Science.gov

Sample records for rubisco activities properties

  1. Manipulation of Rubisco: the amount, activity, function and regulation.

    PubMed

    Parry, M A J; Andralojc, P J; Mitchell, R A C; Madgwick, P J; Keys, A J

    2003-05-01

    Genetic modification to increase the specificity of Rubisco for CO(2) relative to O(2) and to increase the catalytic rate of Rubisco in crop plants would have great agronomic importance. The availability of three-dimensional structures of Rubisco at atomic resolution and the characterization of site-directed mutants have greatly enhanced the understanding of the catalytic mechanism of Rubisco. Considerable progress has been made in identifying natural variation in the catalytic properties of Rubisco from different species and in developing the tools for introducing both novel and foreign Rubisco genes into plants. The additional complexities of assembling copies of the two distinct polypeptide subunits of Rubisco into a functional holoenzyme in vivo (requiring sufficient expression, post-translational modification, interaction with chaperonins, and interaction with Rubisco activase) remain a major challenge. The consequences of changing the amount of Rubisco present in leaves have been investigated by the use of antisense constructs. The manipulation of genes encoding Rubisco activase has provided a means to investigate the regulation of Rubisco activity.

  2. Subunit interactions of Rubisco activase: polyethylene glycol promotes self-association, stimulates ATPase and activation activities, and enhances interactions with Rubisco.

    PubMed

    Salvucci, M E

    1992-11-01

    The effect of polyethylene glycol (PEG) on the enzymatic and physical properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase was examined. In the presence of PEG, Rubisco activase exhibited higher ATPase and Rubisco activating activities, concomitant with increased apparent affinity for ATP and Rubisco. Specific ATPase activity, which was dependent on Rubisco activase concentration, was also higher in the presence of Ficoll, polyvinylpyrrolidone, and bovine serum albumin. The ability of Rubisco activase to facilitate dissociation of the tight-binding inhibitor 2-carboxyarabinitol 1-phosphate from carbamylated Rubisco was also enhanced in the presence of PEG. Mixing experiments with Rubisco activase from two different sources showed that tobacco Rubisco activase, which exhibited little activation of spinach Rubisco by itself, was inhibitory when included with spinach Rubisco activase. Polyethylene glycol improved the ability of tobacco and a mixture of tobacco plus spinach Rubisco activase to activate spinach Rubisco. Estimates based on rate zonal sedimentation and gel-filtration chromatography indicated that the apparent molecular mass of Rubisco activase was two- to fourfold higher in the presence of PEG. The increase in apparent molecular mass was consistent with the propensity of solvent-excluding reagents like PEG to promote self-association of proteins. Likewise, the change in enzymatic properties of Rubisco activase in the presence of PEG and the dependence of specific activity on protein concentration resembled changes that often accompany self-association. For Rubisco activase, high concentrations of protein in the chloroplast stroma would provide an environment conducive to self-association and cause expression of properties that would enhance its ability to function efficiently in vivo.

  3. The activity of Rubisco's molecular chaperone, Rubisco activase, in leaf extracts

    USDA-ARS?s Scientific Manuscript database

    Rubisco frequently undergoes unproductive interactions with its sugar-phosphate substrate that stabilize active sites in an inactive conformation. Restoring catalytic competence to these sites requires the “molecular chiropractic” activity of Rubisco activase (activase). To make the study of activas...

  4. Rubisco Catalytic Properties and Temperature Response in Crops1

    PubMed Central

    2016-01-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223

  5. The activity of Rubisco's molecular chaperone, Rubisco activase, in leaf extracts.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2011-09-01

    Rubisco frequently undergoes unproductive interactions with its sugar-phosphate substrate that stabilize active sites in an inactive conformation. Restoring catalytic competence to these sites requires the "molecular chiropractic" activity of Rubisco activase (activase). To make the study of activase more routine and physiologically relevant, an assay was devised for measuring activase activity in leaf extracts based on the ATP-dependent activation of inactive Rubisco. Control experiments with an Arabidopsis activase-deficient mutant confirmed that the rate of Rubisco activation was dependent on the concentration of activase in the extracts. Activase catalyzed Rubisco activation at rates equivalent to 9-14% catalytic sites per min in desalted extracts of Arabidopsis, camelina, tobacco, cotton, and wheat. Faster rates were observed in a transgenic line of Arabidopsis that expresses only the β-isoform of activase, whereas no activity was detected in a line that expresses only the α-isoform. Activase activity was also low or undetectable in rice, maize, and Chlamydomonas, revealing differences in the stability of the enzyme in different species. These differences are discussed in terms of the ability of activase subunits to remain associated or to reassociate into active oligomers when the stromal milieu is diluted by extraction. Finally, the temperature response of activase activity in leaf extracts differed for Arabidopsis, camelina, tobacco, and cotton, corresponding to the respective temperature responses of photosynthesis for each species. These results confirmed the exceptional thermal lability of activase at physiological ratios of activase to Rubisco.

  6. RubisCO Early Oxygenase Activity: A Kinetic and Evolutionary Perspective.

    PubMed

    Ślesak, Ireneusz; Ślesak, Halina; Kruk, Jerzy

    2017-10-04

    RubisCO (D-ribulose 1,5-bisphosphate carboxylase/oxygenase) is Earth's main enzyme responsible for CO2 fixation via carboxylation of ribulose-1,5-bisphosphate (RuBP) into organic matter. Besides the carboxylation reaction, RubisCO also catalyzes the oxygenation of RuBP by O2 , which is probably as old as its carboxylation properties. Based on molecular phylogeny, the occurrence of the reactive oxygen species (ROS)-removing system and kinetic properties of different RubisCO forms, we postulated that RubisCO oxygenase activity appeared in local microoxic areas, yet before the appearance of oxygenic photosynthesis. Here, in reviewing the literature, we present a novel hypothesis: the RubisCO early oxygenase activity hypothesis. This hypothesis may be compared with the exaptation hypothesis, according to which latent RubisCO oxygenase properties emerged later during the oxygenation of the Earth's atmosphere. The reconstruction of ancestral RubisCO forms using ancestral sequence reconstruction (ASR) techniques, as a promising way for testing of RubisCO early oxygenase activity hypothesis, is presented. © 2017 WILEY Periodicals, Inc.

  7. Variation in Rubisco content and activity under variable climatic factors.

    PubMed

    Galmés, Jeroni; Aranjuelo, Iker; Medrano, Hipólito; Flexas, Jaume

    2013-11-01

    The main objective of the present review is to provide a compilation of published data of the effects of several climatic conditions on Rubisco, particularly its activity, state of activation, and concentration, and its influence on leaf gas exchange and photosynthesis. The environmental conditions analyzed include drought, salinity, heavy metals, growth temperature, and elevated [O3], [CO2], and ultraviolet-B irradiance. The results show conclusive evidence for a major negative effect on activity of Rubisco with increasing intensity of a range of abiotic stress factors. This decrease in the activity of Rubisco is associated with down-regulation of the activation state of the enzyme (e.g., by de-carbamylation and/or binding of inhibitory sugar phosphates) in response to drought or high temperature. On the contrary, the negative effects of low temperature, heavy metal stress (cadmium), ozone, and UV-B stress on Rubisco activity are associated with changes in the concentration of Rubisco. Notably, in response to all environmental factors, the regulation of in vivo CO2 assimilation rate was related to Rubisco in vitro parameters, either concentration and/or carboxylation, depending on the particular stress. The importance of the loss of Rubisco activity and its repercussion on plant photosynthesis are discussed in the context of climate change. It is suggested that decreased Rubisco activity will be a major effect induced by climate change, which will need to be considered in any prediction model on plant productivity in the near future.

  8. The plastid casein kinase 2 phosphorylates Rubisco activase at the Thr-78 site but is not essential for regulation of Rubisco activation state

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is encoded by a single gene (At2g39730) that is alternatively spliced to form a large alpha-RCA and small beta-RCA isoform. The activity of Rubisco is controlled in res...

  9. Rubisco activity and regulation as targets for crop improvement

    USDA-ARS?s Scientific Manuscript database

    Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction wit...

  10. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.

    PubMed

    Prins, Anneke; Orr, Douglas J; Andralojc, P John; Reynolds, Matthew P; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-03-01

    Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity.

  11. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis

    PubMed Central

    Prins, Anneke; Orr, Douglas J.; Andralojc, P. John; Reynolds, Matthew P.; Carmo-Silva, Elizabete; Parry, Martin A. J.

    2016-01-01

    Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis–Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity. PMID:26798025

  12. Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species.

    PubMed

    Galmés, Jeroni; Molins, Arántzazu; Flexas, Jaume; Conesa, Miquel À

    2017-10-01

    High photosynthetic efficiency intrinsically demands tight coordination between traits related to CO2 diffusion capacity and leaf biochemistry. Although this coordination constitutes the basis of existing mathematical models of leaf photosynthesis, it has been barely explored among closely related species, which could reveal rapid adaptation clues in the recent past. With this aim, we characterized the photosynthetic capacity of 12 species of Limonium, possessing contrasting Rubisco catalytic properties, grown under optimal (WW) and extreme drought conditions (WD). The availability of CO2 at the site of carboxylation (Cc ) determined the photosynthetic capacity of Limonium under WD, while both diffusional and biochemical components governed the photosynthetic performance under WW. The variation in the in vivo caboxylation efficiency correlated with both the concentration of active Rubisco sites and the in vitro-based properties of Rubisco, such as the maximum carboxylase turnover rate (kcat(c) ) and the Michaelis-Menten constant for CO2 (Kc ). Notably, the results confirmed the hypothesis of coordination between the CO2 offer and demand functions of photosynthesis: those Limonium species with high total leaf conductance to CO2 have evolved towards increased velocity (i.e. higher kcat(c) ), at the penalty of lower affinity for CO2 (i.e. lower specificity factor, Sc/o ). © 2017 John Wiley & Sons Ltd.

  13. The regulatory properties of rubisco activase differ among species and affect photosynthetic induction during light transitions

    USDA-ARS?s Scientific Manuscript database

    Rubisco’s catalytic chaperone, Rubisco activase (Rca), uses the energy from ATP hydrolysis to restore catalytic competence to Rubisco. In Arabidopsis, inhibition of Rca activity by ADP is fine-tuned by redox regulation of the a-isoform. To elucidate the mechanism for Rca regulation in species contai...

  14. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO

    PubMed Central

    Studer, Romain A.; Christin, Pascal-Antoine; Williams, Mark A.; Orengo, Christine A.

    2014-01-01

    A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. PMID:24469821

  15. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress.

    PubMed

    Galmés, Jeroni; Ribas-Carbó, Miquel; Medrano, Hipólito; Flexas, Jaume

    2011-01-01

    Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO(2). In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (g(s)) and chloroplastic CO(2) concentration (C(c)), suggesting that deactivation of Rubisco sites could be induced by low C(c), as a result of water stress. The threshold level of C(c) that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low C(c) were more capable of maintaining active Rubisco as drought stress intensified.

  16. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  17. Small Oligomers of Ribulose-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Are Required for Biological Activity

    PubMed Central

    Keown, Jeremy R.; Griffin, Michael D. W.; Mertens, Haydyn D. T.; Pearce, F. Grant

    2013-01-01

    Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase uses the energy from ATP hydrolysis to remove tight binding inhibitors from Rubisco, thus playing a key role in regulating photosynthesis in plants. Although several structures have recently added much needed structural information for different Rubisco activase enzymes, the arrangement of these subunits in solution remains unclear. In this study, we use a variety of techniques to show that Rubisco activase forms a wide range of structures in solution, ranging from monomers to much higher order species, and that the distribution of these species is highly dependent on protein concentration. The data support a model in which Rubisco activase forms an open spiraling structure rather than a closed hexameric structure. At protein concentrations of 1 μm, corresponding to the maximal activity of the enzyme, Rubisco activase has an oligomeric state of 2–4 subunits. We propose a model in which Rubisco activase requires at least 1 neighboring subunit for hydrolysis of ATP. PMID:23720775

  18. Effects of CO/sub 2/ concentration on rubisco amount, activity, and photosynthesis in soybean leaves

    SciTech Connect

    Campbell, W.J.; Allen, L.H. Jr.; Bowes, G.

    1987-04-01

    Soybeans were grown at CO/sub 2/ concentrations ranging from 160 to 990 ..mu..l L/sup -1/ in outdoor chambers receiving natural sunlight. Leaf soluble protein and total rubisco activity decreased with increasing growth CO/sub 2/, when expressed on a dry weight basis, but no decrease occurred on an area basis. On an area basis, leaf photosynthetic rates of plants grown at 330 and 660 ..mu..l CO/sub 2/ L/sup -1/, and measured over a range of intercellular CO/sub 2/ of 50 to 680 ..mu..l CO/sub 2/ L/sup -1/, were always greater in the high CO/sub 2/ grown plants. Rubisco content (percent of soluble protein) and total activity (soluble protein basis), remained unchanged over the range of growth CO/sub 2/. Since rubisco content and total activity per m/sup 2/ were independent of growth CO/sub 2/ concentration, the enhanced rate of photosynthesis of leaves grown at high CO/sub 2/ was apparently not due to an increase in rubisco amount or activity. Soybean grown at high CO/sub 2/ has an extra palisade cell layer per unit leaf area. Thus, the greater photosynthetic rates of high CO/sub 2/ grown leaves may result from an enhanced ability of CO/sub 2/ to gain access to rubisco via increased total mesophyll cell surface area.

  19. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2013-04-01

    Rubisco's catalytic chaperone, Rubisco activase (Rca), uses the energy from ATP hydrolysis to restore catalytic competence to Rubisco. In Arabidopsis (Arabidopsis thaliana), inhibition of Rca activity by ADP is fine tuned by redox regulation of the α-isoform. To elucidate the mechanism for Rca regulation in species containing only the redox-insensitive β-isoform, the response of activity to ADP was characterized for different Rca forms. When assayed in leaf extracts, Rubisco activation was significantly inhibited by physiological ratios of ADP to ATP in species containing both α-Rca and β-Rca (Arabidopsis and camelina [Camelina sativa]) or just the β-Rca (tobacco [Nicotiana tabacum]). However, Rca activity was insensitive to ADP inhibition in an Arabidopsis transformant, rwt43, which expresses only Arabidopsis β-Rca, although not in a transformant of Arabidopsis that expresses a tobacco-like β-Rca. ATP hydrolysis by recombinant Arabidopsis β-Rca was much less sensitive to inhibition by ADP than recombinant tobacco β-Rca. Mutation of 17 amino acids in the tobacco β-Rca to the corresponding Arabidopsis residues reduced ADP sensitivity. In planta, Rubisco deactivated at low irradiance except in the Arabidopsis rwt43 transformant containing an ADP-insensitive Rca. Induction of CO2 assimilation after transition from low to high irradiance was much more rapid in the rwt43 transformant compared with plants containing ADP-sensitive Rca forms. The faster rate of photosynthetic induction and a greater enhancement of growth under a fluctuating light regime by the rwt43 transformant compared with wild-type Arabidopsis suggests that manipulation of Rca regulation might provide a strategy for enhancing photosynthetic performance in certain variable light environments.

  20. In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum.

    PubMed

    Mitra, Joyeeta; Narad, Priyanka; Sengupta, Abhishek; Sharma, P D; Paul, P K

    2016-09-01

    RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF-TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = -248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.

  1. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity1[OPEN

    PubMed Central

    Laterre, Raphaëlle; Remacle, Claire

    2017-01-01

    Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco (Nicotiana tabacum) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher Vmax and Km values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO2 is released by the active specialized metabolism. PMID:28250069

  3. Rubisco activity in guard cells compared with the solute requirement for stomatal opening. [Pisum sativum

    SciTech Connect

    Reckmann, U.; Scheibe, R.; Raschke, K. )

    1990-01-01

    We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the ({sup 14}C) carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cell protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to {sup 14}CO{sub 2} for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant.

  4. Rubisco Activity in Guard Cells Compared with the Solute Requirement for Stomatal Opening 1

    PubMed Central

    Reckmann, Udo; Scheibe, Renate; Raschke, Klaus

    1990-01-01

    We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the [14C]carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cell protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to 14CO2 for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19 femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant. Images Figure 1 PMID:16667255

  5. The Plastid Casein Kinase 2 Phosphorylates Rubisco Activase at the Thr-78 Site but Is Not Essential for Regulation of Rubisco Activation State

    PubMed Central

    Kim, Sang Y.; Bender, Kyle W.; Walker, Berkley J.; Zielinski, Raymond E.; Spalding, Martin H.; Ort, Donald R.; Huber, Steven C.

    2016-01-01

    Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730). The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity, which is known to involve a redox-sensitive disulfide bond located in the carboxy-terminal extension of the RCAα subunit. Additionally, phosphorylation of RCA threonine-78 (Thr-78) has been reported to occur in the dark suggesting that phosphorylation may also be associated with dark-inactivation of RCA and deactivation of Rubisco. In the present study, we developed site-specific antibodies to monitor phosphorylation of RCA at the Thr-78 site and used non-reducing SDS-PAGE to monitor the redox status of the RCAα subunit. By immunoblotting, phosphorylation of both RCA isoforms occurred at low light and in the dark and feeding peroxide or DTT to leaf segments indicated that redox status of the chloroplast stroma was a critical factor controlling RCA phosphorylation. Use of a knockout mutant identified the plastid-targeted casein kinase 2 (cpCK2α) as the major protein kinase involved in RCA phosphorylation. Studies with recombinant cpCK2α and synthetic peptide substrates identified acidic residues at the –1, +2, and +3 positions surrounding Thr-78 as strong positive recognition elements. The cpck2 knockout mutant had strongly reduced phosphorylation at the Thr-78 site but was similar to wild type plants in terms of induction kinetics of photosynthesis following transfer from darkness or low light to high light, suggesting that if phosphorylation of RCA Thr-78 plays a direct role it would be redundant to redox regulation for control of Rubisco activation state under normal conditions. PMID:27064346

  6. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth.

    PubMed

    Sharwood, Robert Edward; von Caemmerer, Susanne; Maliga, Pal; Whitney, Spencer Michael

    2008-01-01

    Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.

  7. Optimizing Rubisco and its regulation for greater resource use efficiency.

    PubMed

    Carmo-Silva, Elizabete; Scales, Joanna C; Madgwick, Pippa J; Parry, Martin A J

    2015-09-01

    Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.

  8. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase.

    PubMed

    Esquivel, M Gloria; Genkov, Todor; Nogueira, Ana S; Salvucci, Michael E; Spreitzer, Robert J

    2013-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.

  9. Mutation design of a thermophilic Rubisco based on three-dimensional structure enhances its activity at ambient temperature.

    PubMed

    Fujihashi, Masahiro; Nishitani, Yuichi; Kiriyama, Tomohiro; Aono, Riku; Sato, Takaaki; Takai, Tomoyuki; Tagashira, Kenta; Fukuda, Wakao; Atomi, Haruyuki; Imanaka, Tadayuki; Miki, Kunio

    2016-10-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one-eighth the activity at ambient temperature. We have tried to improve the activity of Tk-Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild-type enzyme both in vitro and in vivo. Here, we designed new Tk-Rubisco mutants based on its three-dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild-type enzyme. The crystal structure of the Tk-Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk-Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8-T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8-T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two-fold higher specific growth rates compared to that of a strain harboring the wild-type enzyme at ambient temperature. Proteins 2016; 84:1339-1346. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Rubisco, Rubisco activase, and global climate change.

    PubMed

    Sage, Rowan F; Way, Danielle A; Kubien, David S

    2008-01-01

    Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.

  11. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus.

    PubMed

    Xia, Xiao-Jian; Huang, Li-Feng; Zhou, Yan-Hong; Mao, Wei-Hua; Shi, Kai; Wu, Jian-Xiang; Asami, Tadao; Chen, Zhixiang; Yu, Jing-Quan

    2009-11-01

    Brassinosteroids (BRs) are a new group of plant growth substances that promote plant growth and productivity. We showed in this study that improved growth of cucumber (Cucumis sativus) plants after treatment with 24-epibrassinolide (EBR), an active BR, was associated with increased CO(2) assimilation and quantum yield of PSII (Phi(PSII)). Treatment of brassinazole (Brz), a specific inhibitor for BR biosynthesis, reduced plant growth and at the same time decreased CO(2) assimilation and Phi(PSII). Thus, the growth-promoting activity of BRs can be, at least partly, attributed to enhanced plant photosynthesis. To understand how BRs enhance photosynthesis, we have analyzed the effects of EBR and Brz on a number of photosynthetic parameters and their affecting factors, including the contents and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Northern and Western blotting demonstrated that EBR upregulated, while Brz downregulated, the expressions of rbcL, rbcS and other photosynthetic genes. In addition, EBR had a positive effect on the activation of Rubisco based on increased maximum Rubisco carboxylation rates (V (c,max)), total Rubisco activity and, to a greater extent, initial Rubisco activity. The accumulation patterns of Rubisco activase (RCA) based on immunogold-labeling experiments suggested a role of RCA in BR-regulated activation state of Rubisco. Enhanced expression of genes encoding other Calvin cycle genes after EBR treatment may also play a positive role in RuBP regeneration (J (max)), thereby increasing maximum carboxylation rate of Rubisco (V (c,max)). Thus, BRs promote photosynthesis and growth by positively regulating synthesis and activation of a variety of photosynthetic enzymes including Rubisco in cucumber.

  12. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco.

    PubMed

    Cai, Zhen; Liu, Guoxia; Zhang, Junli; Li, Yin

    2014-07-01

    Photosynthetic CO(2) fixation is the ultimate source of organic carbon on earth and thus is essential for crop production and carbon sequestration. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of photosynthetic CO(2) fixation. However, the extreme low carboxylation efficiency of Rubisco makes it the most attractive target for improving photosynthetic efficiency. Extensive studies have focused on re-engineering a more efficient enzyme, but the effort has been impeded by the limited understanding of its structure-function relationships and the lack of an efficient selection system towards its activity. To address the unsuccessful molecular engineering of Rubisco, we developed an Escherichia coli-based activity-directed selection system which links the growth of host cell solely to the Rubisco activity therein. A Synechococcus sp. PCC7002 Rubisco mutant with E49V and D82G substitutions in the small subunit was selected from a total of 15,000 mutants by one round of evolution. This mutant showed an 85% increase in specific carboxylation activity and a 45% improvement in catalytic efficiency towards CO(2). The small-subunit E49V mutation was speculated to influence holoenzyme catalysis through interaction with the large-subunit Q225. This interaction is conserved among various Rubisco from higher plants and Chlamydomonas reinhardtii. Knowledge of these might provide clues for engineering Rubisco from higher plants, with the potential of increasing the crop yield.

  13. Changes of mesophyll and the rubisco activity in pea plants grown in clinostat

    NASA Astrophysics Data System (ADS)

    Adamchuk, N. I.

    In earlier research, it was found that microgravity causes alteration of mesophyll cell parameters and dislication at the ultrastructural level (Kordyum et al., 1989, Nedukha et al., 1991, Kordyum, 1997, Adamchuk et al., 2002). Also, destruction of the fine structure of chloroplasts was reported by Abilov et al. (1986), Aliev et al. (1987), Kordyum et al. (1989), and Adamchuk et al. (1999). In addition, Abilov et al. (1986), Aliev et al. (1987), Brown et al. (1993) have discovered the decrease in starch volume. The objective of this work was to compare quantitative ultrastructural parameters of mesophyll cells (including properties of their chloroplasts) and the level of Rubisco activity detected in clinorotated and control plants of pea (Pisum sativum L.). Plants were grown for 12 days in the nutritional medium of Hogland on a clinostat (with 2 rev. min-1 speed of rotation) at a temperature of 23-25°C and illumination 230 μ mol per m-2s-1. The comparison of transversal cross-sections of leaves has revealed a significant increase of mesophyll cell volume and intercellular space under experimental conditions. This expansion of mesophyll cells has correlated with an increase of the number of chloroplasts. Essential ultrastructural changes have affected the total volume of thylakoids. Also, the value of the photosynthetic membranes development in the clinorotated plants was higher 17.11 ± 1.94 μ m3 then in control -- 12.65 ± 1.83 μ m3 due to extension of destacking thylakoids. Increase of the volume density of plastoglobuli in the clinorotated plants on the 1.63-fold suggested the effect of either greater accumulation of lipid or acceleration of chloroplasts senescence. Under influence of clinorotation, the partial volume of starch inclusions significantly decreased in the spongy mesophyll chloroplasts -- 10.46 ± 1.80 % to compare with control -- 31.34 ± 2.37 %. However, the clinorotation of plants resulted in an increase of the Rubisco activity. Intensities

  14. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain.

    PubMed

    Galmés, J; Kapralov, M V; Copolovici, L O; Hermida-Carrera, C; Niinemets, Ü

    2015-02-01

    Temperature response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalytic properties directly determines the CO2 assimilation capacity of photosynthetic organisms as well as their survival in environments with different thermal conditions. Despite unquestionable importance of Rubisco, the comprehensive analysis summarizing temperature responses of Rubisco traits across lineages of carbon-fixing organisms is lacking. Here, we present a review of the temperature responses of Rubisco carboxylase specific activity (c(cat)(c)) within and across domains of life. In particular, we consider the variability of temperature responses, and their ecological, physiological, and evolutionary controls. We observed over two-fold differences in the energy of activation (ΔH(a)) among different groups of photosynthetic organisms, and found significant differences between C3 plants from cool habitats, C3 plants from warm habitats and C4 plants. According to phylogenetically independent contrast analysis, ΔH(a) was not related to the species optimum growth temperature (T growth), but was positively correlated with Rubisco specificity factor (S(c/o)) across all organisms. However, when only land plants were analyzed, ΔH(a) was positively correlated with both T(growth) and S(c/o), indicating different trends for these traits in plants versus unicellular aquatic organisms, such as algae and bacteria. The optimum temperature (T(opt)) for k(cat)(c) correlated with S(c/o) for land plants and for all organisms pooled, but the effect of T growth on T(opt) was driven by species phylogeny. The overall phylogenetic signal was significant for all analyzed parameters, stressing the importance of considering the evolutionary framework and accounting for shared ancestry when deciphering relationships between Rubisco kinetic parameters. We argue that these findings have important implications for improving global photosynthesis models.

  15. Photosynthesis and regulation of rubisco activity in net phytoplankton from Delaware Bay

    SciTech Connect

    MacIntyre, H.L.; Geider, R.J.; McKay, R.M.

    1996-10-01

    Net phytoplankton (>20 {mu}m) comprised 51 {plus_minus} 9% of the total chlorophyll (Chl) in a Skeletonema costatum-dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein:carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chl ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chl ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in response to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (<20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations. 90 refs., 7 figs., 2 tabs.

  16. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.

    PubMed

    Crafts-Brandner, S J; Salvucci, M E

    2000-11-21

    Net photosynthesis (Pn) is inhibited by moderate heat stress. To elucidate the mechanism of inhibition, we examined the effects of temperature on gas exchange and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation in cotton and tobacco leaves and compared the responses to those of the isolated enzymes. Depending on the CO(2) concentration, Pn decreased when temperatures exceeded 35-40 degrees C. This response was inconsistent with the response predicted from the properties of fully activated Rubisco. Rubisco deactivated in leaves when temperature was increased and also in response to high CO(2) or low O(2). The decrease in Rubisco activation occurred when leaf temperatures exceeded 35 degrees C, whereas the activities of isolated activase and Rubisco were highest at 42 degrees C and >50 degrees C, respectively. In the absence of activase, isolated Rubisco deactivated under catalytic conditions and the rate of deactivation increased with temperature but not with CO(2). The ability of activase to maintain or promote Rubisco activation in vitro also decreased with temperature but was not affected by CO(2). Increasing the activase/Rubisco ratio reduced Rubisco deactivation at higher temperatures. The results indicate that, as temperature increases, the rate of Rubisco deactivation exceeds the capacity of activase to promote activation. The decrease in Rubisco activation that occurred in leaves at high CO(2) was not caused by a faster rate of deactivation, but by reduced activase activity possibly in response to unfavorable ATP/ADP ratios. When adjustments were made for changes in activation state, the kinetic properties of Rubisco predicted the response of Pn at high temperature and CO(2).

  17. A nonradioactive assay method for determination of enzymatic activity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco).

    PubMed

    Chakrabarti, Subhra; Bhattacharya, Sumana; Bhattacharya, Sanjoy K

    2002-01-01

    A sensitive and nonradioactive assay method for activity determination of Rubisco is described. The method is based on thin-layer chromatographic separation of 3-phosphoglycerate (3-PGA) and D-ribulose-1,5-bisphosphate (RuBP). This assay method allows the quantitative determination of Rubisco activity. Rates of carbon dioxide fixation on RuBP determined by this method were comparable to those obtained independently by other methods. This assay method is reproducible and relatively free from interference.

  18. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum

    PubMed Central

    Wang, Di; Zhang, Yaoping; Welch, Emily; Li, Jilun; Roberts, Gary P.

    2010-01-01

    Nitrogenase not only reduces atmospheric nitrogen to ammonia, but also reduces protons to hydrogen (H2). The nitrogenase system is the primary means of H2 production under photosynthetic and nitrogen-limiting conditions in many photosynthetic bacteria, including Rhodospirillum rubrum. The efficiency of this biological H2 production largely depends on the nitrogenase enzyme and the availability of ATP and electrons in the cell. Previous studies showed that blockage of the CO2 fixation pathway in R. rubrum induced nitrogenase activity even in the presence of ammonium, presumably to remove excess reductant in the cell. We report here the re-characterization of cbbM mutants in R. rubrum to study the effect of Rubisco on H2 production. Our newly constructed cbbM mutants grew poorly in malate medium under anaerobic conditions. However, the introduction of constitutively active NifA (NifA*), the transcriptional activator of the nitrogen fixation (nif) genes, allows cbbM mutants to dissipate the excess reductant through the nitrogenase system and improves their growth. Interestingly, we found that the deletion of cbbM alters the posttranslational regulation of nitrogenase activity, resulting in partially active nitrogenase in the presence of ammonium. The combination of mutations in nifA, draT and cbbM greatly increased H2 production of R. rubrum, especially in the presence of excess of ammonium. Furthermore, these mutants are able to produce H2 over a much longer time frame than the wild type, increasing the potential of these recombinant strains for the biological production of H2. PMID:20652089

  19. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative

  20. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  1. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop1[OPEN

    PubMed Central

    Shivhare, Devendra

    2017-01-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca. Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. PMID:28546437

  2. Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate.

    PubMed Central

    Schreuder, H. A.; Knight, S.; Curmi, P. M.; Andersson, I.; Cascio, D.; Sweet, R. M.; Brändén, C. I.; Eisenberg, D.

    1993-01-01

    The crystal structure of activated tobacco rubisco, complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate (CABP) has been determined by molecular replacement, using the structure of activated spinach rubisco (Knight, S., Andersson, I., & Brändén, C.-I., 1990, J. Mol. Biol. 215, 113-160) as a model. The R-factor after refinement is 21.0% for 57,855 reflections between 9.0 and 2.7 A resolution. The local fourfold axis of the rubisco hexadecamer coincides with a crystallographic twofold axis. The result is that the asymmetric unit of the crystals contains half of the L8S8 complex (molecular mass 280 kDa in the asymmetric unit). The activated form of tobacco rubisco is very similar to the activated form of spinach rubisco. The root mean square difference is 0.4 A for 587 equivalent C alpha atoms. Analysis of mutations between tobacco and spinach rubisco revealed that the vast majority of mutations concerned exposed residues. Only 7 buried residues were found to be mutated versus 54 residues at or near the surface of the protein. The crystal structure suggests that the Cys 247-Cys 247 and Cys 449-Cys 459 pairs are linked via disulfide bridges. This pattern of disulfide links differ from the pattern of disulfide links observed in crystals of unactivated tobacco rubisco (Curmi, P.M.G., et al., 1992, J. Biol. Chem. 267, 16980-16989) and is similar to the pattern observed for activated spinach tobacco. PMID:8358296

  3. Catalytic roles of flexible regions at the active site of ribulose-bisphosphate carboxylase/oxygenase (Rubisco)

    SciTech Connect

    Hartman, F.C.; Harpel, M.R.; Chen, Yuh-Ru; Larson, E.M.; Larimer, F.W.

    1995-12-31

    Chemical and mutagenesis studies of Rubisco have identified Lys329 and Glu48 as active-site residues that are located in distinct, interacting domains from adjacent subunits. Crystallographic analyses have shown that Lys329 is the apical residue in a 12-residue flexible loop (loop 6) of the {Beta},{alpha}-barrel domain of the active site and that Glu48 resides at the end of helix B of the N-terminal domain of the active site. When phosphorylated ligands are bound by the enzyme, loop 6 adopts a closed conformation and, in concert with repositioning of helix B, thereby occludes the active site from the external environment. In this closed conformation, the {gamma}-carboxylate of Glu48 and the {epsilon}-amino group of Lys329 engage in intersubunit electrostatic interaction. By use of appropriate site-directed mutants of Rhodospirillum rubrum Rubisco, we are addressing several issues: the catalytic roles of Lys329 and Glu48, the functional significance of the intersubunit salt bridge comprised of these two residues, and the roles of loop 6 and helix B in stabilizing labile reaction intermediates. Characterization of novel products derived from misprocessing of D-ribulose-1,5-bisphosphate (RuBP) by the mutant proteins have illuminated the structure of the key intermediate in the normal oxygenase pathway.

  4. Modified rubisco large subunit n-methyltransferase useful for targeting molecules to the active-site vicinity of ribulose-1,5-bisphosphate

    DOEpatents

    Houtz, Robert L [Lexington, KY

    2012-03-20

    The present invention generally relates to a modified Rubisco large subunit .sup..epsilon.N-Methyltransferase (Rubisco LSMT, or RLSMT). The present invention also relates to a modified RLSMT-carbonic anhydrase (RLSMT-CA). This modified RLSMT-CA improves the efficiency of the reduction of CO.sub.2 during photosynthesis, which may increase plant growth rates. The present invention also relates to nucleic acids encoding the modified RLSMT-CA or modified RLSMT. Also, the present invention relates to cells including the modified RLSMT-CA or modified RLSMT, plants containing the modified RLSMT-CA or modified RLSMT, and methods using compositions of the present invention. In addition, the present invention relates to antibodies conjugated to CA which may bind to Rubisco, and antibodies which bind a modified RLSMT-CA. The invention also relates to modified forms of the LS and SS of Rubisco where the modified forms are fusions with CA or biologically active fragments thereof. The present invention provides methods of altering Rubisco carboxylase activity and altering plant growth.

  5. Biophysical characterization of higher plant Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (Rca) is a chaperone-like protein of the AAA+ family, which uses mechanochemical energy derived from ATP hydrolysis to release tightly bound inhibitors from the active site of the primary carbon fixing enzyme ribulose 1,5-bisphosphate oxygenase/carboxylase (Rubisco). Mechanistic and...

  6. Surveying the expanding prokaryotic Rubisco multiverse.

    PubMed

    Liu, Di; Ramya, Ramaswamy Chettiyan Seetharaman; Mueller-Cajar, Oliver

    2017-09-01

    The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis.

    PubMed

    Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J

    2017-04-01

    Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.

  8. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances.

    PubMed

    Kasai, Minobu

    2008-09-01

    There is evidence suggesting that in plants changes in the photosynthetic source/sink balance are an important factor that regulates leaf photosynthetic rate through affects on the leaf carbohydrate status. However, to resolve the regulatory mechanism of leaf photosynthetic rate associated with photosynthetic source/sink balance, information, particularly on mutual relationships of experimental data that are linked with a variety of photosynthetic source/sink balances, seems to be still limited. Thus, a variety of manipulations altering the plant source/sink ratio were carried out with soybean plants, and the mutual relationships of various characteristics such as leaf photosynthetic rate, carbohydrate content and the source/sink ratio were analyzed in manipulated and non-manipulated control plants. The manipulations were removal of one-half or all pods, removal of one-third or two-third leaves, and shading of one-third or one-half leaves with soybean plants grown for 8 weeks under 10 h light (24 degrees C) and 14 h darkness (17 degrees C). It was shown that there were significant negative correlations between source/sink ratio (dry weight ratio of attached leaves to other all organs) and leaf photosynthetic rate; source/sink ratio and activation ratio (percentage of initial activity to total activity) of Rubisco in leaf extract; leaf carbohydrate (sucrose or starch) content and photosynthetic rate; carbohydrate (sucrose or starch) content and activation ratio of Rubisco; amount of protein-bound ribulose-1,5-bisphosphate (RuBP) in leaf extract and leaf photosynthetic rate; and the amount of protein-bound RuBP and activation ratio of Rubisco. In addition, there were significant positive correlations between source/sink ratio and leaf carbohydrate (sucrose or starch) content; source/sink ratio and the amount of protein-bound RuBP; carbohydrate (sucrose or starch) content and amount of protein-bound RuBP and the activation ratio of Rubisco and leaf photosynthetic rate

  9. Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803

    PubMed Central

    Marcus, Yehouda; Altman-Gueta, Hagit; Wolff, Yael; Gurevitz, Michael

    2011-01-01

    Orthophosphate (Pi) stimulates the activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) while paradoxically inhibiting its catalysis. Of three Pi-binding sites, the roles of the 5P- and latch sites have been documented, whereas that of the 1P-site remained unclear. Conserved residues at the 1P-site of Rubisco from the cyanobacterium Synechocystis PCC6803 were substituted and the kinetic properties of the enzyme derivatives and effects on cell photosynthesis and growth were examined. While Pi-stimulated Rubisco activation diminished for enzyme mutants T65A/S and G404A, inhibition of catalysis by Pi remained unchanged. Together with previous studies, the results suggest that all three Pi-binding sites are involved in stimulation of Rubisco activation, whereas only the 5P-site is involved in inhibition of catalysis. While all the mutations reduced the catalytic turnover of Rubisco (Kcat) between 6- and 20-fold, the photosynthesis and growth rates under saturating irradiance and inorganic carbon (Ci) concentrations were only reduced 40–50% (in the T65A/S mutants) or not at all (G404A mutant). Analysis of the mutant cells revealed a 3-fold increase in Rubisco content that partially compensated for the reduced Kcat so that the carboxylation rate per chlorophyll was one-third of that in the wild type. Correlation between the kinetic properties of Rubisco and the photosynthetic rate (Pmax) under saturating irradiance and Ci concentrations indicate that a >60% reduction in Kcat can be tolerated before Pmax in Synechocystsis PCC6803 is affected. These results indicate that the limitation of Rubisco activity on the rate of photosynthesis in Synechocystis is low. Determination of Calvin cycle metabolites revealed that unlike in higher plants, cyanobacterial photosynthesis is constrained by phosphoglycerate reduction probably due to limitation of ATP or NADPH. PMID:21551078

  10. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop.

    PubMed

    Shivhare, Devendra; Mueller-Cajar, Oliver

    2017-07-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Species-Dependent Variation in the Interaction of Substrate-Bound Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) and Rubisco Activase

    PubMed Central

    Wang, Zhen-Yuan; Snyder, Gordon W.; Esau, Brian D.; Portis, Archie R.; Ogren, William L.

    1992-01-01

    Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme. PMID:16653209

  12. Effect of CO sub 2 enrichment and high photosynthetic photon flux densities (PPFD) on rubisco and PEP-case activities of in vitro cultured strawberry plants

    SciTech Connect

    Desjardins, Y.; Beeson, R.; Gosselin, A. )

    1989-04-01

    Standard growing conditions in vitro (low light and CO{sub 2}) are not conducive to autotrophy. An experiment was conducted to improve photosynthesis in vitro in the hope of increasing survival in acclimatization. A factorial experiment was elaborated where CO{sub 2} and PPFD were supplied to in vitro cultured strawberry plants in the rooting stage. Activities of carboxylating enzymes were determined after 4 weeks of culture. The activities of non-activated and activated rubisco and PEP-Case were measured after extraction of the enzymes and a reaction with NaH{sup 14}CO{sub 3} followed by scintillation counting spectroscopy. High CO{sub 2} concentration significantly increased net assimilation rates (NAR) by 165% over the control for both 1650 and 3000 ppm CO{sub 2}. High PPFD only increased NAR by 12 and 35% for 150 and 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} respectively over the control. Plants grown at 3000 ppm CO{sub 2} had the highest level of chlorophyll/g FW with 97% more than the control. The activity of PEP-Case was the highest at high light levels and high CO{sub 2} with rates of 1.65 for 1650 ppm versus 1.22 mmol CO{sub 2} mg{sup {minus}1} chl. h{sup {minus}1} at 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}. There was no difference in PEP activity at low light levels. The rubisco activity was lower at 1650 and 3000 ppm CO{sub 2}. Increases in NAR correlate more closely to the PEP-Case than to Rubisco activity. Physiological significance of high activity of PEP-Case over rubisco will be discussed.

  13. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli.

    PubMed

    Parikh, Monal R; Greene, Dina N; Woods, Kristen K; Matsumura, Ichiro

    2006-03-01

    The Calvin Cycle is the primary conduit for the fixation of carbon dioxide into the biosphere; ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the rate-limiting fixation step. Our goal is to direct the evolution of RuBisCO variants with improved kinetic and biophysical properties. The Calvin Cycle was partially reconstructed in Escherichia coli; the engineered strain requires the Synechococcus PCC6301 RuBisCO for growth in minimal media supplemented with a pentose. We randomly mutated the gene encoding the large subunit of RuBisCO (rbcL), co-expressed the resulting library with the small subunit (rbcS) and the Synechococcus PCC7492 phosphoribulokinase (prkA), and selected hypermorphic variants. The RuBisCO variants that evolved during three rounds of random mutagenesis and selection were over-expressed, and exhibited 5-fold improvement in specific activity relative to the wild-type enzyme. These results demonstrate a new strategy for the artificial selection of RuBisCO and other non-native metabolic enzymes.

  14. Characterization of the heterooligomeric red-type rubisco activase from red algae.

    PubMed

    Loganathan, Nitin; Tsai, Yi-Chin Candace; Mueller-Cajar, Oliver

    2016-12-06

    The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca.

  15. Characterization of the heterooligomeric red-type rubisco activase from red algae

    PubMed Central

    Loganathan, Nitin; Tsai, Yi-Chin Candace; Mueller-Cajar, Oliver

    2016-01-01

    The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis–powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca. PMID:27872295

  16. Diffusion and interactions of carbon dioxide and oxygen in the vicinity of the active site of Rubisco: Molecular dynamics and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    El-Hendawy, Morad M.; Garate, José-Antonio; English, Niall J.; O'Reilly, Stephen; Mooney, Damian A.

    2012-10-01

    Molecular dynamics (MD) at the molecular mechanical level and geometry optimisation at the quantum mechanical level have been performed to investigate the transport and fixation of oxygen and carbon dioxide in the cavity of ribulose-1,5-bisphosphate carboxylase/oxygenase, or Rubisco. Multiple MD simulations have been carried out to study the diffusive behaviour of O2 and CO2 molecules from the Mg2+ cation in Rubisco at 298 K and 1 bar, being one step in the overall process of carboxylation/oxygenation in Rubisco. In addition to this work, in order to gain additional perspective on the role of chemical reaction rates and thermodynamics, oxygen, and carbon dioxide uptake mechanisms have also been investigated by the aid of quantum chemical calculations. The results indicate that the activation barrier for carboxylation is slightly lower than that of oxygenation. This agrees qualitatively with experimental findings, and rationalises the observed competition between both catalytic processes in nature. Finally, the longer-lived persistence of CO2 in the vicinity of the active centre (i.e., slower self-diffusion) may serve to explain, in part, why carboxylation is the more kinetically favoured on an overall basis compared to oxygenation.

  17. Role of the Rubisco Small Subunit

    SciTech Connect

    Spreitzer, Robert Joseph

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  18. RUBISCO activity and photosynthetic capacity of planktonic photoautotrophs: results of the geochemical rate/RNA integration study (GRIST)

    NASA Astrophysics Data System (ADS)

    Corredor, J.; Lopez, J.; Paul, J.; Kerkhof, L.

    2003-04-01

    A pilot field experiment for inter-calibration of biogeochemical and nucleic acid measurements was carried out at the Rutgers University Marine Field Station (RUMFS) at Tuckerton, NJ (19-25 July 2002) under the auspices of the US Department of Energy BIOMP program (Biotechnological Investigations - Ocean Margin Program. Sampling was carried out at the well-characterized Long-Term Ecosystem Observatory (LEO-15) site centered on a sand ridge in 15 m of water offshore from RUMFS. The GRIST study aimed to assess the relationship between traditional rate measurements and those using gene-based methodologies as a quantitative basis for linking processes from the molecular to the global scale. We measured several biogeochemical processes involving C and N cycling concurrently with a suite of molecular approaches. We here report on the relationship between photosynthetic capacity of autotrophic plankton and gene activity of variants of the large subunit gene (rbcL) mRNA for ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO), the enzyme responsible for primary C fixation during photosynthesis. Photosynthetic capacity over a diurnal cycle was quantified using a photosynthetron apparatus providing irradiance and temperature control, and gene products were concurrently quantified by PCR. Overall, photosynthetic capacity (PBmax) was found to be correlated to gene expression (r2 = 0.54). Relatively high correlations were found between PBmax and form 1D rbcL mRNA (r2 = 0.56) and between PBmax and real time PCR diatom rbcL mRNA (r2 = 0.51). Forms 1A and 1B showed lower but still significant correlations (0.38 and 0.42 respectively) to PBmax. Ratios of PBmax to rbcL mRNA ranged between 0.4 and 2.8 mg C/ng mRNA/h. Near-surface populations exhibited a relative maximum in the PBmax/mRNA ratio in the early afternoon but this relationship was not apparent in samples from 15 m depth.

  19. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-03-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.

  20. Purification of Rubisco Activase from Leaves or after Expression in Escherichia coli.

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase is a molecular chaperone that modulates the activation state of Rubisco by catalyzing the ATP-dependent removal of tightly-bound inhibitory sugar-phosphates from Rubisco’s catalytic sites. This chapter reports methods developed for the purification of native and recombinant Rubisco...

  1. Atomic resolution x-ray structure of the substrate recognition domain of higher plant rubisco activase

    USDA-ARS?s Scientific Manuscript database

    The rapid release of tight-binding inhibitors from dead-end Rubisco complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO2 fixation w...

  2. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. Copyright © 2015. Published by Elsevier GmbH.

  3. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis1[OPEN

    PubMed Central

    Boyd, Ryan A.; Gandin, Anthony; Cousins, Asaph B.

    2015-01-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3−, and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3− limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. PMID:26373659

  4. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.

    PubMed

    Boyd, Ryan A; Gandin, Anthony; Cousins, Asaph B

    2015-11-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3 (-), and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3 (-) limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis.

    PubMed

    Sharwood, Robert E; Ghannoum, Oula; Kapralov, Maxim V; Gunn, Laura H; Whitney, Spencer M

    2016-11-28

    Enhancing the catalytic properties of the CO2-fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C3 and C4 species within the grass tribe Paniceae. The CO2 fixation rate (kcatc) for Rubisco from the C4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO2/O2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C3 Rubisco and PCK Rubisco differentially stimulated C3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO2. Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.

  6. A coupled spectrophotometric assay for routine assessment of carbamylation and k@ of rubisco

    SciTech Connect

    Sharkey, T.D.; Butz, N.D. )

    1990-05-01

    We have developed methods to use the spectrophotometric assay for rubisco to determine k{sub cat} and carbamylation of rubisco in crude leaf extracts. In this assay, rubisco activity is coupled to NADH oxidation by PGA kinase and NADH dependent GAP dehydrogenase. The difficulty with this method in the past has been an initial lag in the observed signal, presumably because PGA must build up. This problem was solved by including high levels of ATP plus an ATP regenerating system and by using pH 8.0 for the assays. At higher pH the initial lag was observed, at lower pH, rubisco activity declined. The continuous spectrophotometric assay is particularly suited to studies of fallover, the loss of activity of rubisco during assay, and to studies of activation, the increase in activity as rubisco becomes carbamylated. the activity of rubisco measured immediately upon extraction compared to the activity after incubation with CO{sub 2} and Mg{sup 2+} correlated well with the degree of carbamylation as determined by {sup 14}CABP/{sup 12}CABP competition experiments. Rubisco activity was reduced by binding CABP, and the number of active sites were estimated by extrapolation to zero activity. These data allow the calculation of k{sub cat}. These methods allow estimation of many important parameters of rubisco activity in less time than previous methods and without generation of any radioactive waste.

  7. Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress.

    PubMed

    Liu, Kai-Lang; Shen, Lin; Wang, Jia-Qi; Sheng, Ji-Ping

    2008-04-01

    To investigate the sensitive site of antioxidant systems in chloroplast under cadmium stress and its consequence on reactive oxygen species production and action, the sub-organellar localization of chloroplast superoxide dismutases (SOD, EC 1.15.1.1) and ascorbic peroxidase (APX, EC 1.11.1.11) isoenzymes and changes of enzymes activities under cadmium stress were investigated in tomato seedlings. Two APX isoforms, one thylakoid-bound and one stromal, were detected. Cd at 50 microM induced a moderate increase of SOD activities but a rapid inactivation of both APX isoenzymes. APX inactivation was mainly related to the decrease of ascorbate concentration, as supported by in vitro treatment of exogenous ascorbate and APX kinetic properties under Cd stress. H2O2 accumulation in chloroplast, as a consequence of APX inactivation, was associated with a 60% loss of Rubisco (EC 4.1.1.39) activity, which could be partially accounted for by a 10% loss of Rubisco content. Protein oxidation assay found that the Rubisco large subunit was the most prominent carbonylated protein; the level of carbonylated Rubisco large subunit increased fivefold after Cd exposure. Thiol groups in the Rubisco large subunit were oxidized, as indicated by non-reducing electrophoresis. Treating crude extract with H2O2 resulted in a similar pattern of protein oxidation and thiols oxidation with that observed in Cd-treated plants. Our study indicates that APXs in the chloroplast is a highly sensitive site of antioxidant systems under Cd stress, and the inactivation of APX could be mainly responsible for oxidative modification to Rubisco and subsequent decrease in its activity.

  8. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  9. Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase.

    PubMed

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Widespread positive selection in the photosynthetic Rubisco enzyme

    PubMed Central

    Kapralov, Maxim V; Filatov, Dmitry A

    2007-01-01

    Background Rubisco enzyme catalyzes the first step in net photosynthetic CO2 assimilation and photorespiratory carbon oxidation and is responsible for almost all carbon fixation on Earth. The large subunit of Rubisco is encoded by the chloroplast rbcL gene, which is widely used for reconstruction of plant phylogenies due to its conservative nature. Plant systematicists have mainly used rbcL paying little attention to its function, and the question whether it evolves under Darwinian selection has received little attention. The purpose of our study was to evaluate how common is positive selection in Rubisco among the phototrophs and where in the Rubisco structure does positive selection occur. Results We searched for positive selection in rbcL sequences from over 3000 species representing all lineages of green plants and some lineages of other phototrophs, such as brown and red algae, diatoms, euglenids and cyanobacteria. Our molecular phylogenetic analysis found the presence of positive selection in rbcL of most analyzed land plants, but not in algae and cyanobacteria. The mapping of the positively selected residues on the Rubisco tertiary structure revealed that they are located in regions important for dimer-dimer, intradimer, large subunit-small subunit and Rubisco-Rubisco activase interactions, and that some of the positively selected residues are close to the active site. Conclusion Our results demonstrate that despite its conservative nature, Rubisco evolves under positive selection in most lineages of land plants, and after billions of years of evolution Darwinian selection still fine-tunes its performance. Widespread positive selection in rbcL has to be taken into account when this gene is used for phylogenetic reconstructions. PMID:17498284

  11. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    PubMed Central

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  12. NanoESI Mass Spectrometry of Rubisco and Rubisco Activase Structures and Their Interactions with Nucleotides and Sugar Phosphates

    NASA Astrophysics Data System (ADS)

    Blayney, Michelle J.; Whitney, Spencer M.; Beck, Jennifer L.

    2011-09-01

    Ribulose bisphosphate carboxylase/oxygenase (Rubisco) is the protein that is responsible for the fixation of carbon dioxide in photosynthesis. Inhibitory sugar phosphate molecules, which can include its substrate ribulose-1,5-bisphosphate (RuBP), can bind to Rubisco catalytic sites and inhibit catalysis. These are removed by interaction with Rubisco activase (RA) via an ATP hydrolytic reaction. Here we show the first nanoESI mass spectra of the hexadecameric Rubisco and of RA from a higher plant (tobacco). The spectra of recombinant, purified RA revealed polydispersity in its oligomeric forms (up to hexamer) and that ADP was bound. ADP was removed by dialysis against a high ionic strength solution and nucleotide binding experiments showed that ADP bound more tightly to RA than AMP-PNP (a non-hydrolysable ATP analog). There was evidence that there may be two nucleotide binding sites per RA monomer. The oligomerization capacity of mutant and wild-type tobacco RA up to hexamers is analogous to the subunit stoichiometry for other AAA+ enzymes. This suggests assembly of RA into hexamers is likely the most active conformation for removing inhibitory sugar phosphate molecules from Rubisco to enable its catalytic competency. Stoichiometric binding of RuBP or carboxyarabinitol bisphosphate (CABP) to each of the eight catalytic sites of Rubisco was observed.

  13. Rubisco small and large subunit N-methyltransferases. Bi- and mono-functional methyltransferases that methylate the small and large subunits of Rubisco.

    PubMed

    Ying, Z; Mulligan, R M; Janney, N; Houtz, R L

    1999-12-17

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)is methylated at the alpha-amino group of the N-terminal methionine of the processed form of the small subunit (SS), and at the epsilon-amino group of lysine-14 of the large subunit (LS) in some species. The Rubisco LS methyltransferase (LSMT) gene has been cloned and expressed from pea and specifically methylates lysine-14 of the LS of Rubisco. We determine here that both pea and tobacco Rubisco LSMT also exhibit (alpha)N-methyltransferase activity toward the SS of Rubisco, suggesting that a single gene product can produce a bifunctional protein methyltransferase capable of catalyzing both (alpha)N-methylation of the SS and (epsilon)N-methylation of the LS. A homologue of the Rubisco LSMT gene (rbcMT-S) has also been identified in spinach that is closely related to Rubisco LSMT sequences from pea and tobacco. Two mRNAs are produced from rbcMT-S, and both long and short forms of the spinach cDNAs were expressed in Escherichia coli cells and shown to catalyze methylation of the alpha-amino group of the N-terminal methionine of the SS of Rubisco. Thus, the absence of lysine-14 methylation in species like spinach is apparently a consequence of a monofunctional protein methyltransferase incapable of methylating Lys-14, with activity limited to methylation of the SS.

  14. A faster Rubisco with potential to increase photosynthesis in crops.

    PubMed

    Lin, Myat T; Occhialini, Alessandro; Andralojc, P John; Parry, Martin A J; Hanson, Maureen R

    2014-09-25

    In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial β-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the β-carboxysome shell proteins.

  15. Biochemical characterization of predicted Precambrian RuBisCO

    PubMed Central

    Shih, Patrick M.; Occhialini, Alessandro; Cameron, Jeffrey C.; Andralojc, P John; Parry, Martin A. J.; Kerfeld, Cheryl A.

    2016-01-01

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism. PMID:26790750

  16. Biochemical characterization of predicted Precambrian RuBisCO.

    PubMed

    Shih, Patrick M; Occhialini, Alessandro; Cameron, Jeffrey C; Andralojc, P John; Parry, Martin A J; Kerfeld, Cheryl A

    2016-01-21

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism.

  17. Co- and post-translational modifications in Rubisco: unanswered questions.

    PubMed

    Houtz, Robert L; Magnani, Roberta; Nayak, Nihar R; Dirk, Lynnette M A

    2008-01-01

    Both the large (LS) and small (SS) subunits of Rubisco are subject to a plethora of co- and post-translational modifications. With the exceptions of LS carbamylation and SS transit sequence processing, the remaining modifications, including deformylation, acetylation, methylation, and N-terminal proteolytic processing of the LS, are still biochemically and/or functionally undefined although they are found in nearly all forms of Rubisco from vascular plants. A collection of relatively unique enzymes catalyse these modifications, and several have been characterized in other organisms. Some of the observed modifications in the LS and SS clearly suggest novel changes in enzyme specificity and/or activity, and others have common features with other co- and post-translationally modifying enzymes. With the possible exception of Lys14 methylation in the LS, processing of both the LS and SS of Rubisco is by default an ordered process sequentially leading up to the final forms observed in the holoenzyme. An overview of the nature of structural modifications in the LS and SS of Rubisco is presented, and, where possible, the nature of the enzymes catalysing these modifications (either through similarity with other known enzymes or through direct enzymological characterization) is described. Overall, there are a distinct lack of functional and mechanistic observations for modifications in Rubisco and thus represent many potentially productive avenues for research.

  18. Rubisco and Rubisco Activase Play an Important Role in the Biochemical Limitations of Photosynthesis in Rice, Wheat, and Maize under High Temperature and Water Deficit

    PubMed Central

    Perdomo, Juan A.; Capó-Bauçà, Sebastià; Carmo-Silva, Elizabete; Galmés, Jeroni

    2017-01-01

    To understand the effect of heat and drought on three major cereal crops, the physiological and biochemical (i.e., metabolic) factors affecting photosynthesis were examined in rice, wheat, and maize plants grown under long-term water deficit (WD), high temperature (HT) and the combination of both stresses (HT-WD). Diffusional limitations to photosynthesis prevailed under WD for the C3 species, rice and wheat. Conversely, biochemical limitations prevailed under WD for the C4 species, maize, under HT for all three species, and under HT-WD in rice and maize. These biochemical limitations to photosynthesis were associated with Rubisco activity that was highly impaired at HT and under HT-WD in the three species. Decreases in Rubisco activation were unrelated to the amount of Rubisco and Rubisco activase (Rca), but were probably caused by inhibition of Rca activity, as suggested by the mutual decrease and positive correlation between Rubisco activation state and the rate of electron transport. Decreased Rubisco activation at HT was associated with biochemical limitation of net CO2 assimilation rate (AN). Overall, the results highlight the importance of Rubisco as a target for improving the photosynthetic performance of these C3 (wheat and rice) and C4 (maize) cereal crops under increasingly variable and warmer climates. PMID:28450871

  19. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends.

    PubMed

    Galmés, Jeroni; Kapralov, Maxim V; Andralojc, P John; Conesa, Miquel À; Keys, Alfred J; Parry, Martin A J; Flexas, Jaume

    2014-09-01

    The present study characterizes the kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from 28 terrestrial plant species, representing different phylogenetic lineages, environmental adaptations and photosynthetic mechanisms. Our findings confirm that past atmospheric CO(2)/O(2) ratio changes and present environmental pressures have influenced Rubisco kinetics. One evolutionary adaptation to a decreasing atmospheric CO(2)/O(2) ratio has been an increase in the affinity of Rubisco for CO(2) (Kc falling), and a consequent decrease in the velocity of carboxylation (kcat (c)), which in turn has been ameliorated by an increase in the proportion of leaf protein accounted by Rubisco. The trade-off between K(c) and k(cat)(c) was not universal among the species studied and deviations from this relationship occur in extant forms of Rubisco. In species adapted to particular environments, including carnivorous plants, crassulacean acid metabolism species and C(3) plants from aquatic and arid habitats, Rubisco has evolved towards increased efficiency, as demonstrated by a higher k(cat)(c)/K(c) ratio. This variability in kinetics was related to the amino acid sequence of the Rubisco large subunit. Phylogenetic analysis identified 13 residues under positive selection during evolution towards specific Rubisco kinetic parameters. This crucial information provides candidate amino acid replacements, which could be implemented to optimize crop photosynthesis under a range of environmental conditions.

  20. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth

    PubMed Central

    Wilson, Robert H.; Alonso, Hernan; Whitney, Spencer M.

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted “trial and error” protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  1. Rubisco Evolution in C4 Eudicots: An Analysis of Amaranthaceae Sensu Lato

    PubMed Central

    Kapralov, Maxim V.; Smith, J. Andrew C.; Filatov, Dmitry A.

    2012-01-01

    Background Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO2. In C4 plants CO2 is supplied to Rubisco by an auxiliary CO2-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C4 Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C3 enzyme. Specific amino-acids in Rubisco are associated with C4 photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots. Methodology/Principal Findings We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C4 plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C4 Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C4 plant groups, such as C4 monocots, illustrating a striking parallelism in molecular evolution. Conclusions/Significance Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco. PMID:23285238

  2. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions

    PubMed Central

    Rosnow, Josh J.; Evans, Marc A.; Kapralov, Maxim V.; Cousins, Asaph B.; Edwards, Gerald E.; Roalson, Eric H.

    2015-01-01

    The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol–1 Rubisco active sites s–1), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed. PMID:26417023

  3. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions.

    PubMed

    Rosnow, Josh J; Evans, Marc A; Kapralov, Maxim V; Cousins, Asaph B; Edwards, Gerald E; Roalson, Eric H

    2015-12-01

    The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol(-1) Rubisco active sites s(-1)), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants.

    PubMed

    Zhang, Xing-Hai; Webb, James; Huang, Yi-Hong; Lin, Li; Tang, Ri-Sheng; Liu, Aimin

    2011-03-01

    Biogenesis of functional ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in plants requires specific assembly in the chloroplast of the imported, cytosol-synthesized small subunits (SS) with the chloroplast-made large subunits (LS). Accumulating evidence indicates that chloroplasts (plastids) generally have a low tolerance for assembling foreign or modified Rubisco. To explore Rubisco engineering, we created two lines of transplastomic tobacco plants whose rbcL gene was replaced by tomato-derived rbcL: plant LLS2 with Rubisco composed of tobacco SS and Q437R LS and plant LLS4 with a hybrid Rubisco of tobacco SS and tomato LS (representing four substitutions of Y226F, A230T, S279T and Q437R from tobacco LS). Plant LLS2 exhibited similar phenotypes as the wild type. Plant LLS4 showed lower chlorophyll and Rubisco levels particularly in young emerging leaves, lower photosynthesis rates and biomass during early stages of development, but was able to reach reproductive maturity and somewhat wild type-like phenotype under ambient CO₂ condition. In vitro assays detected similar carboxylase activity and RuBP affinity in LLS2 and LLS4 plants as in wild type. Our studies demonstrated that tomato LS was sufficiently assembled with tobacco SS into functional Rubisco. The hybrid Rubisco of tomato LS and tobacco SS can drive photosynthesis that supports photoautotrophic growth and reproduction of tobacco plants under ambient CO₂ and light conditions. We discuss the effect of these residue substitutions on Rubisco activity and the possible attribution of chlorophyll deficiency to the in planta photosynthesis performance in the hybrid Rubisco plants.

  5. Temperature-sensitive rubisco mutant of Chlamydomonas. [Chlamydomonas reinhardtii

    SciTech Connect

    Chen, Z.; Spreitzer, R.J.; Chastain, C.J.

    1987-04-01

    The Chlamydomonas reinhardtii mutant 68-4PP is a temperature-sensitive mutant that lacks photosynthetic ability at 35/sup 0/C, but is able to grow photosynthetically at 25/sup 0/C. Genetic analysis indicated that 68-4PP is a chloroplast mutant that is allelic with known Rubisco large-subunit structural-gene mutants, implying that 68-4PP also resulted from a mutation in the large-subunit gene. The 68-4PP mutant has about 35% of the wild-type level of Rubisco holoenzyme and carboxylase activity when grown at 25/sup 0/C, but it has less than 10% of normal holoenzyme and carboxylase activity when grown at 35/sup 0/C. However, (/sup 35/S)-sulfate pulse labeling showed that Rubisco subunits were synthesized at normal rates at both temperatures. More significantly, the ratio of carboxylase activity in the absence and presence of oxygen at a limiting CO/sub 2/ concentration (6.6 ..mu..M) was about 2.2 for the mutant enzyme, as compared to about 3.0 for the wild-type enzyme. The decreased ratio of the mutant enzyme is maternally inherited, indicating that this reduced oxygen sensitivity results from a mutation in chloroplast DNA. The authors have recently cloned the 68-4PP Rubisco large-subunit gene, and DNA sequencing is in progress.

  6. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree.

    PubMed

    Kacar, B; Hanson-Smith, V; Adam, Z R; Boekelheide, N

    2017-09-01

    Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the

  7. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties

    USDA-ARS?s Scientific Manuscript database

    Significant inhibition of photosynthesis occurs at temperatures only a few degrees (less than or equal to 10 degrees Celsius) above the optimum, resulting in considerable loss of potential productivity. Most studies of heat stress have focused on crop or weedy annual plants, whereas similar studies...

  8. Functional metagenomic selection of RubisCOs from uncultivated bacteria

    USGS Publications Warehouse

    Varaljay, Vanessa A; Satagopan, Sriram; North, Justin A.; Witteveen, Briana; Dourado, Manuella N.; Anantharaman, Karthik; Arbing, Mark A.; McCann, Shelley; Oremland, Ronald S.; Banfield, Jillian F.; Wrighton, Kelly C.; Tabita, F. Robert

    2016-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2-dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of theGallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possessCO2/O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2-fixing enzymes not previously characterized.

  9. Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants.

    PubMed

    Bloom, Arnold J; Kameritsch, Petra

    2017-08-08

    Rubisco, the enzyme that constitutes as much as half of the protein in a leaf, initiates either the photorespiratory pathway that supplies reductant for the assimilation of nitrate into amino acids or the C3 carbon fixation pathway that generates carbohydrates. The relative rates of these two pathways depend both on the relative extent to which O2 and CO2 occupies the active site of Rubisco and on whether manganese or magnesium is bound to the enzyme. This study quantified the activities of manganese and magnesium in isolated tobacco chloroplasts and the thermodynamics of binding of these metals to Rubisco purified from tobacco or a bacterium. In tobacco chloroplasts, manganese was less active than magnesium, but Rubisco purified from tobacco had a higher affinity for manganese. The activity of each metal in the chloroplast was similar in magnitude to the affinity of tobacco Rubisco for each. This indicates that, in tobacco chloroplasts, Rubisco associates almost equally with both metals and rapidly exchanges one metal for the other. Binding of magnesium was similar in Rubisco from tobacco and a bacterium, whereas binding of manganese differed greatly between the Rubisco from these species. Moreover, the ratio of leaf manganese to magnesium in C3 plants increased as atmospheric CO2 increased. These results suggest that Rubisco has evolved to improve the energy transfers between photorespiration and nitrate assimilation and that plants regulate manganese and magnesium activities in the chloroplast to mitigate detrimental changes in their nitrogen/carbon balance as atmospheric CO2 varies. This article is protected by copyright. All rights reserved.

  10. Ribulose-1,5-bisphosphate Carboxylase/oxygenase (RubisCO) Gene Expression and Photosynthetic Activity in Nutrient-enriched Mesocosm Experiments

    NASA Astrophysics Data System (ADS)

    Wyman, M.; Davies, J. T.; Weston, K.; Crawford, D. W.; Purdie, D. A.

    1998-02-01

    The temporal variability in carbon dioxide fixation rates and the relative abundance ofrbcLSmRNA (encoding the large subunit of the Calvin cycle enzyme, RubisCO) was determined for nutrient-stimulated populations of marine phytoplankton enclosed in diatom-dominated and coccolithophorid-dominated mesocosms. Both mesocosms were characterized by successive bloom events that were preceded by marked increases in the level of RubisCO gene expression. In general, maxima inrbcLmRNA abundance showed the strongest temporal covariation with peaks in the value of the photosynthetic parameter PBmax, the chlorophyll-specific maximum rate of CO2fixation. Somewhat looser temporal co-variations were observed between peaks in transcript levels and maxima in chlorophyll concentrations or phytoplankton biomass. The specific contribution of the haptophyteEmiliania huxleyito the overall level of gene expression in the diatom-dominated enclosure was investigated using an homologousrbcLgene probe. The results were compared to data obtained at lower hybridization stringency using a generalrbcLprobe originating from the oceanic cyanobacteriumSynechococcusWH8103. The comparative data suggest that, whereas diatoms made a substantial contribution to the mRNA signal during the initial part of the experiment, the contribution ofE. huxleyito the overall level of gene expression increased as the experiment progressed.

  11. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants.

    PubMed

    Feiz, Leila; Williams-Carrier, Rosalind; Belcher, Susan; Montano, Monica; Barkan, Alice; Stern, David B

    2014-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin-Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co-factor of hepatocyte nuclear factor 1 (DCoH)/pterin-4α-carbinolamine dehydratases (PCD)-like protein is the causative mutation in a seedling-lethal, Rubisco-deficient mutant named Rubisco accumulation factor 2 (raf2-1). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high-molecular weight complex, the formation of which requires a specific chaperonin 60-kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross-linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co-immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co-immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae).

    PubMed

    Galmés, Jeroni; Andralojc, P John; Kapralov, Maxim V; Flexas, Jaume; Keys, Alfred J; Molins, Arántzazu; Parry, Martin A J; Conesa, Miquel À

    2014-08-01

    Carbon assimilation by most ecosystems requires ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Its kinetic parameters are likely to have evolved in parallel with intracellular CO2 availability, with the result that faster forms of Rubisco occur in species with CO2 -concentrating mechanisms. The Rubisco catalytic properties were determined and evaluated in relation to growth and carbon assimilation capacity in Mediterranean Limonium species, inhabiting severe stress environments. Significant kinetic differences between closely related species depended on two amino acid substitutions at functionally important residues 309 and 328 within the Rubisco large subunit. The Rubisco of species facing the largest CO2 restrictions during drought had relatively high affinity for CO2 (low Michaelis-Menten constant for CO2 Kc) but low maximum rates of carboxylation (kcatc), while the opposite was found for species that maintained higher CO2 concentrations under similar conditions. Rubisco kinetic characteristics were correlated with photosynthetic rate in both well-watered and drought-stressed plants. Moreover, the drought-mediated decrease in plant biomass accumulation was consistently lower in species with higher Rubisco carboxylase catalytic efficiency (kcatc/Kc). The present study is the first demonstration of Rubisco adaptation during species diversification within closely related C3 plants, revealing a direct relationship between Rubisco molecular evolution and the biomass accumulation of closely related species subjected to unfavourable conditions. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Pyruvate is a by-product of Rubisco catalysis

    SciTech Connect

    Andrews, T.J.; Kane, H.J. )

    1990-05-01

    The catalytic mechanism of D-ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) involves several enzyme-bound intermediates. The 2,3-enediol resulting from abstraction of the C-3 proton from RuBP, and the 6-carbon intermediate resulting from its carboxylation, are well established. However, the C-2 carbanion form of 3-phosphoglycerate, thought to be produced by scission of the bond between C-2 and C-3 of the gem-diol form of the 6-carbon intermediate, is less well documented. We have observed the formation of ({sup 14}C)pyruvate during catalysis by purified spinach Rubisco in the presence of {sup 14}CO{sub 2} to an extent of approximately 1% of the total {sup 14}C fixed at substrate saturation and pH 8. Pyruvate formation was also continuously measured spectrophotometrically in the presence of lactate dehydrogenase and NADH. No pyruvate was formed when 3-phosphoglycerate was substituted for RuBP or when Rubisco was inhibited by a reaction-intermediate analog. Pyruvate is the expected product of {beta}-elimination of the phosphoryl moiety of the acid carbanion, either at the active site or in solution after release from the enzyme. These observations establish the intermediacy of the carbanion species and provide yet another example of Rubisco's catalytic inefficiency.

  14. Directed disassembly of an interfacial rubisco protein network.

    PubMed

    Onaizi, Sagheer A; Malcolm, Andrew S; He, Lizhong; Middelberg, Anton P J

    2007-05-22

    We present the first study of the directed disassembly of a protein network at the air-water interface by the synergistic action of a surfactant and an enzyme. We seek to understand the fundamentals of protein network disassembly by using rubisco adsorbed at the air-water interface as a model. We propose that rubisco adsorption at the air-water interface results in the formation of a fishnet-like network of interconnected protein molecules, capable of transmitting lateral force. The mechanical properties of the rubisco network during assembly and disassembly at the air-water interface were characterized by direct measurement of laterally transmitted force through the protein network using the Cambridge interfacial tensiometer. We have shown that, when used individually, either 2 ppm of the surfactant, sodium dodecyl benzyl sulfonate (SDOBS), or 2 ppm of the enzyme, subtilisin A (SA), were insufficient to completely disassemble the rubisco network within 1 h of treatment. However, a combination of 2 ppm SDOBS and 2 ppm SA led to almost complete disassembly within 1 h. Increasing the concentration of SA in the mixture from 2 to 10 ppm, while keeping the SDOBS concentration constant, significantly decreased the time required to completely disassemble the rubisco network. Furthermore, the initial rate of network disassembly using formulations containing SDOBS was surprisingly insensitive to this increase in SA concentration. This study gives insight into the role of lateral interactions between protein molecules at interfaces in stabilizing interfacial protein networks and shows that surfactant and enzyme working in combination proves more effective at disrupting and mobilizing the interfacial protein network than the action of either agent alone.

  15. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    PubMed

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency.

  16. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria

    SciTech Connect

    Wrighton, Kelly C.; Castelle, Cindy J.; Varaljay, Vanessa A.; Satagopan, Sriram; Brown, Christopher T.; Wilkins, Michael J.; Thomas, Brian C.; Sharon, Itai; Williams, Kenneth H.; Tabita, F. Robert; Banfield, Jillian F.

    2016-05-03

    Metagenomic studies recently uncovered form II/III RubisCO genes, originally thought to only occur in archaea, from uncultivated bacteria of the candidate phyla radiation (CPR). There are no isolated CPR bacteria and these organisms are predicted to have limited metabolic capacities. Here we expand the known diversity of RubisCO from CPR lineages. We report a form of RubisCO, distantly similar to the archaeal form III RubisCO, in some CPR bacteria from the Parcubacteria (OD1), WS6 and Microgenomates (OP11) phyla. In addition, we significantly expand the Peregrinibacteria (PER) II/III RubisCO diversity and report the first II/III RubisCO sequences from the Microgenomates and WS6 phyla. To provide a metabolic context for these RubisCOs, we reconstructed near-complete ( > 93%) PER genomes and the first closed genome for a WS6 bacterium, for which we propose the phylum name Dojkabacteria. Genomic and bioinformatic analyses suggest that the CPR RubisCOs function in a nucleoside pathway similar to that proposed in Archaea. Detection of form II/III RubisCO and nucleoside metabolism gene transcripts from a PER supports the operation of this pathway in situ. We demonstrate that the PER form II/III RubisCO is catalytically active, fixing CO2 to physiologically complement phototrophic growth in a bacterial photoautotrophic RubisCO deletion strain. We propose that the identification of these RubisCOs across a radiation of obligately fermentative, small-celled organisms hints at a widespread, simple metabolic platform in which ribose may be a prominent currency.

  17. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria

    DOE PAGES

    Wrighton, Kelly C.; Castelle, Cindy J.; Varaljay, Vanessa A.; ...

    2016-05-03

    Metagenomic studies recently uncovered form II/III RubisCO genes, originally thought to only occur in archaea, from uncultivated bacteria of the candidate phyla radiation (CPR). There are no isolated CPR bacteria and these organisms are predicted to have limited metabolic capacities. Here we expand the known diversity of RubisCO from CPR lineages. We report a form of RubisCO, distantly similar to the archaeal form III RubisCO, in some CPR bacteria from the Parcubacteria (OD1), WS6 and Microgenomates (OP11) phyla. In addition, we significantly expand the Peregrinibacteria (PER) II/III RubisCO diversity and report the first II/III RubisCO sequences from the Microgenomates andmore » WS6 phyla. To provide a metabolic context for these RubisCOs, we reconstructed near-complete ( > 93%) PER genomes and the first closed genome for a WS6 bacterium, for which we propose the phylum name Dojkabacteria. Genomic and bioinformatic analyses suggest that the CPR RubisCOs function in a nucleoside pathway similar to that proposed in Archaea. Detection of form II/III RubisCO and nucleoside metabolism gene transcripts from a PER supports the operation of this pathway in situ. We demonstrate that the PER form II/III RubisCO is catalytically active, fixing CO2 to physiologically complement phototrophic growth in a bacterial photoautotrophic RubisCO deletion strain. We propose that the identification of these RubisCOs across a radiation of obligately fermentative, small-celled organisms hints at a widespread, simple metabolic platform in which ribose may be a prominent currency.« less

  18. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria

    PubMed Central

    Wrighton, Kelly C; Castelle, Cindy J; Varaljay, Vanessa A; Satagopan, Sriram; Brown, Christopher T; Wilkins, Michael J; Thomas, Brian C; Sharon, Itai; Williams, Kenneth H; Tabita, F Robert; Banfield, Jillian F

    2016-01-01

    Metagenomic studies recently uncovered form II/III RubisCO genes, originally thought to only occur in archaea, from uncultivated bacteria of the candidate phyla radiation (CPR). There are no isolated CPR bacteria and these organisms are predicted to have limited metabolic capacities. Here we expand the known diversity of RubisCO from CPR lineages. We report a form of RubisCO, distantly similar to the archaeal form III RubisCO, in some CPR bacteria from the Parcubacteria (OD1), WS6 and Microgenomates (OP11) phyla. In addition, we significantly expand the Peregrinibacteria (PER) II/III RubisCO diversity and report the first II/III RubisCO sequences from the Microgenomates and WS6 phyla. To provide a metabolic context for these RubisCOs, we reconstructed near-complete (>93%) PER genomes and the first closed genome for a WS6 bacterium, for which we propose the phylum name Dojkabacteria. Genomic and bioinformatic analyses suggest that the CPR RubisCOs function in a nucleoside pathway similar to that proposed in Archaea. Detection of form II/III RubisCO and nucleoside metabolism gene transcripts from a PER supports the operation of this pathway in situ. We demonstrate that the PER form II/III RubisCO is catalytically active, fixing CO2 to physiologically complement phototrophic growth in a bacterial photoautotrophic RubisCO deletion strain. We propose that the identification of these RubisCOs across a radiation of obligately fermentative, small-celled organisms hints at a widespread, simple metabolic platform in which ribose may be a prominent currency. PMID:27137126

  19. 2-Carboxy-D-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation.

    PubMed

    Andralojc, Paul John; Madgwick, Pippa J; Tao, Yong; Keys, Alfred; Ward, Jane L; Beale, Michael H; Loveland, Jane E; Jackson, Phil J; Willis, Antony C; Gutteridge, Steven; Parry, Martin A J

    2012-03-15

    The genes for CA1Pase (2-carboxy-D-arabinitol-1-bisphosphate phosphatase) from French bean, wheat, Arabidopsis and tobacco were identified and cloned. The deduced protein sequence included an N-terminal motif identical with the PGM (phosphoglycerate mutase) active site sequence [LIVM]-x-R-H-G-[EQ]-x-x-[WN]. The corresponding gene from wheat coded for an enzyme with the properties published for CA1Pase. The expressed protein lacked PGM activity but rapidly dephosphorylated 2,3-DPG (2,3-diphosphoglycerate) to 2-phosphoglycerate. DTT (dithiothreitol) activation and GSSG inactivation of this enzyme was pH-sensitive, the greatest difference being apparent at pH 8. The presence of the expressed protein during in vitro measurement of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity prevented a progressive decline in Rubisco turnover. This was due to the removal of an inhibitory bisphosphate that was present in the RuBP (ribulose-1,5-bisphosphate) preparation, and was found to be PDBP (D-glycero-2,3-pentodiulose-1,5-bisphosphate). The substrate specificity of the expressed protein indicates a role for CA1Pase in the removal of 'misfire' products of Rubisco.

  20. Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface.

    PubMed

    He, Lizhong; Onaizi, Sagheer A; Dimitrijev-Dwyer, Mirjana; Malcolm, Andrew S; Shen, Hsin-Hui; Dong, Chuchuan; Holt, Stephen A; Thomas, Robert K; Middelberg, Anton P J

    2011-08-15

    Protein-surfactant interaction, which is a function of the protein and surfactant characteristics, is a common phenomenon in a wide range of industrial applications. In this work, we used rubisco, the most abundant protein in nature, as a model protein and sodium dodecylbenzenesulfonate (SDOBS), one of the most widely used commercial surfactants, with two positional isomers (SDOBS-2 and SDOBS-6), as a model surfactant. We first examined the surface tension and the mechanical properties of interfacial mixed rubisco-SDOBS films adsorbed at the air-water interface. The concentration of rubisco in solution was fixed at 0.1 mg mL(-1) while the SDOBS concentration varied from 0 to 150 μM. Both the surface tension and the mechanical strength of the interfacial film decreased with increasing SDOBS concentration. Overall, the surface tension of a rubisco-SDOBS-6 mixture is lower than that of rubisco-SDOBS-2, while the mechanical strength of both systems is similar. Neutron reflection data suggest that rubisco protein is likely denatured at the interface. The populations of rubisco and SDOBS of the mixed systems at the interface were determined by combining non-deuterated and deuterated SDOBS to provide contrast variation. At a low surfactant concentration, SDOBS-6 has a stronger ability to displace rubisco from the air-water interface than SDOBS-2. However, when surfactant concentration reaches 50 μM, SDOBS-2 has a higher population than SDOBS-6, with more rubisco displaced from the interface. The results presented in this work suggest that the extent of protein displacement from the air-water interface, and hence the nature of the protein-surfactant interactions at the interface, are strongly affected by the position of surfactant isomerisation, which might allow the design of formulations for efficient removal of protein stains.

  1. Biophysical characterization of higher plant Rubisco activase.

    PubMed

    Henderson, J Nathan; Hazra, Suratna; Dunkle, Alison M; Salvucci, Michael E; Wachter, Rebekka M

    2013-01-01

    Rubisco activase (Rca) is a chaperone-like protein of the AAA+ family, which uses mechano-chemical energy derived from ATP hydrolysis to release tightly bound inhibitors from the active site of the primary carbon fixing enzyme ribulose 1,5-bisphosphate oxygenase/carboxylase (Rubisco). Mechanistic and structural investigations of Rca have been hampered by its exceptional thermolability, high degree of size polydispersity and propensity towards subunit aggregation. In this work, we have characterized the thermal stability and self-association behavior of recombinant Rca preparations, and have developed ligand screening methods. Thermal denaturation profiles generated by circular dichroism indicate that creosote and tobacco short-form Rcas are the most stable proteins examined, with an estimated mid-point temperature of 45-47°C for protein denaturation. We demonstrate that ADP provides a higher degree of stabilization than ATP, that magnesium ions have a small stabilizing effect on ATP-bound, but a significant destabilizing effect on ADP-bound Rca, and that phosphate provides weak stabilization of the ADP-bound form of the protein. A dimeric species was identified by size-exclusion chromatography, suggesting that the two-subunit module may comprise the basic building block for larger assemblies. Evidence is provided that chromatographic procedures reflect non-equilibrium multimeric states. Dynamic light scattering experiments performed on nucleotide-bearing Rca support the notion that several larger, highly polydisperse assembly states coexist over a broad concentration range. No significant changes in aggregation are observed upon replacement of ADP with ATP. However, in the absence of nucleotides, the major protein population appears to consist of a monodisperse oligomer smaller than a hexamer.

  2. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii.

    PubMed

    Johnson, Xenie

    2011-07-01

    The nuclear factor, Maturation/stability of RbcL (MRL1), regulates the accumulation of the chloroplast rbcL gene transcript in Chlamydomonas reinhardtii by stabilising the mRNA via its 5' UTR. An absence of MRL1 in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accumulation of the RuBisCO holoenzyme. By complementing mrl1 mutants by random transformation of the nuclear genome with the MRL1 cDNA, different levels of rbcL transcript accumulate. We also observe that RuBisCO Large Subunit accumulation is perturbed. Complemented strains accumulating as little as 15% RuBisCO protein can grow phototrophically while RuBisCO in this range is limiting for phototrophic growth. We also observe that photosynthetic activity, here measured by the quantum yield of PSII, appears to be a determinant for phototrophic growth. In some strains that accumulate less RuBisCO, a strong production of reactive oxygen species is detected. In the absence of RuBisCO, oxygen possibly acts as the PSI terminal electron acceptor. These results show that random transformation of MRL1 into mrl1 mutants can change RuBisCO accumulation allowing a range of phototrophic growth phenotypes. Furthermore, this technique allows for the isolation of strains with low RuBisCO, within the range of acceptable photosynthetic growth and reasonably low ROS production. MRL1 is thus a potential tool for applications to divert electrons away from photosynthetic carbon metabolism towards alternative pathways.

  3. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale.

  4. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency1[OPEN

    PubMed Central

    Andralojc, P. John

    2016-01-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally “better” compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. PMID:27342312

  5. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  6. Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance.

    PubMed

    Galmés, Jeroni; Perdomo, Juan Alejandro; Flexas, Jaume; Whitney, Spencer M

    2013-07-01

    Improving Rubisco catalysis is considered a promising way to enhance C3-photosynthesis and photosynthetic water use efficiency (WUE) provided the introduced changes have little or no impact on other processes affecting photosynthesis such as leaf photochemistry or leaf CO2 diffusion conductances. However, the extent to which the factors affecting photosynthetic capacity are co-regulated is unclear. The aim of the present study was to characterize the photochemistry and CO2 transport processes in the leaves of three transplantomic tobacco genotypes expressing hybrid Rubisco isoforms comprising different Flaveria L-subunits that show variations in catalysis and differing trade-offs between the amount of Rubisco and its activation state. Stomatal conductance (g s) in each transplantomic tobacco line matched wild-type, while their photochemistry showed co-regulation with the variations in Rubisco catalysis. A tight co-regulation was observed between Rubisco activity and mesophyll conductance (g m) that was independent of g s thus producing plants with varying g m/g s ratios. Since the g m/g s ratio has been shown to positively correlate with intrinsic WUE, the present results suggest that altering photosynthesis by modifying Rubisco catalysis may also be useful for targeting WUE.

  7. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice.

    PubMed

    Lu, Yusheng; Li, Yong; Yang, Qiaosong; Zhang, Zhisheng; Chen, Yan; Zhang, Sheng; Peng, Xin-Xiang

    2014-03-01

    Glycolate oxidase (GLO) is a key enzyme for photorespiration in plants. Previous studies have demonstrated that suppression of GLO causes photosynthetic inhibition, and the accumulated glycolate with the deactivated Rubisco is likely involved in the regulation. Using isolated Rubisco and chloroplasts, it has been found that only glyoxylate can effectively inactivate Rubisco and meanwhile inhibit photosynthesis, but little in vivo evidence has been acquired and reported. In this study, we have generated the transgenic rice (Oryza sativa) plants with GLO being constitutively silenced, and conducted the physiological and biochemical analyses on these plants to explore the regulatory mechanism. When GLO was downregulated, the net photosynthetic rate (Pn) was reduced and the plant growth was correspondingly stunted. Surprisingly, glyoxylate, as a product of the GLO catalysis, was accumulated in response to the GLO suppression, like its substrate glycolate. Furthermore, the glyoxylate content was found to be inversely proportional to the Pn while the Pn is directly proportional to the Rubisco activation state in the GLO-suppressed plants. A mathematical fitting equation using least square method also demonstrated that the Rubisco activation state was inversely proportional to the glyoxylate content. Despite that the further analyses we have conducted failed to reveal how glyoxylate was accumulated in response to the GLO suppression, the current results do strongly suggest that there may exist an unidentified, alternative pathway to produce glyoxylate, and that the accumulated glyoxylate inhibits photosynthesis by deactivating Rubisco, and causes the photorespiratory phenotype in the GLO-suppressed rice plants. © 2013 Scandinavian Plant Physiology Society.

  8. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.

    PubMed

    Yamori, Wataru; Masumoto, Chisato; Fukayama, Hiroshi; Makino, Amane

    2012-09-01

    The role of Rubisco activase in steady-state and non-steady-state photosynthesis was analyzed in wild-type (Oryza sativa) and transgenic rice that expressed different amounts of Rubisco activase. Below 25°C, the Rubisco activation state and steady-state photosynthesis were only affected when Rubisco activase was reduced by more than 70%. However, at 40°C, smaller reductions in Rubisco activase content were linked to a reduced Rubisco activation state and steady-state photosynthesis. As a result, overexpression of maize Rubisco activase in rice did not lead to an increase of the Rubisco activation state, nor to an increase in photosynthetic rate below 25°C, but had a small stimulatory effect at 40°C. On the other hand, the rate at which photosynthesis approached the steady state following an increase in light intensity was rapid in Rubisco activase-overexpressing plants, intermediate in the wild-type, and slowest in antisense plants at any leaf temperature. In Rubisco activase-overexpressing plants, Rubisco activation state at low light was maintained at higher levels than in the wild-type. Thus, rapid regulation by Rubisco activase following an increase in light intensity and/or maintenance of a high Rubisco activation state at low light would result in a rapid increase in Rubisco activation state and photosynthetic rate following an increase in light intensity. It is concluded that Rubisco activase plays an important role in the regulation of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.

  9. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling

    PubMed Central

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-01-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species’ climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species’ growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species’ thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to

  10. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.

    PubMed

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-09-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized

  11. Production and characterization of a specific rubisco monoclonal antibody, and its use in rubisco quantification during Zantedeschia aethiopica spathe development.

    PubMed

    Tavares, R M; Karmali, A; Clemente, A; Pais, M S

    1999-04-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase was purified from leaves of Zantedeschia aethiopica and used to immunize female Balb/c mice. Monoclonal antibodies (MAbs) were raised by hybridoma technology using Sp2/0 myeloma cells as fusion partner. A random selected IgG2a subclass MAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose CL-4B, with a recovery of 84.3% and it was apparently homogeneous on native PAGE. The monoclonality of the purified MAb was determined by IEF. The MAb was highly specific for Rubisco from leaves of Z. aethiopica as determined by Western blotting and was used to determine the concentration of Rubisco protein by enzyme-linked immunoadsorbent assay (ELISA), at three distinct stages of Z. aethiopica spathe development and in the leaf. The results suggest de novo synthesis of Rubisco during the spathe regreening, which could explain, at least in part, the increase of photosynthetic activity observed during regreening.

  12. Structure of Pisum sativum Rubisco with bound ribulose 1,5-bisphosphate

    PubMed Central

    Loewen, Peter C.; Didychuk, Allison L.; Switala, Jacek; Perez-Luque, Rosa; Fita, Ignacio; Loewen, Michele C.

    2013-01-01

    The first structure of a ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from a pulse crop is reported. Rubisco was purified from Pisum sativum (garden pea) and diffraction-quality crystals were obtained by hanging-drop vapour diffusion in the presence of the substrate ribulose 1,5-bisphosphate. X-ray diffraction data were recorded to 2.20 Å resolution from a single crystal at the Canadian Light Source. The overall quaternary structure of non-activated P. sativum Rubisco highlights the conservation of the form I Rubisco hexadecameric complex. The electron density places the substrate in the active site at the interface of the large-subunit dimers. Lys201 in the active site is not carbamylated as expected for this non-activated structure. Some heterogeneity in the small-subunit sequence is noted, as well as possible variations in the conformation and contacts of ribulose 1,5-bisphosphate in the large-subunit active sites. Overall, the active-site conformation most closely correlates with the ‘closed’ conformation observed in other substrate/inhibitor-bound Rubisco structures. PMID:23295478

  13. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea.

    PubMed

    Finn, Michael W; Tabita, F Robert

    2003-05-01

    Ribulose 1,5 bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the biological reduction and assimilation of carbon dioxide gas to organic carbon; it is the key enzyme responsible for the bulk of organic matter found on earth. Until recently it was believed that there are only two forms of RubisCO, form I and form II. However, the recent completion of several genome-sequencing projects uncovered open reading frames resembling RubisCO in the third domain of life, the archaea. Previous work and homology comparisons suggest that these enzymes represent a third form of RubisCO, form III. While earlier work indicated that two structurally distinct recombinant archaeal RubisCO proteins catalyzed bona fide RubisCO reactions, it was not established that the rbcL genes of anaerobic archaea can be transcribed and translated to an active enzyme in the native organisms. In this report, it is shown not only that Methanococcus jannaschii, Archaeoglobus fulgidus, Methanosarcina acetivorans, and Methanosarcina barkeri possess open reading frames with the residues required for catalysis but also that the RubisCO protein from these archaea accumulates in an active form under normal growth conditions. In addition, the form III RubisCO gene (rbcL) from M. acetivorans was shown to complement RubisCO deletion strains of Rhodobacter capsulatus and Rhodobacter sphaeroides under both photoheterotrophic and photoautotrophic growth conditions. These studies thus indicate for the first time that archaeal form III RubisCO functions in a physiologically significant fashion to fix CO(2). Furthermore, recombinant M. jannaschii, M. acetivorans, and A. fulgidus RubisCO possess unique properties with respect to quaternary structure, temperature optima, and activity in the presence of molecular oxygen compared to the previously described Thermococcus kodakaraensis and halophile proteins.

  15. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide

    PubMed Central

    Young, J. N.; Rickaby, R. E. M.; Kapralov, M. V.; Filatov, D. A.

    2012-01-01

    Rubisco, the most abundant enzyme on the Earth and responsible for all photosynthetic carbon fixation, is often thought of as a highly conserved and sluggish enzyme. Yet, different algal Rubiscos demonstrate a range of kinetic properties hinting at a history of evolution and adaptation. Here, we show that algal Rubisco has indeed evolved adaptively during ancient and distinct geological periods. Using DNA sequences of extant marine algae of the red and Chromista lineage, we define positive selection within the large subunit of Rubisco, encoded by rbcL, to occur basal to the radiation of modern marine groups. This signal of positive selection appears to be responding to changing intracellular concentrations of carbon dioxide (CO2) triggered by physiological adaptations to declining atmospheric CO2. Within the ecologically important Haptophyta (including coccolithophores) and Bacillariophyta (diatoms), positive selection occurred consistently during periods of falling Phanerozoic CO2 and suggests emergence of carbon-concentrating mechanisms. During the Proterozoic, a strong signal of positive selection after secondary endosymbiosis occurs at the origin of the Chromista lineage (approx. 1.1 Ga), with further positive selection events until 0.41 Ga, implying a significant and continuous decrease in atmospheric CO2 encompassing the Cryogenian Snowball Earth events. We surmise that positive selection in Rubisco has been caused by declines in atmospheric CO2 and hence acts as a proxy for ancient atmospheric CO2. PMID:22232761

  16. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications.

    PubMed

    Read, B A; Tabita, F R

    1994-07-01

    Marine algae play an important role in removing carbon dioxide from the atmosphere. In this investigation, we have determined the substrate specificity factor of ribulose 1,5-bisphosphate carboxylase/oxygenase from several marine chromophytic and rhodophytic algae. The enzymes were purified to homogeneity and all possessed significantly higher substrate specificity factors than the enzymes from terrestrial plants, green algae, or bacteria. There are substantial differences in the sequence in a helix 6 of the large subunit of these enzymes, which is intriguing since residues of this region had been previously shown to influence the ability of ribulose bisphosphate carboxylase to discriminate between CO2 and O2, presumably by influencing the adjacent flexible loop 6 region. Sequence divergence at this and other key regions might contribute to the substantial differences in the substrate specificity factor of the chromophyte/rhodophyte enzyme. Initial studies on probing the basis for the high substrate specificity factor employed single amino acid substitutions in the recombinant cyanobacterial ribulose bisphosphate carboxylase. Residues in the vicinity of loop 6 were changed to reflect the corresponding residues in the chromophyte/rhodophyte large subunit. Some changes in the substrate specificity factor were noted, as were alterations in other important kinetic parameters. Since marine algae show little evidence of photorespiratory metabolism, the high substrate specificity of ribulose bisphosphate carboxylase is consistent with the physiology of these organisms. The results of this study provide further evidence that the properties of this enzyme may evolve or change according to the environment in which the host organism is found.

  17. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

    PubMed Central

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. PMID:26567524

  18. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria.

    PubMed

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-11-16

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation.

  19. Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies.

    PubMed

    Urban, Otmar; Hrstka, Miroslav; Zitová, Martina; Holišová, Petra; Sprtová, Mirka; Klem, Karel; Calfapietra, Carlo; De Angelis, Paolo; Marek, Michal V

    2012-09-01

    While downward photosynthetic acclimation in response to elevated CO(2) (EC) is frequently accompanied by reduction in Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), the exact mechanism behind this decrease and its dynamics are not well understood. We comprehensively studied Rubisco adjustment to EC in coniferous Picea abies using an electrophoretic (protein content), spectrophotometric (initial (RA(initial)) and total (RA(total)) in vitro Rubisco activities), and gas-exchange (maximum carboxylation activity in vivo (V(Cmax))) techniques. With respect to differing carbon sink strength and nitrogen remobilization, we hypothesized greater acclimation of photosynthesis in one-year-old as compared to current-year needles and at the end than at the beginning of the vegetation season. EC treatment led to a decrease in V(Cmax) values in current-year needles, but the ribulose-1,5-bisphosphate (RuBP)-limited rate of photosynthesis (J(max)) remained unaffected. Indeed, both V(Cmax) and J(max) were reduced by the EC treatment in one-year-old needles. The extent of photosynthetic acclimation in EC plants did not increase, however, during the vegetation season. EC decreased the activation state of Rubisco (RA(initial)/RA(total)) by 16% and 5% in current-year and one-year-old needles, respectively (averaged over the growing season). While during spring (short-term effect) EC treatment did not influence the Rubisco content per unit leaf area and decreased its specific activity (activity per unit Rubisco mass) in both needle age classes studied, exposure to EC during the entire vegetation season tended to reduce the Rubisco content while increasing its specific activity. Irrespective of CO(2) treatment and needle age, a hyperbolic-decay relationship was observed between Rubisco-specific activity and its content.

  20. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro

    PubMed Central

    Son, Jeong Ah; Narayanankutty, Damodaran Puthanveettil; Roh, Kwang Soo

    2013-01-01

    The effect of glutathione on the influences of heavy metals affecting rubisco and rubisco activase was studied in tobacco plants grown in vitro where the shoot explants of the tobacco plant cultured on MS medium under aseptic conditions and two explants were placed in the control, 0.1 mM GSH, 1 mM GSH, 0.2 mM Cd, 0.2 mM Cu, 0.2 mM Zn, and a mixture of Cd and GSH, Cu and GSH, Zn and GSH, respectively. The effect of GSH on the growth of the tobacco plant was minimal, but the heavy metals clearly retarded its growth. GSH recovered the growth retarded by heavy metals, and the concentration of GSH required to recover the growth differed depending on the heavy metals. The content of chlorophyll in the plant increased through GSH and Zn, and decreased through Cd and Cu. The chlorophyll content which decreased due to Cd and Cu was recovered by GSH, and the content which increased due to Zn was decreased by 1 mM GSH. The content of rubisco decreased due to GSH and heavy metals, and the content which decreased due to heavy metals was recovered by GSH, and when GSH was treated with Zn, the increased rate was maximum compared to other heavy metals. The activity of rubisco was increased due to GSH and heavy metals, and the activity increased by Cd and Zn decreased through GSH. In the case of Cu, the activity of GSH increased even more. There was no effect of GSH on the influences of heavy metals on the content and activity of rubisco activase. The activity of rubisco decreased by thiourea among six denaturing agents, and increased by l-cysteine, and in most cases the activity level was recorded as high. The activity of rubisco activase all decreased as a result of six denaturing agents, and the effect caused by EDTA and guanidine-HCl was the greatest, while the effect caused by l-cysteine and urea was minimal. PMID:24596504

  1. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.

    PubMed

    Yang, Cheng-Han; Liu, En-Jung; Chen, Yi-Ling; Ou-Yang, Fan-Yu; Li, Si-Yu

    2016-08-02

    In our previous study, the feasibility of Rubisco-based engineered E. coli (that contains heterologous phosphoribulokinase (PrkA) and Rubisco) for in situ CO2 recycling during the fermentation of pentoses or hexoses was demonstrated. Nevertheless, it is perplexing to see that only roughly 70 % of the carbon fed to the bacterial culture could be accounted for in the standard metabolic products. This low carbon recovery during fermentation occurred even though CO2 emission was effectively reduced by Rubisco-based engineered pathway. In this study, the heterologous expression of form I Rubisco was found to enhance the accumulation of pyruvate in Escherichia coli MZLF [E. coli BL21(DE3) Δzwf, Δldh, Δfrd]. This may be attributed to the enhanced glycolytic reaction supported by the increased biomass and the ethanol/acetate ratio. Besides, it was found that the transcription of arcA (encodes the redox-dependent transcriptional activators ArcA that positively regulates the transcription of pyruvate formate-lyase) was down-regulated in the presence of Rubisco. The enhanced accumulation of pyruvate also occurs when PrkA is co-expressed with Rubisco in E. coli MZLF. Furthermore, E. coli containing Rubisco-based engineered pathway has a distinct profile of the fermentation products, indicating CO2 was converted into fermentation products. By analyzing the ratio of total C-2 (2-carbon fermentation products) to total C-1 (1-carbon fermentation product) of MZLFB (MZLF containing Rubisco-based engineered pathway), it is estimated that 9 % of carbon is directed into Rubisco-based engineered pathway. Here, we report for the first time the complete profile of fermentation products using E. coli MZLF and its derived strains. It has been shown that the expression of Rubisco alone in MZLF enhances the accumulation of pyruvate. By including the contribution of pyruvate accumulation, the perplexing problem of low carbon recovery during fermentation by E. coli containing Rubisco

  2. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.

    PubMed

    Davies, B N; Griffiths, H

    2012-07-01

    The temporal co-ordination of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc) activities by Mesembryanthemum crystallinum L. in C(3) and crassulacean acid metabolism (CAM) modes was investigated under conventional light-dark (LD) and continuous light (LL) conditions. When C(3) , net CO(2) assimilation rate increased during each subjective night under LL with maximum carboxylation unrelated to Rubisco activation state. The CAM circadian rhythm of CO(2) uptake was more pronounced, with CO(2) assimilation rate maximal towards the end of each subjective night. In vivo and in vitro techniques were integrated to map carboxylase enzyme regulation to the framework provided by CAM LL gas exchange activity. Rubisco was activated in vitro throughout each subjective dark period and consistently deactivated at each subjective dawn, similar to that observed at true dawn in constitutive CAM species. Instantaneous carbon isotope discrimination showed in vivo carboxylase co-dominance during the CAM subjective night, initially by Rubisco and latterly C(4) (PEPc), despite both enzymes seemingly activated in vitro. The circadian rhythm in titratable acidity accumulation was progressively damped over successive subjective nights, but maintenance of PEPc carboxylation capacity ensures that CAM plants do not become progressively more 'C(3) -like' with time under LL. © 2012 Blackwell Publishing Ltd.

  3. Characterization of a barley Rubisco activase gene promoter

    SciTech Connect

    Strickland, J.A.; Rundle, S.J.; Zielinski, R. )

    1990-05-01

    Barley Rubisco Activase (Rca) is a nuclear encoded chloroplast enzyme that activates Rubisco to catalytic competence. Rca mRNA accumulation in barley is light-regulated; the 5{prime}-flanking region of a highly expressed barley Rca gene (HvRca-1) contains several sequence motifs similar to those found in the promoter of other light-regulated, nuclear genes. We have characterized the cis-acting regulatory regions of HvRca-1 by deletion analysis of the 5{prime} flanking region of a cloned gene. These constructs have been assayed in vitro by gel mobility shift assays, as well as by DNA footprinting. Putative regulatory sequences detected in vitro have also been tested in vivo by constructing chimeric genes consisting of deletion mutant promoters fused to a promoterless {beta}-glucuronidase reporter gene. Comparison of results obtained from complimentary parallel in vitro and in vivo assays of identical promoter deletions have provided information on cis-acting regulatory regions of HvRca-1.

  4. Consequences of altering rubisco regulation

    SciTech Connect

    Salvucci, Michael

    2013-12-31

    Research examined the thermal stability and propensity for aggregation of wild type and the C- and N-terminally modified forms of activase to determine if loss of activity under heat stress is dependent on protein aggregation. The results showed that 1) loss of activity at high temperature is independent of aggregation; 2) activase with both C- and N-terminal S-Tags are more susceptible to aggregation than wild type activase, 3) aggregation is highly dependent on the concentration of Mg2+ and 4) the ATP analog, ATPgammaS, protects against both thermal inactivation and aggregation.

  5. Structural Changes Associated with the Acute Thermal Instability of Rubisco Activase

    USDA-ARS?s Scientific Manuscript database

    The inhibition of photosynthesis at moderately high temperatures has been linked to a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation. This decrease is thought to be a consequence of the thermal instability of Rubisco’s chaperone, ribulose-1,5-bisphosphate carboxyla...

  6. Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Chen, Zhangfan; Wang, Guangce; Niu, Jianfeng

    2012-01-01

    Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase ( rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II ( F v/ F m), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (PSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest F v/ F m, ETR, and PSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while F v/ F m, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.

  7. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  8. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle.

    PubMed

    Badger, Murray Ronald; Bek, Emily Jane

    2008-01-01

    Rubisco is the predominant enzymatic mechanism in the biosphere by which autotrophic bacteria, algae, and terrestrial plants fix CO(2) into organic biomass via the Calvin-Benson-Basham reductive pentose phosphate pathway. Rubisco is not a perfect catalyst, suffering from low turnover rates, a low affinity for its CO(2) substrate, and a competitive inhibition by O(2) as an alternative substrate. As a consequence of changing environmental conditions over the past 3.5 billion years, with decreasing CO(2) and increasing O(2) in the atmosphere, Rubisco has evolved into multiple enzymatic forms with a range of kinetic properties, as well as co-evolving with CO(2)-concentrating mechanisms to cope with the different environmental contexts in which it must operate. The most dramatic evidence of this is the occurrence of multiple forms of Rubisco within autotrophic proteobacteria, where Forms II, IC, IBc, IAc, and IAq can be found either singly or in multiple combinations within a particular bacterial genome. Over the past few years there has been increasing availability of genomic sequence data for bacteria and this has allowed us to gain more extensive insights into the functional significance of this diversification. This paper is focused on summarizing what is known about the diversity of Rubisco forms, their kinetic properties, development of bacterial CO(2)-concentrating mechanisms, and correlations with metabolic flexibility and inorganic carbon environments in which proteobacteria perform various types of obligate and facultative chemo- and photoautotrophic CO(2) fixation.

  9. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme.

    PubMed

    Mueller-Cajar, Oliver; Morell, Matthew; Whitney, Spencer M

    2007-12-11

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) occupies a critical position in photosynthetic CO2-fixation and consequently has been the focus of intense study. Crystal-structure-guided site-directed mutagenesis studies have met with limited success in engineering kinetic improvements to Rubisco, highlighting our inadequate understanding of structural constraints at the atomic level that dictate the enzyme's catalytic chemistry. Bioselection provides an alternative random mutagenic approach that is useful for identifying and elucidating imperceptible structure-function relationships. Using the dimeric Form II Rubisco from Rhodospirillum rubrum, its gene (rbcM) was randomly mutated and introduced under positive selection into Escherichia coli cells metabolically engineered to be dependent on Rubisco to detoxify its substrate ribulose 1,5-bisphosphate. Thirteen colonies displaying improved fitness were isolated, and all were found to harbor mutations in rbcM at one of two codons, histidine-44 or aspartate-117, that are structurally adjacent amino acids located about 10 A from the active site. Biochemical characterization of the mutant enzymes showed the mutations reduced their CO2/O2 specificity by 40% and decreased their carboxylation turnover rate by 20-40%. Structural analyses showed histidine-44 and aspartate-117 form a hydrogen bond in R. rubrum Rubisco and that the residues are conserved among other Form II Rubiscos. This study demonstrated the utility of directed evolution in E. coli for identifying catalytically relevant residues (in particular nonobvious residues disconnected from active site residues) and their potential molecular interactions that influence Rubisco's catalytic chemistry.

  10. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    PubMed

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.

  11. Characterization of heat-set gels from RuBisCO in comparison to those from other proteins.

    PubMed

    Martin, Anneke H; Nieuwland, Maaike; de Jong, Govardus A H

    2014-11-05

    To anticipate a future shortage in functional proteins, it is important to study the functionality of new alternative protein sources. Native RuBisCO was extracted from spinach, and its gelation behavior was compared to other native proteins from animal and plant origins. Protein gels were analyzed for their mechanical gel properties during small and large deformation and for their microstructure. Heat-induced aggregation and network formation of RuBisCO resulted in gels with unique characteristics compared to, for example, whey protein and egg white protein. Having a very low critical gelling concentration and low denaturation temperature, RuBisCO readily forms a network with a very high gel strength (G', fracture stress), but upon deformation it has a brittle character (low critical strain, low fracture strain). This breakdown behavior can be explained by the dominant role of hydrophobic and hydrogen bonds between RuBisCO molecules during network formation and by the coarse microstructure. RuBisCO was shown to exhibit high potential as a functional ingredient giving opportunities for the design of new textures at low protein concentration.

  12. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.

    PubMed

    Flexas, J; Díaz-Espejo, A; Conesa, M A; Coopman, R E; Douthe, C; Gago, J; Gallé, A; Galmés, J; Medrano, H; Ribas-Carbo, M; Tomàs, M; Niinemets, Ü

    2016-05-01

    Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm ) and/or improving the biochemical capacity for CO2 assimilation-in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2 . The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyse how gm , gsw and the Rubisco's maximum velocity (Vcmax ) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water limitations. © 2015 John Wiley & Sons Ltd.

  13. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  14. Low stable carbon isotope fractionation by coccolithophore RubisCO

    NASA Astrophysics Data System (ADS)

    Boller, Amanda J.; Thomas, Phaedra J.; Cavanaugh, Colleen M.; Scott, Kathleen M.

    2011-11-01

    The 13C/ 12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO 2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ˜75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model .E. huxleyi RubisCO discriminated substantially less ( ɛ = 11.1‰) against 13CO 2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters ( K = 72 μM; Vmax = 0.66 μmol min -1 mg -1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ɛ values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.

  15. Nucleotide Dependence of Subunit Rearrangements in Short-Form Rubisco Activase from Spinach.

    PubMed

    Peterson-Forbrook, Dayna S; Hilton, Matthew T; Tichacek, Laura; Henderson, J Nathan; Bui, Hoang Q; Wachter, Rebekka M

    2017-09-12

    Higher-plant Rubisco activase (Rca) plays a critical role in regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In vitro, Rca is known to undergo dynamic assembly-disassembly processes, with several oligomer stoichiometries coexisting over a broad concentration range. Although the hexamer appears to be the active form, changes in quaternary structure could play a role in Rubisco regulation. Therefore, fluorescent labels were attached to the C-termini of spinach β-Rca, and the rate of subunit mixing was monitored by measuring energy transfer as a function of nucleotide and divalent cation. Only dimeric units appeared to exchange. Poorly hydrolyzable substrate analogues provided locked complexes with high thermal stabilities (apparent Tm = 60 °C) and an estimated t1/2 of at least 7 h, whereas ATP-Mg provided tight assemblies with t1/2 values of 30-40 min and ADP-Mg loose assemblies with t1/2 values of <15 min. Accumulation of ADP to 20% of the total level of adenine nucleotide substantially accelerated equilibration. An initial lag period was observed with ATP·Mg, indicating inhibition of subunit exchange at low ADP concentrations. The ADP Ki value was estimated to exceed the Km for ATP (0.772 ± 96 mM), suggesting that the equilibration rate is a function of the relative contributions of high- and low-affinity states. C-Terminal cross-linking generated covalent dimers, required the N-terminal extension to the AAA+ domain, and provided evidence of different classes of sites. We propose that oligomer reorganization may be stalled during periods of high Rubisco reactivation activity, whereas changes in quaternary structure are stimulated by the accumulation of ADP at low light levels.

  16. Structural and biochemical characterization of the C₃-C₄ intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco.

    PubMed

    Ueno, Osamu

    2011-11-01

    On the basis of its CO(2) compensation concentration, Brassica gravinae Ten. has been reported to be a C(3)-C(4) intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also examined in B. gravinae, B. napus L. (C(3)), Raphanus sativus L. (C(3)), and Diplotaxis tenuifolia (L.) DC. (C(3)-C(4)) by immunogold electron microscopy to elucidate Rubisco expression during the evolution from C(3) to C(3)-C(4) intermediate plants. The bundle sheath (BS) cells of B. gravinae contained centrifugally located chloroplasts as well as centripetally located chloroplasts and mitochondria. Glycine decarboxylase P-protein was localized in the BS mitochondria. Brassica gravinae had low C(4) enzyme activities and high activities of Rubisco and photorespiratory enzymes, suggesting that it reduces photorespiratory CO(2) loss by the glycine shuttle. In B. gravinae, the labelling density of Rubisco was higher in the mesophyll chloroplasts than in the BS chloroplasts. A similar cellular pattern was found in other Brassicaceae species. These data demonstrate that, during the evolution from C(3) to C(3)-C(4) intermediate plants, the intercellular pattern of Rubisco expression did not change greatly, although the amount of chloroplasts in the BS cells increased. It also appears that intracellular variation in Rubisco distribution may occur within the BS cells of B. gravinae.

  17. First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii.

    PubMed

    Taylor, T C; Backlund, A; Bjorhall, K; Spreitzer, R J; Andersson, I

    2001-12-21

    The crystal structure of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) from the unicellular green alga Chlamydomonas reinhardtii has been determined to 1.4 A resolution. Overall, the structure shows high similarity to the previously determined structures of L8S8 Rubisco enzymes. The largest difference is found in the loop between beta strands A and B of the small subunit (betaA-betaB loop), which is longer by six amino acid residues than the corresponding region in Rubisco from Spinacia. Mutations of residues in the betaA-betaB loop have been shown to affect holoenzyme stability and catalytic properties. The information contained in the Chlamydomonas structure enables a more reliable analysis of the effect of these mutations. No electron density was observed for the last 13 residues of the small subunit, which are assumed to be disordered in the crystal. Because of the high resolution of the data, some posttranslational modifications are unambiguously apparent in the structure. These include cysteine and N-terminal methylations and proline 4-hydroxylations.

  18. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  19. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas

    PubMed Central

    Meyer, Moritz T.; Genkov, Todor; Skepper, Jeremy N.; Jouhet, Juliette; Mitchell, Madeline C.; Spreitzer, Robert J.; Griffiths, Howard

    2012-01-01

    The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO2-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C4 pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future. PMID:23112177

  20. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.

    PubMed

    Genkov, Todor; Meyer, Moritz; Griffiths, Howard; Spreitzer, Robert J

    2010-06-25

    There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO(2)/O(2) specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO(2)/O(2) specificity but a lower carboxylation V(max) than Chlamydomonas Rubisco, the hybrid enzymes have 3-11% increases in CO(2)/O(2) specificity and retain near normal V(max) values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO(2) is concentrated for optimal photosynthesis.

  1. Mechanistic Diversity in the RuBisCO Superfamily: The Enolase in the Methionine

    SciTech Connect

    Imker,H.; Fedorov, A.; Fedorov, E.; Almo, S.; Gerlt, J.

    2007-01-01

    D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the D-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ('enolization') of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-D-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this 'enolase' is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and 'enolase'-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg{sup 2+}, we sought to establish structure-function relationships for the 'enolase' reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the 'enolases' from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from D-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the 'enolase'-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated 'enolase' from G. kaustophilus (carboxylated on Lys 173) liganded with Mg{sup 2+} and 2

  2. Rubisco and PEP carboxylase responses to changing irradiance in a Brazilian Cerrado tree species, Qualea grandiflora Mart. (Vochysiaceae).

    PubMed

    Paulilo, M T; Besford, R T; Wilkins, D

    1994-02-01

    The activities of ribulose-1,5-bisphosphate carboxylase-oxygenase, Rubisco (E.C. 4.1.1.39) and phosphoenolpyruvate carboxylase, PEPc (E.C. 4.1.1.31), and concentrations of protein and chlorophyll were measured in extracts from cotyledons and first leaves of Qualea grandiflora Mart. (Vochysiaceae) seedlings after transfer from high-light (20 days at 320 micro mol m(-2) s(-1), PAR) to low-light (35 days at 120 micro mol m(-2) s(-1), PAR) conditions. When Tween 20 and glycerol were added to the extraction medium, Rubisco activities obtained for Qualea grandiflora were comparable to published values for several coniferous species and the broad-leaved species, Prunus avium L. Stella, grown in a similar light environment. Rubisco activity in cotyledons of Q. grandiflora grown in high light for 20 days and then transferred to low light for a further 35 days was similar to the activity in cotyledons of plants grown continuously in high light. However, the first leaf above the cotyledons showed a greater response to the change in irradiance; in high light, Rubisco activity of the first leaf was 1.8 times higher on a fresh weight basis and 2.7 times higher on an area basis than that of leaves transferred from high to low light. Fresh weight and chlorophyll concentration expressed on a unit leaf area basis were also higher in the high-light treatment. These responses to irradiance are indicative of a species adapted to growth in an unshaded habitat. The PEPc activity in leaves was 15% of Rubisco activity, which is typical of species with a C(3) photosynthetic pathway. The relatively slow growth rate of Q. grandiflora observed in these experiments could not be attributed to a low carboxylation capacity per unit leaf area.

  3. The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria

    PubMed Central

    Zorz, Jackie K.; Allanach, Jessica R.; Murphy, Cole D.; Roodvoets, Mitchell S.; Campbell, Douglas A.; Cockshutt, Amanda M.

    2015-01-01

    Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b6f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b6f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b6f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b6f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain. PMID:25658887

  4. Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts

    PubMed Central

    Wostrikoff, Katia; Stern, David

    2007-01-01

    Plants rely on ribulose bisphosphate carboxylase/oxygenase (Rubisco) for carbon fixation. Higher plant Rubisco possesses an L8S8 structure, with the large subunit (LS) encoded in the chloroplast by rbcL and the small subunit encoded by the nuclear RBCS gene family. Because its components accumulate stoichiometrically but are encoded in two genetic compartments, rbcL and RBCS expression must be tightly coordinated. Although this coordination has been observed, the underlying mechanisms have not been defined. Here, we use tobacco to understand how LS translation is related to its assembly status. To do so, two transgenic lines deficient in LS biogenesis were created: a chloroplast transformant expressing a truncated and unstable LS polypeptide, and a line where a homolog of the maize Rubisco-specific chaperone, BSD2, was repressed by RNAi. We found that in both lines, LS translation is no longer regulated by the availability of small subunit (SS), indicating that LS translation is not activated by the presence of its assembly partner but, rather, undergoes an autoregulation of translation. Pulse labeling experiments indicate that LS is synthesized but not accumulated in the transgenic lines, suggesting that accumulation of a repressor motif is required for LS assembly-dependent translational regulation. PMID:17404229

  5. Structure and expression of nuclear genes encoding rubisco activase. Final technical report

    SciTech Connect

    Zielinski, R.E.

    1994-06-01

    Rubisco activase (Rca) is a soluble chloroplast protein that catalyzes the activation of rubisco, the enzyme that initiates the photosynthetic carbon reduction cycle, to catalytic competency. Rca in barley consists of three polypeptides, one of 46- and two of 42-kDa, but the quaternary structure of the protein is not known. The authors have isolated and completely sequenced 8.8 kb of barley genomic DNA containing two, tandemly oriented activase genes (RcaA and RcaB) and three different cDNAs encoding the 42- and 46-kDa Rca polypeptide isoforms. Genomic Southern blot assays indicate that these sequences represent the entire Rca gene family in barley. Pre-mRNAs transcribed from the RcaA gene are alternatively spliced to give mRNAs encoding both 46- (RcaA1) and 42-kDa (RcaA2) Rca isoforms. The RcaB gene encodes a single polypeptide of 42 kDa. Primer extension and northern blot assays indicate that RcaB mRNA is expressed at a level that is 10- to 100-fold lower than RcaA mRNA. Analyses at the mRNA and protein level showed that Rca gene expression is coordinated by that of the rubisco subunits during barley leaf development.

  6. (Structure and expression of nuclear genes encoding rubisco activase): Progress report

    SciTech Connect

    Not Available

    1989-01-01

    Our first year's activities include: (1) completing a survey of the basic characteristics of activase gene expression in barley; and (2) isolating and structurally characterizing cDNA and genomic DNA sequences encoding activase from barley. Our goal was to determine whether activase mRNA and protein accumulation are coordinated with those of the rubisco subunits. We utilized the first leaves of barley as an experimental system for these studies because they can be used in two ways to study the expression of leaf genes: by following the naturally occurring differentiation of leaf cells, which occurs acropetally along the barley leaf; and by following the photomorphogenesis of etiolated barley seedlings. In the acropetal gradient of leaf cell differentiation, activase mRNA and mRNA and polypeptide expression is tightly coordinated with rubisco subunit mRNA and polypeptide expression. Although we have not measured their precise stoichiometry at each stage of leaf differentiation, activase protein is expressed at the level of about one polypeptide per rubisco holoenzyme in mature regions of the leaf. Coordination of the expression of activase mRNAs and polypeptides indicates that in the barley leaf gradient, activase gene expression is largely controlled at the level of transcription. However, translational controls may play a role in regulating activase expression on a short term basis.

  7. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research.

    PubMed

    Mueller-Cajar, Oliver; Whitney, Spencer M

    2008-01-01

    During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture.

  8. Stable Carbon Isotope Discrimination by Form IC Rubisco Enzymes of the Extremely Metabolically Versatile Rhodobacter sphaeroides and Ralstonia eutropha}

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.; Boller, A. J.; Zhao, Z.; Tabita, F. R.; Cavanaugh, C. M.; Scott, K. M.

    2006-12-01

    Variations in the relative amounts of 12C and 13C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against 13C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating biomass stable carbon isotopic compositions (δ13C = {[13C/12Csample/13C/12Cstandard] - 1} × 1000). Five different forms of RubisCO (IA, IB, IC, ID, and II) are utilized by algae and autotrophic bacteria reliant on the Calvin-Benson cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs, and their ɛ values (={[12k/13k] - 1} × 1000; 12k and 13k = rates of 12C and 13C fixation) range from 18 to 29‰, explaining the variation in biomass δ13C values of autotrophs utilizing these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides and Ralstonia eutropha. The purpose of this work was to determine the ɛ values for form IC RubisCO enzymes from R. sphaeroides and R. eutropha. Recombinant form IC RubisCOs were purified by conventional column chromatography procedures. Assay conditions (pH, dissolved inorganic carbon concentration) were tested to determine which parameters were conducive to the high rates of carbon fixation necessary for ɛ determination. Under standard conditions (pH 8.5 and 5 mM DIC), form IC RubisCO activities were sufficient for ɛ determination. Experiments are currently being conducted to measure the ɛ values of these enzymes. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of δ13C values of organisms fixing carbon via the Calvin-Benson cycle. These results are

  9. Rubisco activase and wheat productivity under heat stress conditions

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  10. Regulation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase

    PubMed Central

    Hazra, Suratna; Henderson, J. Nathan; Liles, Kevin; Hilton, Matthew T.; Wachter, Rebekka M.

    2015-01-01

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min−1, the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg2+] in response to changes in available light. PMID:26283786

  11. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    PubMed

    Farazdaghi, Hadi

    2011-02-01

    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  12. Nucleus-Independent Control of the Rubisco Operon by the Plastid-Encoded Transcription Factor Ycf30 in the Red Alga Cyanidioschyzon merolae1[C][W][OA

    PubMed Central

    Minoda, Ayumi; Weber, Andreas P.M.; Tanaka, Kan; Miyagishima, Shin-ya

    2010-01-01

    Chloroplasts originated from a cyanobacterium, which was engulfed by a primitive eukaryotic host cell. During evolution, chloroplasts have largely lost their autonomy due to the loss of many genes from their own genomes. Consequently, expression of genes encoded in the chloroplast genome is mainly controlled by the factors transferred from the cytosol to chloroplasts. However, chloroplast genomes of glaucophytes and red algae have retained some transcription factors (hypothetical chloroplast open reading frame 27 to 30 [Ycf27–Ycf30]) that are absent from green algae and land plants. Here, we show that the red algal chloroplast up-regulates transcription of the Rubisco operon rbcLS-cbbX via Ycf30 independently of nuclear control. Light-induced transcriptional activation of the Rubisco operon was observed in chloroplasts isolated from the red alga Cyanidioschyzon merolae. The activation was suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results suggest that chloroplast autonomously regulates transcription of the Rubisco operon in response to the activation of photosynthesis driven by the light. Transcriptional activation of the Rubisco operon was specifically repressed by the addition of anti-Ycf30 antibodies. Furthermore, reduced NADP, ribulose-1,5-bisphosphate, and 3-phosphoglyceric acid triggered the up-regulation of Rubisco transcription in the dark, and the activation was dependent on Ycf30. Thus, red algal chloroplasts have retained a nucleus-independent transcriptional regulation of the Rubisco operon to respond to environmental changes. The autonomous system would have been necessary for the initial fixation of cyanobacterial photosynthesis in the ancient nonphotosynthetic eukaryotic host. It has remained functional in the red algal chloroplast over evolutionary time. PMID:20813908

  13. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters.

    PubMed

    Sáez, Patricia L; Bravo, León A; Cavieres, Lohengrin A; Vallejos, Valentina; Sanhueza, Carolina; Font-Carrascosa, Marcel; Gil-Pelegrín, Eustaquio; Javier Peguero-Pina, José; Galmés, Jeroni

    2017-05-17

    Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Effects of temperature on growth, photophysiology, Rubisco gene expression in Prorocentrum donghaiense and Karenia mikimotoi

    NASA Astrophysics Data System (ADS)

    Shen, Anglu; Ma, Zengling; Jiang, Keji; Li, Daoji

    2016-12-01

    To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency ( F q ' / F m ' ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q ' / F m ' , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.

  15. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.

    PubMed Central

    Badger, M R; von Caemmerer, S; Ruuska, S; Nakano, H

    2000-01-01

    mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O2 uptake may be due to a Mehler reaction and less to rubisco, compared with C3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant non-photochemical quenching, the situation may well be different. PMID:11127997

  16. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.

    PubMed

    Badger, M R; von Caemmerer, S; Ruuska, S; Nakano, H

    2000-10-29

    mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O2 uptake may be due to a Mehler reaction and less to rubisco, compared with C3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant non-photochemical quenching, the situation may well be different.

  17. Partial reactions and chemical rescue of site-directed mutants of Rubisco as mechanistic probes

    SciTech Connect

    Harpel, M.R.; Larimer, F.W.; Lee, E.H.; Mural, R.J.; Smith, H.B.; Soper, T.S.; Hartman, F.C.

    1991-01-01

    Given the current state of knowledge of the reaction pathways catalyzed by D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the elucidation of the three-dimensional structure of several different forms of the enzyme, sit-directed mutagenesis offers the potential to decipher catalytic roles of active-site residues and to unravel the functional significance of various structural elements. Especially intriguing are intersubunit, electrostatic interactions at the active site between Glu48 and Lys168 of the nonactivated (noncarbamylated) enzyme and between Glu48 and Lys329 of the activated (carbamylated) enzyme. In this paper, we describe two approaches to address the roles of electrostatic interactions at the active site and the roles of the participant residues: (1) characterization of pertinent site-directed mutants, including their abilities to catalyze partial reactions and (2) subtle alteration of the active-site microenvironment by manipulation of these proteins with exogenous reagents.

  18. Partial reactions and chemical rescue of site-directed mutants of Rubisco as mechanistic probes

    SciTech Connect

    Harpel, M.R.; Larimer, F.W.; Lee, E.H.; Mural, R.J.; Smith, H.B.; Soper, T.S.; Hartman, F.C.

    1991-12-31

    Given the current state of knowledge of the reaction pathways catalyzed by D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the elucidation of the three-dimensional structure of several different forms of the enzyme, sit-directed mutagenesis offers the potential to decipher catalytic roles of active-site residues and to unravel the functional significance of various structural elements. Especially intriguing are intersubunit, electrostatic interactions at the active site between Glu48 and Lys168 of the nonactivated (noncarbamylated) enzyme and between Glu48 and Lys329 of the activated (carbamylated) enzyme. In this paper, we describe two approaches to address the roles of electrostatic interactions at the active site and the roles of the participant residues: (1) characterization of pertinent site-directed mutants, including their abilities to catalyze partial reactions and (2) subtle alteration of the active-site microenvironment by manipulation of these proteins with exogenous reagents.

  19. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: self-assembly of rubisco activase.

    PubMed

    Chakraborty, Manas; Kuriata, Agnieszka M; Nathan Henderson, J; Salvucci, Michael E; Wachter, Rebekka M; Levitus, Marcia

    2012-09-05

    A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us to quantitatively consider the relevance of any proposed intermediate form, and K(d) values can be estimated even when several oligomeric species coexist. We have tested this method on the AAA+ ATPase Rubisco activase (Rca). Rca self-association regulates the CO(2) fixing activity of the enzyme Rubisco, directly affecting biomass accumulation in higher plants. However, the elucidation of its assembly pathway has remained challenging, precluding a detailed mechanistic investigation. Here, we present the first, to our knowledge, thermodynamic characterization of oligomeric states of cotton β-Rca complexed with Mg·ADP. We find that the monomer is the dominating species below 0.5 micromolar. The most plausible model supports dissociation constants of ∼4, 1, and 1 micromolar for the monomer-dimer, dimer-tetramer, and tetramer-hexamer equilibria, in line with the coexistence of four different oligomeric forms under typical assay conditions. Large aggregates become dominant above 40 micromolar, with continued assembly at even higher concentrations. We propose that under some conditions, ADP-bound Rca self-associates by forming spiral arrangements that grow along the helical axis. Other models such as the stacking of closed hexameric rings are also discussed.

  20. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea

    PubMed Central

    Sehrawat, Ankita; Abat, Jasmeet K.; Deswal, Renu

    2013-01-01

    Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold. PMID:24032038

  1. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    SciTech Connect

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  2. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco.

    PubMed

    Yang, Yanjun; Marczak, Ewa D; Yokoo, Megumi; Usui, Hachiro; Yoshikawa, Masaaki

    2003-08-13

    Four new inhibitory peptides for angiotensin I-converting enzyme (ACE), that is, MRWRD, MRW, LRIPVA, and IAYKPAG, were isolated from the pepsin-pancreatin digest of spinach Rubisco with the use of HPLC. IC(50) values of individual peptides were 2.1, 0.6, 0.38, and 4.2 microM, respectively. MRW and MRWRD had an antihypertensive effect after oral administration to spontaneously hypertensive rats. Maximal reduction occurred 2 h after oral administration of MRW, whereas MRWRD showed maximal decrease 4 h after oral administration at doses of 20 and 30 mg/kg, respectively. IAYKPAG also exerted antihypertensive activity after oral administration at the dose of 100 mg/kg, giving a maximum decrease 4 h after oral administration. IAYKP, IAY, and KP, the fragment peptides of IAYKPAG, also exerted antihypertensive activity. LRIPVA [corrected] did not show any antihypertensive effect at a dose of 100 mg/kg despite its potent ACE-inhibitory activity.

  3. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  4. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    PubMed

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.

  5. Property Blocks: Games and Activities.

    ERIC Educational Resources Information Center

    Humphreys, Alan, Ed.; Dailey, Jean, Ed.

    This pamphlet describes the property blocks produced by MINNEMAST, and discusses their use in the development of thinking processes. Classification systems, including block diagrams and tree diagrams, are discussed. Sixteen classroom activities and eleven games which use the blocks are described. Suggestions to the teacher for further reading are…

  6. Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under photoheterotrophic growth conditions with reduced carbon sources

    SciTech Connect

    Joshi, Gauri S; Romagnoli, Simona; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Pelletier, Dale A; Tabita, F Robert

    2009-01-01

    Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO{sub 2} or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO{sub 2} in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions

  7. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated.

    PubMed

    Feller, Urs; Anders, Iwona; Mae, Tadahiko

    2008-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the predominant protein in photosynthesizing plant parts and the most abundant protein on earth. Amino acids deriving from its net degradation during senescence are transported to sinks (e.g. developing leaves, fruits). Rubisco catabolism is not controlled only by the overall sink demand. An accumulation of carbohydrates may also accelerate senescence and Rubisco degradation under certain conditions. Amino acids produced by proteolysis are rapidly redistributed in plants with proper source-sink relationships. In leaves of wheat plants with reduced sink capacity (e.g. sink removal, phloem interruption by steam girdling at the leaf base), Rubisco is degraded and free amino acids accumulate. They may be washed out in the rain during late senescence. In leaves of depodded soybeans, Rubisco is degraded and amino acids can be reutilized in these leaves for the synthesis of special vacuolar proteins in the paraveinal mesophyll (vegetative storage proteins). Nitrogen deriving from Rubisco degradation in older (senescing) leaves of annual crops is integrated to some extent again in newly synthesized Rubisco in younger leaves or photosynthesizing tissues of fruits. Finally, a high percentage of this nitrogen is accumulated in protein bodies (storage proteins). At the subcellular level, Rubisco can be degraded in intact chloroplasts. Reactive oxygen species may directly cleave the large subunit or modify it to become more susceptible to proteolysis. A metalloendopeptidase may play an important role in Rubisco degradation within intact chloroplasts. Additionally, the involvement of vacuolar endopeptidase(s) in Rubisco catabolism (at least under certain conditions) was postulated by various laboratories.

  8. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle

    PubMed Central

    Mackinder, Luke C. M.; Meyer, Moritz T.; Mettler-Altmann, Tabea; Chen, Vivian K.; Mitchell, Madeline C.; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S.; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C.

    2016-01-01

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2. Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2. We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1’s four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  9. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    PubMed

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.

  10. Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO.

    PubMed

    Schwedock, Julie; Harmer, Tara L; Scott, Kathleen M; Hektor, Harm J; Seitz, Angelica P; Fontana, Matthew C; Distel, Daniel L; Cavanaugh, Colleen M

    2004-09-01

    Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, approximately 3 micromol min(-1) mg protein (-1), and a KCO2 of 40.3 microM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3' region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3' region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.

  11. Diversity and Expression of RubisCO Genes in a Perennially Ice-Covered Antarctic Lake during the Polar Night Transition

    PubMed Central

    Kong, Weidong; Ream, David C.; Priscu, John C.

    2012-01-01

    The autotrophic communities in the lakes of the McMurdo Dry Valleys, Antarctica, have generated interest since the early 1960s owing to low light transmission through the permanent ice covers, a strongly bimodal seasonal light cycle, constant cold water temperatures, and geographical isolation. Previous work has shown that autotrophic carbon fixation in these lakes provides an important source of organic matter to this polar desert. Lake Bonney has two lobes separated by a shallow sill and is one of several chemically stratified lakes in the dry valleys that support year-round biological activity. As part of an International Polar Year initiative, we monitored the diversity and abundance of major isoforms of RubisCO in Lake Bonney by using a combined sequencing and quantitative PCR approach during the transition from summer to polar winter. Form ID RubisCO genes related to a stramenopile, a haptophyte, and a cryptophyte were identified, while primers specific for form IA/B RubisCO detected a diverse autotrophic community of chlorophytes, cyanobacteria, and chemoautotrophic proteobacteria. Form ID RubisCO dominated phytoplankton communities in both lobes of the lake and closely matched depth profiles for photosynthesis and chlorophyll. Our results indicate a coupling between light availability, photosynthesis, and rbcL mRNA levels in deep phytoplankton populations. Regulatory control of rbcL in phytoplankton living in nutrient-deprived shallow depths does not appear to be solely light dependent. The distinct water chemistries of the east and west lobes have resulted in depth- and lobe-dependent variability in RubisCO diversity, which plays a role in transcriptional activity of the key gene responsible for carbon fixation. PMID:22492447

  12. Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition.

    PubMed

    Kong, Weidong; Ream, David C; Priscu, John C; Morgan-Kiss, Rachael M

    2012-06-01

    The autotrophic communities in the lakes of the McMurdo Dry Valleys, Antarctica, have generated interest since the early 1960s owing to low light transmission through the permanent ice covers, a strongly bimodal seasonal light cycle, constant cold water temperatures, and geographical isolation. Previous work has shown that autotrophic carbon fixation in these lakes provides an important source of organic matter to this polar desert. Lake Bonney has two lobes separated by a shallow sill and is one of several chemically stratified lakes in the dry valleys that support year-round biological activity. As part of an International Polar Year initiative, we monitored the diversity and abundance of major isoforms of RubisCO in Lake Bonney by using a combined sequencing and quantitative PCR approach during the transition from summer to polar winter. Form ID RubisCO genes related to a stramenopile, a haptophyte, and a cryptophyte were identified, while primers specific for form IA/B RubisCO detected a diverse autotrophic community of chlorophytes, cyanobacteria, and chemoautotrophic proteobacteria. Form ID RubisCO dominated phytoplankton communities in both lobes of the lake and closely matched depth profiles for photosynthesis and chlorophyll. Our results indicate a coupling between light availability, photosynthesis, and rbcL mRNA levels in deep phytoplankton populations. Regulatory control of rbcL in phytoplankton living in nutrient-deprived shallow depths does not appear to be solely light dependent. The distinct water chemistries of the east and west lobes have resulted in depth- and lobe-dependent variability in RubisCO diversity, which plays a role in transcriptional activity of the key gene responsible for carbon fixation.

  13. Characterization of photosystem II photochemistry in transgenic tobacco plants with lowered Rubisco activase content.

    PubMed

    Cai, Bin; Zhang, Aihong; Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2010-11-15

    Rubisco activase plays an important role in the regulation of CO(2) assimilation. However, it is unknown how activase regulates photosystem II (PSII) photochemistry. To investigate the effects of Rubisco activase on PSII photochemistry, we obtained transgenic tobacco (Nicotiana tabacum) plants with 50% (i7), 25% (i28), and 5% (i46) activase levels as compared to wild type plants by using a gene encoding tobacco activase for the RNAi construct. Both CO(2) assimilation and PSII activity were significantly reduced only in transgenic i28 and i46 plants, suggesting that activase deficiency led to decreased PSII activity. Flash-induced fluorescence kinetics indicated that activase deficiency resulted in a slow electron transfer between Q(A) (primary quinine electron acceptor of PSII) and Q(B) (secondary quinone electron acceptor of PSII). Thermoluminescence measurements revealed that activase deficiency induced a shift of S(2)Q(A)(-) and S(2)Q(B)(-) recombinations to higher temperatures in parallel, and a decrease in the intensities of the thermoluminescence emissions. Activase deficiency also dampened the period-four oscillation of the thermoluminescence B-band. Protein gel blot analysis showed that activase deficiency resulted in a significant decrease in the content of D1, D2, CP43, CP47, and PsbO proteins. Transmission electron microscopy analysis demonstrated that activase deficiency induced a significant decrease in the number of grana stacks per chloroplast and discs per grana stack. Our results suggest that activase plays an important role in maintaining PSII function and chloroplast development.

  14. Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO.

    PubMed

    Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert

    2017-01-01

    With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO2, a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO2, without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO2-fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.

  15. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways*♦

    PubMed Central

    Dey, Swati; North, Justin A.; Sriram, Jaya; Evans, Bradley S.; Tabita, F. Robert

    2015-01-01

    All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions. PMID:26511314

  16. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways.

    PubMed

    Dey, Swati; North, Justin A; Sriram, Jaya; Evans, Bradley S; Tabita, F Robert

    2015-12-25

    All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.

  17. Variation in Rubisco activase (RCAβ) gene promoters and expression in soybean [Glycine max (L.) Merr.

    PubMed Central

    Yu, Deyue

    2014-01-01

    Understanding the genetic basis of Rubisco activase (RCA) gene regulation and altering its expression levels to optimize Rubisco activation may provide an approach to enhance plant productivity. However, the genetic mechanisms and the effect of RCA expression on phenotype are still unknown in soybean. This work analysed the expression of RCA genes and demonstrated that two RCA isoforms presented different expression patterns. Compared with GmRCAα, GmRCAβ was expressed at higher mRNA and protein levels. In addition, GmRCAα and GmRCAβ were positively correlated with chlorophyll fluorescence parameters and seed yield, suggesting that changes in expression of RCA has a potential applicability in breeding for enhanced soybean productivity. To identify the genetic factors that cause expression level variation of GmRCAβ, expression quantitative trait loci (eQTL) mapping was combined with allele mining in a natural population including 219 landraces. The eQTL mapping showed that a combination of both cis- and trans-acting eQTLs might control GmRCAβ expression. As promoters can affect both cis- and trans-acting eQTLs by altering cis-acting regulatory elements or transcription factor binding sites, this work subsequently focused on the promoter region of GmRCAβ. Single-nucleotide polymorphisms in the GmRCAβ promoter were identified and shown to correlate with expression level diversity. These SNPs were classified into two groups, A and B. Further transient expression showed that GUS expression driven by the group A promoter was stronger than that by the group B promoter, suggesting that promoter sequence types could influence gene expression levels. These results would improve understanding how variation within promoters affects gene expression and, ultimately, phenotypic diversity in natural populations. PMID:24170743

  18. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    PubMed

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants.

  19. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    PubMed

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops.

  20. Effects of in vitro ozone treatment on proteolysis of purified rubisco from two hybrid poplar clones. [Populus maximowizii x trichocarpa

    SciTech Connect

    Landry, L.G.; Pell, E.J. )

    1989-04-01

    Plants exposed to ozone (O{sub 3}) exhibited symptoms of premature senescence, including early decline in quantity of rubisco. O{sub 3}-induced oxidation may cause changes in protein conformation of rubisco, resulting in enhanced proteolysis. To test this hypothesis, rubisco was purified from two hybrid clones of Populus maximowizii x trichocarpa, clones 388 and 245, and treated in vitro with O{sub 3} or air. Rubisco was then challenged with bromelain, papain, chymotrypsin, carboxypeptidase A, or endoproteinase Glu-C and percent degradation measured by SDS-PAGE and densitometric scanning of the gels. Degree of rubisco sensitivity to oxidation may be related to available sulfhydryl (SH) groups on the protein. The number of SH groups in native and denatured rubisco was measured for purified rubisco of both clones by DTNB titration method. The relationship between sensitivity to proteolysis and number and availability of SH groups is discussed.

  1. Expression Quantitative Trait Loci Analysis of Two Genes Encoding Rubisco Activase in Soybean1[W][OA

    PubMed Central

    Yin, Zhitong; Meng, Fanfan; Song, Haina; Wang, Xiaolin; Xu, Xiaoming; Yu, Deyue

    2010-01-01

    Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in photosynthesis. However, until now, little was known about the molecular genetics of RCA in soybean (Glycine max), one of the most important legume crops. Here, we cloned and characterized two genes encoding the longer α -isoform and the shorter β -isoform of soybean RCA (GmRCA α and GmRCA β, respectively). The two corresponding cDNAs are divergent in both the translated and 3 ′ untranslated regions. Analysis of genomic DNA sequences suggested that the corresponding mRNAs are transcripts of two different genes and not the products of a single alternatively splicing pre-mRNA. Two additional possible α -form RCA-encoding genes, GmRCA03 and GmRCA14, and one additional β -form RCA-encoding gene, GmRCA11, were also isolated. To examine the function and modulation of RCA genes in soybean, we determined the expression levels of GmRCA α and GmRCA β, Rubisco initial activity, photosynthetic rate, and seed yield in 184 soybean recombinant inbred lines. Correlation of gene expression levels with three other traits indicates that RCA genes could play an important role in regulating soybean photosynthetic capacity and seed yield. Expression quantitative trait loci mapping revealed four trans-expression quantitative trait loci for GmRCA α and GmRCA β. These results could provide a new approach for the modulation of RCA genes to improve photosynthetic rate and plant growth in soybean and other plants. PMID:20032079

  2. Structure-Function Studies with the Unique Hexameric Form II Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) from Rhodopseudomonas palustris*

    PubMed Central

    Satagopan, Sriram; Chan, Sum; Perry, L. Jeanne; Tabita, F. Robert

    2014-01-01

    The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a “closed” conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile165 and Met331) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala47) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. PMID:24942737

  3. A new form of crystalline rubisco and the conversion to its common dodecahedral form.

    PubMed

    Kwanyuen, Prachuab; Allina, Sandra M; Weissinger, Arthur K; Wilson, Richard F

    2002-01-01

    In this paper, we present a new purification procedure that yields a new crystalline form of rubisco and has enabled us to completely remove this most abundant protein from tobacco leaf extract. The crystals formed within 48 h after refrigeration at 4 degrees C at pH 5.6. However, these crystals were not well-ordered crystals and lacked well-defined facets or edges. The remaining leaf extract (fraction 2 protein) was void of rubisco. Conversion of this new crystalline form of rubisco to its common dodecahedral form was achieved by dialysing the protein solution in Tris buffer at pH 8.0 or purified water. Since the molecular size of its large subunit of rubisco (55 kD) is similar to that of the papillomavirus capsid protein, L1 (57 kD), its complete removal from fraction 2-protein may facilitate the detection, purification, and recovery of the Li protein.

  4. Identification of Two bZIP Transcription Factors Interacting with the Promoter of Soybean Rubisco Activase Gene (GmRCAα)

    PubMed Central

    Zhang, Jinyu; Du, Hongyang; Chao, Maoni; Yin, Zhitong; Yang, Hui; Li, Yakai; Huang, Fang; Yu, Deyue

    2016-01-01

    Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription. PMID:27242832

  5. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    PubMed

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Comparison of the intrinsic disorder propensities of the RuBisCO activase enzyme from the motile and non-motile oceanic green microalgae.

    PubMed

    Sena, Lucia; Uversky, Vladimir N

    2016-01-01

    Green oceanic microalgae are efficient converters of solar energy into the biomass via the photosynthesis process, with the first step of carbon fixation in the photosynthesis being controlled by the enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), which is a large proteinaceous machine composed of large (L, 52 kDa) and small (S, 12 kDa) subunits arranged as a L8S8 hexadecamer that catalyzes the formation of 2 phosphoglyceric acid molecules from one ribulose 1,5-bisphosphate (RuBP) molecule and one of carbon dioxide (CO2) and that is considered as the most abundant protein on Earth. The catalytic efficiency of this protein is controlled by the RuBisCO activase (RCA) that interacts with RuBisCO and promotes the CO2 entrance to the active site of RuBisCO by removing RuBP. One of the peculiar features of RCA is the presence of functional disordered tails that might play a role in RCA-RuBisCO interaction. Based on their ability to move, microalgae are grouped into 2 major class, motile and non-motile. Motile microalgae have an obvious advantage over their non-motile counterparts because of their ability to actively migrate within the water column to find the most optimal environmental conditions. We hypothesizes that the RCA could be functionally different in the non-motile and motile microalgae. To check this hypothesis, we conducted a comparative computational analysis of the RCAs from the representatives of the non-motile (Ostreococcus tauri) and motile (Tetraselmis sp. GSL018) green oceanic microalgae.

  7. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco.

    PubMed

    Wang, Mingcong; Kapralov, Maxim V; Anisimova, Maria

    2011-09-23

    One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  8. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family.

    PubMed Central

    Rowan, R; Whitney, S M; Fowler, A; Yellowlees, D

    1996-01-01

    Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family. PMID:8721755

  9. Rubisco activase and wheat productivity under heat-stress conditions.

    PubMed

    Ristic, Zoran; Momcilovic, Ivana; Bukovnik, Urska; Prasad, P V Vara; Fu, Jianming; Deridder, Benjamin P; Elthon, Thomas E; Mladenov, Novica

    2009-01-01

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperatures (heat stress). Endogenous levels of RCA could serve as an important determinant of plant productivity under heat-stress conditions. Thus, in this study, the possible relationship between expression levels of RCA and plant yield in 11 European cultivars of winter wheat following prolonged exposure to heat stress was investigated. In addition, the effect of a short-term heat stress on RCA expression in four genotypes of wheat, five genotypes of maize, and one genotype of Arabidopsis thaliana was examined. Immunoblots prepared from leaf protein extracts from control plants showed three RCA cross-reacting bands in wheat and two RCA cross-reacting bands in maize and Arabidopsis. The molecular mass of the observed bands was in the range between 40 kDa and 46 kDa. Heat stress affected RCA expression in a few genotypes of wheat and maize but not in Arabidopsis. In wheat, heat stress slightly modulated the relative amounts of RCA in some cultivars. In maize, heat stress did not seem to affect the existing RCA isoforms (40 kDa and 43 kDa) but induced the accumulation of a new putative RCA of 45-46 kDa. The new putative 45-46 kDa RCA was not seen in a genotype of maize (ZPL 389) that has been shown to display an exceptional sensitivity to heat stress. A significant, positive, linear correlation was found between the expression of wheat 45-46 kDa RCA and plant productivity under heat-stress conditions. Results support the hypothesis that endogenous levels of RCA could play an important role in plant productivity under supraoptimal temperature conditions.

  10. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method.

    PubMed

    Kim, Yu Ji; Lee, Hye Min; Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Park, Ki Hun; Kim, Yong Chul; Choi, In Soo; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2013-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris-Mg/NP-40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS-PAGE analysis of total, PS-supernatant and -precipitation derived protein samples. In a dose-dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS-supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS-treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS-supernatant than total proteins. Some enriched 2D spots were subjected to MALDI-TOF-TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis.

  11. Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time.

    PubMed

    Nisbet, Euan G; Nisbet, R Ellen R

    2008-08-27

    Rubisco I's specificity, which today may be almost perfectly tuned to the task of cultivating the global garden, controlled the balance of carbon gases and O(2) in the Precambrian ocean and hence, by equilibration, in the air. Control of CO(2) and O(2) by rubisco I, coupled with CH(4) from methanogens, has for the past 2.9 Ga directed the global greenhouse warming, which maintains liquid oceans and sustains microbial ecology.Both rubisco compensation controls and the danger of greenhouse runaway (e.g. glaciation) put limits on biological productivity. Rubisco may sustain the air in either of two permissible stable states: either an anoxic system with greenhouse warming supported by both high methane mixing ratios as well as carbon dioxide, or an oxygen-rich system in which CO(2) largely fulfils the role of managing greenhouse gas, and in which methane is necessarily only a trace greenhouse gas, as is N(2)O. Transition from the anoxic to the oxic state risks glaciation. CO(2) build-up during a global snowball may be an essential precursor to a CO(2)-dominated greenhouse with high levels of atmospheric O(2). Photosynthetic and greenhouse-controlling competitions between marine algae, cyanobacteria, and terrestrial C3 and C4 plants may collectively set the CO(2) : O(2) ratio of the modern atmosphere (last few million years ago in a mainly glacial epoch), maximizing the productivity close to rubisco compensation and glacial limits.

  12. Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice.

    PubMed

    Suzuki, Yuji; Kondo, Eri; Makino, Amane

    2017-03-01

    Metabolome analyses have indicated an accumulation of sedoheptulose 7-phosphate in transgenic rice plants with overproduction of Rubisco (Suzuki et al. in Plant Cell Environ 35:1369-1379, 2012. doi: 10.1111/j.1365-3040.2012.02494.x ). Since Rubisco overproduction did not quantitatively enhance photosynthesis even under CO2-limited conditions, it is suspected that such an accumulation of sedoheptulose 7-phosphate hampers the improvement of photosynthetic capacity. In the present study, the gene of transketolase, which is involved in the metabolism of sedoheptulose 7-phosphate, was co-overexpressed with the Rubisco small subunit gene in rice. Rubisco and transketolase were successfully overproduced in comparison with those in wild-type plants by 35-53 and 39-84 %, respectively. These changes in the amounts of the proteins were associated with those of the mRNA levels. However, the rate of CO2 assimilation under high irradiance and different [CO2] did not differ between co-overexpressed plants and wild-type plants. Thus, co-overproduction of Rubisco and transketolase did not improve photosynthesis in rice. Transketolase was probably not a limiting factor of photosynthesis as overproduction of transketolase alone by 80-94 % did not affect photosynthesis.

  13. NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    PubMed Central

    Yang, Qiaosong; He, Han; Li, Heying; Tian, Hua; Zhang, Jianjun; Zhai, Liguang; Chen, Jiandong; Wu, Hong; Yi, Ganjun; He, Zheng-Hui; Peng, Xinxiang

    2011-01-01

    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice. PMID:21625436

  14. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds.

    PubMed

    Schwender, Jörg; Goffman, Fernando; Ohlrogge, John B; Shachar-Hill, Yair

    2004-12-09

    Efficient storage of carbon in seeds is crucial to plant fitness and to agricultural productivity. Oil is a major reserve material in most seeds, and these oils provide the largest source of renewable reduced carbon chains available from nature. However, the conversion of carbohydrate to oil through glycolysis results in the loss of one-third of the carbon as CO2. Here we show that, in developing embryos of Brassica napus L. (oilseed rape), Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) acts without the Calvin cycle and in a previously undescribed metabolic context to increase the efficiency of carbon use during the formation of oil. In comparison with glycolysis, the metabolic conversion we describe provides 20% more acetyl-CoA for fatty-acid synthesis and results in 40% less loss of carbon as CO2. Our conclusions are based on measurements of mass balance, enzyme activity and stable isotope labelling, as well as an analysis of elementary flux modes.

  15. Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach.

    PubMed

    Liu, Chao; Hong, Fa-shui; Wu, Kang; Ma, Hong-bing; Zhang, Xue-guang; Hong, Cheng-jiao; Wu, Cheng; Gao, Feng-qing; Yang, Fan; Zheng, Lei; Wang, Xue-feng; Liu, Tao; Xie, Ya-ning; Xu, Jian-hua; Li, Zhong-rui

    2006-03-31

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd(3+) treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd(3+)-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd(3+)-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89A, respectively.

  16. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO2-fixation kinetics.

    PubMed

    Wilson, Robert H; Martin-Avila, Elena; Conlan, Carly; Whitney, Spencer M

    2017-10-06

    An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective due to catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high fidelity, high throughput Rubisco directed evolution (RDE2) screen that negates false positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Geiger-Kaiser, Margot; Psenner, Roland

    2009-04-01

    A molecular approach, based on the detection of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit genes, was applied to investigate the distribution and diversity of autotrophic bacteria in groundwater systems. DNA extracts from 48 sampling stations, including a variety of pristine and polluted, shallow and deep-subsurface groundwater samples obtained from Germany and Austria, served as a template for the PCR amplification of form I (cbbL) and form II (cbbM) large subunit RubisCO genes. The majority of the samples (>80%) contained two different forms of RubisCO. In 17 samples, all three forms of RubisCO were identified. PCR products from four selected groundwater habitats containing all three forms of RubisCO were used to construct clone libraries. Based on restriction fragment length polymorphism (RFLP) analysis, 109 RubisCO-clone-inserts were subjected to sequencing and phylogenetic analysis. With the exception of a form IA RubisCO sequence cluster obtained from deep subsurface samples, which was identical to the RubisCO genes described for Ralstonia metallidurans CH34, most sequences were distantly related to a variety of RubisCO species in chemolithoautotrophic Proteobacteria. Several sequences occurred in isolated lineages. These findings suggest that autotrophic bacteria with the capability to assimilate CO2 via the Calvin Cycle pathway are widespread inhabitants of groundwater systems.

  18. Effect of atmospheric CO 2 enrichment on rubisco content in herbaceous species from high and low altitude

    NASA Astrophysics Data System (ADS)

    Sage, Rowan F.; Schäppi, Bernd; Körner, Christian

    Atmospheric CO 2 enrichment reduces Rubisco content in many species grown in controlled environments; however, relatively few studies have examined CO 2 effects on Rubisco content of plants grown in their natural habitat. We examined the response of Rubisco content to atmospheric CO 2 enrichment (600-680 μmol mol -1 in place of ppm) in 5 herbaceous species growing in a low altitude grassland (550 m) near Basel, Switzerland, and 3 herbaceous species from Swiss alpine grassland at 2470 m. At low elevation, the dominant grass Bromus erectus and the subdominant dicot Sanquisorba minor exhibited 20% to 25% reduction of Rubisco content following high CO 2 exposure; no CO 2 effect was observed in the subdominants Carex flacca, Lotus corniculatus and Trifolium repens. At the Alpine site, the subdominant grass Poa alpina maintained 27% less Rubisco content when grown at high CO 2 while the co-dominant forb Leontodon helveticus had 19% less Rubisco in high CO 2. Rubisco content was unaffected in the tundra dominant Carex curvula. Because the degree of Rubisco modulation was similar between high and low elevation sites, it does not appear that differences in local partial pressure of CO 2 (altitude) or differences in stress in general induce different patterns of modulation of photosynthetic capacity in response to high CO 2. In addition, the degree of Rubisco reduction (<30%) was less than might be indicated by the low biomass response to CO 2 enrichment previously observed at these sites. Thus, plants in Swiss lowland and alpine grassland appear to maintain greater Rubisco concentration and photosynthetic capacity than whole plants can effectively exploit in terms of harvestable biomass.

  19. Effect of Nd{sup 3+} ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach

    SciTech Connect

    Liu Chao; Hong Fashui . E-mail: Hongfsh_cn@sina.com; Wu Kang; Ma, Hong-bing; Zhang Xueguang; Hong Chengjiao; Wu Cheng; Gao Fengqing; Yang Fan; Zheng Lei; Wang Xuefeng; Liu Tao; Xie Yaning; Xu Jianhua; Li Zhongrui

    2006-03-31

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.

  20. Overexpression of the rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus.

    PubMed

    Bi, Huangai; Liu, Peipei; Jiang, Zhensheng; Ai, Xizhen

    2017-10-01

    Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild-type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses. © 2017 Scandinavian Plant Physiology Society.

  1. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  2. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  3. Expression of a foreign Rubisco small subunit in tobacco with reduced levels of the native protein

    USDA-ARS?s Scientific Manuscript database

    The cDNA, ArRbcS3, for the small subunit of Rubisco from Amaranthus retroflexus (pigweed) was expressed in tobacco (Nicotiana tabacum) under the control of a strong leaf-specific Lhcb promoter. The coding region of the ArRbcS3 was fused to the plastid targeting sequence of the native tobacco rbcS to...

  4. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxgenase large subunit .epsilon. n-methyltransferase and method of inactivating ribulose-1,5-bishosphatase .epsilon. n-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    2001-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltansferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  5. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  6. Thermal properties of alkali-activated aluminosilicates

    NASA Astrophysics Data System (ADS)

    Florian, Pavel; Valentova, Katerina; Fiala, Lukas; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements and evaluation of thermal properties of alkali-activated aluminosilicates (AAA) with various carbon admixtures. Such composites consisting of blast-furnace slag, quartz sand, water glass as alkali activator and small amount of electrically conductive carbon admixture exhibit better electric and thermal properties than the reference material. Such enhancement opens up new practical applications, such as designing of snow-melting, de-icing or self-sensing systems that do not need any external sensors to detect current condition of building material. Thermal properties of the studied materials were measured by the step-wise transient method and mutually compared.

  7. Characterization of Rubisco activase genes in maize: an α-isoform gene functions alongside a β-isoform gene.

    PubMed

    Yin, Zhitong; Zhang, Zhenliang; Deng, Dexiang; Chao, Maoni; Gao, Qingsong; Wang, Yijun; Yang, Zefeng; Bian, Yunlong; Hao, Derong; Xu, Chenwu

    2014-04-01

    Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in regulating plant growth. In maize (Zea mays), only β-form RCA genes have been cloned and characterized. In this study, a genome-wide survey revealed the presence of an α-form RCA gene and a β-form RCA gene in the maize genome, herein referred to as ZmRCAα and ZmRCAβ, respectively. An analysis of genomic DNA and complementary DNA sequences suggested that alternative splicing of the ZmRCAβ precursor mRNA (premRNA) at its 3' untranslated region could produce two distinctive ZmRCAβ transcripts. Analyses by electrophoresis and matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry showed that ZmRCAα and ZmRCAβ encode larger and smaller polypeptides of approximately 46 and 43 kD, respectively. Transcriptional analyses demonstrated that the expression levels of both ZmRCAα and ZmRCAβ were higher in leaves and during grain filling and that expression followed a specific cyclic day/night pattern. In 123 maize inbred lines with extensive genetic diversity, the transcript abundance and protein expression levels of these two RCA genes were positively correlated with grain yield. Additionally, both genes demonstrated a similar correlation with grain yield compared with three C₄ photosynthesis genes. Our data suggest that, in addition to the β-form RCA-encoding gene, the α-form RCA-encoding gene also contributes to the synthesis of RCA in maize and support the hypothesis that RCA genes may play an important role in determining maize productivity.

  8. Honey: its medicinal property and antibacterial activity

    PubMed Central

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-01-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimicrobial activity in most honeys is due to the enzymatic production of hydrogen peroxide. However, another kind of honey, called non-peroxide honey (viz., manuka honey), displays significant antibacterial effects even when the hydrogen peroxide activity is blocked. Its mechanism may be related to the low pH level of honey and its high sugar content (high osmolarity) that is enough to hinder the growth of microbes. The medical grade honeys have potent in vitro bactericidal activity against antibiotic-resistant bacteria causing several life-threatening infections to humans. But, there is a large variation in the antimicrobial activity of some natural honeys, which is due to spatial and temporal variation in sources of nectar. Thus, identification and characterization of the active principle(s) may provide valuable information on the quality and possible therapeutic potential of honeys (against several health disorders of humans), and hence we discussed the medicinal property of honeys with emphasis on their antibacterial activities. PMID:23569748

  9. Honey: its medicinal property and antibacterial activity.

    PubMed

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-04-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimicrobial activity in most honeys is due to the enzymatic production of hydrogen peroxide. However, another kind of honey, called non-peroxide honey (viz., manuka honey), displays significant antibacterial effects even when the hydrogen peroxide activity is blocked. Its mechanism may be related to the low pH level of honey and its high sugar content (high osmolarity) that is enough to hinder the growth of microbes. The medical grade honeys have potent in vitro bactericidal activity against antibiotic-resistant bacteria causing several life-threatening infections to humans. But, there is a large variation in the antimicrobial activity of some natural honeys, which is due to spatial and temporal variation in sources of nectar. Thus, identification and characterization of the active principle(s) may provide valuable information on the quality and possible therapeutic potential of honeys (against several health disorders of humans), and hence we discussed the medicinal property of honeys with emphasis on their antibacterial activities.

  10. Description and applications of a rapid and sensitive non-radioactive microplate-based assay for maximum and initial activity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Sulpice, Ronan; Tschoep, Hendrik; VON Korff, Maria; Büssis, Dirk; Usadel, Björn; Höhne, Melanie; Witucka-Wall, Hanna; Altmann, Thomas; Stitt, Mark; Gibon, Yves

    2007-09-01

    D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the first step in photosynthetic carbon assimilation and represents the largest sink for nitrogen in plants. Improvement of its kinetic properties or the efficiency with which it is used in planta would benefit photosynthesis, nitrogen and water use efficiency, and yield. This paper presents a new non-radioactive microplate-based assay, which determines the product [3-phosphoglycerate (3-PGA)] in an enzymic cycle between glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate oxidase. High sensitivity permits use of highly diluted extracts, and a short reaction time to avoid problems due to fall-off. Throughput was several hundreds of samples per person per day. Sensitivity and convenience compared favourably with radioisotopic assays, which were previously used to assay Rubisco. Its use is illustrated in three applications. (1) Maximal and initial activities and the K(m) for ribulose-1,5-bisphosphate were determined in raw extracts of leaves from several species. Similar values were obtained from those in the literature. (2) Diurnal changes were compared in rosettes of wild-type (WT) Arabidopsis and the starchless pgm mutant. Despite these dramatic differences in carbon metabolism, Rubisco activity and activation were similar in both genotypes. (3) A preliminary association mapping study was performed with 118 Arabidopsis accessions, using 183 markers that probably cover approximately 3-8% of the total genome. At a P-value < 0.005, two, two and no quantitative trait loci (QTL) were found for Rubisco maximal activity, initial activity and activation state, respectively. Inspection of the genomic regions that span these markers revealed these QTL involved genes not previously implicated in the regulation of Rubisco expression or activity.

  11. The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis: effects on vegetative biomass, pigmentation, and carboxylases (PEPc and Rubisco).

    PubMed

    Leitao, L; Bethenod, O; Biolley, J-P

    2007-07-01

    The impact of ozone on crops was more studied in C (3) than in C (4) species. In C (3) plants, ozone is known to induce a photosynthesis impairment that can result in significant depressions in biomass and crop yields. To investigate the impact of O (3) on C (4) plant species, maize seedlings ( ZEA MAYS L. cv. Chambord) were exposed to 5 atmospheres in open-top chambers: non-filtered air (NF, 48 nL L (-1) O (3)) and NF supplied with 20 (+ 20), 40 (+ 40), 60 (+ 60), and 80 (+ 80) nL L (-1) ozone. An unchambered plot was also available. Leaf area, vegetative biomass, and leaf dry mass per unit leaf area (LMA) were evaluated 33 days after seedling emergence in OTCs. At the same time, photosynthetic pigments as well as carboxylase (PEPc and Rubisco) activities and amounts were also examined in the 5th leaf. Ozone enhanced visible symptoms characterizing foliar senescence. Across NF, + 20, + 40, and + 60 atmospheres, both chlorophylls and carotenoids were found to be linearly decreased against increasing AOT40 ( CA. - 50 % in + 60). No supplementary decrease was observed between + 60 and + 80. Total above-ground biomass was reduced by 26 % in + 80 atmosphere; leaf dry matter being more depressed by ozone than leaf area. In some cases, LMA index was consistent to reflect low negative effects caused by a moderate increase in ozone concentration. PEPc and Rubisco were less sensitive to ozone than pigments: only the two highest external ozone doses reduced their activities by about 20 - 30 %. These changes might be connected to losses in PEPc and Rubisco proteins that were decreased by about one-third. The underlying mechanisms for these results were discussed with special reference to C (3) species. To conclude, we showed that both light and dark reactions of C (4) photosynthesis can be impaired by realistic ozone doses.

  12. Identification of Putative RuBisCo Activase (TaRca1)—The Catalytic Chaperone Regulating Carbon Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress

    PubMed Central

    Goswami, Suneha; Singh, Khushboo; Dubey, Kavita; Singh, Shweta; Sharma, Renu; Verma, Neeraj; Kala, Yugal K.; Rai, Gyanendra K.; Grover, Monendra; Mishra, Dwijesh C.; Singh, Bhupinder; Pathak, Himanshu; Chinnusamy, Viswanathan; Rai, Anil; Praveen, Shelly

    2016-01-01

    RuBisCo activase (Rca) is a catalytic chaperone involved in modulating the activity of RuBisCo (key enzyme of photosynthetic pathway). Here, we identified eight novel transcripts from wheat through data mining predicted to be Rca and cloned a transcript of 1.4 kb from cv. HD2985, named as TaRca1 (GenBank acc. no. KC776912). Single copy number of TaRca1 was observed in wheat genome. Expression analysis in diverse wheat genotypes (HD2985, Halna, PBW621, and HD2329) showed very high relative expression of TaRca1 in Halna under control and HS-treated, as compared to other cultivars at different stages of growth. TaRca1 protein was predicted to be chloroplast-localized with numerous potential phosphorylation sites. Northern blot analysis showed maximum accumulation of TaRca1 transcript in thermotolerant cv. during mealy-ripe stage, as compared to thermosusceptible. Decrease in the photosynthetic parameters was observed in all the cultivars, except PBW621 in response to HS. We observed significant increase in the Rca activity in all the cultivars under HS at different stages of growth. HS causes decrease in the RuBisCo activity; maximum reduction was observed during pollination stage in thermosusceptible cvs. as validated through immunoblotting. We observed uniform carbon distribution in different tissues of thermotolerant cvs., as compared to thermosusceptible. Similarly, tolerance level of leaf was observed maximum in Halna having high Rca activity under HS. A positive correlation was observed between the transcript and activity of TaRca1 in HS-treated Halna. Similarly, TaRca1 enzyme showed positive correlation with the activity of RuBisCo. There is, however, need to manipulate the thermal stability of TaRca1 enzyme through protein engineering for sustaining the photosynthetic rate under HS—a novel approach toward development of “climate-smart” crop. PMID:27462325

  13. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins.

    PubMed

    Krishnan, Hari B; Natarajan, Savithiry S

    2009-12-01

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30-50% of the CO(2) fixation enzyme Rubisco. Resolution can be improved through depletion of Rubisco using fractionation techniques based upon different physiological or biochemical principles. We have developed a fast and simple fractionation technique using 10 mM Ca(2+) and 10 mM phytate to precipitate Rubisco from soybean leaf soluble protein extract. This method is not only rapid, but also inexpensive, and capable of removing 85% of the extremely abundant Rubisco enzyme from soybean leaf soluble protein extract. This method allowed for roughly 230 previously inconspicuous protein spots in soybean leaf to be more easily detectable (3-fold increase in vol%) using fluorescent detection and allowed 28 phosphorylated proteins previously undetected, to be isolated and identified by MALDI-TOF-MS.

  14. Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California.

    PubMed

    Giri, Bruno J; Bano, Nasreen; Hollibaugh, James T

    2004-06-01

    Partial sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (EC 4.1.1.39) genes were retrieved from samples taken along a redox gradient in alkaline, hypersaline Mono Lake, Calif. The form I gene (cbbL) was found in all samples, whereas form II (cbbM) was not retrieved from any of the samples. None of the RuBisCO sequences we obtained were closely related (nucleotide similarity, <90%) to sequences in the database. Some could be attributed to organisms isolated from the lake (Cyanobium) or appearing in enrichment cultures. Most (52%) of the sequences fell into in one clade, containing sequences that were identical to sequences retrieved from an enrichment culture grown with nitrate and sulfide, and another clade contained sequences identical to those retrieved from an arsenate-reducing, sulfide-oxidizing enrichment.

  15. Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus.

    PubMed

    Hansen, S; Hough, E; Andersen, K

    1999-01-01

    Two different isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Alcaligenes eutrophus have been purified and crystallized. Both isoforms crystallize in space group P43212. Crystals of isoform I (unit-cell dimensions a = 112.0 and c = 402.7 A) diffract to 2.7 A, whereas isoform II (unit-cell dimensions a = 111.8 and c = 400.0 A) presently diffract to 3.2 A, using synchrotron radiation in both cases.

  16. (Structure and expression of nuclear genes encoding rubisco activase)

    SciTech Connect

    Zielinski, R.E.

    1990-01-01

    Our activities during the past year have centered around two basic aspects of the project: describing more thoroughly the diurnal and light irradiance effects on activase gene expression in barley; and isolating and structurally characterizing cDNA and genomic DNA sequences encoding activase from barley. Three appendices are included that summarize these activities.

  17. Rubisco Mechanism: Dissection of the Enolization Partial Reaction. Final Report

    SciTech Connect

    Hartman, F. C.

    2003-06-11

    To test experimentally, the prior theoretical deduction that active-site residue Lys166 of ribulose-bisphosphate carboxylase participates in the carboxylation step of overall catalysis, site-directed mutants and chemically rescued site-directed mutants were characterized by kinetics and product analysis. Although position-166 mutants are able to catalyze normal enolization of ribulose bisphosphate, the enediol intermediate does not undergo carboxylation but rather eliminates phosphate. Furthermore, the chemically rescued mutant (aminoethylation of the severely impaired Lys66Cys mutant) generates a highly active mimic, which displays an enhanced carboxylation/oxygenation partition ratio. These two distinct lines of experimentation document a crucial role of Lys166 in carboxylation and in discrimination between CO{sub 2} and O{sub 2}. To ascertain whether Lys166 functions as an acid or base in facilitation of enolization, the chemically rescued mutant bearing {sup 15}N was titrated by NM R. From pH 6.5-9.5, the amino group of Lys166 remains unprotonated, indicating that it promotes enolization by hydrogen bonding to the ketone group of the substrate.

  18. Detection of Rubisco and mycotoxins as potential contaminants of a plantibody against the hepatitis B surface antigen purified from tobacco.

    PubMed

    Geada, Déborah; Valdés, Rodolfo; Escobar, Arturo; Ares, Dulce M; Torres, Edel; Blanco, Reinaldo; Ferro, Williams; Dorta, Dayamí; González, Marcos; Alemán, María R; Padilla, Sigifredo; Gómez, Leonardo; Del Castillo, Norma; Mendoza, Otto; Urquiza, Dioslaida; Soria, Yordanka; Brito, José; Leyva, Alberto; Borroto, Carlos; Gavilondo, Jorge V

    2007-10-01

    Antibodies have been one of the proteins widely expressed in tobacco plants for pharmaceutical purposes, which demand contaminant free preparations. Rubisco constitutes 40-60% of tobacco leaf soluble proteins; therefore it is the major potential protein contaminant of plantibodies, while mycotoxins are toxic compounds that could be introduced during the biomass production and post-harvest stages with important consequences to human health. The objective of this paper was to investigate whether Rubisco and mycotoxins are present in Plantibody HB-01 preparations used in the immunopurification of the hepatitis B surface antigen. Rubisco was purified from Nicotiana tabacum yielding 154 microg of protein per gram of leaves and purity over 95%. Among mouse monoclonal antibodies generated against this enzyme, the CBSS.Rub-2 was selected for its immunodetection. It recognizes a conserved sequential epitope of Rubisco large subunit with an affinity constant of 0.13 x 10(8)M(-1). Rubisco quantification limit was 1 microg spreading to the measurement of this contaminant less than 4% of plantibodies samples. Additionally, according to a Reverse Phase-HPLC used to measure the level of adventitiously introduced contaminants, it can be concluded that aflatoxins B1, B2, G1 and G2 were undetected in the purified Plantibody HB-01 samples.

  19. Surface active properties of lipid nanocapsules

    PubMed Central

    Mouzouvi, Celia R. A.; Bigot, André K.; Saulnier, Patrick

    2017-01-01

    Lipid nanocapsules (LNCs) are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS) and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs’ properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8–35.0 mN/m and 37.7–38.8 mN/m, respectively), as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC) that was 10-fold higher than the critical micellar concentration (CMC) of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications. PMID:28796777

  20. Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and Rubisco.

    PubMed

    Nagy, Zoltán; Németh, Edit; Guóth, Adrienn; Bona, Lajos; Wodala, Barnabás; Pécsváradi, Attila

    2013-06-01

    Drought stress has a considerable impact on the ecosystem and agriculture. Continuous water deficit induces early leaf senescence in plants. During this process, chloroplasts are degraded and photosynthesis drastically drops. The objective of this investigation was to look into the regulation of nitrogen and carbon metabolism during water deficit. Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) and the total protein contents inform us of the sink-source relation in plants. Glutamine synthetase (GS, EC 6.3.1.2) isoenzymes are good markers of plastid status (GS2) and the nitrogen metabolism (GS1). Tolerant and sensitive wheat (Triticum aestivum L.) genotypes were tested, which are widely used in agriculture. The amount of protein, Rubisco and GS isoforms in leaves were measured during the grain filling period, as indicative traits that ultimately determine the onset and stage of senescence. The symptoms of senescence first appeared on the oldest and finally on the youngest leaves. Drought stress disrupted the sequentiality of senescence in the sensitive varieties. An untimely senescence appeared in flag leaves, earlier than in the older leaves. Total protein and Rubisco contents decreased and the GS2 isoenzyme declined considerably in the youngest leaves. In the tolerant varieties, however, these physiological parameters did not change under drought, only the sequential senescence of leaf levels accelerated in some cases compared to the control, well-watered plants. Our results revealed that GS is a good indicator of drought stress, which can be applied for the characterization of wheat cultivars in terms of drought stress tolerance.

  1. Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments.

    PubMed

    Kovaleva, Olga L; Tourova, Tatjana P; Muyzer, Gerard; Kolganova, Tatjana V; Sorokin, Dimitry Y

    2011-01-01

    Sediments from six soda lakes of the Kulunda Steppe (Altai, Russia) and from hypersaline alkaline lakes of Wadi Natrun (Egypt) were analyzed for the presence of cbb and aclB genes encoding key enzymes Ci assimilation (RuBisCO in Calvin-Benson and ATP citrate lyase in rTCA cycles, respectively). The cbbL gene (RuBisCO form I) was found in all samples and was most diverse, while the cbbM (RuBisCO form II) and aclB were detected only in few samples and with a much lower diversity. The cbbL libraries from hypersaline lakes were dominated by members of the extremely haloalkaliphilic sulfur-oxidizing Ectothiorhodospiraceae, i.e. the chemolithotrophic Thioalkalivibrio and the phototrophic Halorhodospira. In the less saline soda lakes from the Kulunda Steppe, the cbbL gene comprised up to ten phylotypes with a domination of members of a novel phototrophic Chromatiales lineage. The cbbM clone libraries consisted of two major unidentified lineages probably belonging to chemotrophic sulfur-oxidizing Gammaproteobacteria. One of them, dominating in the haloalkaline lakes from Wadi Natrun, was related to a cbbM phylotype detected previously in a hypersaline lake with a neutral pH, and another, dominating in lakes from the Kulunda Steppe, was only distantly related to the Thiomicrospira cluster. The aclB sequences detected in two samples from the Kulunda Steppe formed a single, deep branch in the Epsilonproteobacteria, distantly related to Arcobacter sulfidicus.

  2. Photonic properties of erbium activated coated microspheres

    NASA Astrophysics Data System (ADS)

    Jestin, Y.; Armellini, C.; Chiappini, A.; Chiasera, A.; Dumeige, Y.; Ferrari, M.; Féron, P.; Ghisa, L.; Nunzi Conti, G.; Trebaol, S.; Righini, G. C.

    2008-02-01

    μA simple method based on the sol-gel technology has been developed to coat passive microspheres with an active coating. The microspheres were prepared by fusion of a standard telecom fiber with a dimension of about 200 μm and 400 μm and have been respectively dipped in a 70SiO II-30HfO II sol activated by 1 mol% and 0.1 mol% of erbium ions. Here we first report about the luminescence properties of a silica-hafnia coating doped with erbium ions and then whispering gallery mode spectra were analysed for different sphere diameters, thickness of coating and erbium concentration. The thickness of the coating has been chosen in order to support at least one whispering gallery mode at 1.5 μm.

  3. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    PubMed Central

    Baranowski, Michael; Stec, Boguslaw

    2007-01-01

    We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO) from the red algae Galdieria Sulphuraria. The protein crystallized in two different crystal forms, the I422 crystal form being obtained from high salt and the P21 crystal form being obtained from lower concentration of salt and PEG. We report here the crystallization, preliminary stages of structure determination and the detection of the structural phase transition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzyme belongs to the hexadecameric class (L8S8) with an approximate molecular weight 0.6MDa. The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a single hexadecamer per asymmetric unit. The preservation of diffraction power in a phase transition for such a large macromolecule is rare.

  4. Effect of ozone on degradation and mRNA levels of Rubisco in relation to potato leaf age

    SciTech Connect

    Eckardt, N.A.; Pell, E.J. )

    1993-05-01

    Leaf senescence is characterized by loss of the major photosynthetic enzyme, Ribulose bisphosphate carboxylase (Rubisco). Exposure to ozone (O[sub 3]) is often associated with a premature decline in the quantity of this enzyme. Declines in Rubisco quantity could arise through inhibition of synthesis or enhancement of degradation. Several experiments were conducted to investigate the effect of O[sub 3] on these events in immature and mature leaves of potato. The effect of O[sub 3] on Rubisco synthesis was investigated indirectly by measuring the relative quantities of mRNA for the rubisco large (rbcL) and small (rbcS) subunits following a 5 hour exposure to 0.309 [mu]L L[sup [minus]1] O[sup 3] or charcoal-filtered air. O[sup 3] treatment was associated with a significant loss in rbcS mRNA in immature and mature potato leaves sampled immediately following the exposure. After the O[sup 3] exposure, a set of plants was placed in the dark at 30 C for two days. Levels of rbcS mRNA declined rapidly during the first twelve hours of dark incubation, thus declines in Rubisco quantity following two days of dark incubation were ascribed to degradation. Enhanced degradation due to O[sub 3] during the dark incubation was observed in the mature leaves, but not in the immature leaves. We conclude that O[sub 3] can cause both inhibited synthesis and enhanced degradation of Rubisco, and the response in dependent on leaf age.

  5. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.

    PubMed

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-03-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO(2) fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were determined in leaves and phloem exudates of Kalanchoë daigremontiana Hamet et Perr., and related to CO(2) fixation by PEPC and Rubisco. Three types of leaf carbon pools could be distinguished. (i) Starch and malate pools were dominant and showed a pattern of reciprocal mobilization and accumulation (85/54 and 13/48 mg C g(-1) DW, respective, at the beginning/end of phase I). The carbon isotope composition of these pools was compatible with predominant PEPC fixation (delta(13)C values of -13 and -11 per thousand for starch and malate compared to -11 per thousand of PEPC fixed carbon). (ii) Isotopic composition (-17 per thousand and -14 per thousand) and concentration of glucose and fructose (2 and 3 mg C g(-1) DW, respectively) were not affected by diurnal metabolism, suggesting a low turnover. (iii) Sucrose (1-3 mg C g(-1) DW), in contrast, exhibited large diurnal changes in delta(13)C values (from -17 per thousand in the evening to -12 per thousand in the morning), which were not matched by net changes in sucrose concentration. This suggests a high sucrose turnover, fed by nocturnal starch degradation and direct Rubisco fixation during the day. A detailed dissection of the carbon fixation and mobilization pattern in K. daigremontiana revealed that direct fixation of Rubisco during the light accounted for 30% of phloem sucrose, but only 15% of fixed carbon, indicating that carbon from direct Rubisco fixation was preferentially used for leaf export.

  6. Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: II. analysis of rubisco evolution.

    PubMed

    André, Marcel J

    2011-02-01

    The studies of Rubisco characteristics observed during plant evolution show that the variation of the Rubisco specificity factor only improved by two times from cyanobacteria to modern C3 plants. However we note important variations of the ratio between the maximum rates of oxygenation and carboxylation (V(O)/V(C)). Modelling in vivo ¹⁸O₂ data in plant gas exchange shows that the oxygenation reaction of Rubisco plays a regulating role when the photochemical energy exceeds the carboxylation capacity. A protective index 'oxygenation capacity' is postulated, related to the ratio V(O)/V(C) of Rubisco, and hence to the sink energy effect of photorespiration. Analysing the trends of Rubisco parameters along the evolutionary scale, we show: (1) the increase of both V(C) and V(O); (2) the enhancement of CO₂ affinity; and (3) the rise in oxygenation capacity at the expense of the CO₂ specificity. Hence, the factors of evolutionary pressure have not only directed the enzyme towards a more efficient utilisation of CO₂, but mainly to positively use the unavoidable great loss of energy and assimilated carbon in the process of photorespiration. These observations reinforce the hypothesis of plant-atmosphere co-evolution and of the complex role of Rubisco, which seems to be selected to develop both better CO₂ affinity and oxygenation capacity. The latter increases the capacity of sink of photorespiration, in particular, during water stress or under high irradiance, the two conditions experienced by plants in terrestrial environments. These observations help to explain some handicaps of C4 plants, and the supremacy of CAM and C3 perennial higher plants in arid environments. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein.

    PubMed

    Uhlik, Ondrej; Kamlar, Marek; Kohout, Ladislav; Jezek, Rudolf; Harmatha, Juraj; Macek, Tomas

    2008-12-22

    The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%.

  8. Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon.

    PubMed

    Bayramov, Shahniyar; Guliyev, Novruz

    2014-08-01

    Regulation of Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) gene expression and polypeptide content were determined in Brachypodium distachyon leaves, stems and ear elements at different developmental stages under optimal growth conditions as well as under drought and salt stress conditions. B. distachyon leaf contains a much greater amount of Rubisco activase small (RCAS) isoform than the large one (RCAL) under optimal growth conditions. Increased levels of the RCAL isoform compared with the RCAS isoform were found in leaves and in green stems under salt and drought stress, respectively. Transcriptional levels of RCA are almost identical in different leaf positions. Short-term drought and salt stresses did not cause the impairment of RCA gene expression in early seedlings. But gradually increasing drought stress significantly decreased gene expression in early seedling samples. Amounts of the RCAS isoform were found to be more in different leaves of the plant compared with the RCAL isoform and their ratio was constant under normal condition. In green stems gene expression of RCA decreased under salt and drought stresses, although as it was in green leaves protein amounts of RCAL isoform increased compared with the RCAS isoform. All of the above described results clearly indicate that the accumulation of each RCA isoform is differentially regulated by developmental and environmental cues.

  9. Environmental properties related to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Manzer, Lianne H.

    There continues to be significant controversy regarding the mechanisms responsible for the initiation of activity in galactic nuclei. It is well understood that the non-thermal energy produced by an AGN is due to accretion onto a supermassive black hole. It has not yet been determined, however, what leads particular galaxies to become active. An accurate exploration into what triggers an AGN demands an analysis of a large sample of galaxies across a diverse set of environments. In this work, we investigate possible environmental influences by carrying out a statistical investigation of galaxy groups. Using the catalogue of Yang et al. (2007), in which groups of galaxies containing between 2 and 20 members with redshifts between 0.01 -- 0.20 were taken from the Sloan Digital Sky Survey, we investigate the fraction of active galactic nuclei (AGN) within these groups and compare it to the sample of isolated galaxies also obtained from Yang et al. (2007). After correcting our spectroscopic data for extinction and underlying stellar absorption, we classify the galaxy sample using relevant emission-line ratios. We propose an alternate method for classifying emission-line galaxies, including AGN, which builds upon standard diagnostic utilities used for optical classification and includes uncertainties. Such classification probabilities offer a more robust and consistent method of investigating the effect of group environments with galaxy type. We find our sample to be a fair representation of the local universe by comparing the luminosity function of our entire data set to that of Blanton et al. (2001), Blanton et al. (2003b), and Montero-Dorta & Prada (2009). The evidence also suggests that the luminosity function of galaxies differs between isolated galaxies and galaxies in groups. We find a significant increase in the fraction of AGNs identified in grouped environments. On the other hand, we find a higher fraction of starforming galaxies within isolated systems. We

  10. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.

    PubMed

    Whitney, S M; Andrews, T J

    2001-01-01

    To assess the extent to which a nuclear gene for a chloroplast protein retained the ability to be expressed in its presumed preendosymbiotic location, we relocated the RbcS gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to the tobacco plastid genome. Plastid RbcS transgenes, both with and without the transit presequence, were equipped with 3' hepta-histidine-encoding sequences and psbA promoter and terminator elements. Both transgenes were transcribed abundantly, and their products were translated into small subunit polypeptides that folded correctly and assembled into the Rubisco hexadecamer. When present, either the transit presequence was not translated or the transit peptide was cleaved completely. After assembly into Rubisco, transplastomic small subunits were relatively stable. The hepta-histidine sequence fused to the C terminus of a single small subunit was sufficient for isolation of the whole Rubisco hexadecamer by Ni(2)+ chelation. Small subunits produced by the plastid transgenes were not abundant, never exceeding approximately 1% of the total small subunits, and they differed from cytoplasmically synthesized small subunits in their N-terminal modifications. The scarcity of transplastomic small subunits might be caused by inefficient translation or assembly.

  11. ATP binding and hydrolysis and autophosphorylation of CbbQ encoded by the gene located downstream of RubisCO genes.

    PubMed

    Hayashi, Nobuhiro R; Igarashi, Yasuo

    2002-02-08

    CbbQ is encoded by the gene located downstream of ribulose 1,5-bisphosphate carboxylase/oxygenase genes (cbbLS) in the thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus. The protein possesses two nucleotide-binding motifs in its amino acid sequence, and it posttranslationally activates RubisCO. We present ATP hydrolysis and binding of CbbQ. CbbQ releases P(i) from ATP only in the presence of Mg(2+). CbbQ interacts with an 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate in the presence or absence of Mg(2+). The interaction with Mg(2+) and/or a nucleotide induces a conformational change in CbbQ. Autophosphorylation of CbbQ occurs only in the absence of Mg(2+).

  12. Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: genetic variation, identification of associated QTL, and correlation with plant morphology and yield.

    PubMed

    Khaembah, Edith N; Irving, Louis J; Thom, Errol R; Faville, Marty J; Easton, H Sydney; Matthew, Cory

    2013-03-01

    This study tested the hypotheses that: (i) genetic variation in Rubisco turnover may exist in perennial ryegrass (Lolium perenne L.); (ii) such variation might affect nitrogen use efficiency and plant yield; and (iii) genetic control of Rubisco turnover might be amenable to identification by quantitative trait loci (QTL) mapping. A set of 135 full-sib F1 perennial ryegrass plants derived from a pair cross between genotypes from the cultivars 'Grasslands Impact' and 'Grasslands Samson' was studied to test these hypotheses. Leaf Rubisco concentration at different leaf ages was measured and modelled as a log-normal curve described by three mathematical parameters: D (peak Rubisco concentration), G (time of D), and F (curve standard deviation). Herbage dry matter (DM) yield and morphological traits (tiller weight (TW), tiller number (TN), leaf lamina length (LL), and an index of competitive ability (PI)) were also measured. The progeny exhibited continuous variation for all traits. Simple correlation and principal component analyses indicated that plant productivity was associated with peak Rubisco concentration and not Rubisco turnover. Lower DM was associated with higher leaf Rubisco concentration indicating that Rubisco turnover effects on plant productivity may relate to energy cost of Rubisco synthesis rather than photosynthetic capacity. QTL detection by a multiple QTL model identified seven significant QTL for Rubisco turnover and nine QTL for DM and morphological traits. An indication of the genetic interdependence of DM and the measures of Rubisco turnover was the support interval overlap involving QTL for D and QTL for TN on linkage group 5 in a cluster involving QTL for DM and PI. In this region, alleles associated with increased TN, DM, and PI were associated with decreased D, indicating that this region may regulate Rubisco concentration and plant productivity via increased tillering. A second cluster involving QTL for LL, TN, PI and DM was found on

  13. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation

    PubMed Central

    Záhonová, Kristína; Füssy, Zoltán; Oborník, Miroslav; Eliáš, Marek

    2016-01-01

    Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any. PMID:27391690

  14. Molecular characterization of a deep-sea methanotrophic mussel symbiont that carries a RuBisCO gene.

    PubMed

    Elsaied, Hosam Easa; Kaneko, Ryo; Naganuma, Takeshi

    2006-01-01

    In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears the RuBisCO cbbL gene relevant to autotrophic CO(2) fixation.

  15. Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations.

    PubMed

    Hermida-Carrera, Carmen; Fares, Mario A; Fernández, Ángel; Gil-Pelegrín, Eustaquio; Kapralov, Maxim V; Mir, Arnau; Molins, Arántzazu; Peguero-Pina, José Javier; Rocha, Jairo; Sancho-Knapik, Domingo; Galmés, Jeroni

    2017-01-01

    Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity. It has been hypothesized that RuBisCO has evolved differentially depending on the environmental conditions and leaf traits governing internal gas diffusion patterns. Here, we show, using PAML, that amino acid replacements at the residue positions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of positive selection along particular Quercus lineages associated with the leaf traits and climate characteristics. In parallel, the DT model identified amino acid replacements at sites 95, 219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting partial overlap with the results obtained using PAML.

  16. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR.

    PubMed

    Selesi, Drazenka; Pattis, Isabelle; Schmid, Michael; Kandeler, Ellen; Hartmann, Anton

    2007-06-01

    Soils harbor a high diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit coding genes (cbbL). Real-time PCR was used to quantify this gene in differently managed agricultural soils and soil microhabitats. We developed primers and a TaqMan probe that target the "red-like" RubisCO gene cbbL. Primers and probe were developed based on cbbL sequences of selected bacterial pure cultures and of environmental clones. The amount of cbbL copies in the investigated soils were detected in the range of 6.8x10(6) to 3.4x10(7) "red-like" cbbL copies/g soil. The cbbL genes could be located entirely in the clay and silt fraction, while the coarse sand fractions revealed no detectable level of bacterial RubisCO genes. These results indicate that bacteria with RubisCO coding genes are numerous and widespread in soils, however the functional implication of this gene in soils is not yet clear.

  17. The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability.

    PubMed

    Maeda, Norihiro; Kanai, Tamotsu; Atomi, Haruyuki; Imanaka, Tadayuki

    2002-08-30

    We have previously determined the crystal structure of a novel pentagonal ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Here we have carried out biochemical studies to identify the necessities and/or advantages of this intriguing pentagonal structure. The structure indicated the presence of three neighboring residues (Glu-63, Arg-66, and Asp-69), participating in ionic interactions within unique dimer-dimer interfaces. We constructed three single mutant proteins (E63S, R66S, and D69S) and one triple mutant protein (E63S/R66S/D69S) by replacing the charged residues with serine. The wild type (WT) and all mutant proteins were purified and subjected to gel permeation chromatography at various temperatures. WT and D69S proteins were decameric at all temperatures examined between 30 and 90 degrees C. The majority of E63S and R66S were decamers at 30 degrees C but were found to gradually disassemble with the elevation in temperature. E63S/R66S/D69S was found in a dimeric form even at 30 degrees C. An interesting correlation was found between the subunit assembly and thermostability of the proteins. Circular dichroism and differential scanning calorimetry analyses indicated that the denaturation temperatures of dimeric enzymes (E63S, R66S, and E63S/R66S/D69S) were approximately 95 degrees C, whereas those of the enzymes retaining a decameric structure (WT and D69S) were approximately 110 degrees C. Disassembly into tetramer or dimer units did not alter the slopes of the Arrhenius plots, indicating that the decameric structure had no effect on catalytic performance per se. The results indicate that the decameric assembly of Tk-Rubisco contributes to enhance the thermostability of the enzyme. Taking into account the growth temperature of strain KOD1 (65-100 degrees C), the decameric structure of Tk-Rubisco can be considered essential for the stable presence of the enzyme in the host cells

  18. Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo

    PubMed Central

    Bernacchi, Carl J.; Portis, Archie R.; Nakano, Hiromi; von Caemmerer, Susanne; Long, Stephen P.

    2002-01-01

    CO2 transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (gm), is finite. Therefore, it will limit photosynthesis when CO2 is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of gm. The process dominating gm is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO2 in water have all been suggested. The response of gm to temperature (10°C–40°C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q10) of approximately 2.2 for gm, suggesting control by a protein-facilitated process because the Q10 for diffusion of CO2 in water is about 1.25. Further, gm values are maximal at 35°C to 37.5°C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of gm to calculate CO2 at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10°C to 40°C. Using these parameters, we determined the limitation imposed on photosynthesis by gm. Despite an exponential rise with temperature, gm does not keep pace with increased capacity for CO2 uptake at the site of Rubisco. The fraction of the total limitations to CO2 uptake within the leaf attributable to gm rose from 0.10 at 10°C to 0.22 at 40°C. This shows that transfer of CO2 from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature. PMID:12481082

  19. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  20. AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    PubMed Central

    Zhang, Renshan; Guan, Xiaoqian; Law, Yee-Song; Sun, Feng; Chen, Shuai; Wong, Kam Bo

    2016-01-01

    ABSTRACT Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is the only phosphatase that is dual-targeted to both chloroplasts and mitochondria. Like Toc33/34 of the TOC and Tom 20 of the TOM, AtPAP2 is anchored to the outer membranes of chloroplasts and mitochondria via a hydrophobic C-terminal motif. AtPAP2 on the mitochondria was previously shown to recognize the presequences of several nuclear-encoded mitochondrial proteins and modulate the import of pMORF3 into the mitochondria. Here we show that AtPAP2 binds to the small subunit of Rubisco (pSSU) and that chloroplast import experiments demonstrated that pSSU was imported less efficiently into pap2 chloroplasts than into wild-type chloroplasts. We propose that AtPAP2 is an outer membrane-bound phosphatase receptor that facilitates the import of selected proteins into chloroplasts. PMID:27700374

  1. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria.

    PubMed

    Whitney, Spencer M; Sharwood, Robert E; Orr, Douglas; White, Sarah J; Alonso, Hernan; Galmés, Jeroni

    2011-08-30

    Improving global yields of important agricultural crops is a complex challenge. Enhancing yield and resource use by engineering improvements to photosynthetic carbon assimilation is one potential solution. During the last 40 million years C(4) photosynthesis has evolved multiple times, enabling plants to evade the catalytic inadequacies of the CO(2)-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). Compared with their C(3) ancestors, C(4) plants combine a faster rubisco with a biochemical CO(2)-concentrating mechanism, enabling more efficient use of water and nitrogen and enhanced yield. Here we show the versatility of plastome manipulation in tobacco for identifying sequences in C(4)-rubisco that can be transplanted into C(3)-rubisco to improve carboxylation rate (V(C)). Using transplastomic tobacco lines expressing native and mutated rubisco large subunits (L-subunits) from Flaveria pringlei (C(3)), Flaveria floridana (C(3)-C(4)), and Flaveria bidentis (C(4)), we reveal that Met-309-Ile substitutions in the L-subunit act as a catalytic switch between C(4) ((309)Ile; faster V(C), lower CO(2) affinity) and C(3) ((309)Met; slower V(C), higher CO(2) affinity) catalysis. Application of this transplastomic system permits further identification of other structural solutions selected by nature that can increase rubisco V(C) in C(3) crops. Coengineering a catalytically faster C(3) rubisco and a CO(2)-concentrating mechanism within C(3) crop species could enhance their efficiency in resource use and yield.

  2. Influence of form IA RubisCO and environmental dissolved inorganic carbon on the delta13C of the clam-chemoautotroph symbiosis Solemya velum.

    PubMed

    Scott, Kathleen M; Schwedock, Julie; Schrag, Daniel P; Cavanaugh, Colleen M

    2004-12-01

    Many nutritive symbioses between chemoautotrophic bacteria and invertebrates, such as Solemya velum, have delta(13)C values of approximately -30 to -35%, considerably more depleted than phytoplankton. Most of the chemoautotrophic symbionts fix carbon with a form IA ribulose 1,5-bisphosphate carboxylase (RubisCO). We hypothesized that this form of RubisCO discriminates against (13)CO(2) to a greater extent than other forms. Solemya velum symbiont RubisCO was cloned and expressed in Escherichia coli, purified and characterized. Enzyme from this recombinant system fixed carbon most rapidly at pH 7.5 and 20-25 degrees C. Surprisingly, this RubisCO had an epsilon-value (proportional to the degree to which the enzyme discriminates against (13)CO(2)) of 24.4 per thousand, similar to form IB RubisCOs, and higher than form II RubisCOs. Samples of interstitial water from S. velum's habitat were collected to determine whether the dissolved inorganic carbon (DIC) could contribute to the negative delta(13)C values. Solemya velum habitat DIC was present at high concentrations (up to approximately 5 mM) and isotopically depleted, with delta(13)C values as low as approximately -6%. Thus environmental DIC, coupled with a high degree of isotopic fractionation by symbiont RubisCO likely contribute to the isotopically depleted delta(13)C values of S. velum biomass, highlighting the necessity of considering factors at all levels (from environmental to enzymatic) in interpreting stable isotope ratios.

  3. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.

    PubMed

    Kuriata, Agnieszka M; Chakraborty, Manas; Henderson, J Nathan; Hazra, Suratna; Serban, Andrew J; Pham, Tuong V T; Levitus, Marcia; Wachter, Rebekka M

    2014-11-25

    We report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton β-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation. Using manual fitting procedures, we provide estimates for the equilibrium constants for the stepwise assembly and find that in the presence of ATPγS, the Kd for hexamerization is 10-fold lower than with ADP (∼0.1 vs ∼1 μM). Hexamer fractions peak at 30 μM and dominate at 8-70 μM Rca, where they comprise 60-80% of subunits with ATPγS, compared with just 30-40% with ADP. Dimer fractions peak at 1-4 μM Rca, where they comprise 15-18% with ATPγS and 26-28% with ADP. At 30 μM Rca, large aggregates begin to form that comprise ∼10% of total protein with ATPγS and ∼25% with ADP. FCS data collected on the catalytically impaired WalkerB-D173N variant in the presence of ATP provided strong support for these results. Titration with free magnesium ions lead to the disaggregation of larger complexes in favor of hexameric forms, suggesting that a second magnesium binding site with a Kd value of 1-3 mM mediates critical subunit contacts. We propose that closed-ring toroidal hexameric forms are stabilized by binding of Mg·ATP plus Mg2+, whereas Mg·ADP promotes continuous assembly to supramolecular aggregates such as spirals.

  4. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    SciTech Connect

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Chen, Fan; Lu, Congming

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  5. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic.

    PubMed

    Gunn, Laura H; Valegård, Karin; Andersson, Inger

    2017-04-21

    The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L2)5, and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L8S8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L8S8 enzymes between LSus of adjacent L2 dimers, where negatively charged residues coordinate around a Mg(2+) ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic

    PubMed Central

    2017-01-01

    The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L2)5, and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L8S8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L8S8 enzymes between LSus of adjacent L2 dimers, where negatively charged residues coordinate around a Mg2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. PMID:28154188

  7. Mechanical properties of active polyacrylonitrile gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven P.; Ramesh, Kaliat T.; Douglas, Andrew S.

    1999-05-01

    The ability of some polymeric gels to shrink and swell with changes in their environment makes them of interest in many applications such as artificial muscles and drug delivery systems. While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work is focused on developing constitutive descriptions of the mechanical properties of such gels, and to determine how these properties change due to changes in the environment. Since these gels can undergo finite elastic deformations, uniaxial tests do not provide sufficient property information and a combination of loading conditions must be used. A biaxial testing system has been developed to test thin sheets of these films, and includes the ability to monitor and change the environmental conditions around the specimen. Initial tests were performed on latex to determine the quality of the testing apparatus. Preliminary results on a polyacrylonitrile gel are presented.

  8. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    agents such as alkali metals (Li and Na), alkaline-earth, hydrazine , sodium borohydride (NaBH4) and even late transition metals such as Zn [44, 45... SYNTHESIS , STRUCTURE AND PROPERTIES OF ELECTROCHEMICALLY ACTIVE NANOCOMPOSITES IL-SEOK KIM Department of Materials...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Synthesis , Structure And Properties Of Electrochemically Active Nanocomposites 5a. CONTRACT

  9. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

    PubMed

    Sudo, Emi; Suzuki, Yuji; Makino, Amane

    2014-11-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2.

    PubMed

    Whitney, Spencer Michael; Kane, Heather Jean; Houtz, Robert L; Sharwood, Robert Edward

    2009-04-01

    Manipulation of Rubisco within higher plants is complicated by the different genomic locations of the large (L; rbcL) and small (S; RbcS) subunit genes. Although rbcL can be accurately modified by plastome transformation, directed genetic manipulation of the multiple nuclear-encoded RbcS genes is more challenging. Here we demonstrate the viability of linking the S and L subunits of tobacco (Nicotiana tabacum) Rubisco using a flexible 40-amino acid tether. By replacing the rbcL in tobacco plastids with an artificial gene coding for a S40L fusion peptide, we found that the fusions readily assemble into catalytic (S40L)8 and (S40L)16 oligomers that are devoid of unlinked S subunits. While there was little or no change in CO2/O2 specificity or carboxylation rate of the Rubisco oligomers, their Kms for CO2 and O2 were reduced 10% to 20% and 45%, respectively. In young maturing leaves of the plastome transformants (called ANtS40L), the S40L-Rubisco levels were approximately 20% that of wild-type controls despite turnover of the S40L-Rubisco oligomers being only slightly enhanced relative to wild type. The reduced Rubisco content in ANtS40L leaves is partly attributed to problems with folding and assembly of the S40L peptides in tobacco plastids that relegate approximately 30% to 50% of the S40L pool to the insoluble protein fraction. Leaf CO2-assimilation rates in ANtS40L at varying pCO2 corresponded with the kinetics and reduced content of the Rubisco oligomers. This fusion strategy provides a novel platform to begin simultaneously engineering Rubisco L and S subunits in tobacco plastids.

  11. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  12. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  13. The growth of soybean under free air [CO(2)] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity.

    PubMed

    Bernacchi, Carl J; Morgan, Patrick B; Ort, Donald R; Long, Stephen P

    2005-01-01

    Down-regulation of light-saturated photosynthesis (A(sat)) at elevated atmospheric CO(2) concentration, [CO(2)], has been demonstrated for many C(3) species and is often associated with inability to utilize additional photosynthate and/or nitrogen limitation. In soybean, a nitrogen-fixing species, both limitations are less likely than in crops lacking an N-fixing symbiont. Prior studies have used controlled environment or field enclosures where the artificial environment can modify responses to [CO(2)]. A soybean free air [CO(2)] enrichment (FACE) facility has provided the first opportunity to analyze the effects of elevated [CO(2)] on photosynthesis under fully open-air conditions. Potential ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(c,max)) and electron transport through photosystem II (J(max)) were determined from the responses of A(sat) to intercellular [CO(2)] (C(i)) throughout two growing seasons. Mesophyll conductance to CO(2) (g(m)) was determined from the responses of A(sat) and whole chain electron transport (J) to light. Elevated [CO(2)] increased A(sat) by 15-20% even though there was a small, statistically significant, decrease in V(c,max). This differs from previous studies in that V(c,max)/J(max) decreased, inferring a shift in resource investment away from Rubisco. This raised the C(i) at which the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred. The decrease in V(c,max) was not the result of a change in g(m), which was unchanged by elevated [CO(2)]. This first analysis of limitations to soybean photosynthesis under fully open-air conditions reveals important differences to prior studies that have used enclosures to elevate [CO(2)], most significantly a smaller response of A(sat) and an apparent shift in resources away from Rubisco relative to capacity for electron transport.

  14. Immunostimulatory properties and antitumor activities of glucans

    PubMed Central

    VANNUCCI, LUCA; KRIZAN, JIRI; SIMA, PETR; STAKHEEV, DMITRY; CAJA, FABIAN; RAJSIGLOVA, LENKA; HORAK, VRATISLAV; SAIEH, MUSTAFA

    2013-01-01

    New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments. PMID:23739801

  15. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants.

    PubMed

    Lin, Lin; Luo, Zhaopeng; Yan, Fei; Lu, Yuwen; Zheng, Hongying; Chen, Jianping

    2011-08-01

    The P3 protein encoded by Shallot yellow stripe virus onion isolate (SYSV-O) interacted in the Yeast Two-hybrid (Y2H) system and in co-immunoprecipitation (Co-IP) assays with the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) protein that is encoded by the rbcL gene of its onion host. Dissection analysis by Y2H showed that the main part of SYSV P3 (amino acids 1-390) and onion RbcL (amino acids 1-137) were responsible for the interaction. The P3 proteins encoded by Onion yellow dwarf virus (OYDV), Soybean mosaic virus Pinellia isolate (SMV-P), and Turnip mosaic virus (TuMV) also interacted with RbcL, suggesting that a P3/RbcL interaction might exist generally for potyviruses. An interaction between P3 of these potyviruses and the small subunit of RubisCO (RbcS) was also demonstrated. Moreover, the P3N-PIPO protein encoded by a newly identified open reading frame embedded within the P3 cistron also interacted with both RbcL and RbcS. It is possible that the potyvirus P3 protein affects the normal functions of RubisCO which thus contributes to symptom development.

  16. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  17. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    PubMed

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax(25) ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax(25) on An , complementing current photosynthetic thermal

  18. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination.

    PubMed

    Bagheri, Rita; Ahmad, Javed; Bashir, Humayra; Iqbal, Muhammad; Qureshi, M Irfan

    2017-03-01

    Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO4(2-)) and sulphur-deficient (30 μM SO4(2-)) soils. Compared with the control (+S and -Cd), oxidative stress was increased by S deficiency (-S and -Cd), cadmium (+S and +Cd) and their combination stress (-S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and -S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It

  19. Isolation and characterization of the organ-specific and light-inducible promoter of the gene encoding rubisco activase in potato (Solanum tuberosum).

    PubMed

    Qu, D; Song, Y; Li, W M; Pei, X W; Wang, Z X; Jia, S R; Zhang, Y Q

    2011-04-12

    Constitutive promoters have been widely used in crop biotechnology applications. Tissue-specific or inducible promoters, however, have advantages in some cases. We isolated the 731-bp 5' flanking sequence of a potato (Solanum tuberosum) gene, encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase (RCA), which was isolated by genome walking. By using GUS as a reporter and with Northern blot analysis, the 702-bp fragment (referred to as StRCAp), ranging from nt -731 to -30 relative to the initiation code of the RCA gene, was analyzed in transgenic tobacco plants. The activity of StRCAp in leaves was 0.4-fold less than that of cauliflower mosaic virus 35S promoter, and was expressed throughout the green part of the light-grown transgenic T(1) seedlings, including cytoledons, leaves and young stems, but not roots. Further deletion analysis revealed that a shorter fragment (nt -249 to -30, StRCAp2) retained light-inducible features in cytoledons and leaves, but showed no detectable activity in young stems and roots. Although the activity of StRCAp2 in leaves was reduced significantly compared with that of StRCAp, the overall data indicated that cis-elements sufficient to regulate organ-specific and light-inducible transcription are within the 220-bp fragment. There is potential for application of StRCAp in plant genetic engineering.

  20. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis)

    USDA-ARS?s Scientific Manuscript database

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertake...

  1. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.

    PubMed

    Igamberdiev, Abir U; Roussel, Marc R

    2012-03-01

    Rubisco, the most abundant protein serving as the primary engine generating organic biomass on Earth, is characterized by a low catalytic constant (in higher plants approx. 3s(-1)) and low specificity for CO(2) leading to photorespiration. We analyze here why this enzyme evolved as the main carbon fixation engine. The high concentration of Rubisco exceeding the concentration of its substrate CO(2) by 2-3 orders of magnitude makes application of Michaelis-Menten kinetics invalid and requires alternative kinetic approaches to describe photosynthetic CO(2) assimilation. Efficient operation of Rubisco is supported by a strong flux of CO(2) to the chloroplast stroma provided by fast equilibration of bicarbonate and CO(2) and forwarding the latter to Rubisco reaction centers. The main part of this feedforward mechanism is a thylakoidal carbonic anhydrase associated with photosystem II and pumping CO(2) from the thylakoid lumen in coordination with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. This steady flux of CO(2) limits photosynthesis at saturating CO(2) concentrations. At low ambient CO(2) and correspondingly limited capacity of the bicarbonate pool in the stroma, its depletion at the sites of Rubisco is relieved by utilizing O(2) instead of CO(2), i.e. by photorespiration, a process which supplies CO(2) back to Rubisco and buffers the redox state and energy level in the chloroplast. Thus, the regulation of Rubisco function aims to keep steady non-equilibrium levels of CO(2), NADPH/NADP and ATP/ADP in the chloroplast stroma and to optimize the condition of homeostatic photosynthetic flux of matter and energy.

  2. Automated flow-based anion-exchange method for high-throughput isolation and real-time monitoring of RuBisCO in plant extracts.

    PubMed

    Suárez, Ruth; Miró, Manuel; Cerdà, Víctor; Perdomo, Juan Alejandro; Galmés, Jeroni

    2011-06-15

    In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4°C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step.

  3. Decline of Activity and Quantity of Ribulose Bisphosphate Carboxylase/Oxygenase and Net Photosynthesis in Ozone-Treated Potato Foliage 1

    PubMed Central

    Dann, Michael S.; Pell, Eva J.

    1989-01-01

    The effect of ozone (O3) on ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and quantity and net photosynthesis in greenhouse-grown Solanum tuberosum L. cv `Norland' foliage was studied in relation to oxidant-induced premature senescence. Plants, 26 days old, were exposed to 0.06 to 0.08 microliters per liter O3 from 1000 to 1600 hours for 4 days in a controlled environment chamber. On day 5, plants were exposed to a 6-hour simulated inversion in which O3 peaked at 0.12 microliters per liter. Net photosynthesis declined in response to O3 but recovered to near control levels 3 days after the exposure ended. Rubisco activity and quantity in control potato foliage increased and then decreased during the 12-day interval of the study. In some experiments foliage studied was physiologically mature and Rubisco activity had peaked when O3 exposure commenced. In those cases, O3 accelerated the decline in Rubisco activity. When less mature foliage was treated with O3, the leaves never achieved the maximal level of Rubisco activity observed in control foliage and also exhibited more rapid decline in initial and total activity. Percent activation of Rubisco (initial/total activity) was not affected significantly by treatment. Quantity of Rubisco decreased in concert with activity. The decrease in activities is most likely due to a decrease in available protein rather than a decrease in the percentage of Rubisco activated in vivo. The reduction in the quantity of Rubisco, an important foliar storage protein, could contribute to premature senescence associated with toxicity of this air pollutant. PMID:16667037

  4. Influence of mechanical activation of steel powder on its properties

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Darenskaia, E. A.; Myachin, Y. V.; Vasilyeva, I. E.; Kulkov, S. N.

    2017-02-01

    It has been studied properties of stainless steel based powders after mechanical activation using planetary ball milling technique. It have been shown that after one minute mechanical activation porosity of sintered steel is less than 5%, which is less than the porosity of the sintered steel powder without mechanical activation. The sample without activation has austenite state, which changes after activation toaustenite and ferrite mixtures. X-ray analysis confirmed that the mechanical activation leads to a change in the phase state of the samples: the samples without activation of the FCC structure (γ-Fe), after activation - FCC (γ-Fe) and BCC (α-Fe). The hardness increases at increasing activation time from 800 MPa for the sample without mechanical activation to 1250 MPa for the sample with the activation time of 10 minutes.

  5. Dipeptide Phe-Cys derived from in silico thermolysin-hydrolysed RuBisCO large subunit suppresses oxidative stress in cultured human hepatocytes.

    PubMed

    Je, Jae-Young; Cho, Young-Sook; Gong, Min; Udenigwe, Chibuike C

    2015-03-15

    A dipeptide (Phe-Cys) was predicted to be bioactive following bioinformatics analysis of the large subunit of plant and microalgae ribulose-1,5-bisphosphate carboxylase (RuBisCO), which was hydrolysed in silico with thermolysin. The peptide was synthesised and found to possess in vitro reducing potential and inhibitory activity against lipid peroxidation, comparable to the activity of glutathione. In cultured Chang human hepatocytes, 2.5-10 μM Phe-Cys was found to induce the suppression of reactive oxygen species formation and membrane lipid peroxidation in oxidative stressed cells. Intracellular glutathione levels were found to increase in the peptide-treated cells under normal condition, which can potentially contribute in protecting the cells from oxidative damage. Furthermore, Western blot analysis showed that the levels of antioxidant enzymes, catalase and superoxide dismutase-1, increased in the hepatic cells when treated with Phe-Cys in the presence of the oxidant. The results show that this peptide has great potential to be used against oxidative stress-induced health conditions.

  6. Acoustic Oscillation Properties of Active Region 12193

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Pesnell, William D.; Hill, Frank

    2017-08-01

    Solar flares are dynamic objects occurring randomly and yet unannounced in nature. In order to find an efficient detection method, we require a greater breadth of knowledge of the system. One path to such a method is to observe the solar atmosphere in a region around a flare in different wavelengths of light and acoustic frequency bands. This provides information from different altitudes in the solar atmosphere and allows us to study the temporal evolution of each altitude through the flaring event. A more complete understanding of the time evolution may lead to yet undiscovered precursors of the flare. In this project, we study Active Region 12192 using acoustic observations near an X3 flare occurring on October 24, 2014 at 21:41UT. Our wavelet analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved around the flare region, to study the frequency bands. In order to study the power distribution in regions around the flare and to search for any correlation we apply several methods. One method we partition sub-regions in our main flaring region and take a survey of the oscillations for each frequency band within power maps. Another method we average the FFT to take measurements within the p-modes (2-4 mHz) and chromospheric (4-6 mHz) frequencies. The application of these methods should be able to get us closer to tracking waveforms within power maps.

  7. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    SciTech Connect

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine; Karra, Reddy

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  8. A novel method for determination of the (15) N isotopic composition of Rubisco in wheat plants exposed to elevated atmospheric carbon dioxide.

    PubMed

    Aranjuelo, Iker; Molero, Gemma; Avice, Jean Christophe; Bourguignon, Jacques

    2015-02-01

    Although ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is mostly known as a key enzyme involved in CO2 assimilation during the Calvin cycle, comparatively little is known about its role as a pool of nitrogen storage in leaves. For this purpose, we developed a protocol to purify Rubisco that enables later analysis of its (15) N isotope composition (δ(15) N) at the natural abundance and (15) N-labeled plants. In order to test the utility of this protocol, durum wheat (Triticum durum var. Sula) exposed to an elevated CO2 concentration (700 vs 400 µmol mol(-1) ) was labeled with K(15) NO3 (enriched at 2 atom %) during the ear development period. The developed protocol proves to be selective, simple, cost effective and reproducible. The study reveals that (15) N labeling was different in total organic matter, total soluble protein and the Rubisco fraction. The obtained data suggest that photosynthetic acclimation in wheat is caused by Rubisco depletion. This depletion may be linked to preferential nitrogen remobilization from Rubisco toward grain filling.

  9. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties.

    PubMed

    Leyva-López, Nayely; Gutiérrez-Grijalva, Erick P; Vazquez-Olivo, Gabriela; Heredia, J Basilio

    2017-06-14

    Essential oils of oregano are widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Nevertheless, recent investigations have demonstrated that these compounds are also potent antioxidant, anti-inflammatory, antidiabetic and cancer suppressor agents. These properties of oregano essential oils are of potential interest to the food, cosmetic and pharmaceutical industries. The aim of this manuscript is to review the latest evidence regarding essential oils of oregano and their beneficial effects on health.

  10. Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco.

    PubMed

    Lee, Dong Wook; Lee, Sookjin; Lee, Gil-Je; Lee, Kwang Hee; Kim, Sanguk; Cheong, Gang-Won; Hwang, Inhwan

    2006-02-01

    The transit peptides of nuclear-encoded chloroplast proteins are necessary and sufficient for targeting and import of proteins into chloroplasts. However, the sequence information encoded by transit peptides is not fully understood. In this study, we investigated sequence motifs in the transit peptide of the small subunit of the Rubisco complex by examining the ability of various mutant transit peptides to target green fluorescent protein reporter proteins to chloroplasts in Arabidopsis (Arabidopsis thaliana) leaf protoplasts. We divided the transit peptide into eight blocks (T1 through T8), each consisting of eight or 10 amino acids, and generated mutants that had alanine (Ala) substitutions or deletions, of one or two T blocks in the transit peptide. In addition, we generated mutants that had the original sequence partially restored in single- or double-T-block Ala (A) substitution mutants. Analysis of chloroplast import of these mutants revealed several interesting observations. Single-T-block mutations did not noticeably affect targeting efficiency, except in T1 and T4 mutations. However, double-T mutants, T2A/T4A, T3A/T6A, T3A/T7A, T4A/T6A, and T4A/T7A, caused a 50% to 100% loss in targeting ability. T3A/T6A and T4A/T6A mutants produced only precursor proteins, whereas T2A/T4A and T4A/T7A mutants produced only a 37-kD protein. Detailed analyses revealed that sequence motifs ML in T1, LKSSA in T3, FP and RK in T4, CMQVW in T6, and KKFET in T7 play important roles in chloroplast targeting. In T1, the hydrophobicity of ML is important for targeting. LKSSA in T3 is functionally equivalent to CMQVW in T6 and KKFET in T7. Furthermore, subcellular fractionation revealed that Ala substitution in T1, T3, and T6 produced soluble precursors, whereas Ala substitution in T4 and T7 produced intermediates that were tightly associated with membranes. These results demonstrate that the transit peptide contains multiple motifs and that some of them act in concert or

  11. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana

    PubMed Central

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-01-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO2 fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were determined in leaves and phloem exudates of Kalanchoë daigremontiana Hamet et Perr., and related to CO2 fixation by PEPC and Rubisco. Three types of leaf carbon pools could be distinguished. (i) Starch and malate pools were dominant and showed a pattern of reciprocal mobilization and accumulation (85/54 and 13/48 mg C g−1 DW, respective, at the beginning/end of phase I). The carbon isotope composition of these pools was compatible with predominant PEPC fixation (δ13C values of –13 and –11‰ for starch and malate compared to –11‰ of PEPC fixed carbon). (ii) Isotopic composition (–17‰ and –14‰) and concentration of glucose and fructose (2 and 3 mg C g−1 DW, respectively) were not affected by diurnal metabolism, suggesting a low turnover. (iii) Sucrose (1–3 mg C g−1 DW), in contrast, exhibited large diurnal changes in δ13C values (from –17‰ in the evening to –12‰ in the morning), which were not matched by net changes in sucrose concentration. This suggests a high sucrose turnover, fed by nocturnal starch degradation and direct Rubisco fixation during the day. A detailed dissection of the carbon fixation and mobilization pattern in K. daigremontiana revealed that direct fixation of Rubisco during the light accounted for 30% of phloem sucrose, but only 15% of fixed carbon, indicating that carbon from direct Rubisco fixation was preferentially used for leaf export. PMID:20159885

  12. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries.

  13. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  14. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer.

    PubMed

    Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing

    2016-09-08

    The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO₂:Al₂O₃:Na₂O:NaOH:H₂O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.

  15. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer

    PubMed Central

    Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing

    2016-01-01

    The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection. PMID:28773888

  16. Light Adaptation/Acclimation of Photosynthesis and the Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Sun and Shade Plants 1

    PubMed Central

    Seemann, Jeffrey R.

    1989-01-01

    The consequences of light adaptation and acclimation of photosynthesis on photosynthetic nitrogen use efficiency (NUE), particularly as it relates to the efficiency of ribulose-1,5-bisphosphate carboxylase (Rubisco) use in photosynthetic CO2 assimilation, was studied in the sun species Glycine max and the shade species Alocasia macrorrhiza. Both G. max and A. macrorrhiza were found to possess the capacity for light acclimation of CO2 assimilation, but over distinctly different ranges of photon flux density (PFD). For each species, light acclimation of photosynthesis had little effect on the rate of photosynthesis per unit Rubisco protein or the light response of Rubisco carbamylation and CA 1P metabolism. In contrast, photosynthesis per unit Rubisco protein was significantly higher in G. max than in A. macrorrhiza, due in part to a lower total (fully carbamylated) molar activity (activity per unit enzyme) of A. macrorrhiza Rubisco than that of G. max. Comparison of the light response of Rubisco regulatory mechanisms between G. max and A. macrorrhiza indicated some degree of adaptation, such that carbamylation was higher and CA 1P levels lower at lower PFDs in the shade species than the sun species. However, this adjustment was not sufficient for Rubisco in low light grown A. macrorrhiza to be fully active at the growth PFD. Photosynthesis in A. macrorrhiza appeared to become RuBP regeneration-limited at lower PFDs than G. max, and this was probably the determinant of the light saturated rate of photosynthesis in the shade species. The low efficiency of Rubisco use in A. macrorrhiza was a major contributing factor to its five- to sixfold lower photosynthetic NUE than G. max. Shade species such as A. macrorrhiza appear to make far from maximal use of Rubisco protein N. PMID:16667029

  17. Optical properties of actively controlled reflection and transmission gratings

    NASA Astrophysics Data System (ADS)

    Rodriguez, Miguel Angel

    2001-05-01

    Reflection and transmission gratings have found a wide variety of applications as optical filters and beam steering elements. In this work we have studied the optical properties of reflection and transmission gratings whose diffraction properties could be actively controlled. Two different material systems were utilized for the study. Reflection gratings in optical fibers were used and reflection and transmission gratings were fabricated holographically in a polymer dispersed liquid crystal (PDLC) material. The optical properties of refractive index-shifted gratings were studied using the fiber Bragg gratings. It was found that narrow, high transmission spikes developed inside a high reflectivity stopgap when the refractive index of a section of the grating is shifted. The refractive index-shift was achieved using the thermo- optic effect. Experimental as well as theoretical results are presented and discussed. The optical properties of electrically switchable reflection and transmission gratings fabricated in polymer dispersed liquid crystal materials were also studied. The PDLC material is electro-optic and therefore by applying an external electric field to the gratings the diffraction properties are modified. Gratings were fabricated holographically. From the study of the transmission properties of the reflection gratings we found that the reflection of the structures can be switched off by applying an external electric field and that the reflectivity is polarization insensitive for normal incidence. We also studied the diffraction properties of PDLC transmission gratings. In our analysis of the diffraction properties of these electrically- switchable liquid crystal gratings we found that it was necessary to use a generalized two-wave coupled mode theory that includes the effects of the optical anisotropy of the liquid crystal. We found that the morphology of the PDLC gratings depends on the specific PDLC mixture used to fabricate the grating.

  18. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  19. Study of erodable paint properties involved in antifouling activity.

    PubMed

    Thouvenin, M; Langlois, V; Briandet, R; Langlois, J Y; Guerin, P H; Peron, J J; Haras, D; Vallee-Rehel, K

    2003-06-01

    To produce ecological marine paints, it is necessary to understand the phenomena involved in antifouling activity. Due to the multivariable components which have to be taken into account and due to their analytical intricacy, only studies based on selected properties are conceivable. In this study, four properties have been chosen, viz. erosion, biocide release, roughness and the physicochemical characteristics of the film surface. A principal-component analysis (PCA) of the experimental data has shown that, among the selected properties, only erosion affected antifouling efficiency. A more detailed investigation of erosion by quantifying global hydration and hydrolysis of immersed paints revealed the difficulty in linking the chemical structure of binders to the final erosion properties. Biocide release from paints, quantified by chromatographic methods coupled with UV detection, was inferior to the doses stated by the paint producers. These observations allowed the conceiving of formulations with reduced amounts of active molecules. The development of erodable, biodegradable binders associated with non toxic compounds is a promising way to obtain efficient antifouling paints compatible with existing, preventive systems.

  20. Inhibition of RuBisCO cloned from Thermosynechococcus vulcanus and expressed in Escherichia coli with compounds predicted by Molecular Operation Environment (MOE).

    PubMed

    Iwaki, Toshio; Shiota, Kazunori; Al-Taweel, Khaled; Kobayashi, Daisuke; Kobayashi, Atsushi; Suzuki, Kensaku; Yui, Toshifumi; Wadano, Akira

    2008-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of a thermophilic cyanobacterium, Thermosynechococcus vulcanus, was cloned and expressed in Escherichia coli. The purified enzyme had higher thermostability than RuBisCOs isolated from mesophilic cyanobacteria. Prediction of the tertiary structure was performed using the software Molecular Operating Environment (MOE). The predicted structure did not give any clue about the basis of thermostability. Then, the molecular docking of substrates and inhibitors in the catalytic site were carried out to test analogs for consistency of ribulose 1,5-bisphosphate, a RuBisCO substrate. The analogs were searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG), and 99 compounds were selected for the docking. The mol files from LIGAND Database in KEGG were changed to a three dimensional (3D) structure for use in docking simulation. The docking simulation was performed on ASEDock of MOE, and the SiteFinder command suggested about 20 candidates for the docking site of the compounds. Based on the homology of these candidate sites with the xylulose 1,5-bisphosphate (XBP)-binding site of RuBisCO isolated from Synechococcus PCC 6301, one site was selected for the docking simulation. The 40 compounds with the highest docking energies included synthetic organic substances that had never been demonstrated to be inhibitors of RuBisCO. The total docking energies were -102 kcal/mol, -104 kcal/mol, -94.0 kcal/mol, and -57.7 kcal/mol for ribulose 1,5-bisphosphate (RuBP), etidronate, risedronate, and citrate respectively. Kinetic analysis of RuBisCO revealed a K(m) value of 315 microM for RuBP, and K(i) values of 1.70, 0.93, and 2.04 mM for etidronate, risedronate, and citrate respectively. From these values, the binding energies were estimated to be -4.85, -3.84, -4.20, and -3.73 kcal/mol for RuBP, etidronate, risedronate, and citrate respectively. The differences between the values estimated from experimental data and by

  1. Thermal properties of alkali-activated aluminosilicates with CNT admixture

    NASA Astrophysics Data System (ADS)

    Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert

    2017-07-01

    Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.

  2. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  3. Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue.

    PubMed

    Kimura, Hiroyuki; Sato, Makoto; Sasayama, Yuichi; Naganuma, Takeshi

    2003-01-01

    Gutless pogonophorans are generally thought to live in symbiosis with methane-oxidizing bacteria (methanotrophs). We identified a 16S ribosomal RNA gene (rDNA) and a ribulose-1,5-bisphosphate carboxlase/oxygenase (RuBisCO, E.C.4.1.1.39) gene that encode the form I large subunit ( cbbL) from symbiont-bearing tissue of the pogonophoran Oligobrachia mashikoi. Phylogenetic analysis of the 16S rDNA sequence suggested that the pogonophoran endosymbiont belonged to the gamma-subdivision of Proteobacteria. The endosymbiont was most closely related to an uncultured bacterium from a hydrocarbon seep, forming a unique clade adjacent to the known methanotrophic 16S rDNA cluster. The RuBisCO gene from the pogonophoran tissue was closely related to those of the chemoautotrophic genera Thiobacillus and Hydrogenovibrio. Presence of the RuBisCO gene suggested a methanotrophic symbiosis because some methanotrophic bacteria are known to be capable of autotrophy via the Calvin cycle. In contrast, particulate and soluble methane monooxygenase genes ( pmoA and mmoX) and the methanol dehydrogenase gene ( mxaF), which are indicators for methanotrophs or methylotrophs, were not detected by repeated trial of polymerase chain reaction. For 16S rRNA and RuBisCO genes, endosymbiotic localizations were confirmed by in situ hybridization. These results support the possibilities that the pogonophoran host has a novel endosymbiont which belongs to the gamma-subdivision of Proteobacteria, and that the endosymbiont has the gene of the autotrophic enzyme RuBisCO.

  4. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  5. Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems.

    PubMed

    Elsaied, Hosam Easa; Kimura, Hiroyuki; Naganuma, Takeshi

    2007-01-01

    We studied the diversity of all forms of the RuBisCO large subunit-encoding gene cbbL in three RuBisCO uncharacterized hydrothermal vent communities. This diversity included the archaeal cbbL and the forms IC and ID, which have not previously been studied in the deep-sea environment, in addition to the forms IA, IB and II. Vent plume sites were Fryer and Pika in the Mariana arc and the Suiyo Seamount, Izu-Bonin, Japan. The cbbL forms were PCR amplified from plume bulk microbial DNA and then cloned and sequenced. Archaeal cbbL was detected in the Mariana samples only. Both forms IA and II were amplified from all samples, while the form IC was amplified only from the Pika and Suiyo samples. Only the Suiyo sample showed amplification of the form ID. The form IB was not recorded in any sample. Based on rarefaction analysis, nucleotide diversity and average pairwise difference, the archaeal cbbL was the most diverse form in Mariana samples, while the bacterial form IA was the most diverse form in the Suiyo sample. Also, the Pika sample harbored the highest diversity of cbbL phylogenetic lineages. Based on pairwise reciprocal library comparisons, the Fryer and Pika archaeal cbbL libraries showed the most significant difference, while Pika and Suiyo showed the highest similarity for forms IA and II libraries. This suggested that the Fryer supported the most divergent sequences. All archaeal cbbL sequences formed unique phylogenetic lineages within the branches of anaerobic thermophilic archaea of the genera Pyrococcus, Archaeoglobus, and Methanococcus. The other cbbL forms formed novel phylogenetic clusters distinct from any recorded previously in other deep-sea habitats. This is the first evidence for the diversity of archaeal cbbL in environmental samples.

  6. Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO2 Atmosphere1

    PubMed Central

    Pollock, Steve V.; Colombo, Sergio L.; Prout, Davey L.; Godfrey, Ashley C.; Moroney, James V.

    2003-01-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii. PMID:14605215

  7. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  8. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  9. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  10. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  11. Effect of substrate mechanical properties on T cell activation

    NASA Astrophysics Data System (ADS)

    Hui, King; Upadhyaya, Arpita

    2013-03-01

    T cell activation is a key process in cell-mediated immunity, and engagement of T cell receptors by peptides on antigen presenting cells leads to activation of signaling cascades as well as cytoskeletal reorganization and large scale membrane deformations. While significant advances have been made in understanding the biochemical signaling pathways, the effects imposed by the physical environment and the role of mechanical forces on cell activation are not well understood. In this study, we have used anti-CD3 coated elastic polyacrylamide gels as stimulatory substrates to enable the spreading of Jurkat T cells and the measurement of cellular traction forces. We have investigated the effect of substrate stiffness on the dynamics of T cell spreading and cellular force generation. We found that T cells display more active and sustained edge dynamics on softer gels and that they exert increased traction stresses with increasing gel stiffness. A dynamic actin cytoskeleton was required to maintain the forces generated during activation, as inferred from small molecule inhibition experiments. Our results indicate an important role for physical properties of the antigen presenting cell as well as cytoskeleton-driven forces in signaling activation.

  12. Brain Mechanical Property Measurement Using MRE with Intrinsic Activation

    PubMed Central

    Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2013-01-01

    the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MR elastography to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination. PMID:23079508

  13. Psychometric properties of the Arab Heritage Activity Card Sort.

    PubMed

    Hamed, Razan; Holm, Margo B

    2013-03-01

    The Activity Card Sort is a valid and reliable assessment tool that was created to assess Participation. It has been translated to several languages and adapted to different international cultures. The most recent version of this tool is the Arabic Heritage Activity Card Sort (A-ACS). The purpose of this study was to establish the psychometric properties of the new Arabic version in Jordanian adults. Forty three Jordanian patients with multiple sclerosis (MS) and 62 healthy adults were recruited to test the psychometric properties of the tool. The A-ACS correlated moderately with the participation index of the Mayo-Portland Adaptability Inventory (r = -0.458, p < 0.00) (concurrent validity), was able to discriminate between patients and healthy participants on the current and retained levels of participation (F = 5.09, p < 0.03; F = 6.01, p < 0.02, respectively) (discriminative validity), and correlated moderately with the total scores of the Mayo-Portland Adaptability Inventory (r = -0.458, p < 0.00) and the total score on the Arabic version of the self-report Performance Assessment of Self-care Skills (r = 0.581, p < 0.00) (convergent validity). The tool also showed good test-retest reliability (r = 0.80, p < 0.00) and excellent internal consistency (α = 0.90). The Arabic Heritage of the Activity Card Sort is a valid and reliable tool for Arabic-speaking occupational therapists to use when assessing participation in Jordanian patients with MS or healthy adults. Limitations of this study include using only one diagnostic group from Jordan and examining only the Recovery and Community Versions of the tool. Future studies are needed to examine further psychometric properties for patients with different diagnoses and from different countries in the Arabic region for all three versions of the A-ACS.

  14. Molluscicidal properties and selective toxicity of surface-active agents

    PubMed Central

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  15. Immunoenhancing properties and antiviral activity of 7-deazaguanosine in mice.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Gilbert, J; Burger, R A; Jin, A; Sharma, B S; Ramasamy, K; Revankar, G R; Cottam, H B; Jolley, W B

    1991-01-01

    The nucleotide analog 7-deazaguanosine has not previously been reported to possess biological (antiviral or antitumor) properties in cell culture or in vivo. Up to 10(5) U of interferon per ml was detected in mouse sera 1 to 4 h following oral (200-mg/kg of body weight) and intraperitoneal (50-mg/kg) doses of the compound. 7-Deazaguanosine also caused significant activation of natural killer and phagocytic cells but did not augment T- and B-cell blastogenesis. Intraperitoneal treatments of 50, 100, and 200 mg/kg/day administered 24 and 18 h before virus inoculation were highly protective in mice inoculated with lethal doses of Semliki Forest or San Angelo viruses. Less but still significant survivor increases were evident in treated mice infected with banzi or encephalomyocarditis viruses. In most cases, the degree of antiviral activity was similar to that exhibited by the biological response modifier 7-thia-8-oxoguanosine. 7-Thia-8-oxoguanosine was more potent than 7-deazaguanosine against encephalomyocarditis virus in mice, however. Oral efficacy was achieved with 7-deazaguanosine treatments of greater than or equal to 100 mg/kg against all virus infections, whereas 7-thia-8-oxoguanosine is reported to be devoid of oral activity in rodents. Thus, 7-deazaguanosine represents the first reported orally active nucleoside biological response modifier exhibiting broad-spectrum antiviral activity against particular types of RNA viruses. PMID:1707603

  16. The molecular properties of nitrobenzanthrone isomers and their mutagenic activities.

    PubMed

    Ostojić, Bojana D; Stanković, Branislav; Ðorđević, Dragana S

    2014-06-01

    The mutagenic activity of five mono-substituted nitrobenzanthrones (NBA) has been determined in the Ames assay (Takamura-Enya et al., 2006). In the present study, a theoretical investigation of the electronic properties of all mono-substituted NBA isomers and their relation to mutagenic activity are presented. Equilibrium geometries, vertical ionization potentials (VIP), vertical electron affinities (VEA), relative energies, dipole moments and electronic dipole polarizabilities, and the IR and Raman spectra of NBA isomers calculated by Density Functional Theory (DFT) methods are presented. The position of the nitro group affects the spectral features of the IR and Raman spectra of the NBA isomers. The results show that a good linear relationship exists between the summation of Raman activities (∑ARaman) over all the 3N-6 vibrational modes and the mutagenic activity of the NBA isomers in Salmonella typhimurium strains. The spectroscopic results suggest that the unknown mutagenic activities of 4-NBA, 5-NBA, 6-NBA, 8-NBA and 10-NBA are predicted to follow the order 4-NBA>10-NBA>5-NBA>8-NBA>6-NBA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Swarming Bristle-Bots: Exploring Properties of Active Matter

    NASA Astrophysics Data System (ADS)

    Forstner, Martin B.; Beasock, Damian

    Active Matter describes an ubiquitous class of non-equilibrium systems that encompasses a diverse range of phenomena in the living and non-living realm. Examples are microscopic bio-filaments and their associated motor proteins, flocks of birds and fish, vibrated rods and disks, or nanoscale colloids actuated by catalytic activity on their surface. What unifies these systems is that they are all composed of self-driven units. In consequence, these systems are not driven into non-equilibrium by energy input at their boundary, but by local energy injection. As fascinating as these systems are, there are currently barely any laboratory systems that allow for controlled experiments in dry active matter. That is, systems not immersed in a fluid that can be observed without specialized equipment. Here we present a two-dimensional `active matter' system consisting of hundreds of macroscopic (~0.05 m long), modified, commercially available bristle-bots. We show that this swarm of toys classifies as active matter as it exhibits properties such as dynamic phase separation. Because of their straight forward implementation, their size and controllability, such swarms can not only answer scientific questions, but they have great potential as educational tools in teaching labs and classrooms.

  18. Properties and Performance of Alkali-Activated Concrete

    NASA Astrophysics Data System (ADS)

    Thomas, Robert J.

    Alkali-activated concrete (AAC) made with industrial byproducts as the sole binder is rapidly emerging as a sustainable alternative to ordinary portland cement concrete (PCC). Despite its exemplary mechanical performance and durability, there remain several barriers to widespread commercialization of AAC. This dissertation addresses several of these barriers. Mathematical models are proposed which efficiently and accurately predict the compressive strength of AAC as a function of activator composition, binder type, and curing condition. The relationships between compressive strength and other mechanical properties (i.e., tensile strength and modulus of elasticity) are discussed, as are stress-strain relationships. Several aspects related to the durability of AAC are also discussed, including dimensional stability under drying conditions, alkali-silica reactivity, and chloride permeability. The results of these experimental investigations are disseminated in the context of real-world applicability.

  19. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  20. Fracture properties of concrete specimens made from alkali activated binders

    NASA Astrophysics Data System (ADS)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties – effective fracture toughness and specific fracture energy – of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P–d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P–CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  1. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  2. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials.

    PubMed

    Criado, Maria; Aperador, Willian; Sobrados, Isabel

    2016-03-05

    Microstructural and mechanical properties of alkali activated binders based on blends of Colombian granulated blast furnace slag (GBFS) and fly ash (FA) were investigated. The synthesis of alkali activated binders was conducted at 85 °C for 24 h with different slag/fly ash ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100). Mineralogical and microstructural characterization was carried out by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and Nuclear magnetic resonance (NMR). Mechanical properties were evaluated through the compressive strength, modulus of elasticity and Poisson's ratio. The results show that two different reaction products were detected in the slag/fly ash mixtures, a calcium silicate hydrate with Al in its structure (C-A-S-H gel) and a sodium aluminosilicate hydrate (N-A-S-H gel) with higher number of polymerized species and low content in Ca. It was found that with the increase of the amount of added slag, the amount of C-A-S-H gel increased and the amount of N-A-S-H gel decreased. The matrix was more dense and compact with almost absence of pores. The predominance of slag affected positively the compressive strength, Young's modulus and Poisson's ratio, with 80% slag and 20% fly ash concrete being the best mechanical performance blend.

  3. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials

    PubMed Central

    Criado, Maria; Aperador, Willian; Sobrados, Isabel

    2016-01-01

    Microstructural and mechanical properties of alkali activated binders based on blends of Colombian granulated blast furnace slag (GBFS) and fly ash (FA) were investigated. The synthesis of alkali activated binders was conducted at 85 °C for 24 h with different slag/fly ash ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100). Mineralogical and microstructural characterization was carried out by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and Nuclear magnetic resonance (NMR). Mechanical properties were evaluated through the compressive strength, modulus of elasticity and Poisson’s ratio. The results show that two different reaction products were detected in the slag/fly ash mixtures, a calcium silicate hydrate with Al in its structure (C-A-S-H gel) and a sodium aluminosilicate hydrate (N-A-S-H gel) with higher number of polymerized species and low content in Ca. It was found that with the increase of the amount of added slag, the amount of C-A-S-H gel increased and the amount of N-A-S-H gel decreased. The matrix was more dense and compact with almost absence of pores. The predominance of slag affected positively the compressive strength, Young’s modulus and Poisson’s ratio, with 80% slag and 20% fly ash concrete being the best mechanical performance blend. PMID:28773294

  4. Porosity and sorption properties of activated carbons prepared from anthracite by steam-air activation

    SciTech Connect

    Sych, N.V.; Kartel, N.T.; Tsyba, N.N.; Strelko, V.V.; Nikolaichuk, A.D.; Mironyuk, T.I.

    2006-04-15

    Fundamental aspects of the steam-air activation of anthracite from Donets coal fields were studied. The effect of the flow rate of moistened air on the development of a porous structure and the sorption properties of the adsorbents obtained were examined.

  5. Physical Properties of Cooling Plasma in Quiescent Active Region Loops

    NASA Astrophysics Data System (ADS)

    Landi, E.; Miralles, M. P.; Curdt, W.; Hara, H.

    2009-04-01

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 <= log T <= 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 <= log T <= 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242°and 253fdg EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  6. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  7. Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1

    PubMed Central

    Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne

    2005-01-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246

  8. The Nitrogen Use Efficiency of C(3) and C(4) Plants : III. Leaf Nitrogen Effects on the Activity of Carboxylating Enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.).

    PubMed

    Sage, R F; Pearcy, R W; Seemann, J R

    1987-10-01

    The relationships between leaf nitrogen content per unit area (N(a)) and (a) the initial slope of the photosynthetic CO(2) response curve, (b) activity and amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC), and (c) chlorophyll content were studied in the ecologically similar weeds Chenopodium album (C(3)) and Amaranthus retroflexus (C(4)). In both species, all parameters were linearly dependent upon leaf N(a). The dependence of the initial slope of the CO(2) response of photosynthesis on N(a) was four times greater in A. retroflexus than in C. album. At equivalent leaf N(a) contents, C. album had 1.5 to 2.6 times more CO(2) saturated Rubisco activity than A. retroflexus. At equal assimilation capacities, C. album had four times the Rubisco activity as A. retroflexus. In A. retroflexus, a one to one ratio between Rubisco activity and photosynthesis was observed, whereas in C. album, the CO(2) saturated Rubisco activity was three to four times the corresponding photosynthetic rate. The ratio of PEPC to Rubisco activity in A. retroflexus ranged from four at low N(a) to seven at high N(a). The fraction of organic N invested in carboxylation enzymes increased with increased N(a) in both species. The fraction of N invested in Rubisco ranged from 10 to 27% in C. album. In A. retroflexus, the fraction of N(a) invested in Rubisco ranged from 5 to 9% and the fraction invested in PEPC ranged from 2 to 5%.

  9. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.

    PubMed

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu

    2015-01-01

    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Anionic Gemini Surfactants:. Synthesis and Surface Active Properties

    NASA Astrophysics Data System (ADS)

    Shukla, Dipti; Tyagi, V. K.

    New compounds bearing two phosphate groups and two long chain (dodecyl) were prepared by two-step reaction: (i) phosphorylation of dodecanol with pyrophosphoric acid, (ii) reaction of dodecyl phosphate with N(CH3)4OH and 1,6-dibromo hexane. The effect of reaction variables like time and molar ratio of reactants on yield has also been reported. The 1:2:0.5 molar ratio of reactants (dodecyl phosphate, N(CH3)4OH, and Br(CH2)6 Br, respectively) and 3 h duration resulted to give maximum yield of anionic gemini surfactants. The structure of synthesized surfactant was investigated by modern analytical techniques, viz. FT-IR, 1H NMR, 13C NMR. Amphipathic disodium phosphates were obtained by neutralization of free acids with sodium hydroxide and their surface active properties in aqueous solution were measured. These disodium phosphates possessed 77.3% anionic content and showed good water solubility. Foaming properties and wetting ability were also evaluated.

  11. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  12. Starspots properties and stellar activity from planetary transits

    NASA Astrophysics Data System (ADS)

    Valio, Adriana

    2017-10-01

    Magnetic activity of stars manifests itself in the form of dark spots on the stellar surface. This in turn will cause variations of a few percent in the star light curve as it rotates. When an orbiting planet eclipses its host a star, it may cross in front of one of these spots. In this case, a ``bump'' will be detected in the transit lightcurve. By fitting these spot signatures with a model, it is possible to determine the spots physical properties such as size, temperature, location, magnetic field, and lifetime. Moreover, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. For long time series of transits during multiple years, magnetic cycles can also be determined. This model has been applied successfully to CoRoT-2, CoRoT-4, CoRot-5, CoRoT-6, CoRoT-8, CoRoT-18, Kepler-17, and Kepler-63.

  13. Properties and Surprises of Solar Activity XXIII Cycle

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2010-12-01

    The main properties of the 23rd cycle match almost completely those of average-magnitude solar cycles, and some of the features of the cycle may indicate a change in the generation mode of magnetic fields in the solar convection zone. If this is the case, the Sun enters a period of intermediate and weak cycles of solar activity (SA) in terms of the Wolf number, which may last for 3 to 6 solar cycles. The main development stages of solar cycle 23 are the following: minimum of solar cycle 22: April 1996 (W* = 8.0); maximum of the smoothed relative sunspot number: April 2000; global polarity reversal of the general solar magnetic field: July to December 2000; secondary maximum of the relative sunspot number: November 2001; maximum of the 10.7-cm radio flux: February 2002; phase of the cycle maximum: October 1999 to June 2002; beginning of the decrease phase: July 2002; the point of minimum of the current SA cycle: December 2008. Solar cycle 23 has presented two powerful flare-active sunspot groups, in September 2005 and December 2006 (+5.5 and +6.6 years from the maximum) which by flare potential occupy 4th and 20th place among the most flare-active regions for the last four solar cycles. The unprecedented duration of the relative sunspot numbers fall that has led to already record duration of the last solar cycle among authentic cycles (since 1849) became the next surprise of development of solar activity during the last cycle. The phase of the minimum began in May 2005 and lasted for 4.5 years. Thus, the new solar cycle 24 has begun in January 2009.

  14. Preparation of polyclonal antibodies of Rubisco large and small subunits and their application in the functional analysis of the genes.

    PubMed

    Ma, Peng-Da; Lu, Tian-Cheng; Zhou, Xiao-Fu; Zhu, Xiao-Juan; Wang, Xing-Zhi

    2004-09-01

    Spinach Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) large (rbcL) and small (rbcS) subunits were separated by SDS-PAGE, and protein amount and purity were determined by Bradford assay. Polyclonal antibodies against rbcL and rbcS subunit were generated in female BALB/c mice and had no cross-reaction with each other. A total of 81 microg antigens were used and 0.3 ml anti-sera with titer of 1:5000 were yielded. The antibodies were also applicable to study rbcL and rbcS in tobacco plant Nicotiana benthamiana. Potato virus X vector pGR107 induced silencing of rbcS gene by Agrobacterium in Nicotiana benthamiana was performed. The expression level of rbcL and rbcS was lower in rbcS silenced plants than that in control plants as detected by the corresponding antibodies. This implied that the expression of rbcL was regulated by rbcS.

  15. The rubisco small subunit is involved in tobamovirus movement and Tm-2²-mediated extreme resistance.

    PubMed

    Zhao, Jinping; Liu, Qi; Zhang, Haili; Jia, Qi; Hong, Yiguo; Liu, Yule

    2013-01-01

    The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-2² (Tm-2²), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-2²-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.

  16. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803.

    PubMed

    Hu, Jinlu; Li, Tianpei; Xu, Wen; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-01

    Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(-) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.

  17. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms.

    PubMed

    Li, Gang; Campbell, Douglas A

    2017-01-01

    Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms differing by ~4 orders of magnitude in cell biovolume in high (enriched artificial seawater with ~500 µmol L(-1) µmol L(-1) NO3(-)) and lower-nitrogen (enriched artificial seawater with <10 µmol L(-1) NO3(-)) media, across a range of growth light levels. Nitrogen and total protein per cell decreased with increasing growth light in both species when grown under the lower-nitrogen media. Cells growing under lower-nitrogen media increased their cellular allocation to RUBISCO and their rate of electron transport away from PSII, for the smaller diatom under low growth light and for the larger diatom across the range of growth lights. The smaller coastal diatom Thalassiosira pseudonana is able to exploit high nitrogen in growth media by up-regulating growth rate, but the same high-nitrogen growth media inhibits growth of the larger diatom species.

  18. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803

    PubMed Central

    Hu, Jinlu; Li, Tianpei; Xu, Wen; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-01

    Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(−) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis. PMID:28261186

  19. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties.

    PubMed

    Kazemali, MohammadReza; Majidzadeh-A, Keivan; Sardari, Soroush; Saadatirad, Amir Hossein; Khalaj, Vahid; Zarei, Najmeh; Barkhordari, Farzaneh; Adeli, Ahmad; Mahboudi, Fereidoun

    2014-12-01

    Fibrinolytic agents are widely used in treatment of the thromboembolic disorders. The new generations like recombinant tissue plasminogen activator (t-PA, alteplase) are not showing promising results in clinical practice in spite of displaying specific binding to fibrin in vitro. Vampire bat plasminogen activator (b-PA) is a plasminogen activator with higher fibrin affinity and specificity in comparison to t-PA resulting in reduced probability of hemorrhage. b-PA is also resistant to plasminogen activator inhibitor-1 (PAI-1) showing higher half-life compared to other variants of t-PA. However, its non-human origin was a driving force to design a human t-PA with favorable properties of b-PA. In the present study, we designed a chimeric t-PA with desirable b-PA properties and this new molecule was called as CT-b. The construct was prepared through kringle 2 domain removal and replacement of t-PA finger domain with b-PA one. In addition, the KHRR sequence at the initial part of protease domain was replaced by four alanine residues. The novel construct was integrated in Pichia pastoris genome by electroporation. Catalytic activity was investigated in the presence and absence of fibrin. The purified protein was analyzed by western blot. Fibrin binding and PAI resistance assays were also conducted. The activity of the recombinant protein in the presence of fibrin was 1560 times more than its activity in the absence of fibrin, showing its higher specificity to fibrin. The fibrin binding of CT-b was 1.2 fold more than t-PA. In addition, it was inhibited by PAI enzyme 44% less than t-PA. Although the presented data demonstrate a promising in vitro activity, more in vivo studies are needed to confirm the therapeutic advantage of this novel plasminogen activator.

  20. Properties of the Hemolytic Activities of Escherichia coli

    PubMed Central

    Short, Everett C.; Kurtz, Harold J.

    1971-01-01

    Some properties of the cell-free and cell-associated hemolysins of Escherichia coli were studied. Several strains of E. coli that were isolated from intestines of pigs with edema disease produce large quantities of cell-free hemolysin when grown in the presence of an extract of meat. The component of meat that stimulates production of cell-free hemolysin is not extracted by lipid solvents and is not dialyzable. The cell-free hemolysin is an acidic substance that occurs in two forms. It is inactivated by trypsin but not by lecithinase, lysozyme, ribonuclease, or deoxyribonuclease, shows optimum activity between pH 7 and 8, and requires calcium ion for activity. It does not appear to be an enzyme. The kinetics of the lytic reaction are most consistent with the hypothesis that one molecule of cell-free hemolysin is sufficient to lyse one erythrocyte and that it is inactivated in the lytic reaction. The cell-free hemolysin does not sufficiently damage the cell during the prelytic period to cause lysis after the hemolysin-calcium-erythrocyte complex has been disrupted. The cell-associated hemolysin was not separated from the cell by autolysis, freezing, sonic treatment, or treatment with trypsin or lysozyme. It appears to be closely associated with the metabolic status of the cell. Organisms that are highly hemolytic under usual conditions of assay immediately lose most of their hemolytic capability in the presence of sodium cyanide, streptomycin, nalidixic acid, and rifampin. PMID:16558036

  1. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants.

    PubMed

    Murguía, Marcelo C; Vaillard, Victoria A; Sánchez, Victoria G; Conza, José Di; Grau, Ricardo J

    2008-01-01

    A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.

  2. Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit

    SciTech Connect

    Spreitzer, R.J.; Brown, T.; Chen, Zhixiang; Zhang, Donghong; Al-Abed, S.R. )

    1988-04-01

    The 69-12Q mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase activity, but retains holoenzyme protein. It results from a mutation in the chloroplast large-subunit gene that causes an isoleucine-for-threonine substitution at amino-acid residue 173. Considering that lysine-175 is involved in catalysis, it appears that mutations cluster at the active site.

  3. Permeability properties of chick myotube acetylcholine-activated channels.

    PubMed Central

    Dwyer, T M; Farley, J M

    1984-01-01

    The acetylcholine-(ACh-)activated channels of chick myotubes were studied by the patch-clamp method. Single-channel amplitudes were measured over a wide range of potentials in solutions of cesium, arginine, and three small amines. Symmetrical, isotonic cesium solutions gave a linear I-V relationship with the single-channel conductance, gamma, of 42 pS at 11 degrees C. Dilutions of cesium by mannitol shifted the reversal potential 23.9 mV per e-fold change in internal cesium concentration. Selectivity, as defined by reversal potential criteria, depended on the molecular size of the permeant cation. The Q10 of gamma for the symmetrical isotonic cesium solutions as well as internal isotonic methylamine was 1.3-1.4. These properties are qualitatively similar to those seen at the ACh-activated channel of the frog neuromuscular junction. Partially substituting arginine for internal cesium depressed outward currents. 80 mM arginine acted equally well from the inside or the outside, as if arginine transiently blocks the ACh-activated channel in a current dependent way. Diluting internal cesium almost 10-fold, from 320 to 40 mM, increased the permeability of the channel calculated from Goldman-Hodgkin-Katz equations by almost threefold. Thus, cesium itself appears to block with a dissociation constant of 135 mM. Methylamine blocked the channel approximately as well as did cesium. Ammonia and ethylamine blocked the channel somewhat more than cesium. We conclude that (a) the channel is qualitatively similar to that of frog neuromuscular junction, (b) cations bind within the channel, and (c) arginine decreases channel conductance equally whether applied from the inside or the outside. PMID:6324917

  4. Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.

    PubMed

    Fortune, E S; Rose, G J

    1997-05-15

    This study examined the contributions of passive and active membrane properties to the temporal selectivities of electrosensory neurons in vivo. The intracellular responses to time-varying (2-30 Hz) electrosensory stimulation and current injection of 27 neurons in the midbrain of the weakly electric fish Eigenmannia were recorded. Each neuron was filled with biocytin to reveal its anatomy. Neurons were divided into two biophysically distinct groups based on their frequency-dependent responses to sinusoidal current injection over the range 2-30 Hz. Fourteen neurons showed low-pass filtering, with a maximum decline in the amplitude of voltage responses of >2.6 dB (X = 4.30 dB, s = 1.10 dB) to sinusoidal current injection. These neurons also showed low-pass filtering of electrosensory information but with larger maximum declines in postsynaptic potential amplitude (X = 9.53 dB, s = 3.34 dB; n = 10). These neurons had broad dendritic arbors and relatively spiny dendrites. Five neurons showed all-pass filtering, having maximum decline in the amplitude of voltage responses of <2.0 dB (X = 1.16 dB, s = 0.61 dB). For electrosensory stimuli, however, these neurons showed low-, band-, or high-pass filtering. These neurons had small dendritic arbors and few or no spines. Voltage-dependent "active" conductances were revealed in eight neurons by using several levels of current clamp. In four of these neurons, the duration of the voltage-dependent conductances decreased in concert with the period of the electrosensory stimulus, whereas in the other four neurons the duration of the voltage-dependent conductances was relatively short (<30 msec) and nearly constant across sensory stimulation frequencies. These conductances enhanced the temporal filtering properties of neurons.

  5. Differential rubisco content and photosynthetic efficiency of rol gene integrated Vinca minor transgenic plant: Correlating factors associated with morpho-anatomical changes, gene expression and alkaloid productivity.

    PubMed

    Verma, Priyanka; Khan, Shamshad Ahmad; Masood, Nusrat; Manika, N; Sharma, Abhishek; Verma, Neha; Luqman, Suaib; Mathur, Ajay K

    2017-09-20

    Transgenic plants obtained from a hairy root line (PVG) of Vinca minor were characterized in relation to terpenoid indole alkaloids (TIAs) pathway gene expression and vincamine production. The hairy roots formed callus with green nodular protuberances when transferred onto agar-gelled MS medium containing 3.0mg/l zeatin. These meristematic zones developed into shoot buds on medium with 1.0mg/l 2, 4-dichlorophenoxyacetic acid and 40mg/l ascorbic acid. These shoot buds subsequently formed rooted plants when shifted onto a hormone-free MS medium with 6% sucrose. Transgenic nature of the plants was confirmed by the presence of rol genes of the Ri plasmid in them. The transgenic plants (TP) had elongated internodes and a highly proliferating root system. During glass house cultivation TP consistently exhibited slower growth rate, low chlorophyll content (1.02±0.08mg/gm fr. wt.), reduced carbon exchange rate (2.67±0.16μmolm(-2)s(-1)), less transpiration rate (2.30±0.20mmolm(-2) s(-1)) and poor stomatal conductance (2.21±0.04mmolm(-2) s(-1)) when compared with non-transgenic population. The activity of rubisco enzyme in the leaves of TP was nearly two folds less in comparison to non-transgenic controls (1.80milliunitsml(-1)mgprotein(-1) against 3.61milliunits ml(-1)mgprotein(-1), respectively). Anatomically, the TP had a distinct tetarch arrangement of vascular bundles in their stem and roots against a typical ployarched pattern in the non-transgenic plants. Significantly, the transgenic plants accumulated 35% higher amount of total TIAs (3.10±0.21% dry wt.) along with a 0.03% dry wt. content of its vasodilatory and nootropic alkaloid vincamine in their leaves. Higher productivity of alkaloids in TP was corroborated with more than four (RQ=4.60±0.30) and five (RQ=5.20±0.70) times over-expression of TIAs pathway genes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) that are responsible for pushing the metabolic flux towards TIAs synthesis in this

  6. Spatially Offset Active Galactic Nuclei. I. Selection and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2016-09-01

    We present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3″ diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.″6 (0.8 kpc) to 17.″4 (19.4 kpc), with a median value of 2.″7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to {89}-16+7% incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.

  7. The Psychometric Properties of the Arabic Preschool Activity Card Sort

    PubMed Central

    Abu-Dahab, Sana M. N.; Amro, Ahmad F.; Almasri, Nihad A.

    2017-01-01

    Background The Preschool Activity Card Sort (PACS) is an interview-based assessment tool to measure participation of preschool children with age range from 3 to 6 years. Objective of Study The purpose of this study was to establish the psychometric properties of the recently translated Arabic PACS (A-PACS). Methods One hundred fifty-one Jordanian parents participated in the study representing different geographical areas. Children were almost equally distributed between males and females and into three age groups. Construct and concurrent validity were examined as well as the internal consistency of the scale and the test-retest reliability. Findings The A-PACS was able to differentiate between the participation level of young and old children in the domains of education, community mobility, and low demand leisure of the A-PACS giving evidence to its construct validity and it significantly correlated with some aspects of the Vineland Adaptive Behavior Scale (VABS) giving evidence to its concurrent validity. The A-PACS showed excellent overall internal consistency (α = .859) for all domains and good test-retest reliability (r = .976, p < .001). Conclusion The A-PACS can be considered as a valid and reliable tool to measure participation of preschool children with normal development from Arabic cultures. Future studies should focus on the validity of the A-PACS for use with children with disabilities.

  8. Plant polyphenols: chemical properties, biological activities, and synthesis.

    PubMed

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antifungal activity of two Lactobacillus strains with potential probiotic properties.

    PubMed

    Gerbaldo, Gisela A; Barberis, Carla; Pascual, Liliana; Dalcero, Ana; Barberis, Lucila

    2012-07-01

    Aflatoxin (highly toxic and carcinogenic secondary metabolites produced by fungi) contamination is a serious problem worldwide. Modern agriculture and animal production systems need to use high-quality and mycotoxin-free feedstuffs. The use of microorganisms to preserve food has gained importance in recent years due to the demand for reduced use of chemical preservatives by consumers. Lactic acid bacteria are known to produce various antimicrobial compounds that are considered to be important in the biopreservation of food and feed. Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23 are producers of secondary metabolites, such as organic acids, bacteriocins and, in the case of L60, hydrogen peroxide. The antifungal activity of lactobacilli strains was determined by coculture with Aspergillus section Flavi strains by two qualitative and one quantitative methods. Both L23 and L60 completely inhibited the fungal growth of all aflatoxicogenic strains assayed. Aflatoxin B (1) production was reduced 95.7-99.8% with L60 and 27.5-100% with L23. Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B (1) production. These results are important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillus L60 and L23 strains with probiotic properties.

  10. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  11. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Reflecting widespread unhappiness with the growing tax burdens in this country, the most active area of litigation reported in the property chapter this year involves various attempts by taxpayers to prevent the construction or remodeling of public school facilities. While some taxpayers fought to keep schools from being built, others in New York…

  12. Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery.

    PubMed

    Saud, Shah; Yajun, Chen; Fahad, Shah; Hussain, Saddam; Na, Li; Xin, Li; Alhussien, Safa Abd Alaleem Fadal Elseed

    2016-09-01

    Drought stress is the most pervasive threat to plant growth, which disrupts the photosynthesis and its associated metabolic activities, while silicate (Si) application may have the potential to alleviate the damaging effects of drought on plant growth. In present study, the role of Si in regulating the photosynthesis and its associated metabolic events in Kentucky bluegrass (cv. Arcadia) were investigated under drought stress. Drought stress and four levels (0, 200, 400, 800 mg L(-1)) of Si (Na2SiO3.9H2O) were imposed on 1-year-old plants removed from field and cultured under glasshouse conditions. After 20 days of drought stress, the plants were re-watered to reach soil field capacity for the examination of recovery on the second and the seventh day. The experiment was arranged in completely randomized design replicated four times. Drought stress severely decreased the photosynthesis, water use efficiency, stomatal conductance, cholorophyll contents, Rubisco activity, and Rubisco activation state in Kentucky bluegrass. Nevertheless, application of Si had a positive influence on all these attributes, particularly under stress conditions. As compared to control, Si application at 400 mg L(-1) recorded 78, 64, and 48 % increase in photosynthesis, Rubisco initial activity, and Rubisco total activity, respectively, at 20 days of drought. Higher photosynthesis and higher Rubisco activity in Si-applied treatments suggest that Si may have possible (direct or indirect) role in maintenance of more active Rubisco enzyme and Rubisco activase and more stable proteins for carbon assimilation under stress conditions, which needs to be elucidated in further studies.

  13. Gamma-ray properties of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1994-01-01

    Recent observations by the Compton Observatory (CGRO) have increased our knowledge about the gamma-ray emission from Active Galactic Nuclei (AGN) considerably. The three most important findings of CGRO with respect to AGNs are: first, no Seyfert 1 galaxy has been found to show emission above 500 keV. The by far strongest Seyfert 1 galaxy NGC 4151 shows a spectrum which falls off exponentially with an e-folding energy of 39 keV between 65 and 500 keV. OSSE so far has detected or has indications of detections for seven additional Seyfert 1 galaxies, which, however, all show very weak hard X-ray emission compared to NGC 4151. No annihilation feature has been seen from any Seyfert galaxy to this date. Second, the radio galaxy Cen A shows a power-law energy spectrum from hard X-ray energies of about 150 keV to at least 3 MeV. It has not been seen at EGRET-energies. Third, a new class of AGN was discovered at energies above 100 MeV by EGRET. The power of these objects in gamma-rays can dominate the luminosity in other spectral ranges. These objects are associated with extragalactic sources that have blazar properties. The high-energy gamma-ray emission is probably produced in relativistically outflowing jets. At hard X-ray energies the objects are rather weak. Spectral breaks at MeV energies were found by COMPTEL for three of these objects (3C 273, 3C 279, and PKS 0528+134).

  14. Synthesis of a cyanopeptide-analogue with trypsin activating properties.

    PubMed

    Radau, G; Rauh, D

    2000-04-17

    An efficient synthesis of a peptidic analogue of cyanobacterial metabolites with proposed serine protease inhibitory activity has been developed. Surprisingly, one trypsin activating compound was obtained.

  15. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO(2) flux in the Mississippi River plume.

    PubMed

    John, David E; Wang, Zhaohui A; Liu, Xuewu; Byrne, Robert H; Corredor, Jorge E; López, José M; Cabrera, Alvaro; Bronk, Deborah A; Tabita, F Robert; Paul, John H

    2007-10-01

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO(2) drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO(2) dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO(2) in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30-32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34-36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO(2). While Prochlorococcus cells did not exhibit a large difference between low and high pCO(2) water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO(2), suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO(2) drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO(2) levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO(2) in the face of strong CO(2) drawdown. Our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO(2) flux measurements in the ocean.

  16. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    Treesearch

    Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose

    2005-01-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...

  17. Heterologous expression and initial characterization of recombinant RbcX protein from Thermosynechococcus elongatus BP-1 and the role of RbcX in RuBisCO assembly.

    PubMed

    Tarnawski, Miroslaw; Gubernator, Beata; Kolesinski, Piotr; Szczepaniak, Andrzej

    2008-01-01

    In the cyanobacterial RuBisCO operon from Thermosynechococcus elongatus the rbcX gene is juxtaposed and cotranscribed with the rbcL and rbcS genes which encode large and small RuBisCO subunits, respectively. It has been suggested that the rbcX position is not random and that the RbcX protein could be a chaperone for RuBisCO. In this study, the RbcX protein from T. elongatus was overexpressed, purified and preliminary functional studies were conducted. The recombinant protein purified from Escherichia coli extracts was predominantly present in a soluble fraction in a dimeric form. Coexpression experiments have demonstrated that RbcX can mediate RbcL dimer (L(2)) formation, and that it is essential for the L(8) core complex assembly. This is the first characterization of the RbcX protein from a thermophilic organism.

  18. Surface active properties of chitosan and its derivatives.

    PubMed

    Elsabee, Maher Z; Morsi, Rania Elsayed; Al-Sabagh, A M

    2009-11-01

    This review discusses the definition of surface active agents and specifically natural polymeric surface active agents. Chitosan by itself was found to have weak surface activity since it has no hydrophobic segments. Chemical modifications of chitosan could improve such surface activity. This is achieved by introducing hydrophobic substituents in its glucosidic group. Several examples of chitosan derivatives with surfactant activity have been surveyed. The surface active polymers form micelles and aggregates which have enormous importance in the entrapment of water-insoluble drugs and consequently applications in the controlled drug delivery and many biomedical fields. Chitosan also interacts with several substrates by electrostatic and hydrophobic interactions with considerable biomedical applications.

  19. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents.

  20. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2.

    PubMed

    Kanno, Keiichi; Suzuki, Yuji; Makino, Amane

    2017-03-01

    Rubisco limits photosynthesis at low CO2 concentrations ([CO2]), but does not limit it at elevated [CO2]. This means that the amount of Rubisco is excessive for photosynthesis at elevated [CO2]. Therefore, we examined whether a small decrease in Rubisco content by individual suppression of the RBCS multigene family leads to increases in photosynthesis and biomass production at elevated [CO2] in rice (Oryza sativa L.). Our previous studies indicated that the individual suppression of RBCS decreased Rubisco content in rice by 10-25%. Three lines of BC2F2 progeny were selected from transgenic plants with individual suppression of OsRBCS2, 3 and 5. Rubisco content in the selected lines was 71-90% that of wild-type plants. These three transgenic lines showed lower rates of CO2 assimilation at low [CO2] (28 Pa) but higher rates of CO2 assimilation at elevated [CO2] (120 Pa). Similarly, the biomass production and relative growth rate (RGR) of the two lines were also smaller at low [CO2] but greater than that of wild-type plants at elevated [CO2]. This greater RGR was caused by the higher net assimilation rate (NAR). When the nitrogen use efficiency (NUE) for the NAR was estimated by dividing the NAR by whole-plant leaf N content, the NUE for NAR at elevated [CO2] was higher in these two lines. Thus, a small decrease in Rubisco content leads to improvements of photosynthesis and greater biomass production in rice under conditions of elevated CO2. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Passive and active mechanical properties of biotemplated ceramics revisited.

    PubMed

    Van Opdenbosch, Daniel; Fritz-Popovski, Gerhard; Plank, Johann; Zollfrank, Cordt; Paris, Oskar

    2016-10-13

    Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.

  2. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  3. Determination of the relative expression levels of rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends.

    PubMed

    Yoon, M; Putterill, J J; Ross, G S; Laing, W A

    2001-04-15

    Multigene families are common in higher organisms. However, due to the close similarities between members, it is often difficult to assess the individual contribution of each gene to the overall expression of the family. In Arabidopsis thaliana, there are four genes encoding the small subunits (SSU) of ribulose-1.5-bisphosphate carboxylase oxygenase (rubisco) whose nucleotide sequences are up to 98.4% identical. In order to overcome the technical limitations associated with gene-specific probes (or primers) commonly used in existing methods, we developed a new gene expression assay based on the RACE (rapid amplification of cDNA ends) technique with a single pair of primers. With this RACE gene expression assay, we were able to determine the relative transcript levels between four Arabidopsis SSU genes. We found that the relative SSU gene expression differed significantly between plants grown at different temperatures. Our observation raises the possibility that an adaptation of rubisco to the environment may be achieved through the specific synthesis of the SSU proteins, which is determined by the relative expression levels between the SSU genes.

  4. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    PubMed Central

    Jäntschi, Lorentz; Bolboacǎ, Sorana-Daniela

    2007-01-01

    The aim of the paper is to present the results obtained by utilization of an original approach called Molecular Descriptors Family on Structure-Property (MDF-SPR) and Structure-Activity Relationships (MDF-SAR) applied on classes of chemical compounds and its usefulness as precursors of models elaboration of new compounds with better properties and/or activities and low production costs. The MDF-SPR/MDF-SAR methodology integrates the complex information obtained from compound’s structure in unitary efficient models in order to explain properties/activities. The methodology has been applied on a number of thirty sets of chemical compounds. The best subsets of molecular descriptors family members able to estimate and predict property/activity of interest were identified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR models were validated through internal and/or external validation methods. The estimation and prediction abilities of the MDF-SPR/MDF-SAR models were compared with previous reported models by applying of correlated correlation analysis, which revealed that the MDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodology opens a new pathway in understanding the relationships between compound’s structure and property/activity, in property/activity prediction, and in discovery, investigation and characterization of new chemical compounds, more competitive as costs and property/activity, being a method less expensive comparative with experimental methods.

  5. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Alocasia macrorrhiza in Response to Step Changes in Irradiance 1

    PubMed Central

    Seemann, Jeffrey R.; Kirschbaum, Miko U. F.; Sharkey, Thomas D.; Pearcy, Robert W.

    1988-01-01

    The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and pool sizes of RuBP and P-glycerate were examined in the tropical understory species Alocasia macrorrhiza following step changes in photon flux density (PFD). Previous gas exchange analysis of this species following a step increase in PFD from 10 to 500 micromoles quanta per square meter per second suggested that the increase in photosynthetic rate was limited by the rate of increase of Rubisco activity for the first 5 to 10 minutes. We demonstrate here that the increase in photosynthetic rate was correlated with an increase in both the activation state of Rubisco and the total kcat (fully activated specific activity) of the enzyme. Evidence presented here suggests that a change in the pool size of the naturally occurring tight binding inhibitor of Rubisco activity, 2-carboxyarabinitol 1-phosphate, was responsible for the PFD-dependent change in the total kcat of the enzyme. RuBP pool size transiently increased after the increase in PFD, indicating that photosynthesis was limited by the capacity for carboxylation. After 5 to 10 minutes, RuBP pool size was again similar to the pool size at low PFD, presumably because of the increased activity of Rubisco. Following a step decrease in PFD from 500 to 10 micromoles quanta per square meter per second, Rubisco activity declined but at a much slower rate than it had increased in response to a step increase in PFD. This slower rate of activity decline than increase was apparently due to the slower rate of 2-carboxyarabinitol 1-phosphate synthesis than degradation and, to a lesser degree, to slower deactivation than activation. RuBP pool size initially declined following the decrease in PFD, indicating that RuBP regeneration was limiting photosynthesis. As Rubisco activity decreased, RuBP slowly increased to its original level at high PFD. The slow rate of activity loss by Rubisco in this species suggests a biochemical basis for the

  6. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  7. Statistical properties of trading activity in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqian; Cheng, Xueqi; Shen, Huawei; Wang, Zhaoyang

    2010-08-01

    We investigate the statistical properties of traders' trading behavior using cumulative distribution function(CDF). We analyze exchange data of 52 stocks for one-year period which contains non-manipulated stocks and manipulated stocks published by China Securities Regulatory Commission(CSRC). By analyzing the total number of transactions and the trading volume of each trader over a year, we find the cumulative distributions have power-law tails and the distributions between non-manipulated stocks and manipulated stocks are different. These findings can help us to detect the manipulated stocks.

  8. Autophosphorylation properties of inactive and active JNK2.

    PubMed

    Pimienta, Genaro; Ficarro, Scott B; Gutierrez, Gustavo J; Bhoumik, Anindita; Peters, Eric C; Ronai, Ze'ev; Pascual, Jaime

    2007-07-15

    The c-Jun N-terminal kinases (JNKs) are ubiquitous proteins that phosphorylate their substrates, such as transcription factors, in response to physical stress, cytokines or UV radiation. This leads to changes in gene expression, ensuing either cell cycle progression or apoptosis. Active phospho JNK1 is the main in vivo kinase component of the JNK cascade, whereas JNK2 is presumed not to participate as a kinase during JNK signalling. However, there is evidence that JNK isoforms interact functionally in vivo. Also, a recent chemical genetics investigation has confirmed that JNK transient activation leads to cellular proliferation, whereas a sustained one is pro-apoptotic. Here we investigate the phosphorylation pattern of JNK2, with protein biochemistry tools and tandem mass spectrometry. We choose to focus on JNK2 because of its reported constitutive activity in glioma cells. Our results indicate that purified JNK2 from transfected nonstressed 293T cells is a mixture of the mono-sites pThr183 and pTyr185 of its activation loop and of pThr386 along its unique C-terminal region. Upon UV stimulation, its phosphorylation stoichiometry is upregulated on the activation loop, generating a mixture of mono-pTyr185 and the expected dual-pThr183/pTyr185 species, with the pThr386 specie present but unaltered respect to the basal conditions.

  9. Activation of lexical and syntactic target language properties in translation.

    PubMed

    Ruiz, C; Paredes, N; Macizo, P; Bajo, M T

    2008-07-01

    Is reading for translation equal to reading in monolingual contexts? Horizontal/parallel theories of translation propose that normal reading and reading for translation differ because the translator engages in partial reformulation while reading for translating the source text. In contrast, vertical/serial theories assume that the translators first extract the meaning of the message, and only then they proceed to reformulate it. In two experiments, we manipulated lexical and syntactic properties of the target language (TL) while translators read for repetition or for translation. On-line sentence comprehension was affected by the lexical frequency of words in the TL (Experiment 1) and the syntactic congruency between the source language (SL) and TL sentences (Experiment 2). However, the influence of lexical and syntactic TL properties was restricted to the reading for translation task. According to our results, the horizontal view of translation includes code-to-code links between the SL and TL involving at least the lexical and syntactic level of processing.

  10. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  11. Surface-Active and Performance Properties of Cationic Imidazolinium Surfactants Based on Different Fatty Acids

    NASA Astrophysics Data System (ADS)

    Bajpai, Divya; Tyagi, V. K.

    Imidazoline surfactants belong to the category of cationic surfactants. Cationic surfactants are often quaternary nitrogen salts and are widely used both in nonaqueous systems and in applications such as textile softeners, dispersants, and emulsifiers. This study describes the surface-active properties of cationic imidazolinium surfactants synthesized from different fatty acids. Their laundry performance in combination with nonionic surfactants like detergency, foaming property, softening property, rewettability etc., is also emphasized.

  12. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  13. Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.).

    PubMed

    Jung, EunKyung; Kim, YoungJun; Joo, Nami

    2013-12-01

    The therapeutic action of a plant depends on its chemical constituents. In this study, experiments were carried out in order to evaluate the effect of extraction conditions on the antioxidative and antimicrobial activities of Roselle (Hibiscus sabdariffa L.). Roselle was found to be rich in malic acid, anthocyanins, ascorbic acid and minerals, especially Ca and Fe, but low in glucose. More than 18 volatile compounds were identified by gas chromatography and gas chromatography-mass spectrometry. This herb, which is rich in phenolic compounds and displays DPPH radical scavenging activity, could be a good source of natural antioxidants. The antimicrobial activity of the Roselle water and ethanol extracts was tested with Bacillus subtilis (ATCC6633), Staphylococcus aureus (ATCC6538) and Escherichia coli (ATCC 8739). The inhibition of the Roselle ethanol extract against B. subtilis and S. aureus was slightly higher than that of water extract but this difference was not significant. However, E. coli was strongly inhibited by the Roselle water extract at concentrations of 25 and 50 mg mL(-1) as determined by a paper disc method. The obtained results indicated that antioxidant and antimicrobial activity was related to different methods of extraction and Roselle extracts could be a source of therapeutically useful products. © 2013 Society of Chemical Industry.

  14. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume

    SciTech Connect

    John, David E.; Wang, Zhaohui A.; Liu, Xuewu; Byrne, Robert H.; Corredor, Jorge E.; López, José M.; Cabrera, Alvaro; Bronk, Deborah A.; Tabita, F. Robert; Paul, John H.

    2007-08-30

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO2 drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Finally, our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux

  15. Scintillation Properties of Eu2+-Activated Barium Fluoroiodide

    SciTech Connect

    Gundiah, Gautam; Bourret-Courchesne, Edith; Bizarri, Gregory; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew; Moses, William W.; Derenzo, Stephen E.

    2009-11-18

    The scintillation properties of powders and single-crystals of BaFI doped with Eu2+ are presented. Single crystals were grown by the vertical Bridgman technique. Under optical and X-ray excitation, the samples exhibit a narrow E2+ 5d-4f transition emission centered at 405 nm. The scintillation light output is estimated to be 55,000+-5,000 photons/MeV at 662 keV with 85percent of the light decaying within 600 ns. An energyresolution of 8.5percent full width at half maximum (FWHM) has been achieved using this scintillator for 662 keV excitation (137Cs source) at room temperature.

  16. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  17. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  18. [Peroxisome proliferator-activated receptors (PPAR). Antiproliferative properties].

    PubMed

    Hojka, Anna; Rapak, Andrzej

    2011-06-21

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that belong to the hormone nuclear receptor superfamily. Their main role is control of fatty acid metabolism and to maintain glucose homeostasis. Isotype γ of PPAR can also be implicated in proliferation and cellular differentiation of both normal and cancer cells. Compounds that are PPARγ ligands have a negative influence on cancer cells and can induce apoptosis, inhibit proliferation or induce cellular differentiation of these cells. This review summarizes general information about PPAR and focuses on anticancer activities of PPARγ ligands and their use in combined therapy. Combination treatment using PPARγ ligands and other agents, especially retinoids and specific kinase inhibitors, may be an effective strategy for chemoprevention and treatment of some cancers.

  19. Marine sponge lectins: actual status on properties and biological activities.

    PubMed

    Gomes Filho, Sandro Mascena; Cardoso, Juscélio Donizete; Anaya, Katya; Silva do Nascimento, Edilza; de Lacerda, José Thalles Jucelino Gomes; Mioso, Roberto; Santi Gadelha, Tatiane; de Almeida Gadelha, Carlos Alberto

    2014-12-26

    Marine sponges are primitive metazoans that produce a wide variety of molecules that protect them against predators. In studies that search for bioactive molecules, these marine invertebrates stand out as promising sources of new biologically-active molecules, many of which are still unknown or little studied; thus being an unexplored biotechnological resource of high added value. Among these molecules, lectins are proteins that reversibly bind to carbohydrates without modifying them. In this review, various structural features and biological activities of lectins derived from marine sponges so far described in the scientific literature are discussed. From the results found in the literature, it could be concluded that lectins derived from marine sponges are structurally diverse proteins with great potential for application in the production of biopharmaceuticals, especially as antibacterial and antitumor agents.

  20. Structure Modification Toward Applicability Domain of a QSAR/QSPR Model Considering Activity/Property.

    PubMed

    Ochi, Shoki; Miyao, Tomoyuki; Funatsu, Kimito

    2017-08-16

    In drug and material design, the activity and property values of the designed chemical structures can be predicted by quantitative structure-activity and structure-property relationship (QSAR/QSPR) models. When a QSAR/QSPR model is applied to chemical structures, its applicability domain (AD) must be considered. The predicted activity/property values are only reliable for chemical structures inside the AD. Chemical structures outside the AD are usually neglected, as the predicted values are unreliable. The purpose of this study is to develop a methodology for obtaining novel chemical structures with the desired activity or property based on a QSAR/QSPR model by making use of the neglected structures. We propose a structure modification strategy for the AD that considers the activity and property simultaneously. The AD is defined by a one-class support vector machine and the structure modification is guided by a partial derivative of the AD model and matched molecular pairs analysis. Three proof-of-concept case studies generate novel chemical structures inside the AD that exhibit preferable activity/property values according to the QSAR/QSPR model. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [SEROLOGICAL PROPERTIES AND BIOLOGICAL ACTIVITY OF PANTOEA AGGLOMERANS LIPOPOLYSACCHARIDES].

    PubMed

    Bulygina, T V; Yakovleva, L M; Brovarska, O S; Varbanets, L D

    2015-01-01

    The serological and phytotoxic properties of lipopolysaccharide (LPS) of plant pathogens--Pantoea agglomerans were studied. It is known that the thin variations in the structure of the O-specific polysaccharides determining serological specificity of gram- negative bacteria and used as a molecular basis of serological classification schemes. For P. agglomerans still does not exist a classification scheme based on serology specificity of their LPS. The results of cross serological tests demonstrate immunochemical heterogeneity of species P agglomerans. Only three strains of the 8488, 8490 and 7969 according to the agglutination of O-antigens and direct hemagglutination and inhibition direct hemagglutination can be attributed to a single serogroup. Other strains--each separate group, although some have a relationship. Compared with control plants under the influence of seed treatment of LPS in plants may be reduced, and in some cases increased root length, height and weight sprout, depending on the strain from which the selected LPS. Dive seedlings of tomatoes in the solutions of the studied preparations FSC caused the loss, and after some time, restore turgor.

  2. Computational properties of mitochondria in T cell activation and fate

    PubMed Central

    Dupont, Geneviève

    2016-01-01

    In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process. PMID:27852805

  3. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed Central

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme. PMID:8550452

  4. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme.

  5. Cloud condensation nucleus activation properties of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Vanreken, Timothy M.; Ng, Nga L.; Flagan, Richard C.; Seinfeld, John H.

    2005-04-01

    Organic aerosols in general and secondary organic aerosol (SOA) in particular are known to contribute significantly to the atmospheric population of cloud condensation nuclei (CCN). However, current knowledge is limited with respect to the nature of this contribution. This study presents a series of experiments wherein the potential for biogenically derived SOA to act as CCN is explored. Five compounds were studied: four monoterpenes (α-pinene, β-pinene, limonene, and Δ3-carene) and one terpenoid alcohol (terpinene-4-ol). In each case the aerosol formation was driven by the reaction of ozone with the biogenic precursor. The SOA produced in each experiment was allowed to age for several hours, during which CCN concentrations were periodically measured at four supersaturations: S = 0.27%, 0.32%, 0.54%, and 0.80%. The calculated relationships between particle dry diameter and critical supersaturation were found to fall in the range of previously reported data for single-component organic aerosols; of the systems studied, α-pinene SOA was the least CCN active, while limonene SOA exhibited the strongest CCN activity. Interestingly, the inferred critical supersaturation of the SOA products was considerably more sensitive to particle diameter than was found in previous studies. Furthermore, the relationships between particle size and critical supersaturation for the monoterpene SOA shifted considerably over the course of the experiments, with the aerosol becoming less hygroscopic over time. These results are consistent with the progressive oligomerization of the SOA.

  6. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  7. Amplifying properties of heavily erbium-doped active fibres

    SciTech Connect

    Plotskii, A Yu; Kurkov, Andrei S; Yashkov, M Yu; Bubnov, M M; Likhachev, M E; Sysolyatin, A A; Dianov, Evgenii M; Gur'yanov, A N

    2005-06-30

    The relative concentration of erbium ions undergoing nonradiative relaxation from the metastable to the ground level is measured in aluminosilicate glass fibres doped with erbium ions at concentration between 3x10{sup 18} and 10{sup 20} cm{sup -3}. The dependence of the fraction of such ions on the Er{sup 3+} concentration is determined for fibres containing different amounts of aluminium oxide in a core. It is shown that the fraction of erbium ions not involved in amplification substantially decreases with increasing the Al{sub 2}O{sub 3} concentration. It is found that clustering leads to a considerable decrease in the gain in heavily Er{sup 3+}-doped active fibres. The dependence of the quantum efficiency of a fibre amplifier on the erbium ion concentration is obtained based on the measurements performed. This dependence can be used for optimising the parameters of erbium-doped fibre amplifiers. (fibres. integrated-optic waveguides)

  8. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The purification and properties of an endogenous activator of the enzyme

    PubMed Central

    Neuberger, Albert; Sandy, John D.; Tait, George H.

    1973-01-01

    1. A low-molecular-weight activator of 5-aminolaevulinate synthetase was detected in extracts of Rhodopseudomonas spheroides. The compound activates the enzyme extracted from oxygenated semi-anaerobically grown organisms by a factor of 6–8. 2. The activator was extensively purified, but owing to the exceedingly small amounts that could be extracted in the active form its structure was not determined. 3. The activator contains an acetylatable amino group; it is more stable at acid than at alkaline pH values; it is stable to treatment with I2–KI or potassium ferricyanide, but irreversibly inactivated by Na2S2O4 or NaBH4. 4. The chromatographic, electrophoretic, chemical and stability properties of the activator are similar to those of pteridines; purified activator preparations contain pteridines, as shown by their fluorescence spectrum. This does not, however, constitute an identification of the activator. 5. The activator enhances the activity of crude and partially purified enzyme and does not appear to require other endogenous factors or a supply of air to produce activation. Activation of the purified enzyme, however, requires the presence of either pyridoxal phosphate or sodium succinate. In the absence of both these factors the activator produces a time- and temperature-dependent decay of activity. PMID:4544405

  9. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The purification and properties of an endogenous activator of the enzyme.

    PubMed

    Neuberger, A; Sandy, J D; Tait, G H

    1973-11-01

    1. A low-molecular-weight activator of 5-aminolaevulinate synthetase was detected in extracts of Rhodopseudomonas spheroides. The compound activates the enzyme extracted from oxygenated semi-anaerobically grown organisms by a factor of 6-8. 2. The activator was extensively purified, but owing to the exceedingly small amounts that could be extracted in the active form its structure was not determined. 3. The activator contains an acetylatable amino group; it is more stable at acid than at alkaline pH values; it is stable to treatment with I(2)-KI or potassium ferricyanide, but irreversibly inactivated by Na(2)S(2)O(4) or NaBH(4). 4. The chromatographic, electrophoretic, chemical and stability properties of the activator are similar to those of pteridines; purified activator preparations contain pteridines, as shown by their fluorescence spectrum. This does not, however, constitute an identification of the activator. 5. The activator enhances the activity of crude and partially purified enzyme and does not appear to require other endogenous factors or a supply of air to produce activation. Activation of the purified enzyme, however, requires the presence of either pyridoxal phosphate or sodium succinate. In the absence of both these factors the activator produces a time- and temperature-dependent decay of activity.

  10. Antioxidant, Antimicrobial Activity and Medicinal Properties of Grewia asiatica L.

    PubMed

    Shukla, Ritu; Sharma, Dinesh C; Baig, Mohammad H; Bano, Shabana; Roy, Sudeep; Provazník, Ivo; Kamal, Mohammad A

    2016-01-01

    Since ancient time, India is a well known subcontinent for medicinal plants where diversity of plants is known for the treatment of many human disorders. Grewia asiatica is a dicot shrub belonging to the Grewioideae family and well known for its medicinally important fruit commonly called Falsa. G. asiatica, a seasonal summer plant is distributed in the forest of central India, south India, also available in northern plains and western Himalaya up to the height of 3000 ft. Fruits of G. asiatica are traditionally used as a cooling agent, refreshing drink, anti-inflammatory agent and for the treatment of some urological disorders. Recent advancement of Falsa researches concluded its antimicrobial and anti-diabetic activity. Since ancient time medicinal plants are traditionally used for the treatment of different diseases G. asiatica fruit is the edible and tasty part of the plant, now considered as a valuable source of unique natural product for the development of medicines which are used in different disease conditions like anti-diabetic, anti-inflammatory, anti-cancerous and antimicrobial. Now a days, G. asiatica is being used in different Ayurvedic formulation for the cure of different types of diseases. Different pharmacological investigations reveal the presence of phenols, saponnins, flavonoids and tannins compound in the fruits. Present review highlights the phytopharmacological and different traditional use of G. asiatica which is mentioned in ancient Ayurvedic texts. This review stimulates the researchers and scientists for further research on G. asiatica.

  11. Properties of solar activity and ionosphere for solar cycle 25

    NASA Astrophysics Data System (ADS)

    Deminov, M. G.; Nepomnyashchaya, E. V.; Obridko, V. N.

    2016-11-01

    Based on the known forecast of solar cycle 25 amplitude ( Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that ( F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency ( hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8-10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.

  12. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  13. Mechanochemical activation of clays as a means for changing their physicochemical and manufacturing properties

    SciTech Connect

    Kulebakin, V.G.; Shakora, A.S.

    1995-05-01

    The possibility of increasing the reactivity of clays and loams by their preliminary mechanochemical activation without introducing any addition into the mixture is investigated. It is established that mechanochemical activation substantially changes the physicochemical and manufacturing properties of clays and loams and can find practical application.

  14. Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling

    EPA Science Inventory

    Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...

  15. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  16. Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling

    EPA Science Inventory

    Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...

  17. Influence of post-treatment strategies on the properties of activated chars from broiler manure

    USDA-ARS?s Scientific Manuscript database

    There are a myriad of carbonaceous precursors that can be used advantageously to produce activated carbons or chars, due to their low cost, availability and intrinsic properties. Because of the nature of the raw material, production of granular activated chars from broiler manure results in a signif...

  18. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  19. Chemical properties and toxicity of soils contaminated by mining activity.

    PubMed

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and <1-10% for lead. In 1 mol HCl dm(-3), the solubility of the studied metals was much higher and obtained values depending on the collection site, from 45 to 92% for zinc, from 74 to 99%, and from 79 to 99% for lead. The lower solubility of the heavy metals in 1 mol dm(-3) NH4NO3 than 1 mol HCl dm(-3) is connected with that, the ammonium nitrate has low extraction power, and it is used in determining the bioavailable (active) form of heavy metals. Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to

  20. Sudanese Students' Perceptions of Their Class Activities: Psychometric Properties and Measurement Invariance of My Class Activities--Arabic Language Version

    ERIC Educational Resources Information Center

    Pereira, Nielsen; Bakhiet, Salaheldin Farah; Gentry, Marcia; Balhmar, Tahani Abdulrahman; Hakami, Sultan Mohammed

    2017-01-01

    This study examined the psychometric properties and measurement invariance of the Arabic version of "My Class Activities" (MCA), an instrument designed to measure students' perceptions of interest, challenge, choice, and enjoyment in classrooms. Scores of 3,516 Sudanese students in Grades 2 to 8 were used. Confirmatory factor analysis…

  1. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.

  2. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil.

  3. Physico-chemical properties, antioxidant activities and antihypertensive effects of walnut protein and its hydrolysate.

    PubMed

    Wang, Xiuming; Chen, Haixia; Li, Shuqin; Zhou, Jiangchao; Xu, Jiangtao

    2016-05-01

    Some food proteins hydrolysates are found to possess multiple health effects. In this study, walnut protein (WP) was enzymatically hydrolysed by alcalase and trypsin under optimal conditions. The physico-chemical properties, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of WP, alcalase-generated walnut protein hydrolysate (AWPH) and trypsin-generated walnut protein hydrolysate (TWPH) were comparatively studied. Stability properties of the walnut protein hydrolysate (WPH) and the antihypertensive activity in spontaneously hypertensive rats (SHRs) were also investigated. The WPH showed higher physico-chemical properties, antioxidant activities, ACE inhibitory activity and stability against thermal treatment and gastrointestinal digestion than WP. The results of antihypertensive effects in SHRs showed that the most potent decrease of AWPH and TWPH in the systolic blood pressure occurred at 4 h (-26 mmHg) and 6 h (-30 mmHg) after administration. The study indicated that the WPH could significantly decrease the systolic blood pressure (P < 0.05). The WPH exhibited high physico-chemical properties, potent inhibitory activities and high stability. TWPH was more effective than AWPH in the detected properties. The results would be helpful for the comprehensive utilisation of the walnut resources. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications

    NASA Astrophysics Data System (ADS)

    Vermaak, N.; Valdevit, L.; Evans, A. G.

    2009-04-01

    A scheme for identifying and visualizing the material properties that limit the performance of candidate materials for actively cooled aerospace propulsion components is presented and illustrated for combustor panels for Mach 7 hypersonic vehicles. The method provides a framework for exploring the nonlinear interactions between design and materials optimization. By probing the active constraints along the border of feasible design space, the limiting properties have been elucidated for a representative group of candidate materials. Property vectors that enhance design options have also been determined. For one of the promising candidate alloys (the Ni-based superalloy, INCONEL X-750), the possibilities of reclaiming design space and lowering optimal combustor panel weight by tailoring its strength properties are assessed.

  5. Influence of post-treatment strategies on the properties of activated chars from broiler manure.

    PubMed

    Lima, Isabel M; Boykin, Debbie L; Thomas Klasson, K; Uchimiya, Minori

    2014-01-01

    There are a myriad of carbonaceous precursors that can be used advantageously to produce activated carbons or chars, due to their low cost, availability and intrinsic properties. Because of the nature of the raw material, production of granular activated chars from broiler manure results in a significant ash fraction. This study was conducted to determine the influence of several pre- and post-treatment strategies in various physicochemical and adsorptive properties of the resulting activated chars. Pelletized samples of broiler litter and cake were pyrolyzed at 700 °C for 1h followed by a 45 min steam activation at 800 °C at different water flow rates from 1 to 5 mL min(-1). For each activation strategy, samples were either water-rinsed or acid-washed and rinsed or used as is (no acid wash/rinse). Activated char's physicochemical and adsorptive properties towards copper ions were selectively affected by both pre- and post-treatments. Percent ash reduction after either rinsing or acid washing ranged from 1.1 to 15.1% but washed activated chars were still alkaline with pH ranging from 8.4 to 9.1. Acid washing or water rinsing had no significant effect in the ability of the activated char to adsorb copper ions, however it significantly affected surface area, pH, ash content and carbon content. Instead, manure type (litter versus cake) and the activation water flow rate were determining factors in copper ion adsorption which ranged from 38 mg g(-1) to 104 mg g(-1) of activated char. Moreover, strong positive correlations were found between copper uptake and concentration of certain elements in the activated char such as phosphorous, sulfur, calcium and sodium. Rinsing could suffice as a post treatment strategy for ash reduction since no significant differences in the carbon properties were observed between rinsed and acid wash treatments.

  6. Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels

    SciTech Connect

    Zinkle, S.J.; Robertson, J.P.; Klueh, R.L.

    1998-09-01

    The key thermophysical and mechanical properties for 8--9%Cr reduced activation ferritic/martensitic steels are summarized, including temperature-dependent tensile properties in the unirradiated and irradiated conditions, stress-rupture behavior, elastic constants, thermal conductivity, thermal expansion, specific heat, and ductile-to-brittle transition temperature. The estimated lower and upper temperatures limits for structural applications are 250 and 550 C due to radiation hardening/embrittlement and thermal creep considerations, respectively.

  7. [Activity of antioxidant system of Aspergillus versicolor with radioadaptive properties under conditions of exposure to radiation].

    PubMed

    Tuhaĭ, T I

    2011-01-01

    Melanin pigments were revealed for the first time in Aspergillus versicolor strains. Ionizing irradiation practically did not influence melanin synthesis in A. versicolor strains with radioadaptive properties and stimulated its synthesis in the control strain, which did not show such properties. High level of superoxide dismutase activity (from 100 up to 720 U/mg of protein) was revealed in the investigated strains. The irradiation in exponential phase of growth did not practically influence or raised activity of superoxide dismutase (SOD) in the strains with radioadaptive properties and oppressed its activity in the control strain. The irradiation in a stationary phase was accompanied by a decrease of SOD activity in the strains with radioadaptive properties, and essential (2 times) increase of SOD activity in the control strain and strain A. versicolor 101, which did not show radiotropism. The extracellular catalase activity (1.52-37.04 mmol x min(-1) x mg(-1) protein) exceeded by more than an order the intracellular one (8-230 mol x min(-1) x mg(-1) protein) in the investigated strains.

  8. Qualitative attributes and measurement properties of physical activity questionnaires: a checklist.

    PubMed

    Terwee, Caroline B; Mokkink, Lidwine B; van Poppel, Mireille N M; Chinapaw, Mai J M; van Mechelen, Willem; de Vet, Henrica C W

    2010-07-01

    The large number of available physical activity (PA) questionnaires makes it difficult to select the most appropriate questionnaire for a certain purpose. This choice is further hampered by incomplete reporting and unsatisfactory evaluation of the content and measurement properties of the questionnaires. We provide a checklist for appraising the qualitative attributes and measurement properties of PA questionnaires, as a tool for selecting the most appropriate PA questionnaire for a certain target population and purpose. The checklist is called the Quality Assessment of Physical Activity Questionnaire (QAPAQ). This review is one of a group of four reviews in this issue of Sports Medicine on the content and measurement properties of physical activity questionnaires. Part 1 of the checklist can be used to appraise the qualitative attributes of PA questionnaires, i.e. the construct to be measured by the questionnaire, the purpose and target population for which it was developed, the format, interpretability and ease of use. Part 2 of the checklist can be used to appraise the measurement properties of a PA questionnaire, i.e. reliability (parameters of measurement error and reliability coefficients), validity (face and content validity, criterion validity and construct validity) and responsiveness. The QAPAQ can be used to select the most appropriate PA questionnaire for a certain purpose, but it can also be used to design or report a study on measurement properties of PA questionnaires. Using such a checklist will contribute to improving the assessment, reporting and appraisal of the content and measurement properties of PA questionnaires.

  9. Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review

    NASA Astrophysics Data System (ADS)

    Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard

    2017-10-01

    Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

  10. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  11. 41 CFR 102-75.130 - If hazardous substance activity took place on the property, what specific information must an...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... activity took place on the property, what specific information must an agency include in the title report... the property, what specific information must an agency include in the title report? If hazardous substance activity took place on the property, the reporting agency must include information on the type...

  12. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  13. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  14. Physicochemical effect of activation temperature on the sorption properties of pine shell activated carbon.

    PubMed

    Wasim, Agha Arslan; Khan, Muhammad Nasiruddin

    2017-03-01

    Activated carbons produced from a variety of raw materials are normally selective towards a narrow range of pollutants present in wastewater. This study focuses on shifting the selectivity of activated carbon from inorganic to organic pollutants using activation temperature as a variable. The material produced from carbonization of pine shells substrate was activated at 250°C and 850°C. Both adsorbents were compared with commercial activated carbon for the sorption of lead, cadmium, methylene blue, methyl blue, xylenol orange, and crystal violet. It was observed that carbon activated at 250°C was selective for lead and cadmium whereas the one activated at 850°C was selective for the organic dyes. The Fourier transform infrared spectroscopy study revealed that AC850 had less surface functional groups as compared to AC250. Point of zero charge and point of zero salt effect showed that AC250 had acidic groups at its surface. Scanning electron microscopy depicted that increase in activation temperature resulted in an increase in pore size of activated carbon. Both AC250 and AC850 followed pseudo-second-order kinetics. Temkin isotherm model was a best fit for empirical data obtained at equilibrium. The model also showed that sorption process for both AC250 and AC850 was physisorption.

  15. Three polyphenol oxidases from red clover (Trifolium pratense) differ in enzymatic activities and activation properties.

    PubMed

    Schmitz, George E; Sullivan, Michael L; Hatfield, Ronald D

    2008-01-09

    Polyphenol oxidases (PPOs) oxidize o-diphenols to o-quinones, which cause browning reactions in many wounded fruits, vegetables, and plants including the forage crop red clover (Trifolium pratense L.). Production of o-quinones in red clover inhibits postharvest proteolysis during the ensiling process. The cDNAs encoding three red clover PPOs were expressed individually in alfalfa (Medicago sativa L.), which lacks detectable endogenous foliar PPO activity and o-diphenols. Several physical and biochemical characteristics of the red clover PPOs in alfalfa extracts were determined. In transgenic alfalfa extracts, red clover PPOs exist in a latent state and are activated (10-40-fold increase in activity) by long incubations (>2 days) at ambient temperature or short incubations (<10 min) at > or =65 degrees C. PPO1 appears to be more stable at high temperatures than PPO2 or PPO3. During incubation at ambient temperature, the molecular masses of the PPO enzymes were reduced by approximately 20 kDa. The apparent pH optima of latent PPO1, PPO2, and PPO3 are 5.5, 6.9, and 5.1, respectively, and latent PPO1 is slightly activated (~5-fold) by low pH. Activation of the PPOs shifts the pH optima to approximately 7, and the activated PPOs retain substantial levels of activity as the pH increases above their optima. The latent and activated PPOs were surveyed for ability to oxidize various o-diphenols, and activation of the PPOs had little effect on substrate specificity. Activation increases the V max but not the affinity of the PPO enzymes for caffeic acid. Results indicate red clover PPOs undergo structural and kinetic changes during activation and provide new insights to their effects in postharvest physiology.

  16. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-07

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  17. [Graded ethanol precipitation method on physicochemical properties and antioxidant activities of polysaccharides extracted from Astragalus Radix].

    PubMed

    Li, Hong-fa; Guo, Song-bo; Man, Shu-li; Fan, Ya-ya; Wang, Ting-ting; Li, Xia; Gao, Wen-yuan

    2015-06-01

    Astragalus polysaccharide has been widely used in food and medicinal industry owing to its health-promoting properties. In order to characterize better the relationship among molecular weight, structure-activity and activities, a simple method was used different concentration of ethanol including 30% (PW30), 50% (PW50), 70% (PW70), 75% (PW75), 80% (PW80) and 90% (PW90) to precipitate Astragalus polysaccharides into different molecular weight. As a result, PW90 showed smooth surface and the strongest antioxidant activity among these six fractions (P < 0.05). In conclusion, graded ethanol precipitation was a simple method to separate Astragalus polysaccharides into different molecular weight with different antioxidant activity fractions.

  18. Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation

    NASA Astrophysics Data System (ADS)

    Farma, Rakhmawati; Fatjrin, Delika; Awitdrus, Deraman, Mohamad

    2017-01-01

    The activated carbon adsorption was influenced by the quality of activated carbon. The activated carbon quality can be improved by chemical activation and microwave irradiation. In this study, activated carbon has been made using biomass from fibers of oil palm empty fruit bunches. The microwave irradiation was applied at various irradiation times of 5, 10, 15 and 20 minutes, and at output power of 630 Watt. The physical properties of activated carbon were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and methylene blue adsorption. Analysis of microstructure showed that the activated carbon was semicrystalline with two peaks of 002 and 100 at 2θ around of 22° and 44°, respectively. The values of stack height (Lc) before and after irradiation increased from 2,799 nm to 3,860 nm, which indicated increasing surface area. Characteristics of surface morphology of activated carbon showed the pores number increased after microwave irradiation. Microwave irradiation time of 15 minutes resulted the highest pores number justified in the activated carbon with their surface area of 319,60 m2/g and adsorption of methylene blue of 86,07 mg/g.

  19. Consensus models of activity landscapes with multiple chemical, conformer, and property representations.

    PubMed

    Yongye, Austin B; Byler, Kendall; Santos, Radleigh; Martínez-Mayorga, Karina; Maggiora, Gerald M; Medina-Franco, José L

    2011-06-27

    We report consensus Structure-Activity Similarity (SAS) maps that address the dependence of activity landscapes on molecular representation. As a case study, we characterized the activity landscape of 54 compounds with activities against human cathepsin B (hCatB), human cathepsin L (hCatL), and Trypanosoma brucei cathepsin B (TbCatB). Starting from an initial set of 28 descriptors we selected ten representations that capture different aspects of the chemical structures. These included four 2D (MACCS keys, GpiDAPH3, pairwise, and radial fingerprints) and six 3D (4p and piDAPH4 fingerprints with each including three conformers) representations. Multiple conformers are used for the first time in consensus activity landscape modeling. The results emphasize the feasibility of identifying consensus data points that are consistently formed in different reference spaces generated with several fingerprint models, including multiple 3D conformers. Consensus data points are not meant to eliminate data, disregarding, for example, "true" activity cliffs that are not identified by some molecular representations. Instead, consensus models are designed to prioritize the SAR analysis of activity cliffs and other consistent regions in the activity landscape that are captured by several molecular representations. Systematic description of the SARs of two targets give rise to the identification of pairs of compounds located in the same region of the activity landscape of hCatL and TbCatB suggesting similar mechanisms of action for the pairs involved. We also explored the relationship between property similarity and activity similarity and found that property similarities are suitable to characterize SARs. We also introduce the concept of structure-property-activity (SPA) similarity in SAR studies.

  20. Optimization of gyroscope properties with active coupled resonator optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Chen, Jiayang; Zhang, Hao; Jin, Junjie; Lin, Jian; Zhao, Long; Bi, Zhuanfang; Huang, Anping; Xiao, Zhisong

    2015-03-01

    Active coupled resonator optical waveguide (CROW) structure can significantly enhance the performance of optical gyroscope due to its loss compensation effect and highly dispersive properties. In this paper, we analyze the effect of optical gain and its induced noise, i.e. spontaneous emission noise, on the properties of the active CROWs. A thorough investigation of the impact of various disorder degrees on the performance of the active three dimensional vertically coupled resonators (3D-VCR) gyroscope has been performed. It shows how the disorder interacted with coupling coefficient affects the achievable resolution ΔΩmin of gyroscope, and the degree of disorder will supplant the propagation loss to become an ultimate limitation. Finally, it is shown that the active 3D-VCR gyroscope (the number of ring, N>6) has better resolution ΔΩmin than that of the equivalent resonant waveguide optical gyroscope (RWOG).

  1. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  2. Activation of Macrophages by Lipopolysaccharide for Assessing the Immunomodulatory Property of Biomaterials.

    PubMed

    Han, Shengwei; Chen, Zetao; Han, Pingping; Hu, Qingang; Xiao, Yin

    2017-03-24

    The design paradigm of biomaterials has been changed to ones with favorable immunomodulatory effects, indicating the importance of accurately evaluating the immunomodulatory properties of biomaterials. Among all the immune cells macrophages receive most attention, due to their plasticity and multiple roles in the materials and host interactions, and thereby become model immune cells for the evaluation of immunomodulatory properties of biomaterials in many studies. Lipopolysaccharides (LPS), a polysaccharide in the outer membrane of Gram-negative bacteria, elicit strong immune responses, which was often applied to activate macrophages, resulting in a proinflammatory M1 phenotype, and the release of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα), interleukin (IL)-1, and IL-6. However, there is no consensus on how to apply macrophages and LPS to detect the immunomodulatory properties of biomaterials. The lack of scientific consideration of this issue has led to some inaccurate and insufficient conclusions on the immunomodulatory properties of biomaterials, and inconsistences between different research groups. In this study, we carried out a systemic study to investigate the stimulatory effects of LPS with different times, doses, and conditions on the activation of macrophages. An experimental pathway was proposed accordingly for the activation of macrophages using LPS for assessing the immunomodulatory property of biomaterials.

  3. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  4. Physicochemical properties and activity of Mo-containing zeolite catalysts of nonoxidative conversion of methane

    NASA Astrophysics Data System (ADS)

    Korobitsyna, L. L.; Arbuzova, N. V.; Vosmerikov, A. V.

    2013-06-01

    High-silica zeolites of ZSM-5 structural type were synthesized using various structure-forming additives and without them. Mo-containing catalytic systems were prepared on the basis of these zeolites. Their physicochemical properties and activity in the course of the nonoxidative conversion of methane were studied. The Mo/ZSM-5 catalyst obtained on the basis of zeolite synthesized with hexamethylenediamine showed high aromatizing activity and stability.

  5. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    PubMed

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  6. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  7. RPMA (Real Property Maintenance Activities) Consolidation Activities in the National Capital Region. Volume 1. Main Report.

    DTIC Science & Technology

    1984-05-01

    planning the activities of future IPCs. Pre-IPC Activities Participating installations should have been directed through command channels to take the...the task with minimal impact on the existing A workload, and (2) ensure that the request for inforniation is formal and sent through channels . Planners...34... . .•.....¢,.. -...... ,- % * .*. ...... ....... .°. •.-.-.-. •..... 39. The District init inttei the cofl ract Ior <I’MA t i i on;, e i, ( I i HQDA through command channels . 40

  8. Activation of tumoricidal properties in human blood monocytes by muramyl dipeptide requires specific intracellular interaction

    SciTech Connect

    Fogler, W.E.; Fidler, I.J.

    1986-03-15

    The purpose of this study was to identify the mechanism by which muramyl dipeptide (MDP) activates antitumor cytotoxic properties in normal and interferon-..gamma.. (IFN-..gamma..)-primed human peripheral blood monocytes. The structurally and functionally active MDP analog, nor-muramyl dipeptide (nor-MDP), and (/sup 3/H)nor-MDP were used as reference glycopeptides. Direct activation of normal, noncytotoxic monocytes by nor-MDP was enhanced its encapsulation within multilamellar vesicles (MLV). Studies with (/sup 3/H)nor-MDP revealed that the activation of monocytes by nor-MDP was not attributable to its interaction with a specific cell surface receptor, nor did it result merely from the internalization by monocytes of glycopeptide. Subthreshold concentrations of nor-MDP could activate tumor cytotoxic properties in IFN-..gamma..-primed monocytes. The intracellular interaction of (/sup 3/H)nor-MDP with IFN-..gamma..-primed monocytes was specific in that intracellular levels of radiolabeled material could be displaced and recovered as intact molecules by unlabeled nor-MDP, but not by a biologically inactive MDP stereoisomer. Collectively, these results suggest that the activation of tumoricidal properties in human blood monocytes by MDP occurs subsequent to intracellular interaction with specific MDP receptors.

  9. Relation between molecular electrostatic potential, several electronic properties and antibacterial activity of some synthetic furane derivatives

    NASA Astrophysics Data System (ADS)

    Monasterios, Melina; Avendaño, Milagros; Amaro, María Isabel; Infante, Wilson; Charris, Jaime

    2006-10-01

    The present work reports the preliminary evaluation of the antibacterial activity, molecular electrostatic potential (MEP) determination and relevant electronic properties for their behavior as one electron acceptor, of a serial of compounds, active and inactive analogues, derived form furan, that were previously synthesized within our investigation group, with the purpose of establishing the existence of a valid correlation between their antibacterial activity and those electrostatic and electronic properties. According to the balance between the positive and negative areas in combination with the size of the MEP's area it was determined that these derivatives exhibit activity against Gram-positive and Gram-negative bacteria or only against Gram-positive ones. We found no valid correlation between the single point energy, the energy associated to the lowest unoccupied molecular orbital (LUMO); LUMO's density, nucleophilic susceptibility, Log P and the dipole moment, with the experimental activity determined for them. This could be because this is an homologous serial where the properties derived from the electronic distribution just change between those molecules that have a nitro group (active) in contrast with those wherein this group is absent (inactive).

  10. Influence of jet-cooking Prowashonupana barley flour on phenolic composition, antioxidant activities, and viscoelastic properties

    USDA-ARS?s Scientific Manuscript database

    The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...

  11. Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.

    NASA Technical Reports Server (NTRS)

    Cubley, H. D.

    1972-01-01

    Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.

  12. Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.

    NASA Technical Reports Server (NTRS)

    Cubley, H. D.

    1972-01-01

    Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.

  13. Assessment in vitro of the active hemostatic properties of wound dressings.

    PubMed

    Jesty, Jolyon; Wieland, Martin; Niemiec, Jack

    2009-05-01

    The development of actively hemostatic wound dressings for use in severe trauma remains a major public-health and military goal. But, although some manufacturers claim that existing dressings activate platelets and/or blood coagulation, mechanistic evidence is often lacking. We describe a method for assessing the active hemostatic properties of dressings in vitro, entailing measurement of the flow of recalcified platelet-rich plasma (PRP) through a dressing sample. If the dressing is hemostatically active, flow is reduced. This flow is then compared with the flow-through of PRP in which both platelet and coagulation function are blocked with EDTA. The ratio of the two generates a hemostatic index that ranges from 1.0 (no active hemostasis) to 0 (highly potent). The method is applicable to porous or semiporous dressings, whether fabric, sponge, fleece, or granules. For an active dressing, the test is easily modified to differentiate between the contributions of platelet and coagulation to overall hemostasis. The method is illustrated for fabrics, over-the-counter gauze and sponge dressings, collagen-based sheets, and an absorbent granule dressing. One active collagen dressing is used to illustrate discrimination between platelet and coagulation function. The ability to assess hemostatic properties may significantly enhance the development of advanced active dressings.

  14. Nanoflare Properties throughout Active Regions: Comparing SDO/AIA Observations with Modeled Active Region Light Curves

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen; Klimchuk, J.

    2012-05-01

    Coronal plasma in active regions is typically measured to be at temperatures near 1-3 MK. Is the majority of the coronal plasma in hydrostatic equilibrium, maintained at these temperatures through a form of quasi-steady heating, or is this simply a measure of the average temperature of widely varying, impulsively heated coronal plasma? Addressing this question is complicated by the fact that the corona is optically thin: many thousands of flux tubes which are heated completely independently are contributing to the total emission along a given line of sight. There is a large body of work focused on the heating of isolated features - coronal loops - which are impulsively heated, however it is the diffuse emission between loops which often comprises the majority of active region emission. Therefore in this study we move beyond isolated features and analyze all of the emission in an entire active region from all contributing flux tubes. We investigate light curves systematically using SDO/AIA observations. We also model the active region corona as a line-of-sight integration of many thousands of completely independently heated flux tubes. The emission from these flux tubes may be time dependent, quasi-steady, or a mix of both, depending on the cadence of heat release. We demonstrate that despite the superposition of randomly heated flux tubes, different distributions of nanoflare cadences produce distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those from SDO/AIA. We conclude that the majority of the active region plasma is not maintained in hydrostatic equilibrium, rather it is undergoing dynamic heating and cooling cycles. The observed emission is consistent with heating through impulsive nanoflares, whose energy is a function of location within the active region. This research was supported by an appointment to the NASA Postdoctoral Program at GSFC/NASA.

  15. Nanoflare Properties throughout Active Regions: Comparing SDO/AIA Observations with Modeled Active Region Light Curves

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen

    2012-01-01

    Coronal plasma in active regions is typically measured to be at temperatures near 1-3 MK. Is the majority of the coronal plasma in hydrostatic equilibrium, maintained at these temperatures through a form of quasi-steady heating, or is this simply a measure of the average temperature of widely varying, impulsively heated coronal plasma? Addressing this question is complicated by the fact that the corona is optically thin: many thousands of flux tubes which are heated completely independently are contributing to the total emission along a given line of sight. There is a large body of work focused on the heating of isolated features - coronal loops - which are impulsively heated, however it is the diffuse emission between loops which often comprises the majority of active region emission. Therefore in this study we move beyond isolated features and analyze all of the emission in an entire active region from all contributing flux tubes. We investigate light curves systematically using SDO/AIA observations. We also model the active region corona as a line-of-sight integration of many thousands of completely independently heated flux tubes. The emission from these flux tubes may be time dependent, quasi-steady, or a mix of both, depending on the cadence of heat release. We demonstrate that despite the superposition of randomly heated flux tubes, different distributions of nanoflare cadences produce distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those from SDO/AIA. We conclude that the majority of the active region plasma is not maintained in hydrostatic equilibrium, rather it is undergoing dynamic heating and cooling cycles. The observed emission is consistent with heating through impulsive nanoflares, whose energy is a function of location within the active region.

  16. Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg.

    PubMed

    Shi, Jun-Jun; Zhang, Jian-Guo; Sun, Yu-Han; Qu, Jie; Li, Ling; Prasad, Chandan; Wei, Zhao-Jun

    2016-10-01

    The sequential extraction of peony seed dreg polysaccharides (PSDP) with hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS) yielded four different polysaccharide fractions. Based on their absorptions at 3600-3200cm(-1) and 1200-800cm(-1), these fractions were confirmed to be polysaccharides. The properties of four PSDPs displayed some slight differences. The CASS showed the highest peak temperature and endothermic enthalpy. The emulsifying activity and emulsifying stability of four PSDPs exhibited a dose-dependent pattern; HBSS showed the highest emulsifying activity, and CHSS displayed the longest emulsifying stability. The four PSDPs also exhibited wide variations in their antioxidant activities. For example, i) CASS showed the highest DPPH radical scavenging activity, reducing power and ABTS radical scavenging activity; ii) HBSS exhibited the highest hydroxyl radical scavenging activity, and iii) CHSS displayed the higher ferrous ions chelating ability than others.

  17. Properties of catalase activity in vegetative and sporulating cells of yeast Saccharomyces cerevisiae.

    PubMed

    Ota, A

    1986-01-01

    Properties of catalase activities have been examined in the intact cells of early stationary phase and cells 3 hr after transfer to sporulation medium in Saccharomyces cerevisiae. The catalase activities of the two cells had a broad optimal pH from 6 to 8. Catalase activity in the intact cells increased throughout a 4-hr period of the observation following transfer to sporulation medium. Almost all the catalase activity in vegetative cells was lost by the treatment at 60 degrees C for 10 min. Catalase activities of both cells were inhibited by KCN, NaN3, o-phenanthroline, and PCMB. The catalase activity of the vegetative cells was slightly more inhibited and inactivated than that of the sporulating cells by the inhibitors and by the treatment with HCl or NaOH.

  18. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.; Piele, Philip K.

    This chapter reviews 1982 cases related to school property. Cases involving citizen efforts to overturn school board decisions to close schools dominate the property chapter, and courts continue to uphold school board authority to close schools, transfer students, and sell or lease the buildings. Ten cases involving detachment and attachment of…

  19. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  20. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  1. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  2. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  3. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  4. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  5. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    PubMed

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  6. Investigation of membrane active properties and antiradical activity of gossypol and its derivatives

    USDA-ARS?s Scientific Manuscript database

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  7. Membrane-Active Properties and Antiradical Activity of Gossypol and Its Derivatives

    USDA-ARS?s Scientific Manuscript database

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  8. Activity patterns in the Sahara Desert: an interpretation based on cross-sectional geometric properties.

    PubMed

    Nikita, Efthymia; Siew, Yun Ysi; Stock, Jay; Mattingly, David; Lahr, Marta Mirazón

    2011-11-01

    The Garamantian civilization flourished in modern Fezzan, Libya, between 900 BC and 500 AD, during which the aridification of the Sahara was well established. Study of the archaeological remains suggests a population successful at coping with a harsh environment of high and fluctuating temperatures and reduced water and food resources. This study explores the activity patterns of the Garamantes by means of cross-sectional geometric properties. Long bone diaphyseal shape and rigidity are compared between the Garamantes and populations from Egypt and Sudan, namely from the sites of Kerma, el-Badari, and Jebel Moya, to determine whether the Garamantian daily activities were more strenuous than those of other North African populations. Moreover, sexual dimorphism and bilateral asymmetry are assessed at an intra- and inter-population level. The inter-population comparisons showed the Garamantes not to be more robust than the comparative populations, suggesting that the daily Garamantian activities necessary for survival in the Sahara Desert did not generally impose greater loads than those of other North African populations. Sexual dimorphism and bilateral asymmetry in almost all geometric properties of the long limbs were comparatively low among the Garamantes. Only the lower limbs were significantly stronger among males than females, possibly due to higher levels of mobility associated with herding. The lack of systematic bilateral asymmetry in cross-sectional geometric properties may relate to the involvement of the population in bilaterally intensive activities or the lack of regular repetition of unilateral activities.

  9. Development of an active food packaging system with antioxidant properties based on green tea extract.

    PubMed

    Carrizo, Daniel; Gullo, Giuseppe; Bosetti, Osvaldo; Nerín, Cristina

    2014-01-01

    A formula including green tea extract (GTE) was developed as an active food packaging material. This formula was moulded to obtain an independent component/device with antioxidant properties that could be easily coupled to industrial degassing valves for food packaging in special cases. GTE components (i.e., gallic acid, catechins and caffeine) were identified and quantified by HPLC-UV and UPLC-MS and migration/diffusion studies were carried out. Antioxidant properties of the formula alone and formula-valve were measured with static and dynamic methods. The results showed that the antioxidant capacity (scavenging of free radicals) of the new GTE formula was 40% higher than the non-active system (blank). This antioxidant activity increased in parallel with the GTE concentration. The functional properties of the industrial target valve (e.g., flexibility) were studied for different mixtures of GTE, and good results were found with 17% (w/w) of GTE. This new active formula can be an important addition for active packaging applications in the food packaging industry, with oxidative species-scavenging capacity, thus improving the safety and quality for the consumer and extending the shelf-life of the packaged food.

  10. Molecular and structural properties of polymer composites filled with activated charcoal particles

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  11. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  12. Temperature-Induced Changes in the Sporicidal Activity and Chemical Properties of Glutaraldehyde

    PubMed Central

    Thomas, S.; Russell, A. D.

    1974-01-01

    Freshly prepared 2% acid and alkaline glutaraldehyde solutions were stored at 4, 20, and 37 C. At intervals, samples were removed and changes in pH, ultraviolet spectrum, and sporicidal activity (against Bacillus pumilus spores) were recorded. Alkaline solutions stored at 4 C showed little changes in these properties, whereas such solutions stored at 37 C became turbid and showed a decrease in pH, marked changes in ultraviolet spectrum, and an almost complete loss of sporicidal activity. Intermediate results were obtained with alkaline solutions stored at 20 C. In contrast, acid 2% glutaraldehyde solutions (initial pH 3.5) showed comparatively few changes in their properties. Treatment of spores with freshly prepared glutaraldehyde solutions (0.5%) at temperature above 40 C reduced the effect of pH on sporicidal activity. PMID:4213869

  13. Anisotropic elastography for local passive properties and active contractility of myocardium from dynamic heart imaging sequence.

    PubMed

    Liu, Yi; Wang, Ge; Sun, L Z

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.

  14. Molecular and structural properties of polymer composites filled with activated charcoal particles

    SciTech Connect

    Tahir, Dahlang Bakri, Fahrul; Liong, Syarifuddin

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  15. Improving mechanical properties of polyethylene orthopaedic implants by high frequency cold plasma surface activation

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Vlad, Iulia E.; Dadarlat, Dorin N.; Anghel, Sorin D.

    2013-11-01

    Although a tremendous progress has been made in developing new methods and materials for manufacturing orthopaedic implants, the new technology still faces various problems. Polyethylene implants are relatively easy to manufacture and at lower cost compared to metallic or ceramic implants, but they present a fundamental problem: during usage and in time, due to their manufacturing technology, the material suffers from pitting and delamination which leads to crack propagation and finally to sudden fracture. Our studies and tests performed on polyethylene showed that, using cold plasma surface activation during the manufacturing process of the orthopaedic implants made from polyethylene can significantly increase their mechanical properties. The breaking tests revealed an increase of the tensile strength in the laminated polyethylene samples by a factor of 4 after plasma activation. "Aging" tests have been also performed to investigate how the cold plasma treated samples maintain their properties in time, after the surface activation process.

  16. Polyclonal antibodies for specific detection of tobacco host cell proteins can be efficiently generated following RuBisCO depletion and the removal of endotoxins.

    PubMed

    Arfi, Zulfaquar Ahmad; Hellwig, Stephan; Drossard, Jürgen; Fischer, Rainer; Buyel, Johannes Felix

    2016-03-01

    The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre-depleted or post-depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber-flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.

  17. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants

    USDA-ARS?s Scientific Manuscript database

    C4 photosynthesis is an elaborate set of metabolic pathways that utilize specialized anatomical and biochemical adaptations to concentrate CO2 around RuBisCO. The activities of the C4 pathways are coordinated between two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), and rely hea...

  18. Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations.

    PubMed

    Israel, A A; Nobel, P S

    1994-06-01

    Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 μl CO2 l(-1). The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.

  19. Dynamic changes in interneuron morpho-physiological properties mark the maturation of hippocampal network activity

    PubMed Central

    Allene, C.; Picardo, M. A.; Becq, H.; Miyoshi, G.; Fishell, G.; Cossart, R.

    2012-01-01

    During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of Synchronous Plateau Assemblies (SPAs) that are initiated by sparse groups of gap-junction coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven Giant Depolarizing Potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To understand this, we have studied the morpho-physiological fate of single SPA-cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA to GDP transition is paralleled by a remarkable maturation in the morpho-physiological properties of GABAergic neurons. Compared to those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morpho-physiological properties of GABAergic interneurons as they progress from SPA to GDPs marks the emergence of synapse-driven network oscillations. PMID:22573691

  20. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    PubMed Central

    2011-01-01

    Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile. PMID:21699688

  1. Mechanical and microstructural properties of alkali-activated fly ash geopolymers.

    PubMed

    Komljenović, M; Bascarević, Z; Bradić, V

    2010-09-15

    This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio.

  2. Bioprotective properties of Dragon's blood resin: In vitro evaluation of antioxidant activity and antimicrobial activity

    PubMed Central

    2011-01-01

    Background Food preservation is basically done to preserve the natural characteristics and appearance of the food and to increase the shelf life of food. Food preservatives in use are natural, chemical and artificial. Keeping in mind the adverse effects of synthetic food preservatives, there is a need to identify natural food preservatives. The aims of this study were to evaluate in vitro antioxidant and antimicrobial activities of Dragon's blood resin obtained from Dracaena cinnabari Balf f., with a view to develop safer food preservatives. Methods In this study, three solvents of varying polarity were used to extract and separate the medium and high polarity compounds from the non-polar compounds of the Dragon's blood resin. The extracts were evaluated for their antimicrobial activity against the food borne pathogens. The antioxidant activities of the extracts were assessed using DPPH and ABTS radical scavenging, FRAP, metal chelating and reducing power assays. Total phenolics, flavonoids and flavonols of extracts were also estimated using the standard methods. Results Phytochemical analysis of extracts revealed high phenolic content in CH2Cl2 extract of resin. Free radical scavenging of CH2Cl2 extract was found to be highest which is in good correlation with its total phenolic content. All test microorganisms were also inhibited by CH2Cl2 extract. Conclusions Our result provide evidence that CH2Cl2 extract is a potential source of natural antioxidant compounds and exhibited good inhibitory activity against various food borne pathogens. Thus, CH2Cl2 extract of Dragon's blood resin could be considered as possible source of food preservative. PMID:21329518

  3. Bioprotective properties of Dragon's blood resin: in vitro evaluation of antioxidant activity and antimicrobial activity.

    PubMed

    Gupta, Deepika; Gupta, Rajinder K

    2011-02-17

    Food preservation is basically done to preserve the natural characteristics and appearance of the food and to increase the shelf life of food. Food preservatives in use are natural, chemical and artificial. Keeping in mind the adverse effects of synthetic food preservatives, there is a need to identify natural food preservatives. The aims of this study were to evaluate in vitro antioxidant and antimicrobial activities of Dragon's blood resin obtained from Dracaena cinnabari Balf f., with a view to develop safer food preservatives. In this study, three solvents of varying polarity were used to extract and separate the medium and high polarity compounds from the non-polar compounds of the Dragon's blood resin. The extracts were evaluated for their antimicrobial activity against the food borne pathogens. The antioxidant activities of the extracts were assessed using DPPH and ABTS radical scavenging, FRAP, metal chelating and reducing power assays. Total phenolics, flavonoids and flavonols of extracts were also estimated using the standard methods. Phytochemical analysis of extracts revealed high phenolic content in CH(2)Cl(2) extract of resin. Free radical scavenging of CH(2)Cl(2) extract was found to be highest which is in good correlation with its total phenolic content. All test microorganisms were also inhibited by CH(2)Cl(2) extract. Our result provide evidence that CH(2)Cl(2) extract is a potential source of natural antioxidant compounds and exhibited good inhibitory activity against various food borne pathogens. Thus, CH(2)Cl(2) extract of Dragon's blood resin could be considered as possible source of food preservative.

  4. Influence of flocculation and settling properties of activated sludge in relation to secondary settler performance.

    PubMed

    Wilén, B M; Onuki, M; Hermansson, M; Lumley, D; Mino, T

    2006-01-01

    Floc characteristics were studied at a full scale activated sludge treatment plant with a unique process solution incorporating pre-denitrification with post-nitrification in nitrifying trickling filters. Since greater nitrogen removal is achieved when more secondary settled wastewater is recirculated to the trickling filters, the secondary settlers are always operated close to their maximal capacity. The flocculation and settling properties are therefore crucial and have an effect on the overall plant performance. Since the plant is operated at a short sludge age, these properties change quickly, resulting in variable maximal secondary settler capacity. The dynamics in floc structure and microbial community composition were studied and correlated to the secondary settler performance. Fluorescence in situ hybridisation was used to investigate the microbial community structure and their spatial distribution. The floc structure could to some extent be related to the flocculation and settling properties of the sludge. Even small differences had an influence suggesting that colloidal properties also play a significant role in determining the floc properties. No correlation between microbial community composition and settling properties could be established with the group-specific probes investigated.

  5. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  6. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Henry, J.; Mohanraj, K.; Sivakumar, G.; Umamaheswari, S.

    2015-05-01

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350 °C and 450 °C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichia coli and Bacillus.

  7. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity.

    PubMed

    Henry, J; Mohanraj, K; Sivakumar, G; Umamaheswari, S

    2015-05-15

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350°C and 450°C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichiacoli and Bacillus.

  8. Low-temperature irradiation effects on tensile and Charpy properties of low-activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Shiba, Kiyoyuki; Hishinuma, Akimichi

    2000-12-01

    Tensile and Charpy properties of low-activation ferritic steel, F82H irradiated up to 0.8 dpa at low temperature below 300°C were investigated. The helium effect on these properties was also investigated using the boron isotope doping method. Neutron irradiation increased yield stress accompanied with ductility loss, and it also shifted the ductile-to-brittle transition temperature (DBTT) from -50°C to 0°C. Boron-doped F82H showed larger degradation in DBTT and ductility than boron-free F82H, while they had the same yield stress before and after irradiation.

  9. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation.

    PubMed

    Ivanov, Ivan; Matafonov, Anton; Sun, Mao-Fu; Cheng, Qiufang; Dickeson, S Kent; Verhamme, Ingrid M; Emsley, Jonas; Gailani, David

    2017-03-16

    When blood is exposed to variety of artificial surfaces and biologic substances, the plasma proteins factor XII (FXII) and prekallikrein undergo reciprocal proteolytic conversion to the proteases αFXIIa and α-kallikrein by a process called contact activation. These enzymes contribute to host-defense responses including coagulation, inflammation, and fibrinolysis. The initiating event in contact activation is debated. To test the hypothesis that single-chain FXII expresses activity that could initiate contact activation, we prepared human FXII variants lacking the Arg353 cleavage site required for conversion to αFXIIa (FXII-R353A), or lacking the 3 known cleavage sites at Arg334, Arg343, and Arg353 (FXII-T, for "triple" mutant), and compared their properties to wild-type αFXIIa. In the absence of a surface, FXII-R353A and FXII-T activate prekallikrein and cleave the tripeptide S-2302, demonstrating proteolytic activity. The activity is several orders of magnitude weaker than that of αFXIIa. Polyphosphate, an inducer of contact activation, enhances PK activation by FXII-T, and facilitates FXII-T activation of FXII and FXI. In plasma, FXII-T and FXII-R353A, but not FXII lacking the active site serine residue (FXII-S544A), shortened the clotting time of FXII-deficient plasma and enhanced thrombin generation in a surface-dependent manner. The effect was not as strong as for wild-type FXII. Our results support a model for induction of contact activation in which activity intrinsic to single-chain FXII initiates αFXIIa and α-kallikrein formation on a surface. αFXIIa, with support from α-kallikrein, subsequently accelerates contact activation and is responsible for the full procoagulant activity of FXII.

  10. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    PubMed

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m(2)/g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  11. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  12. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  13. Comparison of the effects of biochar and activating biochar application on selected soil properties

    NASA Astrophysics Data System (ADS)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    In our experiment we worked with three different type of biochar. Biochar represents carbonized organic matter. Its influence on soil and plant grow strongly depend on feedstock and conditions during combusted process. Different types of biochar were compared by pot experiment: as substrate we used biochar from sewage sludge, biochar from residual biomass, activated biochar. Moreover two other variants were fertilized by digestate and mineral fertilizer - DAM 390 (mixture of ammonium and nitrate nitrogen). Lettuce Sativa L. was used as indicator plant and experiment was located in growth box. Activated biochar was prepared in water environment and activating took two weeks. Several studies have demonstrated that biochar can have toxic properties and its application to soil can negatively affect plant yield. This toxicity is cost by aromatic substances which are native part of biochar. The concentration of these substances depends especially on temperature during pyrolysis. Our aim was eliminate aromatic substance by application of biochar which were activated. The biomass production, mycorrhizal colonization and dehydrogenase enzymatic activity was determined after end of experiment. The significant differences in all parameters were found between conventional biochar and activating biochar. Above all we didn't found statistical different in dehydrogenase activity between all treatments except substrates with activated biochar where was activity third higher than in comparison with other variants. The presented results indicate that the production and use of activating biochar represents potential technology for decrease in toxicity of conventional biochar.

  14. Erythroblast transformation by FLI-1 depends upon its specific DNA binding and transcriptional activation properties.

    PubMed

    Ano, Sabine; Pereira, Rui; Pironin, Martine; Lesault, Isabelle; Milley, Caroline; Lebigot, Ingrid; Quang, Christine Tran; Ghysdael, Jacques

    2004-01-23

    FLI-1 is a transcriptional regulator of the ETS family of proteins. Insertional activation at the FLI-1 locus is an early event in F-murine leukemia virus-induced erythroleukemia. Consistent with its essential role in erythroid transformation, enforced expression of FLI-1 in primary erythroblasts strongly impairs the response of these cells to erythropoietin (Epo), a cytokine essential to erythropoiesis. We show here that point mutations in the ETS domain that abolished FLI-1 binding to specific DNA elements (ETS-binding sites) suppressed the ability of FLI-1 to transform erythroblasts. The exchange of the entire ETS domain (DNA binding domain) of FLI-1 for that of PU.1 changed the DNA binding specificity of FLI-1 for that of PU.1 and impaired FLI-1 transforming properties. In contrast, ETS domain swapping mutants that maintained the DNA binding specificity of FLI-1 did not affect the ability of FLI-1 to transform erythroblasts. Deletion and swapping mutants that failed to inhibit the DNA binding activity of FLI-1 but impaired its transcriptional activation properties were also transformation-defective. Taken together, these results show that both the ability of FLI-1 to inhibit Epo-induced differentiation of erythroblasts and to confer enhanced cell survival in the absence of Epo critically depend upon FLI-1 ETS-binding site-dependent transcriptional activation properties.

  15. Influence of the activator in an acrylic bone cement on an array of cement properties.

    PubMed

    Lewis, Gladius; Xu, Jie; Deb, Sanjukta; Lasa, Blanca Vázquez; Román, Julio San

    2007-06-01

    In all but one of the acrylic bone cement brands used in cemented arthroplasties, N,N-dimethyl-4-toluidine (DMPT) serves as the activator of the polymerization reaction. However, many concerns have been raised about this activator, all related to its toxicity. Thus, various workers have assessed a number of alternative activators, with two examples being N,N-dimethylamino-4-benzyl laurate (DMAL) and N,N-dimethylamino-4-benzyl oleate (DMAO). The results of limited characterization of cements that contain DMAL or DMAO have been reported in the literature. The present work is a comprehensive comparison of cements that contain one of these three activators, in which the values of a large array of their properties were determined. These properties range from the setting time and maximum exotherm temperature of the curing cement to the variation of the loss elastic modulus of the cured cement with frequency of the applied indenting force in dynamic nanoindentation tests. The present results, taken in conjunction with those presented in previous reports by the present authors and co-workers on other properties of these cements, indicate that both DMAL and DMPT are suitable alternatives to DMPT.

  16. Single-neuron discharge properties and network activity in dissociated cultures of neocortex.

    PubMed

    Giugliano, M; Darbon, P; Arsiero, M; Lüscher, H-R; Streit, J

    2004-08-01

    Cultures of neurons from rat neocortex exhibit spontaneous, temporally patterned, network activity. Such a distributed activity in vitro constitutes a possible framework for combining theoretical and experimental approaches, linking the single-neuron discharge properties to network phenomena. In this work, we addressed the issue of closing the loop, from the identification of the single-cell discharge properties to the prediction of collective network phenomena. Thus, we compared these predictions with the spontaneously emerging network activity in vitro, detected by substrate arrays of microelectrodes. Therefore, we characterized the single-cell discharge properties to Gauss-distributed noisy currents, under pharmacological blockade of the synaptic transmission. Such stochastic currents emulate a realistic input from the network. The mean (m) and variance (s(2)) of the injected current were varied independently, reminiscent of the extended mean-field description of a variety of possible presynaptic network organizations and mean activity levels, and the neuronal response was evaluated in terms of the steady-state mean firing rate (f). Experimental current-to-spike-rate responses f(m, s(2)) were similar to those of neurons in brain slices, and could be quantitatively described by leaky integrate-and-fire (IF) point neurons. The identified model parameters were then used in numerical