, of thickness 2-5 m, that we could follow over 2000 m. Termite mounds are periodically spaced (mean distance 63 m, R2 = 0.995), and located exclusively where the topographic relief of the dyke is not more than 2 m above the surrounding area. From these observations and from the geological context, a hydrological circuit model is proposed in which (1) dykes are preferential conduits for groundwater drainage during the rainy season due to pervasive jointing, (2) during the dry season, the portion of the dyke forming a local topographic relief area dries up more quickly than the surroundings, the elevation difference between the dyke summit and the surroundings being a factor restricting termite mound development. For dyke topographic relief >2 m, drying is an obstacle for maintaining the appropriate humidity for the termite colony life. Periodic termite mound spacing is unlikely to be related to dyke or other geological properties. It is more likely related to termite population behaviour, perhaps to clay shortage, which restricts termite population growth by limiting the quantity of building material available for mound extension, and triggers exploration for a new colonization site that will be located along the dyke at a distance from the former colony that may be controlled by the extent of the zone covered by its trail pheromones. This work brings out the importance of dykes in channelling and storing groundwater in semiarid regions, and shows that dykes can store groundwater permanently in such settings even though the dry season is half the year long. It contributes also to shedding light on water supply conditions

  13. HiRISE Observations of Martian Mid-Latitude Fractured Mounds

    NASA Astrophysics Data System (ADS)

    Dundas, C. M.; Mellon, M. T.; McEwen, A. S.; Lefort, A.; Keszthelyi, L. P.; Thomas, N.; HiRISE Team

    2007-12-01

    The High Resolution Imaging Science Experiment (HiRISE) camera has now returned thousands of images of the Martian surface with pixel scale as small as 26 cm/pixel. These have revealed fractured mounds up to several hundred meters in diameter, bearing some morphological resemblance to terrestrial pingos (ice-cored hills formed by freezing groundwater). Pingos on Mars would be valuable indicators of ground ice and have been suggested at a number of sites, but in several cases reexamination has supported different origins. Some differences do exist between the fractured mounds and terrestrial pingos. In several instances, the mounds have roughly trapezoidal topographic profiles with flat, fractured summits. Other morphologies are also seen; we report on the range of morphologies observed so far by HiRISE and similarities and differences with pingos on Earth. The fractured mounds observed to date generally appear in the mid-latitudes, at a range of longitudes. Mars Orbiter Camera (MOC) images of flat-topped mounds in Utopia Planitia (including some previously proposed pingos) show a similar latitudinal dependence, generally occurring between 35-45° N. This supports a ground- ice related origin, particularly since the latitude range is close to the peak-abundance latitude of some other features likely related to water or ice, such as gullies. It is still uncertain whether the formation mechanism of the fractured mounds is the same as terrestrial pingos in detail. We discuss the distribution, properties and settings of fractured mounds observed planet-wide by HiRISE.

  14. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A.; Soreghan, G.S.

    1996-12-31

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  15. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A. ); Soreghan, G.S. )

    1996-01-01

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  16. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems.

  17. Office of Inspector General report on audit of shutdown and transition of the Mound Plant

    SciTech Connect

    1997-06-24

    With the end of the Cold War, the Department of Energy (Department) has greatly reduced the production of nuclear weapons and redirected the capabilities and focus of the weapons complex. As part of this redirection, the Mound Plant was transferred from a Defense Program site to an Environmental Management site with emphasis on accelerated cleanup and transition of facilities and personal property to the local community. This audit was initiated to determine if the shutdown and transition of the Mound Plant was progressing effectively and efficiently. The Department prepared a Nonnuclear Consolidation Plan (NCP) designed to reduce its costs of operation by closing and consolidating facilities. In contrast to the goal of the NCP, the Department plans to keep a portion of the Mound Plant open solely to perform work for other Federal agencies. Specifically, the Department has decided to continue assembling and testing isotopic heat sources and radioisotope thermoelectric generators (HS/RTG) at the Mound Plant despite the transfer or planned transfer of all other production operations.The Office of Nuclear Energy, Science and Technology decided to continue its HS/RTG operations at the Mound Plant without adequately considering the overall economic goals of the Department. As a result, the Department may not achieve the savings envisioned by the NCP. Also, the Department may incur between $4 million and $8.5 million more than necessary each year to continue its HS/RTG operations at the Mound Plant. Additionally, if the HS/RTG operations stay at the Mound Plant, the Department will spend more than $3 million to consolidate these operations into one location.

  18. Initial SVE Well Testing for the A-Area Miscellaneous Rubble Pile (ARP) Trenches Area

    SciTech Connect

    RIHA, BRIAN

    2004-04-01

    The A-Area Miscellaneous Rubble Pile (ARP) is a 5.9 acre unit located at the southern end of A/M Area at the Savannah River Site (SRS). Disposal activities at ARP began in the early 1950s. The exact dates of operation and material disposed in the unit remain unknown. Within the ARP exists a smaller, approximately 2 acre, sub unit identified as the Trenches Area. The Trenches Area is dominated by a T-shaped trench (approximately 50 feet wide) containing 8 to 12 feet of ash material. This T-shaped trench will be referred to as the ARP Trench. Vegetation has been removed from the Trenches Area and a lower permeability earthen cover now covers the ARP Trench. The ARP active soil vapor extraction (ASVE) remediation system consists of seven extraction wells and twelve monitoring wells that were pushed into the vadose zone of the ARP Trench. The remediation system was designed based on the pre-design study conducted in 2002. The purpose of the initial soil vapor extraction (SVE) well testing was to verify the integrity and functionality of the nineteen wells installed in the ARP Trench. The well integrity was evaluated based on the flow rate, vacuum, and indication that soil gas and not surface air was pulled from the well. Soil gas was defined as gas with levels of carbon dioxide (CO2) above ambient concentrations (400-700 ppmv). Volatile organic compound (VOC) concentrations were measured at each well to determine the initial distribution of the contamination. In addition, the subsurface vacuum distribution was measured around each extraction well as a relative measure of the influence of each well.

  19. Residual indoor contamination from world trade center rubble fires as indicated by polycyclic aromatic hydrocarbon profiles.

    PubMed

    Pleil, Joachim D; Funk, William E; Rappaport, Stephen M

    2006-02-15

    The catastrophic destruction of the World Trade Center (WTC) on Sept. 11, 2001 (9/11) created an immense dust cloud followed by fires that emitted smoke and soot into the air of New York City (NYC) well into December. Outdoor pollutant levels in lower Manhattan returned to urban background levels after about 200 days as the fires were put out and the debris cleanup was completed. However, particulate matter (PM) from the original collapse and fires also penetrated into commercial and residential buildings. This has created public concern because WTC dust is thought to cause adverse pulmonary symptoms including "WTC cough" and reduced lung capacity. Additionally, some recent studies have suggested a possible link between exposure to WTC contamination and other adverse health effects. Distinguishing between normal urban pollutant infiltration and residual WTC dust remaining in interior spaces is difficult; efforts are underway to develop such discriminator methods. Some progress has been made in identifying WTC dust by the content of fibers believed to be associated with the initial building collapse. There are also contaminants created by the fires that burned for 100 days in the debris piles of the building rubble. Using WTC ambient air samples, we have developed indicators for fire related PM based on the relative amounts of specific particle bound polycyclic aromatic hydrocarbons (PAHs) and the mass fraction of PAHs per mass of PM. These two parameters are combined, and we show a graphical method for discriminating between fire sources and urban particulate sources as applied to samples of settled dusts. We found that our PAHs based discriminator method can distinguish fire source contributions to WTC related particulate matter and dusts. Other major building fires or large open burn events could have similar PAHs characteristics. We found that random samples collected approximately 3.5 years after the WTC event from occupied indoor spaces (primarily residential

  20. Coral-rubble ridges as dynamic coastal features - short-term reworking and weathering processes

    NASA Astrophysics Data System (ADS)

    Spiske, Michaela

    2016-02-01

    A coral-rubble ridge built by storm waves at Anegada (British Virgin Islands) underwent remarkable changes in shape and weathering in a 23-month period. The ridge is located along the island's north shore, in the lee of a fringing reef and a reef flat. This coarse-clast ridge showed two major changes between March 2013, when first examined, and February 2015, when revisited. First, a trench dug in 2013, and intentionally left open for further examination, was found almost completely infilled in 2015, and the ridge morphology was modified by slumping of clasts down the slope and by reworking attributable to minor storm waves. In size, composition and overall condition, most of the clasts that filled the trench resemble reworked clasts from the ridge itself; only a small portion had been newly brought ashore. Second, a dark gray patina formed on the whitish exteriors of the carbonate clasts that had been excavated in 2013. These biologically weathered, darkened clasts had become indistinguishable from clasts that had been at the ridge surface for a much longer time. The findings have two broader implications. First, coastal coarse-clast ridges respond not solely to major storms, but also to tropical storms or minor hurricanes. The modification and reworking of the ridge on Anegada most probably resulted from hurricane Gonzalo which was at category 1-2 as it passed about 60 km north of the island in October 2014. Second, staining of calcareous clasts by cyanobacteria in the supralittoral zone occurs within a few months. In this setting, the degree of darkening quickly saturates as a measure of exposure age.

  1. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  2. Differential habitat use by demographic groups of the redfinger rubble crab Eriphia gonagra (Fabricius, 1781).

    PubMed

    Andrade, L S; Goés, J M; Fransozo, V; Alves, D F R; Teixeira, G M; Fransozo, A

    2014-08-01

    The structurally diverse rocky shores along the northern coast of the state of São Paulo, Brazil, support a varied fauna and provide refuges for many organisms. Some of these environments allow for extensive microhabitats, among them the sand reefs formed by the polychaete Phragmatopoma lapidosa, which occupy much of this area. The beauty of the landscape attracts large numbers of tourists, who contribute to the damage to the sand reef colonies, causing an imbalance in the patterns of population distribution and of this ecosystem. We describe the structure and population biology of the redfinger rubble crab Eriphia gonagra, and investigated the differential occupation of the habitat by each demographic category of this species. Crabs were sampled monthly for two consecutive years on the rocky coast of Grande Beach, Ubatuba, São Paulo, during spring low tides. Sampling was carried out over an area of approximately 1200 m2, during two hours on the rock surface and another two hours on the sand reefs. A total of 1407 crabs were collected; 776 on the sand reef (SR) and 631 on the rocky shore (RO). The majority of juvenile crabs inhabited the SR, while adult crabs were equally distributed in both microhabitats. This study showed that the SR is a natural nursery ground for the establishment of the early juvenile stages of E. gonagra, which use the reefs as a refuge and food resource. Many other organisms (mollusks, echinoderms, polychaetes etc.) settle on the reefs, and these areas may be among the most important in maintaining benthic diversity in the region.

  3. Hydrophobins Sc3 and Sc4 gene expression in mounds, fruiting bodies and vegetative hyphae of Schizophyllum commune.

    PubMed

    Banerjee, Goutami; Robertson, Deborah L; Leonard, Thomas J

    2008-03-01

    An abnormal growth form called mound has been hypothesized to be a neoplasm in the filamentous fungus Schizophyllum commune. An alternative hypothesis is that mounds represent some unusual developmental form in the fruiting body morphogenetic pathway. Hydrophobin proteins have been found in fruiting bodies where they line the surface of gas exchange pores and function to keep the pores hydrophobic. To further determine possible relationships between mounds and fruiting bodies, mound tissue was examined for gas exchange pores and the presence of hydrophobins. Cryoscanning electron microscopic images revealed the presence of channels in mound tissue and presumptive hydrophobin rodlets similar to the air channels in fruiting bodies. Hydrophobin gene expression was also measured in mound tissue using quantitative real-time PCR and showed both monokaryotic and dikaryotic mound tissue exhibited high expression of the dikaryotic specific Sc4 hydrophobin gene. In contrast, Sc4 hydrophobin expression was barely detectable in monokaryotic fruiting bodies. The expression of Sc4 hydrophobin genes in mounds suggests mound development uses this aspect of the dikaryotic fruiting developmental pathway.

  4. Comparison of two carbonate mound sequences in the Lower Ordovician El Paso Formation, west Texas and southern New Mexico

    SciTech Connect

    Clemons, R.E.

    1985-01-01

    The El Paso Formations consists of four members, in ascending order: Hitt Canyon, Jose McKelligon and Padre. Mounds in the McKelligon Member exposed in the southern Franklin Mountains were described by Toomey (1970). Most of these mounds are small but one large one is 5.8 m thick and about 13.7 m long in outcrop. The mound rock is chiefly bioclastic wackestone with minor packstone and boundstone. The varied fauna contains echinoderms, sponges and spicules, gastropods, trilobites, digitate algae, Nuia, Girvanella, Pulchrilamina, Calathium, and minor brachiopods and cephalopods. Intraclastic, bioclastic grainstone fills channels cut in the mounds. Similar, but smaller and less spectacular mounds occur in the McKelligon Member in the Florida, Big Hatchet, and Caballo Mountains, Lone Mountain, Cooke's Range, and elsewhere in southwestern New Mexico. A second type of mound is common in the upper part of the Hitt Canyon Member in the Cooke's Range, Red Hills, Caballo and Big Hatchet Mountains. These mounds also are typically small but one in the Red Hills is 13.7 m thick and about 30 m long in outcrop. The mound complex is about 75-80% SH-C and LLH-C stromatolite boundstone and bioclastic wackestone. The remaining 20-25% is bioclastic packstone and grainstone between the SH-C stromatolites and filling channels cut in the mound complex. The limited fauna contains small fragments of echinoderms, gastropods, trilobites, spicules, and Nuia.

  5. A photographic and acoustic transect across two deep-water seafloor mounds, Mississippi Canyon, northern Gulf of Mexico

    USGS Publications Warehouse

    Hart, P.E.; Hutchinson, D.R.; Gardner, J.; Carney, R.S.; Fornari, D.

    2008-01-01

    In the northern Gulf of Mexico, a series of seafloor mounds lie along the floor of the Mississippi Canyon in Atwater Valley lease blocks 13 and 14. The mounds, one of which was drilled by the Chevron Joint Industry Project on Methane Hydrates in 2005, are interpreted to be vent-related features that may contain significant accumulations of gas hydrate adjacent to gas and fluid migration pathways. The mounds are located ???150 km south of Louisiana at ???1300 m water depth. New side-scan sonar data, multibeam bathymetry, and near-bottom photography along a 4 km northwest-southeast transect crossing two of the mounds (labeled D and F) reveal the mounds' detailed morphology and surficial characteristics. Mound D, ???250 m in diameter and 7-10 m in height, has exposures of authigenic carbonates and appears to result from a seafloor vent of slow-to-moderate flux. Mound F, which is ???400 m in diameter and 10-15 m high, is covered on its southwest flank by extruded mud flows, a characteristic associated with moderate-to-rapid flux. Chemosynthetic communities visible on the bottom photographs are restricted to bacterial mats on both mounds and mussels at Mound D. No indications of surficial gas hydrates are evident on the bottom photographs.

  6. Assessing shoreline response to three submerged breakwaters at Kerteh Bay, Terengganu, Malaysia using Landsat imagery

    NASA Astrophysics Data System (ADS)

    Qayoom Tunji, Lawal Abdul; Yusof, Khamaruzaman Wan; Mustafa Hashim, Ahmad; Sapari, Nasiman

    2014-06-01

    As part of a project to determine the exact structural and environmental parameters governing the mode and magnitude of salient formation behind a submerged breakwater, a remote sensing technique is being adopted to assess the extent of erosion/accretion at Kerteh Bay, T errengganu, Malaysia. Multi-temporal Landsat satellite images of coarse resolution for the years of 1994, 2000, 2006, 2009 and 2012 were acquired for this purpose. The images were subsets divided into smaller areas of interest and classified using supervised classification of support vector machine. The classified image is then vectorized to extract shoreline based on waterline in each of the subset rasters images. Tidal correction were adopted to correct the waterline/shoreline to the mean sea level (MSL) datum. Comparison of corrected shorelines was carried to obtain the extent of erosion/accretion at the Kerteh Bay, Terrenganu, Malaysia. It was observed that substantial accretion was observed between the years 1994-2006 at the upper part of the study area, the part between northern part and the southern part also experienced accretion but not as much as compared to northern part for the same year. Erosion was noted between the years 2006-2012 for all of the areas of the study area but the rate slowed down between the years 2009-2012 for all the areas. Slope estimated from the imageries were compared with in situ slope of the same area, this served as a validation for the method used.

  7. Prediction of seaward slope recession in berm breakwaters using M5' machine learning approach

    NASA Astrophysics Data System (ADS)

    Hosseini, Alireza Sadat; Shafieefar, Mehdi

    2016-03-01

    In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari's experiment results. These experiments consist of two different 2D model tests in two wave flumes, in which the berm recession to different sea state and structural parameters have been studied. Irregular waves with a JONSWAP spectrum were used in both test series. A total of 412 test results were used to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession parameters. In this paper, a new set of equations for berm recession is derived using the M5' model tree as a machine learning approach. A comparison is made between the estimations by the new formula and the formulae recently given by other researchers to show the preference of new M5' approach.

  8. Seepage carbonate mounds in Cenozoic sedimentary sequences from the Las Minas Basin, SE Spain

    NASA Astrophysics Data System (ADS)

    Pozo, M.; Calvo, J. P.; Scopelliti, G.; González-Acebrón, L.

    2016-04-01

    A number of carbonate mounds composed of indurate, strongly folded and/or brecciated calcite and dolomite beds occur interstratified in Cenozoic sedimentary sequences from the Las Minas Basin. Part of the fabric of the rock forming the carbonate mounds is composed of laminated to banded dolostone similar to the host rock but showing contrasted lithification. Moreover, the carbonate deposits of the mounds display aggrading neomorphism of dolomite, partial replacement of dolomite by calcite, calcite cementation, and extensive silicification, locally resulting in box-work fabric. Eight main lithofacies were distinguished in the carbonate mound deposits. In some lithofacies, chert is present as both microcrystalline to fibro-radial quartz and opal, the latter occurring mainly as cement whereas the former replace the carbonate and infill voids. Yet one of the carbonate mounds shows distinctive petrography and geochemical features thus suggesting a distinctive growth pattern. The carbon isotope compositions of calcite from the mound samples range from - 11.56 to - 5.15 δ‰ whilst dolomite is depleted in 13C, with values of - 12.38 to 3.02 δ‰. Oxygen isotopic compositions vary from - 9.42 to - 4.64 δ‰ for calcite and between - 6.68 and 8.19 δ‰ for dolomite. Carbonate in the mounds shows significant enrichment in Co, Cr, Ni and Pb content, especially in the strongly deformed (F-2-2 lithofacies) and brecciated carbonate (F-4). The carbonate deposits show depletion in REE and Y in contrast to that determined in lutite. The formation of the carbonate mounds was related to local artesian seepage thermal water flows of moderate to relative high temperatures. Pressure differences between the low permeability host rock and the circulating fluids accounted for dilational fracturing and brecciation of the host sediment packages, which combined with precipitation of new carbonate and silica mineral phases. Locally, some carbonate mounds developed where groundwater

  9. [Spatial correlation of active mounds locative distribution of Solenopsis invicta Buren polygyne populations].

    PubMed

    Lu, Yong-yue; Li, Ning-dong; Liang, Guang-wen; Zeng, Ling

    2007-01-01

    By using geostatistic method, this paper studied the spatial distribution patterns of the active mounds of Solenopsis invicta Buren polygyne populations in Wuchuan and Shenzhen, and built up the spherical models of the interval distances and semivariances of the mounds. The semivariograms were described at the two directions of east-west and south-north, which were obviously positively correlated to the interval distances, revealing that the active mounds in locative area were space-dependent. The ranges of the 5 spherical models constructed for 5 sampling plots in Wuchuan were 9.1 m, 7.6 m, 23.5 m, 7.5 m and 14.5 m, respectively, with an average of 12.4 m. The mounds of any two plots in this range were significantly correlated. There was a randomicity in the spatial distribution of active mounds, and the randomicity index (Nugget/Sill) was 0.7034, 0.9247, 0.4398, 1.1196 and 0.4624, respectively. In Shenzhen, the relationships between the interval distances and semivariances were described by 7 spherical models, and the ranges were 14.5 m, 11.2 m, 10.8 m, 17.6 m, 11.3 m, 9.9 m and 12.8 m, respectively, with an average of 12.6 m.

  10. Environmental assessment and planning at Mound - environmental monitoring capabilities and personnel profiles

    SciTech Connect

    1996-07-01

    Through its long experience with radioactive materials, Mound has developed a comprehensive, routine, offsite, environmental surveillance program to safeguard its employees, the physical plant, and the integrity of the surrounding environment from any potential adverse effects of its widely diverse operations. Effluent samples are analyzed for radiological and non-radiological parameters. The environment surrounding Mound Facility is continuously monitored - air, water, foodstuffs, vegetation, soil, and silt samples are analyzed to ensure that radioisotopic concentrations and other possible pollutants are well within the stringent standards adopted by the Department of Energy, the Environmental Protection Agencies (both federal and state), and various regional and local agencies. Moreover, this environmental surveillance program has been designed to ensure that the facility is designed, constructed, managed, operated, and maintained in a manner that continues to meet all federal, state, and local standards for environmental protection. Work in environmental science has been broadened to assess environmental factors associated with various aspects of the National Energy Plan. Both the management and staff at Mound have undertaken a firm commitment to make Mound`s environmental monitoring capabilities available to agencies that have the responsibility for the resolution of important environmental issues.

  11. Soil respiration in pits and mounds following an experimental forest blowdown

    SciTech Connect

    Millikin, C.S.; Bowden, R.D.

    1996-11-01

    Extensive uprooting of trees by windthrow can create areas of severe soil disturbance in temperate forests. Specifically, uprooted trees leave shaded pits and mounds of exposed roots and mineral soil. To assess the contribution of pit and mound microenvironments to overall soil respiration in an experimental hurricane blowdown at the Harvard Forest Long-Term Ecological Research site (MA), summer CO{sub 2} effluxes were measured on pit, mound, and undisturbed microsites. Mean CO{sub 2} effluxes were 45.4, 80.1, and 99.0 mgC m{sup -2} h{sup -1} for pit, mound, and control microsites, respectively. Although soil respiration is lower in areas of disturbed soil than in undisturbed areas, the total efflux contribution (5.3%) form pits and mounds to the overall flux rate at the site was small. The area-weighted soil respiration estimate is 3.1% lower than the estimate obtained using flux measurements from control locations alone. Measurements taken from undisturbed plots represent a small but systematic overestimate of soil respiration across the site. 25 refs., 1 fig.

  12. The malar septum: the anatomic basis of malar mounds and malar edema.

    PubMed

    Pessa, J E; Garza, J R

    1997-01-01

    The anatomy of malar mounds and malar edema is evaluated in a series of 18 fresh cadaver dissections. Dye injection, histologic evaluation, and gross anatomic dissection are used to identify a previously unrecognized fascial structure of the lower eyelid and cheek. The malar septum originates from orbital rim periosteum superiorly and inserts into cheek skin 2.5 to 3 cm inferior to the lateral canthus. This fascial structure acts as a relatively impermeable barrier that allows tissue edema and hemoglobin pigment to accumulate above its cutaneous insertion. The malar septum, which acts as both a functional and a structural barrier, defines the lower boundary of several clinical entities: malar mounds, malar edema, malar festoons, and periorbital ecchymosis. The permeability characteristics of the malar septum suggest that, at least in some persons, malar mounds may be accentuated by chronic lower eyelid edema, and these characteristics may imply a time course in the progressive development from malar edema to malar mounds and, ultimately, to malar festoons. The anatomy of the malar septum is clinically relevant because it defines the four anatomic compartments of the malar mound that should be considered during surgery: the superior compartment of suborbicularis oculi fat, orbicularis oculi muscle, and superficial cheek fat and cheek skin superior to the cutaneous insertion of the malar septum.

  13. Behavior of subaqueous sediment mounds: Effect on dredged material disposal site capacity

    SciTech Connect

    Poindexter, M.E.

    1988-01-01

    Dredging of contaminated sediments and subsequent disposal at legally designated disposal sites is an internationally accepted disposal alternative when adherence to strict disposal practices is maintained. As more highly contaminated sediments in the heavily industrialized harbors of the world must be dredged to maintain navigation and economic viability, use of subaqueous dredged material disposal sites is expected to increase. Use of these subaqueous sites has necessitated development of procedures to analyze disposal site capacity based upon physical, chemical, and biological considerations. A methodology of analysis was developed in this study to investigate the behavior of the crated subaqueous sediment mounds. Emphasis was placed upon the geotechnical engineering aspects of mound behavior although the methodology also includes chemical and biological aspects. This methodology was applied to four field sites at which dredged material mounds have been created. The procedure successfully predicted the geotechnical engineering behavior of the constructed dredged material mounds. This methodology of analysis provides a useful tool for evaluation of subaqueous disposal sites and the dredged materials mounds created within these sites.

  14. The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held granular aggregates

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2009-04-01

    Many new small moons of the giant planets have been discovered recently. In parallel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of these new-found planetary moons are estimated to have very low densities, which, along with their hypothesized accretionary origins, suggests a rubble internal structure. This, coupled to the fact that many asteroids are also thought to be particle aggregates held together principally by self-gravity, motivates the present investigation into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as it orbits an aspherical primary. Conversely, knowledge of the shape will constrain the granular aggregate's orbit—the closer it gets to a primary, both primary's tidal effect and the satellite's spin are greater. We will assume that the primary body is sufficiently massive so as not to be influenced by the satellite. However, we will incorporate the primary's possible ellipsoidal shape, e.g., flattening at its poles in the case of a planet, and the proloidal shape of asteroids. In this, the present investigation is an extension of the first classical Darwin problem to granular aggregates. General equations defining an ellipsoidal rubble pile's equilibrium about an ellipsoidal primary are developed. They are then utilized to scrutinize the possible granular nature of small inner moons of the giant planets. It is found that most satellites satisfy constraints necessary to exist as equilibrated granular aggregates. Objects like Naiad, Metis and Adrastea appear to violate these limits, but in doing so, provide clues to their internal density and/or structure. We also recover the Roche limit for a granular satellite of a spherical primary, and employ it to study the martian satellites, Phobos and Deimos, as well as to make contact with earlier work of Davidsson [Davidsson, B., 2001. Icarus 149, 375-383]. The satellite's interior will be modeled as a rigid-plastic, cohesion-less material

  15. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    NASA Astrophysics Data System (ADS)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  16. Effects of stand-off bursts on rubble-pile targets: Evaluation of a hazardous asteroid mitigation strategy

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Plesko, C. S.

    2012-04-01

    We explore the aftereffects of stand-off burst mitigation on kilometer-scale rubble pile asteroids. We use a simple model of X-ray energy deposition to calculate the impulse transferred to the target, in particular to burst-facing blocks on the target surface. The impulse allows us to estimate an initial velocity field for the blocks on the outer side of the target facing the burst. We model the dynamics using an N-body polyhedron program built on the Open Dynamics Engine, a "physics engine" that integrates the dynamical equations for objects of general shapes and includes collision detection, friction, and dissipation. We tested several different models for target objects: rubble piles with different mass distributions, a "brick-pile" made of closely fitting blocks and zero void space, and a non-spherical "contact binary" rubble pile. Objects were bound together by self-gravity and friction/inelastic restitution with no other cohesive forces. Our fiducial cases involved objects of m=3.5×1012 kg (corresponding to a radius of 0.7 km for the bulk object), an X-ray yield of 1 megaton, and stand-off burst distances of R=0.8-2.5 km from the target center of mass. Kilometer-scale rubble piles are robust to stand-off bursts of a yield (Y˜1 megaton) that would be sufficient to provide an effective velocity change (Δv˜0.05ms-1). Disaggregation involving some tens of percent of the target mass happens immediately after the impulse; the bulk of the object re-accretes on a few gravitational timescales, and the final deflected target contains over 95% (typically, 98-99%) of the original mass. Off-center components of the mitigation impulse and the target mass distribution cause a small amount of induced spin and off-axis components of velocity change. The off-axis velocity component amounts to an angular deviation of ˜ 0.05-0.1 radians from the nominal impulse vector, which may be important for mitigation planning.

  17. Anthropogenic relief features in tropical northern Australia: a physical and chemical analysis of the Weipa shell mounds

    NASA Astrophysics Data System (ADS)

    Fanning, Patricia; Holdaway, Simon; Allely, Kasey; Larsen, Bernie; Petchey, Fiona

    2017-04-01

    Large mounded deposits of shell are prominent archaeological features across much of the north Australian tropical coast. Many of the shell mounds are composed almost entirely of the bivalve Anadara granosa (Linnaeus 1758), a food source for Aboriginal people in the past. They are identified in the field by their distinct mounded topographic form and the unique vegetation community growing on them. A relatively long history of inquiry into the nature and significance of the shell mounds has focused primarily on analysing the shell component as clues to Australian Aboriginal coastal economies in the past. This paper presents results of new analyses on the non-shell sediments of mounds located near Weipa in far north Queensland, examining the physical and chemical signatures of depositional and post-depositional processes with a view to obtaining insights into how the mounds formed and for what purposes, and how their morphology, structure and content may have changed since they ceased accumulating. We also consider how such changes might relate to past and present environmental conditions. The mounds we studied are primarily located on topographic high points, such as cliffs, hillslopes and beach ridges, though a proportion are located on estuarine floodplains at low elevations. Terrestrial Laser Scanning (TLS) of a sample of 51 shell mounds demonstrates substantial variation in mound size and shape, and suggests patterning in mound form related to age as well as position on the landscape. However, radiocarbon chronologies demonstrate that the mounds do not conform to a model of linear formation of a shell deposit, suggesting mound histories are variable in both the nature of shell deposition as well as post-depositional processes. Soil physical and chemical analyses indicate that post-depositional diagenetic alteration has strongly influenced the present day composition and form of the shell mounds, in particular the accession of carbon and silica to the mounds by

  18. Distribution and physical traits of red wood ant mounds in a managed Rhodope mountains forest.

    PubMed

    Tsikas, Angelos; Karanikola, Paraskevi; Papageorgiou, Aristotelis C

    2016-07-01

    Red wood ants (RWA) are of great ecological importance for the forest ecosystem. Forestry practices, like clear-cutting, and trampling load, due to tourism, logging, and grazing stock, can greatly affect their colonies, disturbing their microhabitat. RWA in Greek forests have not been investigated so far. We herein report on the distribution and morphological traits of Formica lugubris mounds studied in Elatia forest (Rhodope mountains, Northern Greece), an all-aged managed mixed forest where selective logging practices are performed. Nearby vegetation, slope, canopy cover, shrub density, and distance from the nearest neighboring trees were also recorded. Mound density was shown to be much higher in this Greek forest compared to RWA mounds in other European-managed forests. Furthermore, we recorded a continuous nest establishment, despite forest management disturbances and trampling load. Our study suggests that single-tree selective forestry practices are essential for creating ideal microhabitats for the RWA and, therefore, for maintaining RWA populations.

  19. Geochemical characteristics and early diagenesis of recent carbonate mound sediments in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy

    2010-05-01

    Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to

  20. Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur

    2005-04-01

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

  1. A Look Inside Rotating Rubble-Pile Asteroids Spun to Disruption

    NASA Astrophysics Data System (ADS)

    Sanchez Lana, Diego; Scheeres, Daniel J.

    2014-11-01

    Driven by the images obtained by different space missions to small asteroids, during the last few years different researchers have used self-gravitating granular mechanics codes for the simulation of small rubble-pile asteroids. One of the many topics of research has been the response of these bodies to rotational evolution due to YORP, specifically the deformation and ultimate disruption of small bodies due to elevated angular velocities.In this research we use self-gravitating aggregates formed by thousands of spheres and a soft-sphere granular dynamics code to explore the effect of the variation of two parameters, friction angle and tensile strength, on their disruption process. The aggregates were slowly spun up to disruption controlling for friction angle, cohesion and global shape. How much each aggregate deformed before disruption was directly related to the angle of friction. The greater it was, the less the aggregate deformed before disruption. Cohesive forces controlled the mode of disruption and maximum spin rate, showing that the aggregates could disrupt by shedding particles or groups of particles from the equatorial region. For high values of tensile strength, the pieces that detached from the initial aggregate were sizable enough for the disruption process to be seen as a fission. This implies that the change from shedding to fission is continuous and therefore, they should not be seen as different processes but just as two ends of the spectrum.A closer look at the spherical aggregates showed that the reshaping of the bodies was not symmetrical. A granular aggregate cannot be completely homogeneous unless its particles are arranged in a crystalline structure, something we avoided. This resulted in an asymmetrically reshaped body, similar to that of 1999 KW4 (at times forming a binary system). For ellipsoidal aggregates, this meant the formation of tear-drop shapes and pairs. The failing of the granular structure is ultimately controlled by the inter

  2. Low-speed impacts between rubble piles modeled as collections of polyhedra, 2

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Asphaug, Erik

    2009-11-01

    We present the results of additional calculations involving the collisions of km-scale rubble piles. In new work, we used the Open Dynamics Engine (ODE), an open-source library for the simulation of rigid-body dynamics that incorporates a sophisticated collision-detection and resolution routine. We found that using ODE resulted in a speed-up of approximately a factor of 30 compared with previous code. In this paper we report on the results of almost 1200 separate runs, the bulk of which were carried out with 1000-2000 elements. We carried out calculations with three different combinations of the coefficients of friction η and (normal) restitution ɛ: low (η=0,ɛ=0.8), medium (η=0,ɛ=0.5), and high (η=0.5,ɛ=0.5) dissipation. For target objects of ˜1 km in radius, we found reduced critical disruption energy values QRD∗ in head-on collisions from 2 to 100 J kg -1 depending on dissipation and impactor/target mass ratio. Monodisperse objects disrupted somewhat more easily than power-law objects in general. For oblique collisions of equal-mass objects, mildly off-center collisions (b/b0=0.5) seemed to be as efficient or possibly more efficient at collisional disruption as head-on collisions. More oblique collisions were less efficient and the most oblique collisions we tried (b/b0=0.866) required up to ˜200 J kg -1 for high-dissipation power-law objects. For calculations with smaller numbers of elements (total impactor ni+targetnT=20 or 200 elements) we found that collisions were more efficient for smaller numbers of more massive elements, with QRD∗ values as low as 0.4Jkg for low-dissipation cases. We also analyzed our results in terms of the relations proposed by Stewart and Leinhardt [Stewart, S.T., Leinhardt, Z.M., 2009. Astrophys. J. 691, L133-L137] where m1/(mi+mT)=1-QR/2QRD∗ where QR is the impact kinetic energy per unit total mass mi+mT. Although there is a significant amount of scatter, our results generally bear out the suggested relation.

  3. Analysis of cavern stability at the Bryan Mound SPR site.

    SciTech Connect

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-04-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to

  4. Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Cavalazzi, Barbara; Barbieri, Roberto; Ori, Gian Gabriele

    2007-08-01

    Veins cutting across the Devonian conical mounds of the Hamar Laghdad Ridge (eastern Anti-Atlas, Morocco) were the carriers of geofluids. Although not completely determined, the composition of these fluids seems related to hydrothermal and seepage fluxes that were the primary contributors to the establishment of sub-seafloor (cryptic) environments linking deeper fluid sources to the seafloor. The optical and scanning electron microscope investigation of the laminated carbonate infill of these veins has revealed that they consist of stromatolite- and oncolite-like fabrics. In the Early and Middle Devonian mounds, the laminated carbonates contain morphologies that are attributable to microbially mediated processes that in turn suggest a direct biological contribution to the deposition of the veins infill. Microbial evidence include rod-shaped and cocci clusters embedded in amorphous membranes, iron-rich filaments organized as mat-like and biodictyon filamentous aggregates, or isolated filaments, microbial clotted textures and peloids. Moreover, the oncoids from the veins of the Middle Devonian (Hollard) mound have been interpreted as the mineral replacement of crypto-microorganisms as Frutexites. Other microbial evidence are biominerals and include carbonate with spheroids and pyrite framboids, in which typifying hydrocarbon seep environments. The Hollard Mound, which is the only one with a well-documented origin by hydrocarbon seepage, shares a number of geomicrobiological evidence with other Early Devonian mounds. These evidence, which are supplemented by δ13C-depleted data, suggest that the infill of the veins system in the Hamar Laghdad mounds would be the product of chemotrophic/chemosynthetic microbial communities that are adapted to crypto-habitats sustained by hydrocarbon (and other components) fluid fluxes.

  5. Mounding of a non-Newtonian jet impinging on a solid substrate.

    SciTech Connect

    Schunk, Peter Randall; Grillet, Anne Mary; Roberts, Scott A.; Baer, Thomas A.; Rao, Rekha Ranjana

    2010-06-01

    When a fluid jet impinges on a solid substrate, a variety of behaviors may occur around the impact region. One example is mounding, where the fluid enters the impact region faster than it can flow away, forming a mound of fluid above the main surface. For some operating conditions, this mound can destabilize and buckle, entraining air in the mound. Other behaviors include submerging flow, where the jet impinges into an otherwise steady pool of liquid, entraining a thin air layer as it enters the pool. This impact region is one of very high shear rates and as such, complex fluids behave very differently than do Newtonian fluids. In this work, we attempt to characterize this range of behavior for Newtonian and non-Newtonian fluids using dimensionless parameters. We model the fluid as a modified Bingham-Carreau-Yasuda fluid, which exhibits the full range of pseudoplastic flow properties throughout the impact region. Additionally, we study viscoelastic effects through the use of the Giesekus model. Both 2-D and 3-D numerical simulations are performed using a variety of finite element method techniques for tracking the jet interface, including Arbitrary Lagrangian Eulerian (ALE), diffuse level sets, and a conformal decomposition finite element method (CDFEM). The presence of shear-thinning characteristics drastically reduces unstable mounding behavior, yet can lead to air entrainment through the submerging flow regime. We construct an operating map to understand for what flow parameters mounding and submerging flows will occur, and how the fluid rheology affects these behaviors. This study has many implications in high-speed industrial bottle filling applications.

  6. Seismic Observations of a Possible Carbonate Mound on the Continental Slope off Vancouver Island

    NASA Astrophysics Data System (ADS)

    He, T.; Spence, G.; Hyndman, R.; Chapman, R. N.

    2003-12-01

    A large carbonate or mud mound was identified about 5 km west of ODP Site 889 on the Vancouver Island continental slope. At its base, the mound is ~1 km wide perpendicular to the margin and ~2 km long parallel to the margin. In dives with the remotely-operated submersible ROPOS in May 2001, we observed widespread carbonate pavement was observed which made it impossible to collect sediment push cores. Piston coring also failed to penetrate the pavement or collect sediment samples. ROPOS also observed several biological communities of tubeworms and clams, indicating that venting of methane was likely active. To interpret the structure of this carbonate mound, a high resolution single channel seismic survey was carried out in summer 2001. The source was a 40 cu.in. sleeve airgun, fired by distance at an interval of 12.5 m. The grid consisted of 80 lines, each 3 km in length and separated by 25 m. The seismic lines, recording coherent reflectivity down to about 400 m beneath the seafloor, provide excellent images of this carbonate/mud mound and of the BSR beneath it. The single channel data form a pseudo-3D single channel seismic grid with 25 m,e 25 m square bins, and so we can use 3D migration techniques to image the complex structures. The mound is bounded on its landward and seaward sides by faults that dip toward Vancouver Island. The faults appear to connect to a particularly strong section of BSR, which may trap locally large concentrations of gas. The faults intersect the surface on either side of the mound, and may provide pathways for methane and other fluids from the gas reservoir to vents at the surface.

  7. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  8. Can mima-like mounds be Vertisol relics (Far North Region of Cameroon, Chad Basin)?

    NASA Astrophysics Data System (ADS)

    Diaz, Nathalie; Dietrich, Fabienne; Cailleau, Guillaume; Sebag, David; Ngounou Ngatcha, Benjamin; Verrecchia, Eric P.

    2016-05-01

    Non-anthropogenic earth mounds, defined as mima-like mounds in this study, have recently been observed in non-carbonate watersheds along the Sudano-Sahelian belt in the Chad Basin. In the Diamare piedmont (northern Cameroon) they are particularly well developed within stream networks. In less eroded areas, they occur as whaleback, flattened morphologies, or even as buried features. All these shapes are composed of clay-rich sediment associated with high proportions of secondary carbonate nodules and Fesbnd Mn micro-nodules. Their soil structure is prismatic to massive and vertical cracks are observed locally. Grain-size distributions emphasize the clay-rich nature of the sediment, with average clay contents of 32% ± 12.8% (n = 186), which is significantly higher than the clay content in the adjacent sediments in the landscape (mean = 10% ± 4%, n = 21). Moreover, high proportions of smectite characterize the soil, with average contents of 34 ± 7% (n = 25). At the micro-scale, the groundmass has a cross-striated b-fabric, with embedded smooth subangular quartz and feldspar grains of the silt-size fraction. All the characteristics point to altered vertic properties in the clay-rich sediment composing the mima-like mounds. Mima-like mounds are thus interpreted as degraded Vertisols. Compared to present-day Vertisols occurring in the piedmont, mima-like mounds are located upstream. It is thus proposed that the Vertisol areas were more extensive during a former and wetter period than the present-day. Subsequent changing climatic conditions increased erosion, revealing the gilgai micro-relief by preferential erosion in micro-lows rather than in micro-highs. Mima-like mounds of the Chad Basin might thus result from pedogenesis combined with later erosion. These local processes can be inherited from regional climatic variations during the Late Pleistocene-Holocene and likely be related to the African Humid Period.

  9. U-Th age distribution of coral fragments from multiple rubble ridges within the Frankland Islands, Great Barrier Reef: Implications for past storminess history

    NASA Astrophysics Data System (ADS)

    Liu, Entao; Zhao, Jian-xin; Feng, Yue-xing; Leonard, Nicole D.; Clark, Tara R.; Roff, George

    2016-07-01

    Prograded coral rubble ridges have been widely used as archives for reconstructing long-term storm or storminess history. Chronologies of ridge systems in previous studies are often based on a limited number of low-resolution radiocarbon or optically-stimulated luminescence (OSL) ages per ridge (usually only one age per ridge), which carry intrinsic age uncertainties and make interpretation of storm histories problematic. To test the fidelity of storm ridges as palaeo-storm archives, we used high-precision U-Th dating to examine whether different samples from a single ridge are temporally constrained. We surveyed three transects of ridge systems from two continental islands (Normanby Island and High Island) within the Frankland Islands, Great Barrier Reef (GBR), and obtained 96 U-Th dates from coral rubble samples collected from within and between different ridges. Our results revealed significant differences in age ranges between the two islands. The steeper and more defined rubble ridges present on Normanby Island revealed that the majority of U-Th ages (over 60%) from a single ridge clustered within a narrow age range (∼100 years). By contrast, the lower and less defined ridges on High Island, which were more likely formed during both storm and non-storm high-energy events, revealed significant scatter in age distribution (>>200 years) with no notable clustering. The narrower age ranges obtained from the steeper and more defined rubble ridges suggest that previous approaches of using either limited samples from a single ridge or low-precision dating methods to establish chronologies are generally valid at centennial to millennial timescales, although caution must be taken to use such approaches for storm history reconstruction on shorter timescales (e.g. decadal). The correlation between U-Th mortality ages of coral rubble and historical stormy periods highlights the possibility of using coral rubble age distribution from rubble ridges to reconstruct the long

  10. Experimental explanation of the formation mechanism of surface mound-structures by femtosecond laser on polycrystalline Ni60Nb40

    NASA Astrophysics Data System (ADS)

    Peng, Edwin; Tsubaki, Alfred; Zuhlke, Craig A.; Wang, Meiyu; Bell, Ryan; Lucis, Michael J.; Anderson, Troy P.; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.

    2016-01-01

    Femtosecond laser surface processing (FLSP) is an emerging technique for creating functionalized surfaces with specialized properties, such as broadband optical absorption or superhydrophobicity/superhydrophilicity. It has been demonstrated in the past that FLSP can be used to form two distinct classes of mound-like, self-organized micro/nanostructures on the surfaces of various metals. Here, the formation mechanisms of below surface growth (BSG) and above surface growth (ASG) mounds on polycrystalline Ni60Nb40 are studied. Cross-sectional imaging of these mounds by focused ion beam milling and subsequent scanning electron microscopy revealed evidence of the unique formation processes for each class of microstructure. BSG-mound formation during FLSP did not alter the microstructure of the base material, indicating preferential valley ablation as the primary formation mechanism. For ASG-mounds, the microstructure at the peaks of the mounds was clearly different from the base material. Transmission electron microscopy revealed that hydrodynamic melting of the surface occurred during FLSP under ASG-mound forming conditions. Thus, there is a clear difference in the formation mechanisms of ASG- and BSG-mounds during FLSP.

  11. Seasonal Dynamics of Hyperspectral Reflectance Patterns Influencing Detection of Imported Fire Ant (Hymenoptera: Formicidae) Mound Features in Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Invasive mound-building imported fire ants impact soil quality and turfgrass nutrient management affecting an estimated 8.1 million hectares in sod production, recreational, and residential settings in the southeastern U.S. Reflectance characteristics of imported fire ant mound features (i.e., ant m...

  12. 75 FR 27783 - Decision To Evaluate a Petition To Designate a Class of Employees From the Mound Site in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Doc No: 2010-11875] DEPARTMENT OF HEALTH AND HUMAN SERVICES Decision To Evaluate a Petition To Designate a Class of Employees From the Mound Site in Miamisburg, OH, To Be Included in the Special Exposure... decision to evaluate a petition to designate a class of employees from the Mound site in Miamisburg,...

  13. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307)

    PubMed Central

    Webster, Gordon; Blazejak, Anna; Cragg, Barry A; Schippers, Axel; Sass, Henrik; Rinna, Joachim; Tang, Xiaohong; Mathes, Falko; Ferdelman, Timothy G; Fry, John C; Weightman, Andrew J; Parkes, R John

    2009-01-01

    The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (∼270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound. Although total cell numbers at certain depths were lower than the global average for other subseafloor sediments and prokaryotic activities were relatively low (iron and sulfate reduction, acetate oxidation, methanogenesis) they were significantly enhanced compared with the Reference site. In addition, there was some stimulation of prokaryotic activity in the deepest sediments (Miocene, > 10 Ma) including potential for anaerobic oxidation of methane activity below the mound base. Both Bacteria and Archaea were present, with neither dominant, and these were related to sequences commonly found in other subseafloor sediments. With an estimate of some 1600 mounds in the Porcupine Basin alone, carbonate mounds may represent a significant prokaryotic subseafloor habitat. PMID:18826439

  14. Electron spin resonance dating of human bones from Brazilian shell-mounds (Sambaquís).

    PubMed

    Mascarenhas, S; Baffa Filho, O; Ikeya, M

    1982-12-01

    Electron spin resonance (ESR) signals from bone increase with exposure to radiation. This permits the dating of ancient bone from its exposure to natural radiation over the centuries. The ESR technique was used for dating human bones from Brazilian shell mounds. The results were compared with 14C dates on charcoal found near the bone. The natural radiation dose rate of the bones was about 0.01 Gy/year (1 rad/year), similar to that found in Japanese shell-mounds. Ages of the bone samples dated ranged from 2000-5000 years BP.

  15. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments

    PubMed Central

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana MF; Silva, Rosângela; de Souza, Sheila Mendonça; Araujo, Adauto

    2013-01-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis. PMID:23579793

  16. Overview of the earth mounded concrete bunker prototype license application project: Objectives and approach

    SciTech Connect

    Conner, J.E.

    1989-11-01

    This paper presents an overview of the objectives and approach taken in developing the Earth-mounded Concrete Bunker Prototype License Application Project. The Prototype License Application Project was initiated by the Department of Energy`s National Low-Level Waste Management Program in early 1987 and completed in November 1988. As part of this project a prototype safety analysis report was developed. The safety analysis report evaluates the licensibility of an earth-mounded concrete bunker for a low-level radioactive waste (LLW) disposal facility located on a hypothetical site in the northeastern United States. The project required approximately five person-years and twenty months to develop.

  17. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    PubMed Central

    Levas, Stephen J.; Grottoli, Andréa G.; Hughes, Adam; Osburn, Christopher L.; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ13C of the skeletal, δ13C, and δ15N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via 13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of fixed carbon

  18. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    PubMed

    Levas, Stephen J; Grottoli, Andréa G; Hughes, Adam; Osburn, Christopher L; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13)C of the skeletal, δ(13)C, and δ(15)N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13)C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of

  19. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    DTIC Science & Technology

    2013-05-02

    biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not...coming decades [4,6,7], and are already causing mass coral reef decline worldwide [8]. Coral bleaching suscepti- bility has been directly linked to the... bleaching in mounding and branching corals is essential to projecting how coral reef assemblages will change in the future. Thus, to determine how

  20. Comparing the distribution of ciliate plankton in inner and outer areas of a harbor divided by an artificial breakwater.

    PubMed

    Kim, Young-Ok; Chae, Jinho; Hong, Jae-Sang; Jang, Pung-Guk

    2007-07-01

    The distribution of ciliate plankton was compared between inner and outer areas of a harbor divided by an artificial breakwater in Kuryongpo, on the eastern coast of Korea, from February 2001 to October 2003. Less dissolved oxygen and higher concentrations of nitrogenous nutrients and phosphate were observed in the inner area. The abundance of oligotrich ciliates peaked in February 2001, when nanoflagellates bloomed in the inner area. The photosynthetic ciliate Mesodinium rubrum showed differing population dynamics annually, with blooming peaks in October 2001 in the inner area and in February 2003 in the outer area. The tintinnid species Tintinnopsis beroidea and Helicostomella subulata were generally more abundant in the outer area. Total ciliates were significantly related to oligotrich abundance in the inner area, and to tintinnid abundances in the outer area. Ciliate distribution showed quantitative and qualitative differences between the inner and outer areas in connection with the distribution of other plankton communities: oligotrich ciliate abundance increased with nanoflagellate blooms; dominance of M. rubrum was consistent with blooming of micro-sized phytoplankton (diatoms and dinoflagellates); large-sized tintinnids concurred with small dinoflagellates; and ciliate abundances decreased with mesozooplankton increases. The results indicate that the breakwater induces eutrophication in the inner area and provides suitable conditions for nanoflagellate blooms, which serially trigger opportunistic increases in oligotrich ciliates.

  1. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    PubMed

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  2. Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour.

    PubMed

    Jamali, Hizbullah; Livesley, Stephen J; Dawes, Tracy Z; Hutley, Lindsay B; Arndt, Stefan K

    2011-10-01

    Termites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH(4) and CO(2) of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH(4)) and 1.4 (CO(2))-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH(4) and CO(2). Seasonal variation in both gas diffusivity through mound walls and CH(4) oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH(4) and CO(2). These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH(4) and CO(2).

  3. The early diagenetic and PETROphysical behaviour of recent cold-water CARbonate mounds in Deep Environments (PETROCARDE)

    NASA Astrophysics Data System (ADS)

    Foubert, Anneleen; Pirlet, Hans; Thierens, Mieke; de Mol, Ben; Henriet, Jean-Pierre; Swennen, Rudy

    2010-05-01

    Sub-recent cold-water carbonate mounds localized in deeper slope settings on the Atlantic continental margins cannot be any longer neglected in the study of carbonate systems. They clearly play a major role in the dynamics of mixed siliciclastic-carbonate and/or carbonate-dominated continental slopes. Carbonate accumulation rates of cold-water carbonate mounds are about 4 to 12 % of the carbonate accumulation rates of tropical shallow-water reefs but exceed the carbonate accumulation rates of their slope settings by a factor of 4 to 12 (Titschack et al., 2009). These findings emphasize the importance of these carbonate factories as carbonate niches on the continental margins. The primary environmental architecture of such carbonate bodies is well-characterized. However, despite proven evidences of early diagenesis overprinting the primary environmental record (e.g. aragonite dissolution) (Foubert & Henriet, 2009), the extent of early diagenetic and biogeochemical processes shaping the petrophysical nature of mounds is until now not yet fully understood. Understanding (1) the functioning of a carbonate mound as biogeochemical reactor triggering early diagenetic processes and (2) the impact of early diagenesis on the petrophysical behaviour of a carbonate mound in space and through time are necessary (vital) for the reliable prediction of potential late diagenetic processes. Approaching the fossil carbonate mound record, through a profound study of recent carbonate bodies is innovative and will help to better understand processes observed in the fossil mound world (such as cementation, brecciation, fracturing, etc…). In this study, the 155-m high Challenger mound (Porcupine Seabight, SW of Ireland), drilled during IODP Expedition 307 aboard the R/V Joides Resolution (Foubert & Henriet, 2009), and mounds from the Gulf of Cadiz (Moroccan margin) will be discussed in terms of early diagenetic processes and petrophysical behaviour. Early differential diagenesis

  4. Subtidal eelgrass/macroalgae surveys for the proposed breakwaters at the US Coast Guard Station at Ediz Hook, Washington, March 1993

    SciTech Connect

    Shreffler, D.K.

    1993-05-01

    In 1993, the US Coast Guard proposed to construct two breakwaters and a debris boom to protect its existing pier and moored vessels inside Ediz Hook in Port Angeles Harbor, Washington. To assist the US Army Corps of Engineers -- Seattle District in determining the potential environmental impacts of the proposed breakwaters, Battelle/Marine Sciences Laboratory performed subtidal SCUBA surveys as specified in the Washington Department of Fisheries intermediate eelgrass/macroalgae habitat survey guidelines. The objectives of the subtidal surveys were to (1) quantify the shoot densities of eelgrass; (2) provide percent cover estimates for non-eelgrass macroalgae species; (3) develop a site map indicating the qualitative distribution of eelgrass/macroalgae species, substrate characterization, approximate depth contours, and the approximate location of the proposed project features; and (4) document the time and date of the surveys, turbidity/visibility, presence of invertebrate/vertebrate species, and anecdotal observations pertinent to habitat characterization of the project site. A total of 14 dives along 12 transects (T1--T12) were successfully completed between March 15 and March 17, 1993. Eelgrass was observed on all of the transects except T7 and T8 at the western debris barrier and T12 along the waterward margin of the existing T-pier. The vicinity of the proposed east breakwater had the highest eelgrass shoot densities (up to 89 shoots/m{sup 2}) observed by the divers. Macroalgae and invertebrate species diversity were also highest at the east breakwater site. The low eelgrass densities observed at the west debris barrier site (0 to 14 shoots/m{sup 2}) can be attributed mostly to the lack of suitable substrate. The existing layer of wood debris armoring the bottom at the west project site currently limits, and in the areas of heaviest deposition probably precludes, the growth of eelgrass. As was expected, no eelgrass was observed at the south breakwater site.

  5. Seasonal Dynamics of Fish Assemblages on Breakwaters and Natural Rocky Reefs in a Temperate Estuary: Consistent Assemblage Differences Driven by Sub-Adults

    PubMed Central

    Fowler, Ashley M.; Booth, David J.

    2013-01-01

    Development of infrastructure around cities is rapidly increasing the amount of artificial substrate (termed artificial reef, ‘AR’) in coastal marine habitats. However, effects of ARs on marine communities remain unknown, because it is unclear whether ARs can maintain similar communities to natural reefs. We investigated whether well-established (> 30 years old) breakwaters could consistently approximate fish assemblages on interspersed rocky reefs in a temperate estuary over 6 consecutive seasons using regular visual surveys between June 2009 (winter) and November 2010 (spring). We examined whether assemblage differences between reef types were driven by differences in juvenile recruitment, or were related to differences in older life-stages. Assemblages on both reef types were dominated by juveniles (61% of individuals) and sub-adults (34% of individuals). Seasonal fluctuations in assemblage parameters (species richness, diversity, sub-adult abundance) were similar between reef types, and levels of species diversity and assemblage composition were generally comparable. However, abundance and species richness were consistently higher (1.9-7.6 and 1.3-2.6 times, respectively) on breakwaters. These assemblage differences could not be explained by differences in juvenile recruitment, with seasonal patterns of recruitment and juvenile species found to be similar between reef types. In contrast, abundances of sub-adults were consistently higher (1.1-12 times) at breakwaters, and assemblage differences appeared to be driven by this life-stage. Our results indicate that breakwaters in temperate estuaries are capable of supporting abundant and diverse fish assemblages with similar recruitment process to natural reefs. However, breakwaters may not approximate all aspects of natural assemblage structure, with differences maintained by a single-life stage in some cases. PMID:24086634

  6. Seasonal dynamics of fish assemblages on breakwaters and natural rocky reefs in a temperate estuary: consistent assemblage differences driven by sub-adults.

    PubMed

    Fowler, Ashley M; Booth, David J

    2013-01-01

    Development of infrastructure around cities is rapidly increasing the amount of artificial substrate (termed artificial reef, 'AR') in coastal marine habitats. However, effects of ARs on marine communities remain unknown, because it is unclear whether ARs can maintain similar communities to natural reefs. We investigated whether well-established (> 30 years old) breakwaters could consistently approximate fish assemblages on interspersed rocky reefs in a temperate estuary over 6 consecutive seasons using regular visual surveys between June 2009 (winter) and November 2010 (spring). We examined whether assemblage differences between reef types were driven by differences in juvenile recruitment, or were related to differences in older life-stages. Assemblages on both reef types were dominated by juveniles (61% of individuals) and sub-adults (34% of individuals). Seasonal fluctuations in assemblage parameters (species richness, diversity, sub-adult abundance) were similar between reef types, and levels of species diversity and assemblage composition were generally comparable. However, abundance and species richness were consistently higher (1.9-7.6 and 1.3-2.6 times, respectively) on breakwaters. These assemblage differences could not be explained by differences in juvenile recruitment, with seasonal patterns of recruitment and juvenile species found to be similar between reef types. In contrast, abundances of sub-adults were consistently higher (1.1-12 times) at breakwaters, and assemblage differences appeared to be driven by this life-stage. Our results indicate that breakwaters in temperate estuaries are capable of supporting abundant and diverse fish assemblages with similar recruitment process to natural reefs. However, breakwaters may not approximate all aspects of natural assemblage structure, with differences maintained by a single-life stage in some cases.

  7. A large-scale middle Miocene carbonate (?) mound structure in the Norwegian-Danish Basin: evidence for hydrocarbon migration?

    NASA Astrophysics Data System (ADS)

    Andresen, K. J.; Clausen, O. R.; Huuse, M.

    2007-12-01

    A mounded structure has been observed in the Norwegian-Danish Basin about 10 km east of the Coffee Soil Fault outside the Central Graben and almost directly on top of the mid-Miocene unconformity. The mounded structure has been mapped using 3D seismic data; it consists of two culminations arranged in a triangular area; one is 1500 m long, 800 m wide and 70 m high while the other is 800 m long, 400 m wide and 30 m high. The composite mound comprises a volume of some 29 mio m3 and is characterised by a high positive reflection amplitude at the top, differential compaction as compared to the surrounding sediments and velocity pull up in underlying reflections. These observations indicate a high velocity fill with higher acoustic impedance and less compaction than that of the surrounding sediments, and the interior of the mounded structure has thus been interpreted as a relatively hard, coarse grained or well cemented sediment. The observed mound is an isolated feature and there have been no reports on any similar structures in the surrounding area. Several possible morphological mound-shaped features have been considered such as igneous and clastic intrusions and extrusions, mud volcanoes, contourites, turbidites and carbonate mounds. The succession below the mound shows no vertical disturbance such as seismic chimneys or deformation of layers, and this seems to exclude an extrusive origin, which most likely would have had some influence on the sedimentary succession. Investigation of the base reflection in the surrounding area shows no sign of any erosional features such as submarine channels and this appears to exclude an origin as a turbidite or contourite since these features often are associated with some kind of erosion. Large present day seismic chimneys have been found in close proximity to the mound along with numerous elongated pockmarks in the Miocene succession right above the mound. These observations indicate that the study area is highly influenced by

  8. Stable isotope sales: Mound Facility customer and shipment summaries, FY 1981

    SciTech Connect

    Ruwe, Jr, A H

    1982-10-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1981. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers.

  9. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China

    NASA Astrophysics Data System (ADS)

    Lehrmann, Daniel J.

    1999-04-01

    Early Triassic framestones were discovered in the interior of an isolated, marine carbonate platform in the Nanpanjiang basin. The framestones occur in two horizons: (1) the lowermost Triassic (Griesbachian), as biostromes as much as 15 m thick, and (2) the upper part of the Lower Triassic (Smithian or Spathian) as isolated domal or inverted conical mounds as much as 1.5 m thick. The mounds and biostromes consist of a rigid calcimicrobial framework enclosing a network of internal cavities, 1 to 3 cm across, filled with peloidal-skeletal sediment. The framework is made of irregular-to-tufted masses of chambered-to-clotted micrite structures referable to Renalcis, a calcified coccoid cyanobacteria. The framework is reinforced by microbial induced micritic crusts as well as marine cement. Metazoan fossils within the framework include gastropods, bivalves, ostracodes, spirorbids, and brachiopods. The Early Triassic is widely considered to have been a global gap in reef and reef mound development. The global reef gap concept has formed the foundation of models of reef evolution and of the reorganization of reef ecosystems after the end-Permian extinction. These models should be revised to account for the existence of Early Triassic calcimicrobial mounds and biostromes discussed herein.

  10. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  11. Making Major Mounds on Mars: Shaping by Wind-Terrain Feedbacks

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Sneed, J.; Mayer, D. P.; Lewis, K. W.; Michaels, T. I.; Hore, A.; Rafkin, S. C.

    2016-12-01

    Mars is the only other planet known to host an extensive sedimentary record. Mounds within Gale crater and the Valles Marineris (VM) canyon system contain some of Mars' thickest (2-8km) and best-exposed sequences of sedimentary rock (Malin & Edgett 2000, Milliken et al. 2010). We present several lines of evidence suggesting that major sedimentary mounds on Mars grew in place by net deposition of layers on preexisting topographic highs (anticompensational stacking): layer orientations, draped landslides, polar analogs, and draping of rocks over differentially-eroded paleo-domes. We use a simple landscape evolution model to show how mound shape can be modulated by terrain-induced winds (as well as by shifts in obliquity). The model is driven by a parameterization of terrain-influenced wind erosion that is derived from mesoscale modeling. Dry conditions bring aeolian processes to the fore, whereas vigorous and sustained fluvial erosion would inhibit mound construction. Therefore, landscape-wind feedbacks illuminate a record of sediment deposition on Mars that links geomorphology, sedimentology, and paleoclimate.

  12. Cultural Symbolism behind the Architectural Design of Mounds Park All-Nations Magnet School.

    ERIC Educational Resources Information Center

    Pewewardy, Cornell; May, Paul G.

    1992-01-01

    The architectural design of Mounds Park All-Nations Magnet School (St. Paul, Minnesota) incorporates cultural symbols representing the Native American worldview and Medicine Wheel Circle beliefs, as well as design elements from aboriginal housing styles, and colors and sculptured elements that reinforce the relationship of nature to building. (SV)

  13. Dewatering Through Mud Mounds on the Continental Fore-arc of Costa Rica

    NASA Astrophysics Data System (ADS)

    Fekete, N.; Grevemeyer, I.; Reston, T. J.; Spiess, V.

    2005-12-01

    Mud mounds occur abundantly on the continental fore-arc of Middle America Trench. Their role in subduction dewatering and contribution to fore-arc material output has been studied extensively throughout the past decade. Based on seismic and thermal investigations, we compare the tectonic, structural and thermal setting of a set of such features of possible diapiric origin at two locations. One is a single mound offshore Northern Costa Rica, located above incoming lithosphere from the East Pacific Rise (EPR), the other is a mound cluster further southeast, where the Fracture Zone Trace separating EPR crust from material produced at the Cocos-Nazca Spreading Center (CNS) subducts. Both target areas exhibit small-scale deformation resulting from subduction erosion and fore-arc subsidence, with variations caused by the topographical contrast of the subducting oceanic plate. This influences dewatering patterns, as does locally elevated sediment deposition near growth faults, or carbonate precipitates on the seafloor. The presence of gas hydrates in the subsurface is marked by the regional appearance of a negative-polarity bottom simulating reflector (BSR) in the seismic data. Using its depth below seafloor as an indicator of thermal changes, they are quantified through heat flow modelling to yield implications of the local thermal state in the vicinity of the mounds. These observations in turn enable us to track dewatering at depth as well as its along-trench variations.

  14. Seasonal Shifts in the Hyperspectral Characterization of Imported Fire Ant (Hymenoptera: Formicidae) Mound Features in Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Safe, expedient, and cost-effective field- to landscape-scale treatments of imported fire ant (IFA) infestations require technological developments that exploit the use of remotely-sensed contrasting features to detect cryptic mounds in heavily-managed turfgrass. Ground-based implementation of hyper...

  15. SEASONAL SHIFTS IN THE HYPERSPECTRAL CHARACTERIZATION OF IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE) MOUND FEATURES IN TURFGRASS

    USDA-ARS?s Scientific Manuscript database

    Safe, expedient, and cost-effective field- to landscape-scale treatments of imported fire ant (IFA) infestations require technological developments that exploit the use of remotely-sensed contrasting features to detect cryptic mounds in heavily-managed turfgrass. Ground-based implementation of hyper...

  16. Mapping the fluid flow of the Mariana Mounds ridge flank hydrothermal system: Pore water chemical tracers

    SciTech Connect

    Wheat, C.G.; McDuff, R.E.

    1995-05-10

    The authors present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep-sea research vessel Alvin in small, meter-sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. The authors have interpreted the chemical data with time-dependent transport-reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A large area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. The authors conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarpt about 2-4 km to the east and southeast of the study area. 71 refs., 14 figs., 3 tabs.

  17. Revisiting platform mounds and townhouses in the Cherokee heartland: a collaborative approach

    Treesearch

    Benjamin A. Steere

    2015-01-01

    This article describes the development and initial results of the Western North Carolina Mounds and Towns Project, a collaborative endeavor initiated by the Tribal Historic Preservation Office of the Eastern Band of Cherokee and the Coweeta Long Term Ecological Research Program at the University of Georgia. The goal of this project is to generate new...

  18. Spin-induced mass loss from rubble piles and the formation of asteroid satellites and pairs

    NASA Astrophysics Data System (ADS)

    Tanga, P.; Campo Bagatin, A.; Thirouin, A.; Cellino, A.; Comito, C.; Ortiz, J.; Richardson, D.; Hestroffer, D.

    2014-07-01

    Non-gravitational effects may change the angular momentum of asteroids up to a few tens of km in size to the point that rotational stability is lost at high spin rates. Once instability is initiated, mass loss may happen and potentially create satellites or dynamically detached components (pairs). We have studied this problem by means of numerical simulations and investigated the production of secondary objects of different sizes by direct splitting of the parent body under the assumption of a low internal angle of friction. We focused our attention on the effect of progressive spin-up of objects as a consequence of the YORP effect. Since asteroids are clearly not fluid but rocky bodies, one can assume that equilibrium theories --- also describing bifurcations (e.g., [1]) --- do not directly apply [2]. The equilibrium shapes of non-fluid bodies have been studied in the recent past by several authors, assuming that rubble-pile asteroids can be modeled as cohesionless granular systems in the frame of continuum theories [2--5]. [6] shows that a small amount of tensile strength could be sufficient for the survival of some fast rotators, even if they are internally fragmented. More relevant to this work are the results obtained by [7,8] by the same N-body approach that we use, i.e., by simulating the dynamics and the collisions of mono-dispersed hard spheres utilizing the PKDGRAV code [9,10]. The YORP effect is modeled by increasing rigid rotation by small increments with enough time to relax between subsequent spin-ups. In this work, our approach is based again on the same simulation code; however, our new exploration of the parameter space is broader than the previous study in the near-fluid regime, which is achieved by randomizing the initial particle positions somewhat to break the otherwise crystalline structure of monodisperse particle packing. We find that the transformation of objects into prolate ellipsoids is an efficient process when the internal angle of

  19. Density of Diadema antillarum (Echinodermata: Echinoidea) on live coral patch reefs and dead Acropora cervicornis rubble patches near Loggerhead Key, Dry Tortugas National Park, Florida, USA

    EPA Science Inventory

    Density of adult Diadema antillarum was assessed on live coral patch reefs and dead Acropora cervicornis rubble patches next to Loggerhead Key, Dry Tortugas National Park, Florida, USA in June 2009. Mean density on live coral patch reefs (0.49 individuals m-2) was not statistical...

  20. Density of Diadema antillarum (Echinodermata: Echinoidea) on live coral patch reefs and dead Acropora cervicornis rubble patches near Loggerhead Key, Dry Tortugas National Park, Florida, USA

    EPA Science Inventory

    Density of adult Diadema antillarum was assessed on live coral patch reefs and dead Acropora cervicornis rubble patches next to Loggerhead Key, Dry Tortugas National Park, Florida, USA in June 2009. Mean density on live coral patch reefs (0.49 individuals m-2) was not statistical...

  1. D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1995-09-01

    The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

  2. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?

    PubMed

    Oehler, Dorothy Z; Allen, Carlton C

    2012-06-01

    This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this

  3. Microbial assemblages on a cold-water coral mound at the SE Rockall bank

    NASA Astrophysics Data System (ADS)

    Bleijswijk, J. V.; Whalen, C.; Duineveld, G.; Lavaleye, M.; Witte, H.; Mienis, F.

    2016-02-01

    The microbial community composition over Haas Mound, one of the most prominent cold-water coral mounds of the Logachev Mound Province (Rockall Bank, NE Atlantic) was analysed by Roche GS-FLX amplicon sequencing targeting both Bacteria and Archaea. Overlaying water was collected from depths of 400 m as well as 5 and 10 m above the bottom using a CTD/Rosette system. Near-bottom water, sediment, and samples of mucus and skeleton of the coral Lophelia pertusa were obtained with a box-corer. We outline patterns of microbial distribution, vertically - from the seafloor to the water column - and laterally - across the mound - and couple these to mound topography and turbidity. A strong link was found between the microbial community composition and the specific biotopes. At all locations, the near-bottom water differed significantly from water at 5 m above the bottom, illustrating that the near-bottom water in between the coral framework represents a separate microbial habitat. Near-bottom water was distinct from other biotopes by outstanding relative abundance of the class Halobacteria (1.2%) and the genera Nitrosopumilus (3.2%), uncultured Xanthomonadales (1,6%), Defluviicoccus (1.3%), Marinicella (1.2%), and Brocadiaceae W4 lineage (1.1%). The Endozoicomonas found in near-bottom water (0.2%) is probably related to the presence of (dissolved) mucus in the water. The genus was not found in sediment, nor in overlaying water at 5 m above the bottom. The overlaying water community (sampled at 400m and at 500-1200m) was structured according to depth and correlated variables i.e. temperature, salinity and density (17% explained). Turbidity of the overlaying water explained an additional 14% and was correlated with sampling year.

  4. Directed Kinetic Self-Assembly of Mounds on Patterned GaAs (001): Tunable Arrangement, Pattern Amplification and Self-Limiting Growth

    PubMed Central

    Lin, Chuan-Fu; Kan, Hung-Chih; Kanakaraju, Subramaniam; Richardson, Christopher; Phaneuf, Raymond

    2014-01-01

    We present results demonstrating directed self-assembly of nanometer-scale mounds during molecular beam epitaxial growth on patterned GaAs (001) surfaces. The mound arrangement is tunable via the growth temperature, with an inverse spacing or spatial frequency which can exceed that of the features of the template. We find that the range of film thickness over which particular mound arrangements persist is finite, due to an evolution of the shape of the mounds which causes their growth to self-limit. A difference in the film thickness at which mounds at different sites self-limit provides a means by which different arrangements can be produced.

  5. Testing the directed dispersal hypothesis: are native ant mounds (Formica sp.) favorable microhabitats for an invasive plant?

    PubMed

    Berg-Binder, Moni C; Suarez, Andrew V

    2012-07-01

    Ant-mediated seed dispersal may be a form of directed dispersal if collected seeds are placed in a favorable microhabitat (e.g., in or near an ant nest) that increases plant establishment, growth, and/or reproduction relative to random locations. We investigated whether the native ant community interacts with invasive leafy spurge (Euphorbia esula) in a manner consistent with predictions of the directed dispersal hypothesis. Resident ants quickly located and dispersed 60% of experimentally offered E. esula seeds. Additionally, 40% of seeds whose final deposition site was observed were either brought inside or placed on top of an ant nest. Seed removal was 100% when seeds were placed experimentally on foraging trails of mound-building Formica obscuripes, although the deposition site of these seeds is unknown. Natural density and above-ground biomass of E. esula were greater on Formica mound edges compared to random locations. However, seedling recruitment and establishment from experimentally planted E. esula seeds was not greater on mound edges than random locations 3 m from the mound. Soil from Formica mound edges was greater in available nitrogen and available phosphorus relative to random soil locations 3 m from the mound. These results suggest Formica ant mounds are favorable microhabitats for E. esula growth following seedling establishment, a likely consequence of nutrient limitation during plant growth. The results also indicate positive species interactions may play an important role in biological invasions.

  6. Sub-kilometre (intra-crater) mounds in Utopia Planitia, Mars: character, occurrence and possible formation hypotheses

    NASA Astrophysics Data System (ADS)

    Soare, Richard J.; Conway, Susan J.; Pearce, Geoffrey D.; Costard, François; Séjourné, Antoine

    2013-08-01

    At the middle latitudes of Utopia Planitia (˜35-45°N; ˜65-101°E) hundreds of small-sized mounds located in sub-kilometre impact craters dot the landscape. Their shape varies from circular to crescentic and their height ranges from ˜10 to 50 m. Often, metre to decametre pitting is observed, as is metres-thick banding or stratification. Mound albedo is relatively high, i.e. ˜0.16. The plain's terrain in the region, previously linked to the latitude-dependent mantle (LDM) of ice-dust, displays pitting and albedo similar to the small intra-crater mounds. Some workers have suggested that the mounds and the plain's terrain share a common ice-dust origin. If so, then scrutinising the mounds could provide analogical insight on the key geological characteristics and spatial distribution of the LDM itself. Other workers have hypothesised that the mounds are eroded sedimentary landforms or periglacial mounds underlain by a perennial ice-core (closed-system pingos). In this article we develop and then discuss each of the three mound-hypotheses in a much more substantial manner than has been done hitherto. Towards this end we use high-resolution images, present a detailed regional-map of mound distribution and establish a regional platform of topographical analysis using MOLA data superposed on a large-scale CTX mosaic. Although the ice-dust hypothesis is consistent with some observations and measurements, we find that a (loess-based) sedimentary hypothesis shows greater plausibility. Of the three hypotheses evaluated, the pingo or periglacial one is the weakest.

  7. Harryplax severus, a new genus and species of an unusual coral rubble-inhabiting crab from Guam (Crustacea, Brachyura, Christmaplacidae)

    PubMed Central

    Mendoza, Jose C. E.; Ng, Peter K. L.

    2017-01-01

    Abstract Harryplax severus, a new genus and species of coral rubble-dwelling pseudozioid crab is described from the island of Guam in the western Pacific Ocean. The unusual morphological features of its carapace, thoracic sternum, eyes, antennules, pereopods and gonopods place it in the family Christmaplacidae Naruse & Ng, 2014. A suite of characters on the cephalothorax, pleon and appendages distinguishes Harryplax severus gen. & sp. n. from the previously sole representative of the family, Christmaplax mirabilis Naruse & Ng, 2014, described from Christmas Island in the eastern Indian Ocean. This represents the first record of Christmaplacidae in the Pacific Ocean. With the discovery of a second genus, a revised diagnosis for Christmaplacidae is provided. PMID:28325962

  8. Theoretical considerations for a dynamic calibration target for through-wall and through-rubble motion-sensing Doppler radar

    NASA Astrophysics Data System (ADS)

    Harner, Michael J.; Brandsema, Matthew J.; Narayanan, Ram M.; Jendzurski, John R.; Paulter, Nicholas G.

    2017-05-01

    The effectiveness of various dynamic calibration targets emulating human respiration are analyzed. Potential advantages of these devices relate to easier calibration methods for human detection testing in through-wall and through-rubbles situations. The three devices examined possess spherical polyhedral geometries. Spherical characteristics were implemented due to the unique qualities spheres possess in regards to calibration purposes. The ability to use a device that is aspect independent is favorable during the calibration process. Rather than using a traditional, static calibration sphere, a dynamic, sphere-like device offers the ability to resemble breathing movements of the human body. This motion opens the door for numerous types of Doppler testing that is impossible in a static calibration device. Monostatic RCS simulations at 3 GHz are documented for each geometry. The results provide a visual way of representing the effectiveness of each design as a dynamic calibration target for human detection purposes.

  9. Discovery Of An Extensive Hydrothermal Sulfide/Sulfate Mounds Field In East Diamante Caldera, Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; de Ronde, C. E.; Ditchburn, R.; Leybourne, M. I.; Tamura, Y.; Stern, R. J.; Conrad, T. A.; Nichols, A. R.; Shukuno, H.; Embley, R. W.; Bloomer, S. H.; Ishizuka, O.; Hirahara, Y.; Senda, R.; Nunokawa, A.; Jordan, E.; Wada, I.

    2010-12-01

    An elongate field of hydrothermal mounds was discovered along the NE flank of a cluster of resurgent dacite domes in East Diamante Caldera using the ROV Hyper-Dolphin aboard the R.V. Natsushima in June 2009 and July 2010. East Diamante seamount lies about 80 km north of Saipan and is the northernmost volcano of the Southern Seamount Province of the Mariana magmatic arc. East Diamante is an irregular caldera about 10 km x 4 km that is breached on the north and south sides. The caldera floor has a maximum water depth of about 700 m. After caldera collapse, dacitic domes intruded into the center of the caldera providing the heat source for production and circulation of hydrothermal fluids that generated the large mounds field and two nearby chimney fields, one active and one inactive, found in 2004 during a NOAA Ring-of-Fire cruise. The mounds field is more than 100 m long and about 25-30 m wide and occurs along a NE-SW rift valley at water depths of about 365-400 m b.s.l. Individual hydrothermal mounds and ridges along this trend vary in size and the bases of the mounds are buried beneath hydrothermal sediment so that only minimum dimensions can be determined. Mounds are typically 1-3 m tall and 0.5-2 m wide, with lengths of about 3 to more than 5 m. The sulfide/sulfate mounds are layered and an iron- and manganese-oxide subsidiary mound venting low-temperature fluids caps some of them. Some mounds also support inactive sulfide/sulfate chimneys and spires; chimneys rarely occur as independent structures within the mounds field. The mounds are composed primarily of barite layers and sphalerite (high cadmium, low iron) plus galena layers with up to 470 ppm silver and 3 ppm gold. The subsidiary mounds are composed of 7A manganate and goethite that occur around a delicate network of 2-10 mm diameter anastomosing channels. Similar oxides cover the seabed throughout the mounds field and precipitated from diffuse fluid flow throughout the region, but formed by both diffuse

  10. Enigmatic mounds in 'Subglacial Meltwater Corridors' on the Canadian Shield: a record of channelised, subglacial meltwater drainage during Laurentide deglaciation

    NASA Astrophysics Data System (ADS)

    Haiblen, Anna; Ward, Brent; Normandeau, Philippe; Campbell, Janet

    2017-04-01

    Esker networks have traditionally been invoked to represent the channelised subglacial drainage system in shield terrains. However, eskers are only one landform found within 'subglacial meltwater corridors' (SMCs) on the Canadian Shield. SMCs are tracts where till has been eroded, bedrock is exposed, and glaciofluvial sediments have been deposited. SMCs are regularly spaced, parallel deglacial ice-flow directions, have undulating longitudinal profiles, and cross modern drainage divides. Our lidar- and field-based mapping near Lac de Gras, Northwest Territories, west of the Keewatin Ice Divide (KID), reveals that eskers are not present in the majority of SMCs. Instead, enigmatic mounds are commonly the dominant landform type. Enigmatic mounds typically occur in groups of 20 to 200. They are commonly composed of sandy diamicton that is coarser grained and better sorted than regional till. This diamicton is occasionally draped with well-sorted, stratified glaciofluvial sediments. Some enigmatic mounds have a single highpoint (individual mounds) while others have a complex, irregular form (complex mounds). Individual mounds have an average long-axis length of 43 m and an average height of < 2 m, however, their size is highly variable: the largest mounds are 170 m long and 15 m high. Complex mounds are typically larger than individual mounds. Our morphometric analysis shows that individual mounds have a mean length-to-width ratio of 1.8. The average mound elongation direction parallels the final ice flow that affected the area. However, where meltwater- and ice-flow directions differ, mound long-axis orientations typically cluster about meltwater flow directions. We have also observed SMCs and enigmatic mounds in the South Rae region of Northwest Territories, 450 km SE of Lac de Gras. Multiple types of enigmatic mounds are present in this area: some are similar to those near Lac de Gras, some are composed of till, and some are composed of sorted and stratified sediments

  11. Post-construction monitoring of a Core-Loc™ breakwater using tripod-based LiDAR

    USGS Publications Warehouse

    Podoski, Jessica H.; Bawden, Gerald W.; Bond, Sandra; Smith, Thomas D.; Foster, James

    2010-01-01

    The goal of the technology application described herein is to determine whether breakwater monitoring data collected using Tripod (or Terrestrial) Light Detection and Ranging (T-LiDAR) can give insight into processes such as how Core-Loc™ concrete armour units nest following construction, and in turn how settlement affects armour layer stability, concrete cap performance, and armour unit breakage.  A further objective is that this information can then be incorporated into the design of future projects using concrete armour units.  The results of this application of T-LiDAR, including the challenges encountered and the conclusions drawn regarding initial concrete armour unit movement will be presented in this paper.

  12. Meteoritic Metal Beads from the Havana, Illinois, Hopewell Mounds: A Source in Minnesota and Implications for Trade and Manufacture

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Marquardt, A. E.; Vicenzi, E. P.; Ash, R. D.; Wasson, J. T.

    2008-03-01

    Meteoritic metal beads from an Illinois Hopewell burial mound (~350 BCE) are pieces of the Anoka, Minnesota iron, which were worked in Ohio or Michigan and transported to Illinois as a finished product.

  13. Sources of Sulfate Found in Mounds and Lakes at the Lewis Cliffs Ice Tongue, Transantarctic

    NASA Technical Reports Server (NTRS)

    Socki, Richard; Sun, Tao; Harvey, Ralph P.; Bish, David L.; Tonui, Eric; Bao, Huiming; Niles, Paul B.

    2012-01-01

    Massive but highly localized Na-sulfate mounds (mirabilite, Na2SO4.10H2O) have been found at the terminal moraine of the Lewis Cliffs Ice Tongue (LCIT), Antarctica. (Sigma)34S and (Sigma)18O values of LCIT mirabilite range from +48.8 to +49.3% (CDT), and -16.6 to -17.1% (V-SMOW), respectively, while (Delta)17O average -0.37% (V-SMOW). LCIT mirabilite mounds are isotopically different from other mirabilite mounds found in coastal regions of Antarctica, which have isotope values close to seawater compositions. (Sigma)18O and (Delta)17O values suggest the incorporation of isotopically light glacial water. Data point to initial sulfate formation in an anoxic water body, either as a stratified anoxic deep lake on the surface, a sub-glacial water reservoir, or a sub-glacial lake. Several surface lakes of varying size are also present within this region of the LCIT, and in some cases are adjacent to the mirabilite mounds. O and D isotope compositions of surface lakes confirm they are derived from a mixture of glacial ice and snow that underwent moderate evaporation. (Sigma)18O and (Sigma)D (V-SMOW) values of snow, ice, and lake water range from -64.2 to -29.7%, and -456.0 to -231.7%, respectively. However, the isotope chemistry of these surface lakes is extremely different from the mounds. Dissolved SO4-2 (Sigma)34S and (Sigma)18O values range from +12.0 to +20.0% and -12.8 to -22.2% (the most negative (Sigma)18O of terrestrial sulfate ever reported), respectively, with sulfate (Delta)17O ranging from +0.93 to 2.24%. Ion chromatography data show that lake water is fresh to brackish in origin, with TDS less than 1500 ppm, and sulfate concentration less than 431 ppm. Isotope and chemical data suggest that these lakes are unlikely the source of the mirabilite mounds. We suggest that lake water sulfate is potentially composed of a mixture of atmospheric sulfate and minor components of sulfate of weathering origin, much like the sulfate in the polar plateau soils of the Mc

  14. Methane fluxes from the mound-building termite species of North Australian savannas

    NASA Astrophysics Data System (ADS)

    Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.

    2009-04-01

    Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to

  15. Genesis and fluid source in Arabia crater mounds: mapping, fractal analysis, and impact simulations

    NASA Astrophysics Data System (ADS)

    Pozzobon, R.; Mazzarini, F.; Rossi, A.; Lucchetti, A.; Pondrelli, M.; Marinangeli, L.; Martellato, E.; Cremonese, G.; Massironi, M.

    2013-12-01

    Arabia Terra is dominated by heavily cratered terrains, and some peculiar landforms can be found mostly in craters interior. With high-resolution images from HiRISE (25 cm/px) and CTX (6 m/px) cameras pitted cones, mounds and knobs can be easily recognized. Those mounds are interpreted to have worked as pathways for subsurface fluid. It is commonly hypothesized that Arabia Terra is an area of past fluid activity, being crater central bulges a place of sulfate precipitation. In this work we investigate the presence, origin and timing of their formation as well as the the depth of the mounds fluid source. The spatial distribution of monogenic eruptive structures within volcanic areas on Earth has been linked to fracture systems that allowed an efficient hydraulic connection between surface and crustal or subcrustal magma reservoirs. Self-similarity in vent distribution is described by a power law distribution with fractal exponent D and defined over a range of lengths comprised between a lower limit (lower cutoff, Lco) and an upper limit (upper cutoff, Uco). On Earth, volcanic vents as well as mud volcanoes have shown that the Uco of their fractal distribution scales with the depth of pressurized fluid reservoirs. The same approach has been this applied to mounds mapped at Firsoff and Crommelin craters. 431 mounds were mapped on Firsoff Crater's floor, and 160 on Crommelin Crater's floor. The reslulting Uco for both craters are similar giving a source depth of 2.3 ×0.3 km from Firsoff Crater's ground floor and 2.6 ×0.5 km from Crommelin's floor. Hence it is possible to hypothesize a common regional-scale pressurized fluid level at 2.5 km of depth from craters floor. Morphogic and stratigraphical analyses of the high-resolution imagery and topography of those mounds allowed us to discern from actual mud volcano candidates and stratigraphic erosional remnants. We also studied the craters formation by simulating the impact with the hydrocode. We used iSALE shock code

  16. Corrosion of copper in Mound's single-pass potable water systems

    SciTech Connect

    Schleitweiler, P.M.; Miller, P.S.

    1990-12-07

    An increase in the number of copper plumbing failures at Mound prompted a thorough analysis of the failed components. Most of the components were elbow joints. All of these parts exhibited the same type of accelerated deterioration. The failed parts were analyzed optically and by scanning electron microscopy. Water chemistry, solder, and soldering fluxes were evaluated to determine their possible roles in the accelerated attack. Cross-sectioning of the elbow joints revealed residual soldering flux and cutting burrs on the inside of the elbows. Water analysis showed Mound's water was rated as corrosive. Recommendations for improved workmanship and design are presented. Testing of potable water at a regular basis was also recommended. 8 refs., 10 figs., 3 tabs.

  17. Island-dynamics model for mound formation: effect of a step-edge barrier.

    PubMed

    Papac, Joe; Margetis, Dionisios; Gibou, Frederic; Ratsch, Christian

    2014-08-01

    We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.

  18. A terrestrial weathering and wind abrasion analog for mound and moat morphology of Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Chan, Marjorie A.; Netoff, Dennis I.

    2017-05-01

    A striking feature of Gale crater is the 5.5 km high, central layered mound called Mount Sharp (Aeolis Mons)—the major exploration target for the Mars Science Laboratory rover, Curiosity. Within the 154 km diameter crater, low plains (Aeolis Palous) resemble a moat surrounding Mount Sharp. There is a similar terrestrial analog in the Jurassic Navajo Sandstone of southern Utah, USA, where a distinctive weathering pit 60 m wide by 20 m deep contains a central pillar/mound and moat. Strong regional and local winds are funneled to amplify their velocity and produce a Venturi effect that sculpts the pit via wind abrasion. Although the Navajo pit is orders of magnitude smaller than Gale crater, both show comparable morphologies accompanied by erosional wind features. The terrestrial example shows the impact of weathering and the ability of strong winds and vortices to shape lithified sedimentary rock over long periods of time.

  19. Geometry-Lithology-Origin: Solving the mystery of the Late Miocene mounded features below Lake Balaton

    NASA Astrophysics Data System (ADS)

    Visnovitz, Ferenc; Horváth, Ferenc; Surányi, Gergely

    2014-05-01

    The Department of Geophysics and Space Sciences of Eötvös University has carried out single- and multichannel water seismic surveys at the Lake Balaton since 1993. The dense grid of 2D profiles offers a high resolution image of the Late Miocene sedimentary strata (Tihany, Somló and Szák Formations) up to a thickness of 200 meters below the lake. These strata can be divided into smaller sedimentary units by numerous parasequence boundaries (Sztanó&Magyar, 2007). In one of these parasequence interesting, high amplitude mounded features have been observed that follow a seismic horizon over large area. It means that these features indicate a Late Miocene regional event. In terms of their shape these mounds are few tens of meters wide, several tens to a hundreds of meters long and few meters high. Their geometry and inner structure were mapped from 2D segments that were used for 3D reconstructions. The shape and stratigraphic position of these features have inspired Sacchi and Horvath (1999) to interpret them as the subsurface equivalent of the fresh-water siliceous-limestone mounds exposed on the Tihany Peninsula. They held these mounds as an evidence of dryland conditions in the time period of the formation of a Late Miocene erosional surface (PAN-2) that they regarded as a 3rd order sequence boundary. In addition to this so called "travertine" concept another explanation was also formulated as the mounds are the product of sedimentary failures e.g. slumps or water escape. To solve the problem an offshore drilling with a total depth of 19 meters was accomplished in October 2013 to sample one of these mounds and determine their origin. The well has not crossed any travertine body, instead alternating layers of clay-silt and very fine sand - without any convincing sign of fluid escape structures - were found in the core (typical lithology of the Tihany Formation). 3D structural analysis of the mounds revealed spherical organization composing bodies that are

  20. Comparison testing of a mound calorimeter and a Savannah River Site calorimeter

    SciTech Connect

    ReFalo, L.A.; Foster, L.A.

    1995-11-01

    This paper describes the paired comparison testing of a Savannah River Site (SRS) calorimeter and a Mound calorimeter. Prior to this test, no offsite testing had been performed on an SRS calorimeter. The testing was performed at the Plutonium Facility of Los Alamos National Laboratory (LANL). The SRS calorimeter was designed, fabricated and delivered to LANL. The Mound calorimeter chosen for comparison was similar in well dimensions and located in the same room as the SRS calorimeter. There were three series of tests performed. First, twenty radiometric standard measurements were completed using two different standards. The second series of tests were dedicated to heat distribution measurements and the third series focused on measuring typical process samples.

  1. Cold-water coral growth and mound formation on the Pen Duick Escarpment, Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Mienis, Furu; de Stigter, Henko C.; de Haas, Henk; Groot, Diane; Frank, Norbert; van Weering, Tjeerd C. E.

    2010-05-01

    Abundant skeletal remains of cold-water corals in sediments around the Pen Duick Escarpment, southern Gulf of Cadiz, suggest that corals thrived in the area in a relatively recent past. Cold-water coral carbonate mounds with heights of up to 60 m are found at about 550 m water depth on the edge of an elevation delimited by the Pen Duick Escarpment. Coral debris is abundantly present in the sediment on the carbonate mounds as well as on the escarpment, with Lophelia pertusa and Madrepora oculata as most common species. However, living coral is rare, and a mud drape of a few cm to tens of cm thick is usually found covering the coral-bearing sediment. On and off mound sediment cores are presently investigated in detail to determine the timing of the decline of cold-water coral communities on the Pen Duick Escarpment. Planktonic foraminifera oxygen isotope stratigraphy and U/Th datings of coral debris from the on mound core show that the main framework building cold-water corals Lophelia pertusa and Madrepora oculata were present on the mound during glacial periods (Marine Isotope Stage 2, 6 and 8) and the early Holocene, but absent during the late Holocene. During glacial periods a dense framework of cold-water corals existed and sedimentation rates were high. Both on and off mound cores show low magnetic susceptibility values until marine isotope stage 3, after which values are increasing. A large hiatus is found between 36 and 141 kyr. Our finding that cold-water corals on Pen Duick escarpment occurred mostly during glacial times contrasts with that of cold-water corals on the Rockall Trough margins and in the Porcupine Seabight, where they seem to have mainly lived during interglacials. The reason for the late Holocene decline of cold-water corals on Pen Duick escarpment is still a matter of speculation. Observations made with CTD and long-term deployment of benthic landers indicate activity of internal waves in the area with semi-diurnal periodicity, inducing

  2. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Paull, C.K.; Normark, W.R.; Ussler, W.; Caress, D.W.; Keaten, R.

    2008-01-01

    Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (??? 800??m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10??m high and > 100??m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20??m high and 1 to 3??km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds. ?? 2008 Elsevier B.V. All rights reserved.

  3. [Microsite characteristics of pit and mound and their effects on the vegetation regeneration in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Du, Shan; Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Wei, Quan-Shuai; Li, Meng; Wang, Li-dong

    2013-03-01

    Abstract: An investigation was conducted in a 2.55 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study the microsite characteristics of pit and mound formed by 42 treefalls and the status of vegetation regeneration on the microsites. The soil water content, soil temperature, relative air humidity, and photosynthetically active radiation (PAR) on five microsites (mound top, mound face, pit wall, pit bottom, and intact forest floor) were measured. Among the five mirosites, mound top had the highest PAR (527.9 micromol.m-2.s-1 ) while intact forest floor had the lowest one (58.7 micromol.m-2.s-), mound top had the highest soil temperature (16.0 degrees C) but pit bottom had the lowest one (13.3 degrees C), pit bottom had the highest soil water content (34.6%) but mound face had the lowest one (0.5%), and intact forest floor had the highest relative air humidity (75.9%) but mound top had the lowest one (68.0%). The frequency of forming pit/ mound complex by the tree species was decreased in the order of Pinus koraiensis (42. 9%) >Picea asperata (31.0%) > Betula platyphylla (16.7%) > Abies fabri (7. 1%) > Prunus padus (2.4%). Among the 42 treefalls, two-thirds of them were in northwest direction. The treefalls volume had significant positive correlations with pit depth, pit length, mound height, and mound width, but negative correlation with mound thickness. The treefall mean diameter at breast height had significant positive correlations with pit width (r=0.328, P=0.017) and pit length (r=0.527, P= 0). The tree species richness at the microsites decreased in the order of intact forest floor > pit > mound, and the tree species coverage was in the sequence of intact forest floor > pit > mound.

  4. A Terrestrial Wind Erosion Analog for Mound and Moat Morphology of Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Netoff, D. I.

    2016-12-01

    A striking feature of Gale crater is the 5.5 km high, layered mound called Mount Sharp- the major exploration target for the Mars Science Laboratory rover, Curiosity. Within the 154 km diameter crater, low plains (e.g. Aeolis Palus) resemble a moat surrounding Mount Sharp. Current studies debate whether sedimentary layers completely filled the crater, as well as how the units were sculpted to their current morphology. Areas of southern Utah are favorable for terrestrial comparisons to Mars due to the exceptional exposure and lack of vegetation in the desert climate. Here, water is key in shaping large geomorphic features, but wind is also an effective sculptor of the landscape. In Grand Staircase Escalante National Monument, a distinctive weathering pit with a central mound and moat occurs in bleached eolian facies of the Jurassic Navajo Sandstone. This pit is 60 m wide by 20 m deep and was informally dubbed "inselberg pit", although it has recently gained notoriety under the name of "cosmic navel" or "cosmic ashtray". Inside the pit, loose dune sand shifts periodically and seasonally across the pit floor and up against the walls. Eolian abrasion features of cm to m scales include: grooves, flutes, and erosional-shaped fingers or stalks topped with concretions. Strong regional and local winds are funneled to amplify their velocity and produce a venturi effect that sculpts the pit via wind abrasion, creating an internal mound and moat morphology. Although the Navajo pit is significantly smaller than Gale crater on Mars by several orders of magnitude, both show comparable mound and moat morphologies accompanied by erosional wind features. In Gale crater, evidence for wind erosion includes yardangs, dunes, and wind streaks. The natural Navajo analogy suggests that strong, dynamic, focused winds on Mars could be capable of carving deeply into sedimentary layers over long periods of time to generate Mount Sharp, surrounded by low, eroded plains within Gale crater.

  5. Dredging Operations Technical Support Program. Methodology for Analysis of Subaqueous Sediment Mounds

    DTIC Science & Technology

    1990-02-01

    development of procedures to analyze disposal site capacity based upon physical, chemical, and biological considerations. - p - A methodology of...ANALYSIS 46. A systematic procedure to analyze the behavior of subaqueous dredged material mounds was developed as a part of this investigation. For this...asso- ciated with dredged material disposal. By including all aspects, this proce- dure provides the necessary framework for successfully analyzing the

  6. Bug Hill: Excavation of a Multicomponent Midden Mound in the Jackfork Valley, Pushmataha County, Southeast Oklahoma.

    DTIC Science & Technology

    1983-11-25

    brief historic occupation dating to the late nineteenth century was also found,• The research conducted at Bug Hill altered our understanding of...Soils, Aquic Hapludalfs.....................20 Population A Soils, Cumulic ( Anthropic ) Hapludalf a 20 Population B Soils, Hollic Hapludalfs...mound (Number 11) and presumably represents a normal non- anthropic terrace soil. Several additional "normal" terrace soils were examined in natural

  7. Brief communication: Conjoined twins at angel mounds? an ancient DNA perspective.

    PubMed

    Marshall, Charla; Tench, Patricia A; Cook, Della Collins; Kaestle, Frederika A

    2011-09-01

    Conjoined twins are born when a single fertilized egg partially splits into two fetuses. A hypothetical case of infant conjoined twins from Angel Mounds, a Middle Mississippian site (A.D. 1050-1400) on the Ohio River near Evansville, Indiana, was discovered in 1941. Morphological analysis does not rule out the field interpretation of this double burial as twins. Ancient mitochondrial DNA recovered from both infants demonstrates that they were not maternal relatives, and hence that they cannot have been conjoined twins.

  8. The importance of the permanent thermocline to the cold water coral carbonate mound distribution in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    White, Martin; Dorschel, Boris

    2010-08-01

    A prominent feature of the NW European continental slope is the presence of numerous cold water coral carbonate mounds that are clustered in a number of provinces. These provinces occupy a relatively narrow depth range along the continental slope: 95% of all coral carbonate mounds identified on the Irish seabed have their mound bases between 500 and 1000 m water depths, with a peak in distribution at ˜ 650 m water depth. The distribution in mound base depths is skewed with a tail extending from the maximum at 650 m to deeper depths. This distribution brackets the depth of the permanent thermocline in the NE Atlantic (600-1000 m) formed below the base of the winter mixed layer. It is shown that the permanent thermocline is associated with the strongest residual near seabed current flow, with typical residual current speeds up to 2-3 times larger at the thermocline depth compared to other depths. The strong vertical density gradient associated with the permanent thermocline, together with the steep continental slope at those depths, also enhances the energy of certain periodic motions such as internal waves and baroclinic tidal currents. These dynamic conditions favour mound growth through the promotion of significant along-slope sediment transport and also provide large across-slope sediment movement and organic matter fluxes. The stability of the thermocline structure is likely the key in providing favourable conditions over long time scales that allow mound growth through sediment baffling processes.

  9. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    PubMed Central

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  10. Do epigeal termite mounds increase the diversity of plant habitats in a tropical rain forest in peninsular Malaysia?

    PubMed

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation.

  11. Effects of Erosion from Mounds of Different Termite Genera on Distinct Functional Grassland Types in an African Savannah.

    PubMed

    Gosling, Cleo M; Cromsigt, Joris P G M; Mpanza, Nokukhanya; Olff, Han

    A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites can contribute to grazing lawn development is through erosion of soil from aboveground mounds to the surrounding soil surface. This may alter the nutrient status of the surrounding soils. We hypothesize that the importance of this erosion varies with termite genera, depending on feeding strategy and mound type. To test this, we simulated erosion by applying mound soil from three termite genera (Macrotermes, Odontotermes, and Trinervitermes) in both a field experiment and a greenhouse experiment. In the greenhouse experiment, we found soils with the highest macro nutrient levels (formed by Trinervitermes) promoted the quality and biomass of both a lawn (Digitaria longiflora) and a bunch (Sporobolus pyramidalis) grass species. In the field we found that soils with the highest micro nutrient levels (formed by Macrotermes) showed the largest increase in cover of grazing lawn species. By linking the different nutrient availability of the mounds to the development of different grassland states, we conclude that the presence of termite mounds influences grassland mosaics, but that the type of mound plays a crucial role in determining the nature of the effects.

  12. Sediment dynamics of a sandy contourite: the sedimentary context of the Darwin cold-water coral mounds, Northern Rockall Trough

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A. I.; Masson, D. G.; Wheeler, A. J.

    2009-06-01

    Grainsize, mineralogy and current-meter data from the Northern Rockall Trough are presented in order to characterise the sandy contourite that forms the sedimentary environment of the Darwin cold-water coral mounds, and to investigate the impact of this environment on the mound build-up. Large clusters of small cold-water coral mounds, 75 m across and 5 m high, have been found southwest of the Wyville Thomson Ridge, at 900-1,100 m water depth. Their present-day sedimentary environment consists of a subtly sorted sandy contourite, elongated NE-SW, roughly parallel to the contours. Critical erosional and depositional current speeds were calculated, and trends in both the quartz/feldspar and foraminifera fractions of the sands show a bi-directional fining from bedload/erosion-dominated sands in the NE to suspension/deposition-dominated sediments in the SW and towards the S (downslope). This is caused by a gradual reduction in governing current speed, linked to a reduction in slope gradient, and by the increasing distance from the current core in the downslope direction. No specific characteristics were found distinguishing the mound sediments from the surrounding sands: they fit in the overall spatial pattern. Some mound cores show hints of a fining-upward trend. Overall the mound build-up process is interpreted as a result of sediment baffling.

  13. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    SciTech Connect

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

  14. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  15. Carbonate cementation by cold marine waters: evidence from carbonate mounds at the NE Atlantic margin.

    NASA Astrophysics Data System (ADS)

    Taberner, C.; Richter, T. O.; van Weering, T. C. E.; Vonhof, H. B.; Stadnitskaya, A.

    2003-04-01

    Cementation of marine carbonate sediments by marine waters is well known to occur either in shallow tropical to temperate carbonate platforms, or during burial from modified interstitial brines. Cementation by cold marine waters is traditionally ruled out for both recent and fossil carbonates. We present petrographic and stable isotope (δ18O, δ13C) results on well-cemented carbonates from cold-water carbonate mounds at the SW and SE Rockall Margin (700--800m water depth). Calcite micritic cements, as well as concentrically zoned microspar filling cavities (e.g. foraminifera), have been recognised in dredged hardground samples and carbonate concretions from sediment cores. Microsampled cements have δ13C and δ18O values (respectively ≈+3.5 ppm PDB and ≈+5 ppm PDB) that appear to be in equilibrium with glacial intermediate waters, more than with present-day Atlantic waters at those depths. Cementation during glacial intervals is also indicated by AMS 14C ages of well-cemented deep-water carbonate rocks (hardgrounds) of 25--29ka, thus bracketing the marine isotope stage 3/2 boundary. These data provide evidence for carbonate cementation by cold marine waters and have implications for the paleoceanographic interpretation of deep-water carbonate mounds. Additionally, these results provide new insights for the re-evaluation of the depth of deposition of carbonate mounds from the geological record.

  16. The P450 oxidoreductase, RedA, controls development beyond the mound stage in Dictyostelium discoideum.

    PubMed

    Gonzalez-Kristeller, Daniela C; Farage, Layla; Fiorini, Leonardo C; Loomis, William F; da Silva, Aline M

    2008-01-24

    NADPH-cytochrome-P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect. Annotation of the sequenced genome of D. discoideum revealed the presence of three genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein family. redA transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. redB transcripts are present in the same levels during growth and development while redC expression was detected only in vegetative growing cells. We isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling. The developmental arrest due to disruption of redA implicates CPR in the metabolism of compounds that control cell differentiation.

  17. Subsurface methane sources and migration pathways within a gas hydrate mound system, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel M.; Macelloni, Leonardo; Simonetti, Antonello; Lapham, Laura; Lutken, Carol; Sleeper, Ken; D'Emidio, Marco; Pizzi, Marco; Knapp, James; Chanton, Jeff

    2014-01-01

    Geochemical profiles were coupled with seismic information to examine subsurface hydrocarbon source, migration, and fate at a Gulf of Mexico carbonate-gas hydrate mound (Woolsey Mound). Three seafloor features were investigated in detail: (1) major faults resulting from a rising salt body, (2) an acoustic backscatter anomaly, and (3) a pockmark associated with a major fault. We analyzed sulfate, chloride, dissolved inorganic carbon, and hydrocarbon concentrations, and carbon isotopes in pore water extracted from 20 m piston cores to characterize gas source and calculate methane flux. Dissolved biogenic methane dominated the off-fault sites, while the contribution of thermogenic methane increased near a major fault where thermogenic gas hydrates were recovered. Within the pockmark, methane concentrations were low and isotopes indicated a biogenic source. Since pockmarks are typically formed from expulsive fluid flow, this suggests that either the pockmark is the legacy of a conduit that has become plugged or that the expulsed fluid is confined within the fault walls. At the acoustic anomaly, nonsteady state sulfate profiles suggested temporal variability in methane flux. Estimates from >75 gravity cores collected across Woolsey Mound since 2002 were mapped to display the spatial variability in methane flux relative to the faults. Methane flux to the seafloor was generally low, but increased several fold near the faults suggesting that the faults may provide conduits for hydrocarbons to bypass the "microbial biofilter" and cross the sediment water interface.

  18. The Nest Growth of the Neotropical Mound-Building Termite, Cornitermes cumulans: A Micromorphological Analysis

    PubMed Central

    Cosarinsky, Marcela I.

    2011-01-01

    The nests of Cornitermes cumulans K. (Isoptera: Termitidae), a very common termite in South American grasslands, display notable morphological transformations during the development of the colony. Young colonies inhabit small subterranean nests that develop into large, conspicuous, epigean mounds, inhabited by very populous colonies. Those macromorphological transformations are accompanied by micromorphological changes occurring gradually in the nest walls. The micromorphological changes during nest development described in the present study expand on previous macromorphological descriptions by explaining the re-organization of the soil components during nest growth. In subterranean nests, walls are composed of piles of lensshaped aggregates of soil material, each one surrounded by a thin organic coating. As the nest grows, mound walls are constructed by disassembling this first lenticular structure and rearranging the materials in a new fabric, where sand grains are loosely distributed among soil microaggregates of organic matter and clay. This is also a temporary construction, because the walls of large nests are composed of a porous mass of sands densely cemented with organic matter and clay in the mound, and a compact mass of the same components in the floor. PMID:22224433

  19. Slope Stability Estimation of the Kościuszko Mound in Cracow

    NASA Astrophysics Data System (ADS)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  20. Chemistry and mineralogy of samples from the strategic petroleum reserve Bryan Mound site

    SciTech Connect

    Bild, R. W.

    1980-08-01

    The goal of the Strategic Petroleum Reserve (SPR) program is to protect the United States from a temporary cutoff of imported crude oil by stockpiling a reserve of oil in caverns in Gulf Coast salt domes. Some suitable caverns already exist as a result of solution mining activities by commercial mining companies. Most of the caverns for the program, however, will be solution mined specifically for the SPR program. The tasks assigned to Sandia National Laboratories include conducting a geotechnical program and providing interim technical support for the leaching of the first five caverns in the Bryan Mound, Texas, salt dome. This report describes chemical, mineralogical and petrological work done at Sandia as of May 1, 1980 in support of Bryan Mound activities. Samples of Bryan Mound salt cores, sidewall samples and drill cuttings have been subjected to chemical, mineralogical and petrographic analysis. Halite (NaCl) was the major mineral in all samples with anhydrite (CaSO/sub 4/) a common accessory. Minor or trace sylvite (KCl) and quartz (SiO/sub 2/) were detected in some sidewall samples. Other minor minerals found in drill cuttings included quartz; mixed carbonates of Fe, Ca and Mg; and several iron oxides. Possibly the carbonates are reaction products with the basic drilling mud or possibly pieces of caprock which contaminated the cuttings. The iron oxides were probably produced by corrosion of the drill stem or bit. Densities of several core samples were determined and insoluble residue was counted for radioactivity.

  1. Record of Decision Remedial Alternative Selection for the D-Area Burning/Rubble Pits (431-D and 431-1D)

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1997-02-01

    The D-Area Burning/Rubble Pits (DBRP) (431-D and 431-1D) Waste Unit is listed as a Resource Conservation and Recovery Act (RCRA) 3004(U) Solid Waste Management Unit/Comprehensive Environmental Response Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). This decision document presents the selected remedial alternative for the DBRP located at the SRS in Aiken, South Carolina.

  2. Carbonate mound evolution and coral diagenesis viewed by U-series dating of deep water corals

    NASA Astrophysics Data System (ADS)

    Frank, N.; Ricard, E.; Blamart, D.; van der Land, C.; Colin, C.; Foubert, A.; van Rooij, D.; van Weering, T.

    2007-12-01

    U-series dating of constructional deep sea corals is a powerful tool to reconstruct the evolution of carbonate mound sediments driven by coral growth, sediment trapping and diagenesis. Here we have investigated in great detail the time framework of constructional corals such as L. pertusa and M. oculata on 5 different mounds of the eastern North Atlantic (on Rockall Bank and in Porcupine Seabight) taken at variable depth and location (610 to 880m water depth). Periods favorable for coral growth are the Holocene and prior interglacials such as marine isotope stage 5 and 7, while glacial coral growth seems inhibited or extremely reduced. Coral development is almost continuous throughout the Holocene since mound re-colonization about 10,500 years ago. Mound accumulation rates vary between 20 and 220 cm/kyr determined from the coral age - depth relationship in each core. Those changes are most likely driven by changes between horizontal and vertical mound accumulation, food supply and ocean circulation. In addition, coral dating allowed to identify an important erosional event recorded in core MD01-2455G from Rockall Bank. Here a 1m thick sediment layer containing ancient corals likely from the start of Holocene re-colonization was displaced (collapsed) from further upslope on top of younger corals of ~2500 to 3000 years age. Prior to the initiation of coral growth diagenesis occurred frequently resulting in (1) the construction of so called carbonate hardgrounds and/or (2) the dissolution of the pre-Holocene coral framework. Solely, the deepest selected core in Porcupine Seabight (MD01-2463G at 880m depth) reveals coral re-colonization on an undisturbed ancient reef structure that dates back to 250,000 years. Diagenesis of earlier coral reef generations leading to coral dissolution leads to a loss of magnetic susceptibility and open system behavior of the coral skeletons with respect to U-series dating. While the processes causing such diagenetic layers are barely

  3. Pleistocene periglacial cryogenic mounds (lithalsas) on basalt plateaus in the western Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Sebe, Krisztina; Csillag, Gábor

    2015-04-01

    On some basalt plateaus of the western Pannonian Basin, Hungary, fields of circular depressions occur. They are traditionally called "basalt karst' and their formation has been attributed either to collapse over karstifying rocks or to anthropogenic action (quarrying); however, both of these theories are questionable. The depressions are situated between elevations of 350-500 m a.s.l. and are characteristically surrounded by circular raised rims or ramparts. They measure a few m-s (up to ~10 m) in diameter, the ramparts emerge 0.5-1.5 m above the surrounding level ground and encircle a depression of 1-2 (-3) m deep in the middle. Depressions cluster in well delineated, high-density groups, with individual fields containing several dozens of these forms. Neighbouring ramparts are tightly packed, often interfere and depressions can thus coalesce creating composite forms. The ramparts are composed of coarse (dm-sized) basalt blocks, whose material is identical to that of the surrounding terrain and seems to originate from the depression. Many of the depressions host ephemeral ponds. Raised rims exclude formation of these landforms by any karstic processes. The anthropogenic theory is opposed by the lack of the remains of any facilities (e.g. roads), of tools and by the very illogical distribution and geometry of depressions from the point of human use. On the contrary, we interpret these ramparted depressions as being of periglacial origin, remnants of cryogenic mounds. The central depression and the emergent rampart can be well explained by the ice core raising the overlying rock and by the radial downsliding of this material on the ice core to the margins. Within cryogenic mounds, clustering and size of the forms fits the characteristics of perennial frost mound without peat cover, i.e. lithalsas or minerogenic palsas. Cryogenic mounds are important paleoclimatic indicators. Based on modern analogs, these lithalsa scars indicate the former presence of discontinuous

  4. Amplitude vs. Offset Effects on Gas Hydrates at Woolsey Mound, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, Walter R., Jr.

    Due to the estimated massive quantities of natural methane hydrates, they represent one of the largest sources of future alternative energy on Earth. Methane hydrates have been found in the shallow sub-seafloor of the Northern Gulf of Mexico where the water depth is in excess of ~900 m. Mississippi Canyon Block 118 has been chosen by the Gulf of Mexico Hydrates Research Consortium to be the site of a multi-sensor, multi-discipline sea-floor observatory for gas hydrate research. First evidence for gas hydrates at MC 118 was observed at Woolsey Mound. Subsurface evidence for gas hydrates has subsequently been substantiated by 3D seismic reflection data and piston coring. It is estimated that methane trapped within gas hydrates worldwide may exceed 1016 kg, one of the largest sources of hydrocarbons to date, and here they present an opportunity for exploitation via harvesting for energy production. The analysis of the 3-D seismic reflection data and integration with industry well logs reveals the subsurface structural and stratigraphic architecture of a thermogenic hydrate system in the Mississippi Canyon area (MC-118) of the Gulf of Mexico. Like many hydrocarbon systems in the Gulf of Mexico, Woolsey Mound is dominated by the presence and sporadic movement of allochthonous salt within the sedimentary section. Exploration-scale 3-D seismic imaging shows a network of faults connecting the mound to a salt diapir and an extended area of high P-wave velocity just beneath the sea floor. Gas hydrates exhibit clear seismic properties such as the bottom simulating reflector (BSR), relatively high P- and S- wave velocities, seismic blanking, and amplitude vs. offset (AVO) effects. These effects occur mainly due to the presence of free gas that is usually trapped by the more rigid overlying hydrate formations. In order to substantiate the presence of hydrates in the shallow subsurface at Woolsey Mound, an AVO analysis based on the variation of the P-wave reflection coefficient

  5. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  6. Geoarchaeological approaches to understanding human-environment interactions in Australia's tropical north: the Weipa shell mounds revisited.

    NASA Astrophysics Data System (ADS)

    Fanning, P. C.; Holdaway, S. J.; Shiner, J.; Petchey, F.

    2012-04-01

    Western Cape York Peninsula, particularly the Weipa region, has seen sustained archaeological investigation since the 1960s. These studies primarily concentrated on the shell mounds associated with coastal environments first observed at the beginning of the 20th century. Despite claims that the shell mounds were of natural origin, archaeological investigations convincingly demonstrated that they are primarily cultural deposits. Geomorphological studies indicate that chenier (beach ridge) formation occurred after sea-level stabilisation in the mid- to late Holocene, and is connected to the formation of estuaries at the mouths of the Mission, Pine, Hey and Embley Rivers. Anadara shell bed formation is in turn connected with the evolution of the estuaries. However, the relationship between shell mound age and location relative to the coastline at Weipa is neither well defined, nor tested at multiple locations. Given that the coast is susceptible to the effects of sea-level fluctuations and environmental change, and the Anadara beds can become depleted as a result of environmental shifts, the shell mounds provide a datable record of human reaction to coastal landscape and environmental change. Here, we report preliminary results of a new investigation of the shell mounds of the Weipa region. Radiocarbon and OSL-based age determinations from samples of shell, charcoal and sediment collected from trenches excavated into shell mounds on the northern shore of the Embley River indicate a relationship between the time of initial accumulation of shell and the age of the landform features upon which they were built, which in turn are a result of coastline evolution during the mid to late Holocene. These mounds are the oldest yet recorded for the Weipa region, with accumulation in one case commencing around 3500 cal BP. Accumulation appears to be more or less continuous, and abruptly ceases after 400-650 yrs. We discuss implications for understanding human

  7. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    PubMed Central

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G.; Chan, Marjorie A.; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet (“island”) stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on

  8. A New Approach to Testing the Fossorial Rodent Hypothesis of Mima Mound Formation Using Airborne-Based LIDAR and a Diffusive Sediment Transport Model

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Amundson, R.

    2007-12-01

    Mima mounds are nearly circular soil mounds, found in grassland landscapes. In California, Mima mounds are often associated with vernal pools, seasonal wetlands that harbor rare and endemic plants and animals. The processes that form and maintain the mound-pool complexes have not yet been conclusively identified, even though such information is necessary to understand the effects that land use and climate change may have on the resilience and longevity of these landscapes. One hypothesis for the origin and persistence of Mima mound- vernal pool systems (termed the Fossorial Rodent Hypothesis) proposes that burrowing organisms such as pocket gophers (Rodentia: Geomyidae) maintain and possibly create the mounds by preferentially translocating soils towards mound centers as an adaptive response to high water tables. In order to investigate this hypothesis, the topographic characteristics and aboveground gopher activity of one of the largest remaining Mima mound-vernal pool systems in California were studied. Detailed topographic information for the mound-pool systems was obtained via an airborne-based LIDAR (Light Detection and Ranging) survey of a 25km2 region near Merced, CA. An object-oriented classification scheme, which combined different scale, shape, and spectral parameters, was employed in order to characterize the mounds. Based on the initial classification results, roughly 275,000 mounds were identified, indicating a mound density of 11,000km-2. Within the larger study area, gopher sediment transport was monitored on a 3507m2 site by conducting periodic surveys of sediment mounds created by gopher activity using a Global Positioning System and mass measurements. Downslope erosion rates (off Mima mounds) were estimated using a mass balance model which incorporates a diffusive sediment transport law. The median calculated net downslope erosion rate was 15 cm of soil per 1000 years, while the measured rate of aboveground gopher sediment movement was

  9. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    PubMed

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-08-28

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars

  10. Stratigraphy and petrology of petroleum-producing Waulsortian-type carbonate mounds in Fort Payne formation (Lower Mississippian) of north-central Tennessee

    SciTech Connect

    MacQuown, W.C.; Perkins, J.H.

    1982-08-01

    The petroleum-producing subsurface mounds of the Fort Payne Formation (Lower Mississippian) in north-central Tennessee represent a facies that is generally absent or poorly developed in surface sections to the west, near the Cincinnati arch, and to the east, in the Appalachian fold belt. The cross section and isopach maps of the Fort Payne mound unit and submound unit, and a structural map of the underlying Chattanooga Shale provide evidence for predicting undiscovered mounds by interpolating and extrapolating along several northeast-southwest mound trends. Interpretations are based on subsurface data, and they are reinforced by a comparison with the analogous Waulsortian mounds and lenses of the same age in Europe. Waulsortian-type mounds are widespread on the surface of western Europe and North America. However, differences in morphology, porosity development, and the emplacement of petroleum in Fort Payne mounds are related to local paleogeography in a shallow cratonic-shelf sea subjected to cyclic regression and transgression due to regional tectono-eustatic events. Fort Payne mounds produced more than 5.5 million bbl of oil through 1980. Although the source beds have not been identified, petroleum may have been derived from the submound or mound units of the Fort Payne Formation, or from the underlying Chattanooga Shale.

  11. Early Pleistocene short-term intermediate water mass variability influences Carbonate Mound development in the NE Atlantic (IODP Site 1317)

    NASA Astrophysics Data System (ADS)

    Raddatz, J.; Rüggeberg, A.; Margreth, S.; Liebetrau, V.; Dullo, W.; Eisenhauer, A.; Iodp Expedition 307 Scientific Party

    2010-12-01

    The Integrated Ocean Drilling Program (IODP) Exp. 307 drilled the 155 m high Challenger Mound in the Porcupine Seabight (SW off Ireland) in order to investigate for the first time sediments from the base of a giant carbonate mound. In this study we focus on sediments from the base of Challenger Mound (Porcupine Seabight, SW off Ireland) IODP Site 1317 in high resolution. The mound initiation and start-up phase coincides with the intensification of the Northern Hemisphere Glaciation (INHG) at around 2.6 Ma. Further carbonate mound development seems to be strongly dependent on rapid changes in paleoceanographic and climatic conditions at the Pliocene-Pleistocene boundary, especially characterized and caused by the interaction of intermediate water masses, the Mediterranean Outflow Water (MOW), the Eastern North Atlantic Water (ENAW) and the influence of Southern Component Water (SCW). This study is based on well-established proxies such as δ18O and δ13C of planktonic (Globigerina bulloides) and benthic foraminifera (Fontbotia wuellerstorfi, Discanomalina coronata, Lobatula lobatula, Lobatula antarctica, and Planulina ariminensis) as well as grain size parameters to identify the paleoenvironmental and paleoecological setting favourable for the initial coral colonization on the mound. Stable oxygen and carbon isotope records of benthic foraminiferal species indicate that L. lobatula provides a reliable isotopic signature for paleoenvironmental reconstructions. In particular, δ18O values of L. lobatula indicate initial mound growth started in a glacial mode with moderate excursions in δ18O values. Bottom water temperatures, calculated using standard equations based on δ18O of foraminiferal tests, range between 7 and 11°C, consistent with the known temperature range conducive for cold-water coral growth and development. Bottom currents transporting intermediate water masses of southern origin (Mediterranean, Bay of Biscay) enhanced at 2.6 Ma supporting first coral

  12. Cryogenesis study of a pingo-like mound in the Akkol valley of the Russian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Fukui, K.; Fujii, Y.; Ostanin, O.; Mikhailov, N.

    2008-12-01

    Vertical outcrop of a pingo-like mound found in the Akkol valley of the Russian Altai Mountains is described. Several pingo-like mounds were found on the valley floor at about 2300 m ASL. They are 5 - 10 m high and up to 50 m in diameter. Part of a 5 m mound had collapsed into adjacent pond with continuous water supply from streams on the mountain ridge nearby and top 4 m section had been revealed. Highly complex combinations of segregated ice lenses were observed in the outcrop. Ice veins, which are consisted by a number of thick ice lenses, develop radially from the core of the mound. The areas in-between the ice veins had fine parallel lenticular cryostructure. Surface soil layer (about one meter) and patchy soil parts between ice lenses were made of fine till of lacustrine sediments. delta O18 values of water from these ice lenses range from -15 to -18. Spatial distribution of the isotope values was well correlated with the spatial pattern of the ice lenses"f distribution. In addition to segregation of ice lenses perpendicular to the temperature gradient, contribution of relatively rapid formation of ice in radial direction from the core of the mound can be large in this three dimensional frost heave phenomenon.

  13. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    NASA Astrophysics Data System (ADS)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  14. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Addendum No. 1, through Revision b

    SciTech Connect

    DiSabatino, A; West, M; Hafner, R; Russell, E

    2007-10-04

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the 'Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision b', dated May 2007 (Addendum 1). The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The safety analysis of the package is documented in the 'Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package' (i.e., the Mound 1KW SARP, or the SARP). Addendum 1 incorporates a new fueled capsule assembly payload. The following changes have been made to add this payload: (1) The primary containment vessel (PCV) will be of the same design, but will increase in height to 11.16 in.; (2) A new graphite support block will be added to support up to three fueled capsule assemblies per package; (3) The cutting groove height on the secondary containment vessel (SCV) will be heightened to accommodate the taller PCV; and (4) A 3.38 in. high graphite filler block will be placed on top of the PCV. All other packaging features, as described in the Mound 1KW SARP [3], remain unchanged. This report documents the LLNL review of Addendum 1[1]. The specific review for each SARP Chapter is documented herein.

  15. Interpretation of Late Cretaceous Volcanic Mounds and Surrounding Gulfian Series Formations Using 3D Seismic Data in Zavala County, Texas

    NASA Astrophysics Data System (ADS)

    Bennett, Laura Claire

    The Late Cretaceous Gulfian series is a prominent and important series across the State of Texas that has been extensively studied since the nineteenth century. It is composed of series of southeast-dipping shelf carbonates and clastics deposited on the northwest margin of the Gulf of Mexico Basin. In south Texas, the Gulfian series was deposited in the Rio Grande Embayment and Maverick Basin and is comprised of the Eagle Ford Group, Austin Group, Anacacho Limestone, San Miguel Formation, Olmos Formation, and Escondido Formation that crop out and continue basinward in the subsurface. Late Cretaceous volcanism formed volcanic mounds composed of altered palagonite tuff that are clustered into two fields, including the Uvalde Field centered in Zavala County. Using the Pedernales 3D seismic survey, located in east-central Zavala County, several volcanic mounds were identified and mapped without the use of well log data by identifying structures and characteristics associated with the volcanic mounds. Isolating these mounds through mapping enabled the mapping of the tops surrounding Gulfian formations, Lower Eagle Ford, Upper Eagle Ford, Austin, Anacacho, and San Miguel, for which time-structure, amplitude, similarity/coherency attribute, and isochron maps were generated. By using 3D seismic data, the volcanic mounds and their relation to surrounding rocks can be better interpreted.

  16. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  17. Excavation and aggregation as organizing factors in de novo construction by mound-building termites.

    PubMed

    Green, Ben; Bardunias, Paul; Turner, J Scott; Nagpal, Radhika; Werfel, Justin

    2017-06-14

    Termites construct complex mounds that are orders of magnitude larger than any individual and fulfil a variety of functional roles. Yet the processes through which these mounds are built, and by which the insects organize their efforts, remain poorly understood. The traditional understanding focuses on stigmergy, a form of indirect communication in which actions that change the environment provide cues that influence future work. Termite construction has long been thought to be organized via a putative 'cement pheromone': a chemical added to deposited soil that stimulates further deposition in the same area, thus creating a positive feedback loop whereby coherent structures are built up. To investigate the detailed mechanisms and behaviours through which termites self-organize the early stages of mound construction, we tracked the motion and behaviour of major workers from two Macrotermes species in experimental arenas. Rather than a construction process focused on accumulation of depositions, as models based on cement pheromone would suggest, our results indicated that the primary organizing mechanisms were based on excavation. Digging activity was focused on a small number of excavation sites, which in turn provided templates for soil deposition. This behaviour was mediated by a mechanism of aggregation, with termites being more likely to join in the work at an excavation site as the number of termites presently working at that site increased. Statistical analyses showed that this aggregation mechanism was a response to active digging, distinct from and unrelated to putative chemical cues that stimulate deposition. Agent-based simulations quantitatively supported the interpretation that the early stage of de novo construction is primarily organized by excavation and aggregation activity rather than by stigmergic deposition. © 2017 The Author(s).

  18. Internal structure and depositional environment of Late Carboniferous mounds from the San Emiliano Formation, Cármenes Syncline, Cantabrian Mountains, Northern Spain

    NASA Astrophysics Data System (ADS)

    Samankassou, Elias

    2001-12-01

    Well-exposed mounds are common in limestone of the Late Carboniferous San Emiliano Formation, Cantabrian Mountains (Northern Spain). They occur as obvious primary topographic features. Careful study of the mound intervals and surrounding strata revealed the internal structures of mounds and the factors controlling their growth. The substrate (2-3 m) of the mounds consists of greyish to reddish, bedded oolitic and oncolithic packstone and grainstone. Crinoids, fragments of the alga Epimastopora, and, rarely, bryozoans are present. Ooids and oncoids indicate a wave-dominated high-energy environment. Presence of quartz indicates the influence of terrigenous siliciclastic input. Mound intervals (6-12 m thick) are characterized by skeletal-microbial boundstone. Donezellid algae, agglutinated worm tubes, and calcisponges are the dominant fossils. Smaller foraminifers, gastropods, and brachiopods are also present. A peloidal-clotted matrix is characteristic and accounts for more than 30% of the mound volume. Intraframe pores are mainly filled by peloidal sediment and early marine cement. Intermound strata are approximately one-third as thick as time equivalent mounds. Mound fossils (algae, agglutinated worm tubes, and sponges) are uncommon. However, intermound strata are generally more diverse than the mounds, containing fusulinids, smaller foraminifers, bryozoans, gastropods, crinoids, and bioclasts. Some of these fossils have micritic envelopes. Bedded packstone and grainstone, 3-6 m thick, with siliciclastic debris, rugose corals, and chaetetid sponges characterize the capping facies. Coated grains and small ooids are uncommon. This facies indicates shallowing to a higher energy environment and/or a higher input of siliciclastics, inhibiting mound growth. Mounds are interpreted to have accreted in a quiet environment below wave base. This position is comparable to the depositional environment inferred for many Late Paleozoic mounds described elsewhere, e.g., from Texas

  19. Early Carboniferous (Tournasian-early Visean) global paleogeography, Paleostorm tracts, and the distribution of Waulsortian and Waulsortian-like carbonate mud mounds

    SciTech Connect

    King, D.T. Jr. )

    1990-05-01

    Tournasian-early Visean mud mounds (i.e., Waulsortian and Waulsortian-like mounds) are unlike other carbonate buildups in the stratigraphic record because they lack an identifiable frame-building organism. Waulsortian mounds are comprised mainly of carbonate mud; Waulsortian-like mounds are mud-rich and contain a significant percent of skeletal grains, especially crinoids and bryozoa. This study has revealed that all of the reported Waulsortian and Waulsortian-like mounds developed in low paleolatitudes either on the southern shelf margin of the Laurussian paleocontinent or in the Laurussian interior seaway. Waulsortian and Waulsortian-like mounds are specifically not present in low-latitude regions of other paleocontinents. As Tournasian-early Visean carbonate deposition was widespread in the range of 30{degree}N to 10{degree}S, the very restricted paleogeographic distribution of Waulsortian and Waulsortian-like mound locations suggests a mechanism or set of conditions that effectively limited the distribution of mud mounds. Considering the Tournasian-early Visean distribution of paleocontinents and the principles that govern the movement of modern hurricanes, tropical storms, and winter storms, the tracts of hurricanes, tropical storms, and winter storms probably crossed all main submerged paleocontinental areas except the southern Laurussian shelf margin and the Laurussian interior seaway, the two areas where mud mounds developed. The lack of storm energy in these two large areas of Laurussia provided long-term stability and thus enhanced the growth prospects of the frame-deficient Waulsortian and Waulsortian-like mud mounds. Lack of extensive periodic wave reworking and other storm-induced devastation helps to account for enigmatic features such as general mound symmetry, great size, high depositional relief (as much as 220 m), and side steepness (as steep as 50{degree}).

  20. Mound Spring Complexes in Central Australia: An Analog for Martian Groundwater Fed Outflow Channels?

    NASA Technical Reports Server (NTRS)

    Clarke, J. D. A.; Stoker, C.

    2003-01-01

    The arid inland of Australia contains a diversity of landscapes and landscape processes, often of great antiquity, extending back to the Mesozoic and Paleozoic. The potential of this landscape as a source of Mars analogs has, however, been little explored. The few examples studied so far include radiation-tolerant microbes in thermal springs and hematite-silica hydrothermal alteration near Arkaroola in the Finders Ranges, and aeolian landforms at Gurra Gurra water hole the north east of Arkaroola. Further Australian Mars analog studies were provided by the studies of Bourke and Zimbelman of the paleoflood record of the Todd and Hale Rivers in central Australia. To facilitate study of such analogues, Mars Society Australia has embarked on a project to construct a Mars Analog Research Station near Arkaroola. The international scientific community will soon have the opportunity to participate in Mars analog studies in central Australia utilizing this facility. An area of considerable Mars analog potential is the mound spring complexes that occur at the margins of the Great Artesian Basin (GAB) which underlies 22% of the Australian continent and covers 1.7 million km2. The mound springs are formed when ground water flows to a topographic low, and subsurface strata dips up causing a hydrological head at the surface. Minerals precipitated at the spring discharge zone form low mesas or "mounds", the height of which are controlled by the hydrological head. This paper describes the Dalhousie Mound Spring Complex (DMC) in the northern part of South Australia (Figure 1), and its potential as a Mars analog. Hydrogeology: The DMC consists of a cluster of more than 60 active springs formed by natural discharge from the GAB). Total measured discharge from the GAB is 1.74 GL per day, estimated unfocussed natural leakage through the aquaclude is thought be approximately equal to this figure. Some 54 ML per day are currently discharged by the DMC, 3% of the measured total. The

  1. Mound Spring Complexes in Central Australia: An Analog for Martian Groundwater Fed Outflow Channels?

    NASA Technical Reports Server (NTRS)

    Clarke, J. D. A.; Stoker, C.

    2003-01-01

    The arid inland of Australia contains a diversity of landscapes and landscape processes, often of great antiquity, extending back to the Mesozoic and Paleozoic. The potential of this landscape as a source of Mars analogs has, however, been little explored. The few examples studied so far include radiation-tolerant microbes in thermal springs and hematite-silica hydrothermal alteration near Arkaroola in the Finders Ranges, and aeolian landforms at Gurra Gurra water hole the north east of Arkaroola. Further Australian Mars analog studies were provided by the studies of Bourke and Zimbelman of the paleoflood record of the Todd and Hale Rivers in central Australia. To facilitate study of such analogues, Mars Society Australia has embarked on a project to construct a Mars Analog Research Station near Arkaroola. The international scientific community will soon have the opportunity to participate in Mars analog studies in central Australia utilizing this facility. An area of considerable Mars analog potential is the mound spring complexes that occur at the margins of the Great Artesian Basin (GAB) which underlies 22% of the Australian continent and covers 1.7 million km2. The mound springs are formed when ground water flows to a topographic low, and subsurface strata dips up causing a hydrological head at the surface. Minerals precipitated at the spring discharge zone form low mesas or "mounds", the height of which are controlled by the hydrological head. This paper describes the Dalhousie Mound Spring Complex (DMC) in the northern part of South Australia (Figure 1), and its potential as a Mars analog. Hydrogeology: The DMC consists of a cluster of more than 60 active springs formed by natural discharge from the GAB). Total measured discharge from the GAB is 1.74 GL per day, estimated unfocussed natural leakage through the aquaclude is thought be approximately equal to this figure. Some 54 ML per day are currently discharged by the DMC, 3% of the measured total. The

  2. Functional constraints on nest characteristics of pebble mounds of breeding male hornyhead chub Nocomis biguttatus.

    PubMed

    Wisenden, B D; Unruh, A; Morantes, A; Bury, S; Curry, B; Driscoll, R; Hussein, M; Markegard, S

    2009-11-01

    Breeding male hornyhead chub Nocomis biguttatus constructed nests in areas with relatively high but less than maximum flow rate and greater than average water depth. Nests comprised c. 3000 pebbles for a total mass of 11 kg. Males selected pebbles of smaller diameter but higher density than pebbles in the immediate vicinity. Thus, nests balanced the risk of mound erosion and energetic cost of nest construction with the benefits of protection from egg predators and a stable internal flow rate for oxygenation. These data help establish environmental management goals for the conservation of N. biguttatus and the lotic ecosystems dependent upon them.

  3. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  4. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity.

    PubMed

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-11

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  5. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    PubMed Central

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs. PMID:27725742

  6. Phylogeography of an Australian termite, Amitermes laurensis (Isoptera, Termitidae), with special reference to the variety of mound shapes.

    PubMed

    Ozeki, Masato; Isagi, Yuji; Tsubota, Hiromi; Jacklyn, Peter; Bowman, David M J S

    2007-01-01

    In northern Australia, the debris-feeding termite Amitermes laurensis builds tall, wedge-shaped mounds in the northern part of Cape York Peninsula and Arnhem Land, where their habitats are seasonally flooded, and small dome shaped mounds in the southeastern part of Cape York Peninsula, where their habitats are well-drained. Phylogeographic analyses were conducted in 238 individuals from 30 populations using the mitochondrial cytochrome oxidase II (COII) gene. DNA sequences of 50 haplotypes were used to construct NJ, MP and ML trees. Phylogenetic trees for 16 Amitermes species showed monophyly of A. laurensis and the variation of A. laurensis mounds did not strongly correspond to the intraspecific phylogeny. It was observed that mounds with the same shape were constructed by phylogenetically different groups under similar environmental conditions and different mounds shapes were built by phylogenetically closely related groups under the different environmental conditions. Thus, phylogenetically close groups of A. laurensis, in different habitats, may adapt to environmental conditions by constructing different mound shapes. We also investigated the phylogeographic structure of A. laurensis. The significant positive correlation between genetic and geographic distances indicated isolation by distance, reflecting restricted dispersal ability of alates. Although the overall genetic structure of A. laurensis showed isolation by distance, we also identified two exceptions: (i) secondary contacts of genetically divergent lineages in southern Cape York Peninsula, and (ii) low genetic differences between geographically separated populations of Cape York Peninsula and Arnhem Land. Therefore, the phylogeography of A. laurensis may reflect continuous gene flow restricted to short distances and past changes of gene flow associated with the fluctuation of environmental conditions accompanying the changing sea levels in the Quaternary.

  7. lagC-null and gbf-null cells define key steps in the morphogenesis of Dictyostelium mounds.

    PubMed

    Sukumaran, S; Brown, J M; Firtel, R A; McNally, J G

    1998-08-01

    The transition to multicellularity is a key feature of the Dictyostelium life cycle, and two genes, gbf and lagC, are known to play pivotal roles in regulating this developmental switch. lagC-null and gbf-null cells fail to induce cell-type-specific genes ordinarily expressed during multicellular development. The null mutants also share a similar morphological phenotype: mutant cells repeatedly aggregate to form a loose mound, disperse, and reform a mound, rather than proceeding to form a tip. To characterize defects in morphogenesis in these mutants, we examined cell motion in the mutant mounds. In analogy with the failed transition in gene expression, we found that lagC-null and gbf-null mounds failed to make a morphogenetic transition from random to rotational motion normally observed in the parent strain. One reason for this was the inability of the mutant mounds to establish a single, dominant signaling-wave center. This defect of lagC-null or gbf-null cells could be overcome by the addition of adenosine, which alters cAMP signaling, but then even in the presence of apparently normal signaling waves, cell motility was still aberrant. This motility defect, as well as the signaling-wave defect, could be overcome in lagC-null cells by overexpression of GBF, suggesting that lagC is dispensable if GBF protein levels are high enough. This set of morphogenetic defects that we have observed helps define key steps in mound morphogenesis. These include the establishment of a dominant signaling-wave center and the capacity of cells to move directionally within the cell mass in response to guidance cues.

  8. Paleoseawater density reconstruction and its implication for cold-water coral carbonate mounds in the northeast Atlantic through time

    NASA Astrophysics Data System (ADS)

    Rüggeberg, Andres; Flögel, Sascha; Dullo, Wolf-Christian; Raddatz, Jacek; Liebetrau, Volker

    2016-03-01

    Carbonate buildups and mounds are impressive biogenic structures throughout Earth history. In the recent NE Atlantic, cold-water coral (CWC) reefs form giant carbonate mounds of up to 300 m of elevation. The expansion of these coral carbonate mounds is paced by climatic changes during the past 2.7 Myr. Environmental control on their development is directly linked to controls on its main constructors, the reef-building CWCs. Seawater density has been identified as one of the main controlling parameter of CWC growth in the NE Atlantic. One possibility is the formation of a pycnocline above the carbonate mounds, which is increasing the hydrodynamic regime, supporting elevated food supply, and possibly facilitating the distribution of coral larvae. The potential to reconstruct past seawater densities from stable oxygen isotopes of benthic foraminifera has been further developed: a regional equation gives reliable results for three different settings, peak interglacials (e.g., Holocene), peak glacials (e.g., Last Glacial Maximum), and intermediate setting (between the two extremes). Seawater densities are reconstructed for two different NE Atlantic CWC carbonate mounds in the Porcupine Seabight indicating that the development of carbonate mounds is predominantly found at a seawater density range between 27.3 and 27.7 kg m-3 (σΘ notation). Comparable to recent conditions, we interpret the reconstructed density range as a pycnocline serving as boundary layer, on which currents develop, carrying nutrition and possibly coral larvae. The close correlation of CWC reef growth with reconstructed seawater densities through the Pleistocene highlights the importance of pycnoclines and intermediate water mass dynamics.

  9. Experimental explanation of the formation mechanism of surface mound-structures by femtosecond laser on polycrystalline Ni{sub 60}Nb{sub 40}

    SciTech Connect

    Peng, Edwin; Wang, Meiyu; Lucis, Michael J.; Gogos, George; Shield, Jeffrey E.; Tsubaki, Alfred; Zuhlke, Craig A.; Bell, Ryan; Anderson, Troy P.; Alexander, Dennis R.

    2016-01-18

    Femtosecond laser surface processing (FLSP) is an emerging technique for creating functionalized surfaces with specialized properties, such as broadband optical absorption or supe